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Abstract. A Hidden Markov Model (HMM) is used to classify an out of sample

observation vector into either of two regimes. This leads to a procedure for making

probability forecasts for changes of regimes in a time series, i.e. for turning points.

Instead of maximizing a likelihood, the model is estimated with respect to known

past regimes. This makes it possible to perform feature extraction and estimation

for different forecasting horizons. The inference aspect is emphasized by including a

penalty for a wrong decision in the cost function. The method is tested by forecasting

turning points in the Swedish and US economies, using leading data. Clear and early

turning point signals are obtained, contrasting favourable with earlier HMM studies.

Some theoretical arguments for this are given.

Keywords. Business Cycle, Feature Extraction, Hidden Markov Switching-Regime

Model, Leading Indicator, Probability Forecast.



1. INTRODUCTION

Forecasting turning points is both conceptually and methodologically different from

making point forecasts of a time series. As recently pointed out by Keilis-Borok et al.

(2000), recessions are rare, non-linear and complicated events. The chance of success

in forecasting turning points is greatest if the method concentrates on this purpose

only and uses all available information on turning points. In this paper, turning point

prediction is interpreted solely as a classification problem. We develop a procedure

that is particularly suitable for producing forecasts of turning points, where leading

information is taken from other series. Information is extracted from data patterns, as

they appear in first and second moments.

When a continuous random variable is forecasted, it is common practice to provide

both a point forecast and its confidence interval. For a dichotomous random variable

some other concept has to be chosen, such as the probability of an occurrence of e.g.

a turning point and risk bounds for false decision. Probability forecasts have been

common in meteorology for several decades, but their appearance in economics is of

more recent origin. Starting with a pioneering article by Neftci (1982), a number of

probability methods for turning point forecasting has been suggested in the literature.

Most of these are based either on Neftci’s or Hamilton’s (1989) business cycle mod-

els. Neftci’s model uses sequential probabilities. Hamilton’s probabilistic business-cycle

model adopts the Hidden Markov (Switching-Regime) Model (HMM) from Lindgren

(1978). Recently, HMM has been applied in constructing leading indicators, as sug-

gested by Layton (1996), Lahiri and Wang (1994,1996), Hamilton and Perez-Quiros

(1996) and Ivanova et al. (2000).

Our general approach is close to Artis et al. (1996), where it is explained how

pattern recognition can be used for predicting turning points, applying Neftci’s model.

Here, instead of Neftci’s method we use HMM for the same purpose. Combining known

methods, we construct a simple classification procedure for producing probability fore-

casts for turning points. Our approach leads to flexible modeling. Estimation can be

1



adapted to the forecasting horizon and focused on turning points. This is because,

instead of maximizing the likelihood, we minimize a linear combination of Brier’s prob-

ability score and a classification error count estimate. The classification procedure

consists of three stages: feature extraction, classification and evaluation. For general

rules, see Fukanaga (1972). Feature extraction by a causal filter is used in order to facil-

itate classification. The present paper applies an exponentially weighted moving average

(EWMA), passing low frequency and high amplitude data, as in Öller and Tallbom

(1996), and temporally aligning turning point signals from the component series.

The paper is organized as follows. The next section provides an interpretation of

HMM as a dynamic classifier and some theoretical results. The third section proposes

a new classification procedure based on the tools of the preceding section. The fourth

section is devoted to empirical applications. Some conclusions are drawn in the final

section.

2. A MARKOV-BAYESIAN CLASSIFIER

We begin this section by briefly introducing static classification, subsequently ex-

tending the concepts to time series. The results and concepts concerning the static

classification in Section 2.1 can be found e.g. in Fukanaga (1990). Section 2.2 suggests

a new interpretation of the state estimation task of HMM as a dynamic Bayesian classi-

fying problem and provides some new theoretical results concerning Markov dynamics

in classification.

2.1 A Static Bayesian Classifier

Consider two classes i ∈ {1, 2} (a generalization to an arbitrary number of classes

is straight-forward) and a vector y of data to be allocated into either of these classes.

Formally, there is a pair Z = (Y, J), where Y ∈ Rn is a random vector and J ∈ {1, 2}

is a random variable that assigns class information to Y . Only Y is observed, whereas

J is hidden. Thus, one needs a rule (function) g : Rn → {1, 2}, that as accurately as
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possible assigns an observed vector y, (Y = y), to the right class. In order to simplify

the notation we define a complement function ic such that ic = 1 if i = 2, otherwise

ic = 2.

Let the observations have a multivariate Gaussian distribution, y ∼ N (µi, Vi),

where µi is the mean and Vi the covariance matrix of Y in class i. Let πi denote the

prior probability P{J = i}, i = 1, 2. The posterior probability for an observation y

belonging to class 1 or 2 follows from Bayes’ theorem:

P{J = i | Y = y} =
πi × f(y | J = i)

π1 × f(y | J = i) + π2 × f(y | J = ic)
, (1)

where f(y | J = i) is the normal density of y, given class i. The Gauss-Bayesian

classifier allocates y to class i, g(y) = i if and only if

P{J = i | Y = y} >
1

2
. (2)

We disregard from equality because it only holds with probability zero. Probabilities

(1) express the uncertainty: the closer the posterior probability is to one or to zero, the

less uncertainty there is in a decision. The central concept in judging the reliability of

the classifier is the probability that a sample is assigned to the wrong class, that is, the

Probability of Error (Overall Bayes Risk) R{Y }:

R{Y } = P{g(Y ) �= J}. (3)

When Y is a random vector, the calculation of (3) is usually very complicated, but

upper and lower bounds are given by

1

2

(
1 −

√
1 − 4 × P{J = i | Y = y} × (1 − P{J = i | Y = y}) e−2B2

)

≤ R{Y } ≤ e−B2

×
√
P{J = i | Y = y} × (1− P{J = i | Y = y}), (4)

where the B2 is the Bhattacharya distance between classes 1 and 2:

B2 =
1

8
(y − µ1)

′V −1(y − µ2) +
1

2
log

( |V |√
|V1| × |V2|

)
, (5)

and V =
(
V1 + V2

)
/2, see Fukanaga (1972), Ch. 9.
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2.2 A Dynamic Bayesian Classifier

The classifier defined in (1) and (2) could be called static. However, our aim is

to construct a dynamic probability classifier that also describes the dependence be-

tween observations when dealing with time series data, Zt = (Yt, Jt). The normality

assumption of classes now takes the form:

Yt ∼ N(µJt
, VJt

). (6)

In order to model time dependence in a mathematically tractable way, we postulate

that Jt can be described as a first-order homogeneous Markov chain, where the data

generating process has two hidden classes. For each class the likelihood of various

observations is either of the two multinormal densities given in (6). A Markov chain

generates switching between classes. When in class i, the process is said to be working

in regime i. Denote the Markov Probability that regime i will be followed by regime j

by

pij = P{Jt = j | Jt−1 = i}. (7)

The model is now defined by regime distributions (6) and by the matrix P consisting

of probabilities (7). The complete parameter set is Θ = {µ1, µ2, V1, V2, p11, p22}. Note

that the introduced model can be interpreted as a special case (without autoregressive

terms) of HMM, where Yt is an observed time series that depends on an hidden Markov

chain Jt.

At t − 1 we denote the posterior probabilties by pi(t − 1) = P{Jt−1 = i | Yt−1 =

yt−1}. The prior probabilities for regimes at t can be expressed by Markov probabilities

and previous posterior probabilities as

πi(t) = p1i × p1(t− 1) + p2i × p2(t− 1) (8)

and the posterior probabilities for given yt at t are

pi(t) =
πi(t) × f(yt | Jt = i)∑2

j=1 πj(t) × f(yt | Jt = j)
(9)
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where f(yt | Jt = i) is the normal density (6) of yt, given Jt = i. Assumptions (6) and

(7), formula (9) and decision rule (2) (g(yt) = i if and only if P{Jt = i | Yt = yt} > 1
2
)

define a dynamic variant of the Gauss-Bayesian classifier that we call a Markov-Bayesian

Classifier (MBC). According to (9), decision rule (2) can equivalently be expressed as

πi(t) × f(yt | Jt = i) > (1 − πi(t)) × f(yt | Jt = ic) (10)

or in likelihood ratios and odds:

−log
( f(yt | Jt = i)

f(y | Jt = ic)

)
< log

( πi(t)

1 − πi(t)

)
. (11)

This rule is used in Hamilton (1989) and it has the smallest probability of error (3)

among all classifiers when (6) and (7) hold and πi(t), (i = 1, 2) are known (see Fukanaga

(1972), Ch. 3). Note that (11) is the formulation based on information theory suggested

in Birchenhall et al. (1999).

The conditional probability of error of MBC depends heavily on the prior proba-

bility πi(t), as the following lemma shows.

Lemma 1. Denote the classifying function

T (yt) = (yt − µi)
′V −1

i (yt − µi)− (yt − µic )
′V −1

ic (yt − µic)− log
( |Vic |

|Vi|

)
, (12)

and the corresponding inference set

Dt =
{
yt | T (yt) > 2× log

( πi(t)

1− πi(t)

)}
. (13)

Then the conditional probability of error of MBC at t is

R{Yt | Jt = i} =

∫
Dt

f(yt | Jt = i)dy. (14)

Proof. MBC allocates yt to regime i if and only if (11) holds. Since the regimes of MBC

are Gaussian, according to (12), inequality (11) is equivalent to

T (yt) < 2 × log
( πi(t)

1 − πi(t)

)
. (15)
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Now, if Jt = i, we can conclude from formula (15) that a classification error occurs if

and only if

T (yt) > 2 × log
( πi(t)

1 − πi(t)

)
. (16)

Hence, the conditional probability of error is

R{Yt | Jt = i} =

∫
Dt

f(yt | Jt = i)dy, (17)

which completes the proof.

When the parameter set Θ of MBC is known, well known estimation algorithms for

the state estimation of HMM can be used for classification. Hamilton (1989) presents

a least squares algorithm in a recursive form, utilizing Bayes’ theorem and the Markov

property as follows.

The posterior probability estimates at t − 1, P̂{Jt−1 = i | Yt−1 = yt−1}, and the

prior probability estimates (Markov predictions) at t, P̂{Jt = i | Yt−1 = yt−1}, are col-

lected into a pair of 2×1 vectors. Then estimates for the posterior probabilities (regime

probabilities) of future observations {yt, yt+1, yt+2, . . .} can be found by iterating the

following pair of equations:

(
P̂{Jt = 1 | Yt = yt}
P̂{Jt = 2 | Yt = yt}

)
=

(
P̂{Jt = 1 | Yt−1 = yt−1} × f(yt | Jt = 1)
P̂{Jt = 2 | Yt−1 = yt−1} × f(yt | Jt = 2)

)

f(yt | yt−1)
, (18)

and
(
P̂{Jt = 1 | Yt−1 = yt−1}
P̂{Jt = 2 | Yt−1 = yt−1}

)
=

(
p11 p12
p21 p22

)
′
(
P̂{Jt−1 = 1 | Yt−1 = yt−1}
P̂{Jt−1 = 2 | Yt−1 = yt−1}

)
, (19)

where f(yt|yt−1) is

f(yt | yt−1) = P̂{Jt = 1 | Yt−1 = yt−1} × f(yt | Jt = 1)

+P̂{Jt = 2 | Yt−1 = yt−1})× f(yt | Jt = 2). (20)

In this paper we set the neutral starting probability of 1/2 for the recursion. We

return to the problem of estimating the model parameters in the next section.
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As can be seen from (8) and (14), a direct implication of Lemma 1 is the following

theorem.

Theorem 1. Assume that P̂{Jt−1 = i | Yt−1 = yt−1} = 1. Then the following limits

hold for the conditional probability of error of MBC at t:

lim
pii−→1

R{Yt | Jt = i} = 0, lim
pii−→1

R{Yt | Jt = ic} = 1, (21)

lim
pii−→0

R{Yt | Jt = i} = 1, lim
pii−→0

R{Yt | Jt = ic} = 0. (22)

Another implication of Lemma 1 concerns the structure of the model. Consider the

effect of the Markov probability parameters in the estimation of regimes by MBC at a

regime-switch and within a regime.

Theorem 2. Assume that Jt−1 = i and denote p̂i(t − 1) = P̂{Jt−1 = i |

Yt−1 = yt−1}.

I) A regime-switch occurs at t.

a) If p11 + p22 > 1, then the smaller is the absolute estimation error |p̂i(t− 1) − 1|, the

larger is the conditional probability of error R{Yt | Jt = ic} of MBC at t.

b) If p11 + p22 < 1, then the smaller is the absolute estimation error |p̂i(t− 1) − 1|, the

smaller is the conditional probability of error R{Yt | Jt = ic} of MBC at t.

II) A regime-switch does not occur at t.

a) If p11 + p22 > 1, then the smaller is the absolute estimation error |p̂i(t− 1) − 1|, the

smaller is the conditional probability of error R{Yt | Jt = i} of MBC at t.

b) If p11 + p22 < 1, then the smaller is the absolute estimation error |p̂i(t− 1) − 1|, the

larger is the conditional probability of error R{Yt | Jt = i} of MBC at t.
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Proof. We shall prove only case I a). Analogous proofs can be given for the remaining

cases. Lemma 1 implies that if the odds, ie. the ratio of prior probabilities (πi(t) =

p1i × p̂1(t− 1) + p2i × p̂2(t− 1))
πi(t)

1 − πi(t)
(23)

increases then so does the conditional probability of error R{Yt | Jt = ic} of the com-

plementary case. Hence, it is sufficient to show that (23) is an increasing function in

p̂1(t− 1). This can be done by studying the derivative of (8):

Dp̂1(t−1)

( πi(t)

1− πi(t)

)
> 0 (24)

if and only if p11 + p22 > 1; Case I a) is proved.

Remark. If p11 + p22 = 1, the previous estimate P̂{Jt−1 = 1 | Yt−1 = yt−1} has no

effect on P̂{Jt = 1 | Yt = yt} and hence MBC is static.

The theorems indicate that MBC may behave paradoxically at the crucial point of

a regime switch. Although the classifier works perfectly at t−1, it will almost certainly

miss a regime switch (Jt �= Jt−1 = i), if pii approaches unity. Moreover, a small error at

t− 1 results in a large error at t if the sum of the probabilities of remaining in a regime

(p11 + p22) exceeds unity.

3. CONSTRUCTING A TURNING POINT INDICATOR

In this section, we demonstrate how MBC can be used for turning point forecasting,

a natural application for two reasons. Firstly, a Markov chain provides a reasonable de-

scription of the traditional NBER business cycle dates (cf. eg. Hamilton (1989), Diebold

and Rudebush (1990)). Secondly, the use of several leading series is essential in turning

point forecasting (cf. eg. Keilis-Borok et al. (2000)). The classification methodology

supports the use of a vector series.

Algorithm (18) and (19) is used in model estimation with a cost function empha-

sizing inference rule (2). The data are first filtered in order to facilitate classification.
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3.1. Model Selection

When estimating the parameters of a HMM, usually a maximum likelihood (ML)

approach is chosen. We adopt a predictive approach to model specification, basing

parameter estimation and model selection on a cost function that minimizes the risk

of wrong inference concerning turning points. This provides a possibility for feature

extraction and for calibrating the model to the forecasting horizon.

We propose a three stage data-driven procedure, where stages are iterated with

different feature extraction filters and Markov matrices, until an optimal model, under

a given cost function, is found. We assume that past regimes, recessions or expansions,

are known. As a result, regime parameters are easily estimated and an appropriate cost

function can be applied. The computational complexity of the method depends on the

class of filters used (if any) and the optimization algorithm. However, computations are

easy because no autoregressive terms exist and necessary moments are estimated from

known regimes.

Let Jt denote the regime series, as shown by the dotted lines in Figures 1-3 and 5.

Our task is to select a model that predicts Jt+l, l > 0 at t (with lead l), applying a filter

and MBC on an observed series yt, containing leading information. The observations

are divided into an estimation period and a test period. The data from the latter

period are not allowed to have any influence on estimation. Let the estimation sample

be {y0, y1, . . . , yT+l−1}. Then, estimation is based on the errors et of regime probability

estimates (18-19)

et = P̂{Jt+l = i | yt} − δ(Jt+l, i), (25)

where the Kronecker function δ(Jt+l, i) is one if Jt+l = i, and otherwise zero. Since

both inference and its uncertainty are essential in classification, we shall measure the

quality of the inference using the Error Count Estimate of the probability of error (3)

in classification (the number of elements in a set is denoted by #):

ECE =
1

T
#{ yt | g(yt) �= Jt+l}, (26)
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and the uncertainty of inference using Brier’s Probability Score ie. the mean square

error:

MSE =
1

T

∑
t

e2t . (27)

In fact, (26) is the more important criterion when evaluating turning point forecasts,

but the rareness of recessions necessities (27) in model building. The model estimation

procedure consists of a loop of three steps (within the estimation period):

Step I. Feature extraction. Apply a causal filter F on {y0, y1, . . . , yT}. We denote

ỹt = F (yt).

Step II. Estimation of regime parameters. Divide the dates I = {0, . . . , T} into

two sets:

I(i) = {t ∈ I | Jt+l = i}, i = 1, 2. (28)

Then estimate means and covariance matrices by

µ̂i =
1

#{I(i)}

∑
t∈I(i)

ỹt (29)

V̂i =
1

#{I(i)}

∑
t∈I(i)

(ỹt − µ̂i)(ỹt − µ̂i)
′. (30)

Step III. Estimation of the Markov matrix. Given filtered data for the sample

period ỹt and regime estimates (29) and (30), compute the Markov probability estimates

using (18) and (19). Then select the Markov matrix P that minimizes the cost function

S = ω ×MSE + (1 − ω) ×ECE (31)

where ω ∈ (0, 1). The value of ω should be chosen according to the user’s utility function

and the data. In both case studies in Section 4 we set ω = 2/3.

Steps I-III are repeated for grids of filter parameters and of the Markov probabil-

ities. Estimates that minimize (31) are chosen as the preferred model. This model is

then further tested using the data that were saved for this purpose.
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We emphasize the importance of testing a model outside the estimation period.

Our procedure is not based on the ML principle and hence conventional model selection

criteria, which would prevent overfitting, do not apply. However, in our examples the

combined cost function (31) protected against overfitting. Also, note that Swanson

and White (1997) tested several econometric models on nine macroeconomic time series

and found that the estimation period Schwarz Information Criterion was not superior

to true out-of-sample forecast measures for selecting models. They, too, emphasize the

importance of choosing an appropriate cost function.

A causal filter has two effects on a time series yt. Firstly, it attenuates high fre-

quency noise, reducing the risk of false alarms. Secondly, it shifts the phase of the series.

The component series may have different leads with respect to the regimes. Then, a

filter can also be used to put the component series into the same phase, maximising the

strenght of the signal. An effect of cost function (31) is that a proper filter is chosen.

When a series with a correct lead is filtered there is trade-off effect. By reducing

the variance, the error probability within regimes decreases, but filtering also shortens

the distance between observations at turning points and, hence, it increases the error

probability there. The Markov dynamics of MBC can be expected to change dramati-

cally due to filtering, because by Theorems 1 and 2, a low probability to stay in a regime

improves turning point detection, thus compensating for the increased error probability

due to the shortened distance between observations.

3.2. Relations to previous HMM studies

Estimating a HMM by ML, Lahiri and Wang (1994,1996) emphasize that large

square errors (27) around turning points are overcompensated for high accuracy during

long expansion periods. In other words, the ML criterion favours high probabilities of

remaining in a regime, because regime shifts are rare events. Theorems 1 and 2 make

us expect that this results in late turning point signals. This tendency can be seen eg.

in Hamilton and Perez-Quiros (1996). The error count estimate (28) imposes an extra

penalty for errors larger than 1/2 (wrong inference), correcting for the overcompensa-
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tion.

Hamilton (1989) and Hamilton and Perez-Quiros (1996) have proposed the use of

(19) to forecast regimes. However, the transition matrix, (e.g. Filardo (1994) allows it

to vary), is constant and it works as a linear operator. For our method, it is crucial

that one estimates the model for horizon l, and elicits information from yt on Jt+l. For

leading indicators, the same observation is made in Estrella and Mishkin (1998), and

in Cox (1961), in the context of a forecast generated by EWMA, when in fact the data

generator is not the corresponding integrated moving average process.

An interesting connection to Layton (1996) and Lahiri and Wang (1994,1996) is

the following. Fixing their ”quasi Bayesian” parameters produces the univariate, non-

smoothed and contemporaneous case of our method, but the inference on turning points

is different from (2). We will return to this in Section 4.2. In the present method,

decision rule (2) results in a turning point signal when the probability estimate (18)

exceeds 1/2. This is an advantage over Lahiri and Wang, and Layton (1996), where the

lack of feature extraction leads to a heuristically defined threshold (0.9) in the former,

and an ad hoc rule: ”five probabilities in a row exceed 1/2”, for monthly data, in the

latter. Hamilton and Perez-Quiros (1996) ignore the inference aspect when evaluating

turning point forecasts.

The method does not exploit autocorrelation. In case of strongly autocorrelated

time series, this is an obvious shortcoming. Our choice is supported by results in Layton

and Lahiri and Wang, and is consistent with parsimony requirements (cf. Chatfield,

1996), when dealing with short time series, that additionally can be difficult to align

temporally. Secondly, as stated in Ivanova et al. (2000), the effects of autoregressive

parameters will largely be captured by the probabilities of remaining in the current

state.

Others that have used HMM endeavour to achieve four goals simultaneously: de-

scription of the time series, definition of turning points, and making point and probabil-

ity forecasts. To summarize, the MBC procedure has only one aim: to produce accurate

probability forecasts of turning points. MBC can be justified in five ways:
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(i) The information on past turning points is used in estimation.

(ii) The model can be optimized with respect to any user-defined turning point.

(iii) A clear decision rule is explicitly used in estimation.

(iv) Feature extraction may improve resolution essentially.

(v) MBC is simple and computationally easy.

4. EMPIRICAL RESULTS

We now apply MBC to construct a leading probability indicator for Sweden and

the USA. For Sweden we scanned for potential variables among those that were quick

to appear and reflect expectations, selecting the Business Tendency Survey and the

Stockholm Stock Exchange Index series. The reference (coincident) series is Industrial

Production (in the National Accounts). In the case of the USA, we use GDP and the

Composite Index of Leading Indicators (CLI) of the Department of Commerce. In both

applications we divided the data into an estimation and a testing period. In the latter

the data were not allowed to influence estimation.

For feature extraction we apply EWMA. Smoothing parameters and Markov prob-

abilities are determined in two stages of grid search. In the first stage, the EWMA

parameter λ = .1, .2, . . . , 1 and pii = .05, .1, .15, .., 1, i = 1, 2. In the second stage,

Markov probabilities are finetuned by a grid with step length .01. The estimation was

done in Matlab c©.

4.1 Sweden’s Indicator

We construct a model that signals the probability of a turning point in Swedish

Industrial Production in the next quarter ( a ”lead one” indicator). The publication of

statistics occurs with a lag of one quarter. Hence, in real time, lead and lag cancel. For

leading information we use two sources:

(i) The Swedish Business Tendency Survey (BTS): The balance between answers

”higher” and ”lower” production during the present quarter.
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(ii) The quarterly differences (�4) of the logarithm of the Stockholm Stock Exchange

Index (SSEI).

The observations 1971 Q1 to 1989 Q3 were used for estimation and 1989 Q4 to

1998 Q2 for testing the model. The serious recession in Sweden, which can be seen in

Figure 1, at the beginning of the 1990s, provides a tough test of model accuracy and

should be included in the test period. On the other hand, the series are too short for

starting the testing before 1989.

We used a seasonally unadjusted reference series IP. It is nonstationary and hence

needs differencing for the moments to exist. By choosing quarterly differences we take

care of both seasonality and non-stationarity. Differencing also robustifies against struc-

tural breaks, see Clements and Hendry 1999, Ch. 5.

New data on BTS and SSEI are published one quarter before IP which allows us

to set lead equal to one. The latest available observation vector at quarter t has the

form yt = (�4 log IP t−1, BTSt, �4 log SSEIt) and a forecast with lead time one is

approximately contemporaneous in real time. An example would be the following. In

the middle of April, observations of BTS and SSEI for the first quarter become available,

but the latest observation on IP is from the fourth quarter of the previous year.

A turning point is said to have occurred when the reference series is in the expansion

regime, then becomes negative and stays negative during the next quarter. The first

quarter with the changed sign is called a turning point and vice versa for a contraction.

This is Oku’s two sign rule. An example is the following time series, {1, 2,−1,−2,3, 4},

where bold figures indicate turning points. Figure 1 shows the IP series. Vertical parts

in the dotted line indicate turning points, horizontal regimes.

Occasionally, BTS and SSEI do not correlate positively with industrial production,

but the joint vector yt carries leading information with little risk of a false turning

point signal. When the lead time was set to one in Table I, minimum (31) scores were

obtained for λ = .2, .7 and .1 for IP, BTS, and SSEI, respectively. The large value of

λ for BTS ensures that high amplitude signals get through without much delay. The

effects of different values of λ are given in Öller (1986). The extremely low λ = .1 for
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SSEI means that only a long lasting and strong downswing in stock prices increases

the recession probability. The strong smoothing can be afforded because of long lead in

stock prices; the loss function (31) chooses a phase shift that aligns this variable with

the rest. This supports good resolution.

The MBC, calculated as described in Section 3, was compared to several alternative

models in Table I. A standard naive competitor N, is the historical fraction (.68) of

quarters for which the economy was in expansion. MBC-UF is the unfiltered MBC.

The next two models do not apply any loss criterion; they are entirely based on the

characteristics of past (and known) regimes. HMM-STAT is the static (formula (1))

HMM whose transition probabilities are the fraction of quarters in each regime, p̂11 =

.68, p̂22 = .32 (see the remark to Theorem 2). HMM-DYN is like the previous model,

but it is dynamic; the Markov probabilities are estimated from the observed regimes.

The ranking of the models is obvious: the naive model N is the worst of all and MBC

is the best. This holds both within the sample and outside it, as well as for both MSE

and ECE. MBC also has the lowest Bhattacharya upper bounds (4). The comparison

between MBC and HMM-DYN is shown in Figure 4. Figure 2 shows MBC probability

forecasts. The regimes are indicated as in Figure 1. The line with small circles shows the

probability of being in an expansion in the next quarter. The corresponding inference on

regimes is illustrated in Figure 3. Note that MBC leads to no wrong inference, neither

within the sample nor in the test period! We have also experimented with a lead two

indicator. This is not as accurate, but used in tandem with the lead one indicator it

has proved useful. Here we used a forward looking BTS series and SSEI, while IP got

a zero weight, because it simply contained no information on its own value half a year

ahead. Also, the long lead of SSEI was corroborated.

4.2 The US Indicator

Here the NBER-dated US recessions are forecasted by the change in US GDP

and the Composite Index of Leading Indicators (CLI) of the Department of Commerce.

NBER-dates and the GDP series are reported in an appendix of Gordon (1997). As in
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Hamilton and Perez-Quiros (1996), where the first difference (�) of the logarithm of

GNP and preliminary figures on CLI were used with the HMM, the estimation period

is 1953:Q2 - 1973:Q2 and the test period is 1973:Q3 - 1993:Q2. We found that the

results are not very sensitive to the precise date at which the sample period ends. The

publication of CLI and GDP statistics occurs with a lag of one quarter. Hence the

observation series is of the form yt = (� log GDP t−1, CLIt−1 ).

We started by using only CLI to forecast the NBER turning points. Table II

reports the results of a comparison between the one-dimensional MBC and HMM with

no autoregressive terms applying ML. This was the HMM used in Lahiri and Wang

(1994, 1996) and in Layton (1996). For all lead times, MBC is an improvement on HMM,

according to (31). Note that, for l = 0, MBC becomes almost static (p̂11 + p̂22 = 1.01),

see the remark to Theorem 2.

In Table III, the bivariate MBC (GDP and CLI) was compared to the same mod-

els as in the previous section. The table presents summary statistics of each model,

calibrated to lead l = 0, 1, 2, (ie. -1, 0, 1, in real time). Again, MBC was clearly the

best. It produces an indicator that works in all turning points, except when entering the

recession 1960:Q2 - 1960:Q4, for l = 1. This is an unusual achievement. The recession

in the beginning of 90s has been especially difficult to forecast, see Fintzen and Stekler

(1999). In Stock and Watson (1993), the 1990 recession was missed and Figure 1 in

Hamilton and Perez-Quiros (1996) and Figures 1-2 in Birchenhall et al. (1999) show that

either the indicators are late or they miss that recession completely. In Figure 5 a clear

coincident warning is given. The recorded range of leads was the narrowest for MBC,

as were the error the bounds (4) (not shown here). The MBC-indicator with lead one

is shown in Figure 5. The scores of MBC-UF are no better than those of HMM-STAT

and HMM-DYN, and definitely worse than for MBC. This again shows the importance

of smoothing.

In Table III the smoothing constant λ for GDP falls sharply as the lead increases.

At the same time turning point detection capability is increased by lowering p̂11 + p̂22,

see Theorem 1. When the lead is 1 and 2 the sum is smaller than unity. For the
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unfiltered MBC, the sum stays above unity. This shows how feature extraction works.

Note that HMM-DYN has p̂11 + p̂22 = 1.61, making it poor in signalling turning points.

The out-of-sample forecast errors of HMM-DYN become only moderately larger than

for MBC, as measured by MSE, but ECE is dramatically higher than for MBC, as

expected according to Theorems 1 and 2.

5. CONCLUSIONS

It is suprising that so little attention has been paid to the practical use of prob-

abilistic turning point forecasts. The starting point of this study was to find a device

that produces accurate turning point inference. We introduced a new way to use HMM

as a classifier, emphasising the inference aspect, where the cost function contains an

extra penalty for wrong decisions. The resulting procedure provides a simple way to

utilize leading information in a vector series.

We recommend applying well known classification error bounds that report the

maximal risk of wrong inference and allow for comparing methods according to this

criterion. We presented some theoretical results showing why MBC works where earlier

uses of HMM have failed. The ML approach leads to high Markov probabilities of

staying in the current regime, especially in an expansion. As a result, a recession will

often be signalled late. MBC is designed to work precisely at turning points.

The method was used on Swedish and US data. MBC was compared with several

other models based on HMM and a naive forecast. MBC beats all the alternatives and

filtering proved to be of great benefit. Reliable inference for Swedish data is obtained

for lead time one quarter as compared to the publication date of production statistics.

In the case of the US, MBC was first applied on univariate data. The forecast accuracy

was much worse than in the case where two variables were included.

The data-driven procedure presented here was developed as a solution to a practical

problem of forecasting business cycle turning points, and is now regularly applied in

forecasting the Swedish economy. The method uses all available information, including

knowledge of past regimes, but it is required only to produce dichotomous inference.
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This simplicity could prove useful also in other areas of application.
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Table I Forecast accuracy of models for Sweden’s turning points (lead l = 1).

Smooth. par. Markov prob. In-Sample Out-of-S.

Model λ1 λ2 λ3 p̂11 p̂22 MSE ECE S MSE ECE S

MBC .2 .7 .1 .93 .47 .020 .000 .013 .007 .000 .005
MBC-UF - - - .85 .56 .061 .054 .059 .044 .059 .049
HMM-STAT - - - .68 .32 .064 .081 .069 .072 .147 .097
HMM-DYN - - - .92 .83 .072 .068 .071 .026 .059 .037
N - - - - - .218 .320 .252 .242 .323 .269

Legend: The parameterλ is the weight of the last observation in EWMA. The score S is 2/3 ×MSE +
1/3×ECE.

Table II Forecast accuracy of univariate models for US turning points (lead l = 0, 1, 2).

Smooth. par. Markov prob. In-Sample Out-of-S.

Model λ p̂11 p̂22 MSE ECE S MSE ECE S

MBC (l = 0) .2 .81 .20 .062 .074 .066 .067 .100 .128
HMM - .92 .75 .132 .173 .146 .123 .138 .128

MBC (l = 1) .5 .87 .04 .068 .075 .070 .074 .101 .083
HMM - .92 .75 .107 .150 .121 .088 .089 .088

MBC (l = 2) .6 .84 .08 .080 .114 .091 .096 .141 .111
HMM - .92 .75 .117 .165 .133 .119 .141 .126

Table III Forecast accuracy of bivariate and naive models for US turning points (lead l = 0,1,2).

Smooth. par. Markov prob. In-Sample Out-of-S.

Model λ1 λ2 p̂11 p̂22 MSE ECE S MSE ECE S

MBC .7 .5 .90 .26 .032 .025 .030 .032 .038 .034
MBC-UF (l = 0) - - .97 .76 .034 .037 .035 .043 .050 .045
HMM-STAT - - .85 .15 .051 .086 .063 .040 .038 .039
HMM-DYN - - .94 .67 .035 .037 .036 .035 .063 .044
N - - - - .126 .148 .133 .136 .163 .145

MBC .2 1.0 .90 .05 .068 .075 .070 .060 .076 .065
MBC-UF (l = 1) - - .91 .26 .076 .088 .080 .076 .101 .084
HMM-STAT - - .85 .15 .079 .088 .082 .076 .101 .084
HMM-DYN - - .94 .67 .076 .113 .088 .084 .114 .094
N - - - - .126 .148 .133 .136 .163 .145

MBC .1 .5 .82 .05 .078 .114 .090 .109 .115 .111
MBC-UF (l = 2) - - .90 .15 .082 .114 .093 .104 .192 .133
HMM-STAT - - .85 .15 .082 .165 .110 .103 .180 .129
HMM-DYN - - .94 .67 .105 .177 .129 .115 .141 .124
N - - - - .126 .148 .133 .136 .163 .145


