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Abstract

The utopia point of a multicriteria optimization problem is the vector

that speci�es for each criterion the most favourable among the feasible val-

ues. The Euclidean compromise solution in multicriteria optimization is a

solution concept that assigns to a feasible set the alternative with minimal

Euclidean distance to the utopia point. The purpose of this paper is to pro-

vide a characterization of the Euclidean compromise solution. Consistency

plays a crucial role in our approach.
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1. Introduction

Multicriteria optimization extends optimization theory by permitting several �

possibly con�icting � objective functions, which are to be �optimized�simulta-

neously. By now an important branch of Operations Research (see Steuer et

al., 1996), it ranges from highly verbal approaches like Larichev and Moshkovich

(1997) to highly mathematical approaches like Sawaragi et al. (1985), and is

known by various other names, including Pareto optimization, vector optimiza-

tion, e¢ cient optimization, and multiobjective optimization. Formally, a multi-

criteria optimization problem can be formulated as

Optimize f1(x); : : : ; fn(x)

subject to x 2 X;
(1.1)

where X denotes the feasible set of alternatives and n is the number of separate

objective functions fk : X ! R (k = 1; : : : ; n).
The simultaneous optimization of multiple objective functions suggests the

question: what does it mean to optimize, i.e., what is a good outcome? Di¤erent

answers to this question lead to di¤erent ways of solving multicriteria optimization

problems. For detailed descriptions and good introductions to the area, see White

(1982), Yu (1985), and Zeleny (1982).

Yu (1973) introduced compromise solutions, based on the idea of �nding a

feasible point that is as close as possible to an ideal outcome. Zeleny (1976, p.

174) even states this informally as an �axiom of choice�:

�Alternatives that are closer to the ideal are preferred to those that

are farther away. To be as close as possible to the perceived ideal is

the rationale of human choice.�

The ideal point, or utopia point, speci�es for each objective function sepa-

rately the optimal feasible value. Being �close to�a point, of course, requires the



3

speci�cation of a metric. Yu (1973) concentrates on distance functions de�ned by

`p-norms, but possible extensions include the use of di¤erent norms (cf. Gearhart,

1979) or penalty functions (cf. White, 1984).

Bouyssou et al. (1993) observe that within multicriteria decision making �[a]

systematic axiomatic analysis of decision procedures and algorithms is yet to be

carried out�. Yu (1973, 1985) and Freimer and Yu (1976) already indicate several

properties of compromise solutions. In this paper we concentrate on the Euclidean

compromise solution, selecting the feasible point that minimizes the Euclidean

distance to the utopia point. We study the properties of this solution and provide

several axiomatic characterizations: the Euclidean compromise solution is shown

to be the unique solution concept satisfying several of the properties on a domain

of multicriteria optimization problems.

This paper contributes to the economic literature on consistency of solution

concepts. Many characterizations of concepts in areas like cooperative and non-

cooperative game theory, abstract economies, bargaining, and matching theory

rely on a consistency property (see Thomson, 2006, for a detailed overview).

Loosely speaking, consistency entails the following: consider a domain of prob-

lems P and a solution concept ' that assigns a payo¤ vector to each problem

in P. Consider a problem P 2 P with a set N of economic agents and let M

be a subset of N . Give agents outside M their payo¤ according to ' in P and

consider an appropriately de�ned �reduced problem�P'M 2 P for the remaining

members �those in M . The solution concept ' is consistent if it does not involve

a sudden change of plans: The prescribed allocation to each member of M in the

reduced problem P'M is the same as that in the original problem P when ' is used

to determine allocations in both problems. Lensberg (1988) axiomatizes the Nash

bargaining solution using consistency, calling it multilateral stability. The current

paper uses essentially the same axiom.

The set-up of the paper is as follows. Section 2 contains de�nitions and prelim-

inary results. The domain of choice sets and the Euclidean compromise solution
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are de�ned in Section 3. Section 4 contains all the properties as well as the main

results; the Euclidean compromise solution is shown to be the unique solution

concept satisfying various sets of the properties. All proofs are in Section 5. Sec-

tion 6 addresses the logical independence of the axioms. We conclude in Section

7, which contains remarks on related literature.

2. Preliminaries

Throughout this paper, N will denote a non-empty, �nite set of positive integers

(N � N, N 6= ;, N �nite). Let RN denote the jN j-dimensional Euclidean space
with axes indexed by the elements of N . As usual, RN+ , RN++; and RN� will

denote, respectively, the nonnegative, positive and nonpositive orthants of RN :
For vectors x; y 2 RN , write x = y if x � y 2 RN+ ; x > y if x � y 2 RN++ , and
x � y if x � y 2 RN+ and x 6= y: Relations 5, �, and < are de�ned analogously.

If x 2 RN and I � N , we denote xI = (xi)i2I . For two sets X; Y � RN , de�ne
X + Y = fx + y j x 2 X; y 2 Y g. If x 2 RN , we will abuse notation slightly and
sometimes write x+ Y instead of fxg+ Y .

Let S � RN . A point x 2 S is Pareto optimal in S if there is no y 2 S such

that y � x. The set of Pareto optimal points of S is denoted by

PO(S) = fx 2 S j if y 2 RN and y � x, then y =2 Sg:

The comprehensive hull of S is the set

comp(S) = fy 2 RN j y 5 x for some x 2 Sg:

The inner product of two vectors x; y 2 RN is denoted by hx; yi =
P

i2N xiyi

and the Euclidean norm of x 2 RN is kxk =
p
hx; xi. The (closed) ball centered

at x 2 RN with radius r > 0 is denoted B(x; r):

B(x; r) = fy 2 RN j ky � xk 5 rg:
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Remark 1. Let y 2 B(x; r) with ky � xk = r. We often use the fact that

fz 2 RN j hx� y; zi = hx� y; yig

is the unique hyperplane supporting the ball B(x; r) at the point y.

For x; y 2 RN , de�ne the vector obtained by coordinatewise multiplication
x � y 2 RN by (x � y)i = xiyi for each i 2 N . For a set S � RN and an x 2 RN ,
x�S = fx�s j s 2 Sg. For x 2 RN++, de�ne the vector obtained by coordinate-wise
reciprocals x�1 2 RN by (x�1)i = 1

xi
for all i 2 N .

For a normal h 2 RN and a number a 2 R, the hyperplane H(h; a) and
corresponding halfspace H�(h; a) are de�ned as follows:

H(h; a) = fx 2 RN j hh; xi = ag;

H�(h; a) = fx 2 RN j hh; xi 5 ag:

Remark 2. If h; b 2 RN++ and a 2 R, then it is straightforward to verify that
b �H�(h; a) = H�(h � b�1; a).

Let jN j = 2 and consider a coordinate i 2 N . The function that projects each
x 2 RN onto RNni by omitting the coordinate indexed by i is denoted by p�i.1 If
S � RN , then

p�i(S) := fp�i(s) j s 2 Sg � RNni:

3. The Euclidean compromise solution

We identify alternatives with their evaluations according to pertinent criteria.

Hence, an alternative is a vector x 2 RN , where the coordinate xk (k 2 N)

indicates how alternative x is evaluated according to criterion k. It is assumed

throughout that larger values are preferred to smaller values for each criterion.

1Throughout this paper, we will write Nni instead of the technically correct Nnfig as we
believe this does not introduce confusion, but makes things look less cluttered.
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The Euclidean compromise solution assigns to a feasible set of alternatives the

alternative with minimal Euclidean distance to the utopia point. The feasible sets

are those that are expressible as the comprehensive hull of a nonempty, compact,

and convex set. Formally, de�ne

�N = fS � RN j S = comp(C) for some nonempty, compact, convex C � RNg:

The collection of all choice sets is denoted

� = [N�N, N 6=;, N �nite �
N :

The utopia point u(S) of S 2 �N is the point in RN that speci�es for each

criterion separately the highest achievable value:

ui(S) = max
s2S

si for each i 2 N:

Because S = comp(C) for some nonempty, compact, convex C � RN , the utopia
point is well-de�ned. Indeed, it is straightforward to prove that u(S) = u(C).

The choice sets with utopia point equal to the zero vector will play an important

role in our axiomatization.

�N0 = fS 2 �N j u(S) = 0g;

�0 = [N�N, N 6=;, N �nite �
N
0 :

A solution on � is a function ' on � that assigns to each choice set S 2 � a
feasible point '(S) 2 S. The Euclidean compromise solution or Yu solution (cf.

Yu, 1973) is the solution Y that assigns to each S 2 � the feasible point closest
to the utopia point u(S), i.e.,

Y (S) = argmin
s2S

ku(S)� sk:

Geometrically, Y (S) is the projection of the point u(S) onto the set S. The

function Y is well-de�ned. This can be seen as follows. If u(S) 2 S, then Y (S) =
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u(S). Otherwise, let y 2 S. Since the point in S that is closest to u(S) cannot

be further away than y is, to �nd Y (S), it su¢ ces to �nd the point s in S \
B(u(S); ku(S)� yk) that minimizes ku(S)� sk. Such a point exists and is unique
because S \ B(u(S); ku(S) � yk) is a nonempty, compact, and convex set and,
moreover, s 7! ku(S)� sjj is a continuous function that is strictly convex.

4. Axiomatization of the Euclidean compromise solution

We start this section by introducing several properties of solution concepts. Let

' be a solution on � and consider the following axioms.

Pareto Optimality (PO): '(S) 2 PO(S) for all S 2 �.

Translation Invariance (T.INV): If S 2 �N and x 2 RN ; then
'(S + x) = '(S) + x:

Symmetry (SYM): If S 2 �N and if �(S) = S for each permutation

� of N , then 'i(S) = 'j(S) for all i; j 2 N:

u-Independence of Irrelevant Alternatives (u-IIA): Suppose that

S; T 2 �N with S � T and u(S) = u(T ): Then '(T ) 2 S implies

'(S) = '(T ):

The preceeding four axioms can be found in Yu (1973, 1985) and Freimer and

Yu (1976). The axioms PO, T.INV, and SYM are obvious translations of Nash�s

axioms from bargaining theory to the choice problem framework. Furthermore, u-

IIA is the natural adaptation of Nash�s original IIA axiom for bargaining problems

to the choice framework with the disagreement point d replaced by the utopia point

u(S).

Other important properties in the game theoretic literature on bargaining (cf.

Nash (1950) and Roth (1985)) are proportionality properties such as scale co-

variance. Conley et al. (2008) exploit the duality between bargaining problems
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and multi-criteria optimization problems and they formulate a proportional losses

axiom for multi-criteria optimization problems that is inspired by scale covariance.

Proportional Losses (P.LOSS): Suppose S 2 �N is such that

PO(S) = H(h; a) \ [u(S) � RN+ ] for some h 2 RN++ and a 2 R. Then
for any � 2 RN++ and all i; j 2 N

�i[ui(��S)�'i(��S)][uj(S)�'j(S)] = �j[uj(��S)�'j(��S)][ui(S)�'i(S)]:

The proportional losses axiom indicates how a solution reacts to rescaling the

coordinates of choice sets whose Pareto frontier is part of a hyperplane with a

positive normal. If such a choice set S is rescaled by a � 2 RN++ with �i=�j = 2,
then according to P.LOSS,

ui(� � S)� 'i(� � S)
uj(� � S)� 'j(� � S)

=
1

2

�
ui(S)� 'i(S)

uj(S)� 'j(S)

�
Hence, the loss relative to the utopia point measured in criterion i relative to that

in criterion j in the re-scaled choice set ��S should be half the loss relative to the
utopia point measured in criterion i relative to that in criterion j in the original

choice set S: Therefore, if the unit of measurement of an objective doubles, then

the relative loss in this objective as measured in the new units halves compared

to that as measured in the old units. A weaker form of P.LOSS is

Scaling (SCA): Suppose S 2 �N is of the form S = fx 2 RN� jP
i2N xi 5 ag for some a 2 R, a < 0. Then for any � 2 RN++ and all

i; j 2 N
�i'j(S)'i(� � S) = �j'i(S)'j(� � S):

The scaling axiom imposes more restrictions on the choice sets than P.LOSS and

is a weaker axiom: P.LOSS implies SCA. To see this suppose that a 2 R, a < 0
and S = fx 2 RN� j

P
i2N xi 5 ag: Then

PO(S) = fx 2 Rn� j
X
i2N

xi = ag = H(h; a) \ [�RN+ ];
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where h = (1; ::; 1) 2 RN++. Since ui(S) = 0 for each i 2 N , it follows that

S satis�es the conditions in P.LOSS. The conclusion now follows from the obser-

vation that for any � 2 RN++ it holds that ui(� � S) = 0 for each i 2 N .
Central to our axiomatization of the Euclidean compromise solution is a con-

sistency axiom that to the best of our knowledge has not been considered by any

other authors before in a setting of multi-criteria optimization problems.

u-Consistency (u-CONS): Let S 2 �N and I � N , and de�ne

S'I 2 �I by
S'I := fs 2 RI j (s; 'NnI(S)) 2 Sg:

If ui(S
'
I ) = ui(S) for each i 2 I; then 'i(S

'
I ) = 'i(S) for each i 2 I:

In the statement of u-CONS, the jIj-coordinate choice set S'I is the reduced prob-
lem alluded to in the introduction. It is the set of feasible criterion values for

the subset of criteria I after the criteria outside I have been �xed at their values

according to ': Part (e) of Lemma 1 (which appears in Section 5) guarantees

that S'I 2 �, so that we can apply ' to the reduced choice set. Suppose that the
utopia levels of the criteria in I are the same in the reduced choice set S'I as in the

original choice set S. Then u-consistency requires that the solution prescribes the

same values for the criteria in I in both choice sets. A weaker version of u-CONS

that applies only to subsets of N obtained by deleting exactly one player, is

Weak u-Consistency (W.u-CONS): Let S 2 �N and i 2 N , and

de�ne S'�i 2 �Nni by

S'�i := fs 2 RNni j (s; 'i(S)) 2 Sg:

If u(S'�i) = p�i(u(S)); then '(S
'
�i) = p�i('(S)):

We can now state the �rst result of this paper.
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Theorem 1. The Euclidean compromise solution is the unique solution on �

satisfying PO, T.INV, SYM, u-IIA, SCA, and u-CONS.

Theorem 1 di¤ers from the axiomatization of the Euclidean compromise so-

lution in Conley et al. (2008) in two respects. Theorem 1 uses SCA instead of

the stronger P.LOSS and, more importantly, it uses u-CONS instead of continuity

(with respect to the Hausdor¤ metric). Consequently, the axiomatizations are

quite di¤erent: consistency links the solutions for feasible sets for di¤erent player

sets, whereas continuity links the solutions for feasible sets for a �xed player set.

An alternative axiomatization is possible using a variant of the scaling axiom

which we state next.

Symmetric Scaling (S.SCA): Suppose S 2 �N is of the form S = fx 2
RN� j

P
i2N xi 5 ag for some a 2 R, a < 0. Then for any � 2 RN++ and all i; j 2 N

�i'i(� � S) = �j'j(� � S):

SCA and S.SCA are not logically nested but are equivalent in the presence of

SYM (see Lemma 2 in Section 5). Note that S.SCA implies that 'i(S) = 'j(S)

for the special set S in the statement of the axiom (simply let � = (1; :::; 1)) and

this is just the right amount of symmetry needed to characterize the compromise

solution. In particular, S.SCA can be used in place of SYM and SCA in the

statement of Theorem 1 to obtain the next result.

Theorem 2. The Euclidean compromise solution is the unique solution on �

satisfying PO, T.INV, u-IIA, S.SCA, and u-CONS.

An axiomatization di¤erent from that presented in Theorems 1 and 2 is also

possible using the following variation on the theme of consistency.

Projection (PROJ): Suppose that S 2 �N0 . If for some i 2 N it

holds that si = 0 for all s 2 PO(S); then 'i(S) = 0 and '(p�i(S)) =
p�i('(S)):
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The projection axiom requires that ' satisfy a consistency-like property when

restricted to a special class of choice sets in which criterion i attains the same value

at any Pareto optimal alternative. For such choice sets, the solution prescribes

alternatives in which criterion i is maintained at its constant Pareto-optimal level,

whereas the levels of the other criteria can be found from the lower-dimensional

choice set that is obtained by disregarding criterion i. The very mild partial Pareto

optimality requirement embodied in PROJ on a very restricted class of problems

is enough to characterize the Euclidean compromise solution without requiring

PO as an explicit axiom.

Theorem 3. The Euclidean compromise solution is the unique solution on �

satisfying T.INV, SYM, u-IIA, SCA, and PROJ.

Finally, we can replace SYM and SCA in Theorem 3 with S.SCA and ob-

tain the following axiomatically parsimonious characterization of the Euclidean

compromise solution.

Theorem 4. The Euclidean compromise solution is the unique solution on �

satisfying T.INV, u-IIA, S.SCA, and PROJ.

5. Proofs of Theorems 1, 2, 3, and 4

The proofs of the four theorems are split up into a sequence of partial results in

order to make the proofs more accessible.

We start by proving two lemmas. The �rst indicates that � is closed under

projections, that Pareto optima and utopia vectors are in a sense robust against

projections, and that � is closed under rescaling of its coordinates or reduction.

Mostly, the proofs of these statements are trivial exercises; we will only provide

the proof of parts (b) and (e).
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Lemma 1. Suppose that jN j = 2, S 2 �N , i 2 N , and � 2 RN++. The following
claims hold:

(a) p�i(S) 2 �Nni.

(b) If PO(S) � fx 2 RN j xi = 0g, then p�i(PO(S)) = PO(p�i(S)).

(c) p�i(u(S)) = u(p�i(S)).

(d) ��S 2 �N .

(e) If I � N , I 6= ;, and s 2 S, then fy 2 RI j (y; sNnI) 2 Sg 2 �I .

Proof. To prove part (b), assume that PO(S) � fx 2 RN j xi = 0g.
First, let v 2 p�i(PO(S)). Then there exists a ev 2 PO(S) such that p�i(ev) =

v. Suppose v =2 PO(p�i(S)). Then w � v for some w 2 p�i(S). Let ew 2 S be

such that p�i( ew) = w. Since S 2 �, there exists an ex 2 PO(S) such that ex = ew.
Then ev; ex 2 PO(S) implies evi = exi = 0 and we also know that p�i(ex) = p�i( ew) =
w � v = p�i(ev). So ex � ev, contradicting ev 2 PO(S). Hence, v 2 PO(p�i(S)) and
we conclude that p�i(PO(S)) � PO(p�i(S)).

Now, let v 2 PO(p�i(S)). Then there exists a ev 2 S such that p�i(ev) = v.

Since S 2 �, there exists a ew 2 PO(S) such that ew = ev. Then p�i( ew) 2 p�i(S)

and p�i( ew) = p�i(ev) = v 2 PO(p�i(S)), so the weak inequality between p�i( ew)
and p�i(ev) must be an equality. Since p�i( ew) 2 p�i(PO(S)), it follows that v =

p�i(ev) = p�i( ew) 2 p�i(PO(S)) and we conclude that p�i(PO(S)) � PO(p�i(S)).

To prove part (e), let I � N , I 6= ;, and s 2 S. Because S 2 �N , there
is a nonempty, compact, convex set C � RN such that S = comp(C). Note

that the set eC = fc 2 C j cNnI = sNnIg � RN is nonempty, compact, and

convex as well. These properties are not lost under a projection p�j for any

j 2 NnI. Therefore, writing NnI = fj(1); : : : ; j(m)g, we �nd that the set bC =
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p�j(m) � � � � � p�j(1)( eC) � RI , which is obtained from eC by succesive projections

with respect to the coordinates in NnI, is a nonempty, compact, convex set.
Noting that fy 2 RI j (y; sNnI) 2 Sg = comp( bC) � RI , it follows that fy 2 RI j
(y; sNnI) 2 Sg 2 �I .

In the following lemma we explore logical dependencies between the various

axioms.

Lemma 2. Let ' be a solution on �. The following claims hold:

(a) If ' satis�es PO, u-IIA, and W.u-CONS, then ' satis�es PROJ.

(b) Suppose that ' satis�es SYM. Then ' satis�es SCA if and only if ' satis�es

S.SCA.

Proof. To prove part (a), let S 2 �N0 and i 2 N and suppose that si = 0 for

all s 2 PO(S): Note that 'i(S) = 0 by PO. It remains to show that '(p�i(S)) =
p�i('(S)): First, note that

S'�i = fs 2 RNni j (s; 'i(S)) 2 Sg = fs 2 RNni j (s; 0) 2 Sg:

Hence, u(S'�i) = p�i(u(S)). Also, by Lemma 1 (c), it holds that p�i(u(S)) =

u(p�i(S)): Therefore, we know that

u(S'�i) = u(p�i(S)):

By de�nition of S'�i we know that

S'�i � p�i(S):

Next, we show that PO(p�i(S)) � S'�i and that this implies '(p�i(S)) 2 S
'
�i.

Choose v 2 PO(p�i(S)): Then there exists a ~v 2 S such that p�i(~v) = v: In

addition, there exists a ~w 2 PO(S) such that ~w = ~v; from which it follows that
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p�i( ~w) 2 p�i(S) and p�i( ~w) = p�i(~v) = v: Since v 2 PO(p�i(S)); we conclude

that p�i( ~w) = v: Since si = 0 for all s 2 PO(S); it follows that ~wi = 0 and

therefore (v; 0) 2 S and v 2 S'�i: This proves that PO(p�i(S)) � S'�i: We can

now apply PO and conclude that '(p�i(S)) 2 PO(p�i(S)) from which it follows

that

'(p�i(S)) 2 S'�i:

Summarizing, we have u(S'�i) = u(p�i(S)), S
'
�i � p�i(S), and '(p�i(S)) 2 S'�i:

Applying u-IIA, it follows that

'(S'�i) = '(p�i(S)):

Using u(S'�i) = p�i(u(S)) and applying W.u-CONS, we conclude that

'(S'�i) = p�i('(S)):

Therefore, '(p�i(S)) = p�i('(S)) and the proof of part (a) is complete.

To prove part (b), suppose that ' satis�es SYM. De�ne S = fx 2 RN� jP
i2N xi 5 ag with a < 0 and choose � 2 RN++: Applying SYM to the set S, it

follows that '(S) = �(1; :::; 1) for some real number �: Furthermore, '(S) 2 S

since ' is a solution. Observing that 0 =2 S (since a < 0); we deduce that � < 0;
and consequently, that 'i(S) = � 6= 0 for all i 2 N: For each i; j, it follows that

�i'j(S)'i(� � S) = �j'i(S)'j(� � S)

if and only if

�i'i(� � S) = �j'j(� � S):

This proves that ' satis�es SCA if and only if ' satis�es S.SCA, and the proof is

complete.

We are now set to prove that the Euclidean compromise solution satis�es all

the axioms introduced in Section 4.
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Proposition 3. The Euclidean compromise solution satis�es PO, T.INV, SYM,

u-IIA, P.LOSS, SCA, S.SCA, u-CONS, W.u-CONS, and PROJ.

Proof. It is straightforward to verify that the Euclidean compromise solution

satis�es PO, T.INV, SYM and u-IIA. Conley et al. (2008) show that the Euclidean

compromise solution satis�es P.LOSS, from which it follows that it also satis�es

the weaker SCA. Since SCA and SYM are satis�ed, it follows from Lemma 2(b)

that S.SCA is satis�ed.

To see that the Euclidean compromise solution Y satis�es u-CONS, let S 2 �N

and I � N and suppose that ui(SYI ) = ui(S) for each i 2 I. It follows that

(u(SYI ); uNnI(S)) = u(S). Also, by de�nition of SYI , it holds that t 2 SYI if and only
if (t; YNnI(S)) 2 S. Using this, we deduce that s 2 S solves mins2S ku(S)� sk if
and only if sI solvesmint2SYI k(u(S

Y
I ); uNnI(S))�(t; YNnI(S))k. However, Y (SYI ) =

argmint2SYI ku(S
Y
I ) � tk = argmint2SYI k(u(S

Y
I ); uNnI(S)) � (t; YNnI(S))k. This

shows that Yi(SYI ) = Yi(S) for each i 2 I.
Since u-CONS implies the weaker W.u-CONS, we can now can deduce from

Lemma 2 that the Euclidean compromise solution satis�es PROJ.

Proposition 3 and Lemma 2(a) imply that Theorem 1 is an immediate conse-

quence of Theorem 3 and that Theorem 2 is an immediate consequence of Theorem

4. In addition, SYM and SCA imply S.SCA as a consequence of Lemma 2(b), so

Theorem 3 is an immediate consequence of Theorem 4. Hence, the remainder of

this section is devoted to proving Theorem 4. We begin by proving that two of

the four properties in that theorem imply that a solution concept selects a Pareto

optimal feasible point for certain choice sets.

Lemma 4. Let ' be a solution on � that satis�es u-IIA and S.SCA. Suppose

that jN j = 2, h 2 RN++, a 2 R, a < 0, and

A = fx 2 RN j x 5 0 and hh; xi 5 ag:

Then '(A) 2 PO(A).
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Proof. Let B = h � A. Remark 2 implies that

B = fx 2 RN j x 5 0 and
X
i2N

xi 5 ag:

Because A = h�1 �B, it follows from S.SCA applied to ' (with h�1 in the role of

� and B in the role of S) that

8i; j 2 N : 'i(A)hj = 'j(A)hi:

Since 0 =2 A; it follows that '(A) < 0 implying that

'(A) = �h for some � 2 R, � < 0: (5.1)

Suppose that '(A) =2 PO(A), which implies that
P

i2N hi'i(A) < a. We will

derive a contradiction. Fix some i 2 N . Using (5.1) and h 2 RN++, we deduce that
a�
P
j2N hj'j(A)

hi'i(A)
< 0. Choose c 2 (0; 1) such that c > 1 +

a�
P
j2N hj'j(A)

hi'i(A)
. De�ne

� 2 RN++ by �j := 1 for all j 6= i and �i := 1
c
. Consider the choice set C = � � A.

Notice that u(C) = � � u(A) = 0. By Remark 2,

C = fx 2 RN j x 5 0 and
X
j2N

hj
�j
xj 5 ag:

Because � � (1; : : : ; 1), it easily follows that C � A. Also,X
j2N

hj
�j
'j(A) =

X
j2N; j 6=i

hj 'j(A) + c hi 'i(A)

<
X

j2N; j 6=i

hj 'j(A) +

�
1 +

a�
P

j2N hj'j(A)

hi'i(A)

�
hi 'i(A)

= a;

which proves that '(A) 2 C. Consequently, u-IIA of ' and (5.1) imply that

'(C) = '(A) = �h: (5.2)
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On the other hand, notice that (h�1 � �) � B = (h�1 � �) � (h � A) = � � A = C.

Let j 2 N , j 6= i. We conclude that

hi
hj
=
'i(A)

'j(A)
=
'i(C)

'j(C)
=

�j
hj

�i
hi

= c
hi
hj

where the �rst two equalities follow from (5.2), the third from (h�1 � �) � B = C

and S.SCA applied to ' (with h�1 �� in the role of � and B in the role of S), and
the fourth from the de�nition of �: This is impossible since c 6= 1 and we conclude
that '(A) 2 PO(A).
Lemma 4 shows that Pareto optimality on a small set of multicriteria opti-

mization problems is implied by other axioms. This is reminiscent of a result of

Roth (1977), where he shows that the axiom of Pareto optimality in Nash�s (1950)

formulation of the bargaining problem is implied by a number of other axioms.

We now proceed to study choice sets in which the utopia outcome equals the

zero vector and is actually feasible. If this is the case, the utopia outcome is

selected by a solution concept satisfying PROJ.

Proposition 5. Let ' be a solution concept on � that satis�es PROJ. Let S 2 �0
be such that u(S) 2 S. Then '(S) = u(S) = Y (S).

Proof. Obviously, u(S) 2 S implies that Y (S) = u(S). We proceed by showing

that '(S) = u(S). Since u(S) = s for each s 2 S, u(S) 2 S implies PO(S) =

fu(S)g.
Let N be such that S 2 �N0 and discern two cases:

Case 1: If jN j = 2, then PO(S) = fu(S)g = f0g and PROJ of ' imply that
'i(S) = 0 for each i 2 N , so that '(S) = 0 = u(S).

Case 2: If jN j = 1, consider the set T = S�f0g = f(s; 0) 2 R2 j s 2 Sg 2 �2.
Then u(S) = 0 2 S implies that u(T ) = (u(S); 0) = (0; 0) 2 T and PO(T ) =

f(0; 0)g: It follows that '(S) = p�2('(T )) = p�2((0; 0)) = 0 = u(S), where the
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�rst equality holds by applying PROJ with respect to the second coordinate of

T , and the second equality holds since '(T ) = u(T ) = (0; 0) by case 1. Hence

'(S) = u(S), as was to be shown.

In the next Proposition we show that in choice sets with utopia point zero

and a Euclidean compromise solution which is smaller in each coordinate than

the utopia point, every solution concept satisfying two of the four properties in

Theorem 4 coincides with the Euclidean compromise solution.

Proposition 6. Let ' be a solution concept on � that satis�es u-IIA and S.SCA.

Suppose that S 2 �0 satis�es Y (S) < u(S). Then '(S) = Y (S).

Proof. Let N be such that S 2 �N0 . Because u(S) = 0, we know that Y (S) <
u(S) = 0. Note that this implies that jN j = 2. By de�nition of Y (S), the choice
set S and the ball B(0; kY (S)k) around the utopia point u(S) = 0 with radius

kY (S)k have only the point Y (S) in common. By the separating hyperplane
theorem, there exists a hyperplane that separates the ball B(0; kY (S)k) and S,
supporting the ball at Y (S). By Remark 1, this is the hyperplane H(h; a) with

h = u(S)� Y (S) = �Y (S) > 0 and a = �khk2 < 0:

The choice set S lies in the halfspace H�(h; a) = fx 2 RN j hh; xi 5 ag. The
choice set

A = fx 2 RN j x 5 0 and hh; xi 5 ag

satis�es

S � A and u(S) = u(A) = 0:

By Remark 2,

B := h � A = fx 2 RN j x 5 0 and
X
i2N

xi 5 ag:
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Notice that u(B) = h � u(A) = h � 0 = 0 =2 B, because a < 0. Applying S.SCA

with S = B; � = h�1 2 RN++; and A = h�1 �B, it follows that

8i; j 2 N : 'i(A)hj = 'j(A)hi:

Applying Lemma 4 to the choice set A implies that hh; '(A)i = a, from which we

conclude that

'(A) =
a

jjhjj2h = �h = Y (S):

Since S � A, u(S) = u(A) = 0, and '(A) = Y (S) 2 S, it follows from u-IIA of '

that '(S) = '(A) = Y (S).

We proceed by considering choice sets in �0 for which the Euclidean com-

promise solution has some, but not all, coordinates equal to the corresponding

coordinates of the utopia point. On such choice sets, solution concepts satisfying

u-IIA, PROJ, and S.SCA coincide with the Euclidean compromise solution.

Proposition 7. Let ' be a solution concept on � that satis�es u-IIA, PROJ,

and S.SCA. Suppose that S 2 �0 satis�es Y (S) � u(S), but not Y (S) < u(S).

Then '(S) = Y (S).

Proof. Let N be such that S 2 �N0 . Note that Y (S) � u(S), but not Y (S) <

u(S), implies that jN j = 2. As in the proof of Proposition 6, we deduce that the
unique tangent hyperplane H(h; a) separating the sets S and B(0; kY (S)k) has
normal h = �Y (S) and a = �kY (S)k2. De�ne

T = fx 2 RN j x 5 0 and hh; xi 5 ag 2 �N :

Then

S � T , u(S) = u(T ) = 0, and Y (S) = Y (T ): (5.3)

The equality Y (S) = Y (T ) follows from the fact that by construction the ball

B(0; kY (S)k) and T have exactly the point Y (S) in common. It su¢ ces to prove
that

'(T ) = Y (T ); (5.4)
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since (5.3), (5.4), and u-IIA of ' then imply '(S) = '(T ) = Y (T ) = Y (S), which

was to be shown.

By assumption, the set

I = fi 2 N j Yi(S) = ui(S)g = fi 2 N j Yi(T ) = ui(T )g = fi 2 N j hi = 0g

is nonempty. It follows that T = fx 2 RN j x 5 0 and
P

j2NnI hjxj 5 ag, so that

8i 2 I : PO(T ) � fx 2 RN j xi = 0g: (5.5)

By (5.5), PO of Y , and PROJ of ', we know

8i 2 I : 'i(T ) = Yi(T ) = 0: (5.6)

Lemma 1 (b) and (c) and PROJ of Y imply that for each i 2 I

p�i(PO(T )) = PO(p�i(T ));

p�i(u(T )) = u(p�i(T ));

p�i(Y (T )) = Y (p�i(T )):

Whereas the set T has jIj coordinates i for which Yi(T ) = ui(T ), the choice set

p�i(T ) has only jIj � 1 such coordinates when i 2 I. Repeated application of

projection reduces this number to zero: Write I = fi(1); : : : ; i(m)g and take

V = p�i(m) � � � � � p�i(1)(T );

the choice set in �NnI0 obtained from T by successive projection with respect to

the coordinates in I. Then the set of coordinates j for which Yj(V ) = uj(V ) is

empty, so that Y (V ) < u(V ). Since the Euclidean compromise solution selects the

utopia point in one-dimensional choice sets, this implies that V 2 �NnI0 must be

a choice set of dimension greater than or equal to two. Proposition 6 and PROJ

of ' and Y imply

p�i(m) � � � � � p�i(1)(Y (T )) = Y (V ) = '(V ) = p�i(m) � � � � � p�i(1)('(T )): (5.7)
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Equality (5.6) indicates that Yi(T ) = 'i(T ) if i 2 I and equality (5.7) indicates

that Yi(T ) = 'i(T ) if i =2 I, which proves (5.4).

Now we merely have to combine the results obtained.

Proof of Theorem 4. Y satis�es T.INV, u-IIA, S.SCA, and PROJ by Proposi-

tion 3. Let ' be a solution concept on � that also satis�es these four properties.

Let S 2 � and let T = �u(S)+S 2 �0. By T.INV of Y and ', it su¢ ces to show
that '(T ) = Y (T ). If u(T ) 2 T , this follows from Proposition 5. If Y (T ) < u(T ),

it follows from Proposition 6. In all other cases, it follows from Proposition 7.

6. Independence of the axioms

Theorem 4 provides the most parsimonious axiomatization of the Yu solution. In

this section, we establish the logical independence of the properties used to axiom-

atize the Euclidean compromise solution in Theorem 4. To accomplish this, we

construct four alternative solution concepts, each of which violates exactly one of

the four axioms T.INV, u-IIA, S.SCA, and PROJ. Since it is mostly straightfor-

ward to check that the solution concepts that we provide satisfy or violate certain

axioms, we will not go into details. However, all proofs can be obtained from the

authors upon request.

Example 1. Minimization of a weighted generalization of the Yu solution yields

a concept that violates S.SCA. Let fwigi2N be a sequence of positive numbers
with wj 6= wk for some j; k 2 N: De�ne a solution '1 on � by taking

8S 2 �N : '1(S) = argmin
x2S

X
i2N

wi[xi � ui(S)]
2 :

The solution concept '1 satis�es u-IIA, T.INV, and PROJ, but not S.SCA.
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In the constructions of the remaining examples, we will make use of an auxiliary

solution  on � de�ned as follows:

8S 2 �N :  (S) = argmin
s2S

 X
i2N
(ui(S)� si)

4

!1=4
:

Note that  satis�es u-IIA, T.INV, and PROJ.

Example 2. De�ne '2 on � by taking

8S 2 � : '2(S) =

(
Y (S) if Y (S) < u(S);

 (S) otherwise.

Solution concept '2 satis�es u-IIA, T.INV, and S.SCA, but not PROJ.

Example 3. De�ne '3 on � by

8S 2 � : '3(S) =

(
Y (S) if S 2 �0;
 (S) otherwise.

Solution concept '3 satis�es u-IIA, PROJ, and S.SCA, but not T.INV.

Example 4. For jN j = 2 and a 2 R, a < 0, we de�ne e�N;a = fx 2 RN j x 5 0
and

P
i2N xi 5 ag and e� = [a2R, a<0 [N�N, N �nite, jN j=2 e�N;a. A choice set S 2 e�

has utopia point u(S) = 0.

Let S 2 �N with jN j = 2 and I = fi 2 N j xi = yi for all x; y 2 PO(S)g the
collection of coordinates for which all Pareto optimal outcomes of S achieve the

same value. Notice that I = N if and only if u(S) 2 S. If u(S) =2 S, de�ne p�I(S)
to be the set obtained from S by projecting away all coordinates in I. Part (a) of

Lemma 1 implies that p�I(S) 2 �NnI is indeed a choice set.
We say that a set S 2 � reduces to a set in e� if u(S) =2 S, and there is a

rescaling vector � 2 RNnI++ of the coordinates of p�I(�u(S) + S) 2 �NnI0 such that

� � p�I(�u(S) + S) is in e�. Informally, S reduces to a set in e� if u(S) =2 S and,
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moreover, after translation to a set with utopia point 0, projection, and rescaling

of its coordinates, S yields a set in e�.
De�ne '4 on � by

8S 2 � : '4(S) =

(
Y (S) if S reduces to a set in e�;
 (S) otherwise.

Solution concept '4 satis�es T.INV, PROJ, and S.SCA, but not u-IIA.

7. Concluding remarks

Bouyssou et al. (1993) promote an axiomatic approach to the study of decision

procedures in multicriteria optimization. In Theorems 1 through 4, we provide

four axiomatic characterizations of the Euclidean compromise solution. Most of

the properties that we use in these axiomatizations, namely PO, u-IIA, SYM,

T.INV, u-CONS, and PROJ, are shared by a larger class of compromise solutions.

For example, suppose that f : R+ ! R is strictly increasing and strictly convex
and for each N and each S 2 �N ; let

 (S) = argmin
x2S

X
i2N

f(ui(S)� xi):

Then  de�nes a solution on � satisfying PO, u-IIA, SYM, T.INV, u-CONS, and

PROJ. Axioms of "scale covariance" type play an important role in the litera-

ture on bargaining and the axioms P.LOSS, SCA, and S.SCA are proportionality

properties speci�c to the Euclidean compromise solution.

Consistency properties like u-CONS and PROJ play an essential role in our

characterizations of the Euclidean compromise solution. Such properties allow us

to, under certain circumstances, reduce the feasible set of alternatives to one with

lower dimension. A very di¤erent characterization, relying on a continuity axiom

instead of a consistency property, is given by Conley et al. (2008). They exploit an

interesting duality between the compromise approach in multicriteria optimization
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and the game theoretic approach to bargaining. The compromise approach entails

formulating a desirable, ideal point (the utopia point) and then �working your

way down�to a feasible solution as close as possible to the ideal. The bargaining

approach entails formulating a typically undesirable disagreement point and then

�working your way up�to a feasible point dominating the disagreement outcome.

Mixtures of the two approaches, like the Kalai-Smorodinsky (1975) solution, exist

as well.

Rubinstein and Zhou (1999) characterize the solution concept that assigns to

each choice set the point closest to an exogenously given and �xed reference point,

rather than the utopia point, which varies as a function of the choice set. Their

axiomatization involves a symmetry condition and independence of irrelevant al-

ternatives. Whereas the symmetry condition in Section 4, taken from Yu (1973),

requires symmetry only in the line through the origin with equal coordinates, the

symmetry condition of Rubinstein and Zhou (1999) applies to choice sets that are

symmetric with respect to any line through the reference point.

P�ngsten and Wagener (2003) also consider solution concepts de�ned in terms

of optimal distances from a reference point. Unlike the approach we have taken

in this paper, their reference point is explicitly assumed to be exogenous, as in

Rubinstein and Zhou (1999). In addition, P�ngsten and Wagener (2003) restrict

the class of solution concepts to those optimizing a distance function and they

employ an axiomatic approach to single out a particular distance function. This

makes their approach very di¤erent from ours, in that we derive the existence of

a distance function from properties that do not make any reference to distance.

The domain of our solution concepts is the collection of all sets that can be

expressed as the comprehensive hull of a nonempty, compact, and convex subset

of a �nite-dimensional Euclidean space. Other authors (e.g., Conley et al. (2008)

and Yu (1973)) have considered the domain of nonempty, compact, and convex

subsets of �nite-dimensional Euclidean spaces. We believe that, with appropriate

modi�cations of the statements of our axioms, we can prove some of our results



25

for this domain and we leave this as a topic for future research.

In Yu (1973), a nonsymmetric generalization of the compromise solution was

proposed and this weighted solution was characterized in Conley et al. (2008). A

consistency-based axiomatization of this weighted extension is also possible using

the methods developed in the current paper and we will pursue this in future

work.
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