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Abstract

We develop a structural bond pricing approach and implement it
on a large panel of US industrial bonds using an efficient maximum
likelihood methodology. We evaluate the model’s ability to predict
yield spread levels and changes out-of-sample. Errors are smaller and
distinctly less variable than those found in previous implementations
of structural as well as reduced form models. Furthermore, our analy-
sis provide evidence that bond yield spreads incorporate a substantial
liquidity component on top of the default spread structural models are
designed to capture.
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1 Introduction

When option pricing theory was developed some thirty years ago, it was
suggested that the most fruitful applications would be to the valuation of
corporate liabilities.1 Yet, there have been surprisingly few attempts to
confront structural bond pricing models with market prices. Instead, much
of the research in the area has shifted its focus to the development of reduced
form models, designed to be more tractable empirically. However, in this
paper, we show that our structural approach performs well in comparison
to past implementations of structural and reduced form models.

The severity of potential losses from defaults has recently increased.2 As
a result, accurately assessing the value and the risk of corporate debt is a
critical task in many applications. Clearly, it is a prerequisite for making
lending decisions and setting prices of new issues. A further important use
for credit risky bond valuation models is in the field of risk management:
a current issue for the banking sector relates to the measurement of credit
risk exposures with a view to determining capital requirements. If, in the
medium to long run, current standardized capital ratios enforced by reg-
ulators are to be replaced by in-house credit risk models, we will require
much more solid knowledge about the performance of different default risk
valuation models.3

Finally, implementable structural models for corporate liabilities should
prove valuable for empirical work in corporate finance. A growing theoret-
ical literature analyses the interaction between security prices and agency
problems rooted in the joint capital structure and investment decisions of
corporations. Important examples include Anderson & Sundaresan (1996),
Fan & Sundaresan (2000), Leland (1998), Mella-Barral (1999) and Mella-
Barral & Perraudin (1997). The body of empirical work in this field is thin
at best.

A pre-requisite for any of these applications is that a model can be

1See for example Black (1985).
2The US corporate debt market makes up roughly a fifth of the total US fixed income

markets and has overtaken the Treasury debt market as the second largest segment. The
credit risk inherent in corporate bonds creates a substantial challenge in addition to dealing
with the already complex term structure risk. For 2001, Moody’s reports 186 defaults on
corporate bonds in US alone, totalling over 106 billion dollars, about triple the figure for
the previous year. The default rate on speculative grade debt rose to more than 10% in
2001 from a bit less than 6% in 2000. See Moody’s Investors Service (2001), Moody’s
Investors Service (2002).

3See Saunders & Allen (2002) for an overview of competing approaches to credit risk
modelling.
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validated empirically. This paper addresses the valuation of credit risky
bonds in the context of structural models. These are also often referred
to as contingent claims models, as they are based on the premise that a
firm’s securities can be viewed as ”contingent claims” on the assets of the
firm. As a result, it is possible to consistently value both the firm’s equity
and liabilities. This explicit link between stock and bond prices can then
be exploited together with balance sheet information to draw inference on
the term structure of default probabilities. A related line of research follows
Jarrow & Turnbull (1995) in specifying default probabilities as exogenous
stochastic processes.4 The models are often referred to as reduced form
models, as they do not require a theoretical model of the firm’s capital
structure.

We develop a structural model for the valuation of corporate debt and
implement it on a sample of 141 US corporate bonds totalling 5594 dealer
quotes. In contrast to many previous papers, we make a clear distinction
between the firm’s total debt and the particular bond that we wish to value.
This has the advantage of combining (i) simple closed form solutions for the
value of the firm’s securities, which is crucial for our estimation procedure
to be tractable with (ii) an accurate model allowing for the salient char-
acteristics of the firm’s capital structure as well as the individual bond’s
contractual features. Moreover, our econometric methodology, based on a
maximum likelihood approach developed by Duan (1994), makes more ef-
ficient use of the information in time series of stock prices than previously
applied methods.

We find that our approach outperforms previous implementations of
structural models. When including a bond price in the sample, yield spread
errors out-of-sample are comparable to or smaller than those reported in
recent studies of reduced form models. We also provide evidence on the
model’s ability to predict changes in yield spreads. Our model is able to
better predict large changes in spreads, in contrast to small changes which
we show are more likely to be driven by noise or liquidity. Furthermore,
pricing bond portfolios, we show that the greater part of the model er-
rors are diversifiable. Analyzing the errors using a set of bond specific and
economy wide variables, we find support for the notion that bond spreads
incorporate a substantial liquidity premium on top of the default premium
the models are designed to capture. Another interesting result is that our
model, although it does not incorporate a stochastic risk free term structure,

4A non exhaustive list of contributions in this literature would include Duffie & Sin-
gleton (1999), Jarrow et al. (1997), Lando (1998), Lando (1997).
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generates correlations between the level and the slope of the risk free term
structure in line with those reported in for example Longstaff & Schwartz
(1995) and Duffee (1998).

As already noted, there have been very few empirical tests of structural
bond pricing models. The first published test of contingent claims models
for the valuation of corporate debt was carried out by Jones et al. (1984).
They find that their model systematically overprices bonds by on average al-
most 9%. Ogden (1987) finds the same result in a similar study.5 Although
more recent theoretical models have addressed the weaknesses suspected to
be responsible for the failure of earlier studies, these papers are often cited
to support the notion that structural models in the wake of Black & Sc-
holes (1973) are unsuited for practical work as they are unable to generate
sufficiently high yield spreads. However, more than forty years ago, Fisher
(1959) argued that bond yield spreads consist of compensation not only for
credit risk but also for marketability risk. Recent work supports this idea
and we will use this as our point of departure. Huang & Huang (2002) and
Delianedis & Geske (2001) show that the spread on investment grade bond
is determined primarily by non-credit risk factors such as liquidity.6 Con-
sequently, a structural bond pricing model should be expected to overprice
corporate bonds even if it correctly assesses the part of the yield spread
driven by default risk.

Anderson & Sundaresan (2000) estimate a set of structural models on
aggregate corporate bond yield indices and find that the correlation between
estimated and market BBB rated spreads is approximately 50% in-sample
depending on model specification. We find correlations out-of-sample for
individual bond spreads averaging about 60% for all of our sample and
76% out-of-sample for speculative grade bonds. Given that their results are
based on in-sample estimation at an aggregate level, we view our results as
encouraging.

A recent study by Eom et al. (2002) is more directly comparable to
our work. They assess the empirical performances of the Merton (1974),
Geske (1977), Longstaff& Schwartz (1995), Leland & Toft (1996) and Collin-

5Cossin & Pirotte (1996) test the Longstaff & Schwartz (1995) model on very low credit
spread (average 3.5 basis points), short term swap data and also get disappointing results.
Wei & Guo (1997) test the Longstaff & Schwartz (1995) as well as the Merton (1974)
model on Eurodollar futures — which also are of high rating and short maturity. Again,
the results are discouraging. Lyden & Saraniti (2000) test the same two models and find
that both models overprice bonds. Delianedis & Geske (1999) find, however, that the
Merton and the Geske models can predict rating migrations.

6Other papers that discuss this issue include Ericsson & Renault (2000), Janosi et al.
(2001), Yu (2002).
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Dufresne & Goldstein (2001) on a cross-section of individual bonds, and find
that the models generate systematically biased price estimates, although not
always in the direction found by Jones et al. (1984). The out-of-sample yield
spreads predicted by our model are biased in the direction suggested by
Huang & Huang (2002) and Delianedis & Geske (2001) while the variability
of the errors is of a lesser magnitude than that of previous studies. Con-
ditioning on bond prices, our model produces unbiased estimates and has
predictive power for changes in the credit spread. The errors of the model
are analyzed using a set of bond specific, firm specific and economy wide
variables. In particular, we find that our model’s errors can be explained by
proxies for the liquidity spread in Treasury markets.

Duffee (1999) provides an empirical study of the reduced form approach.
However his results are not directly comparable to those in this paper as he
gauges the in-sample fit of bond prices rather than out-of-sample predictions.
Nevertheless, the errors produced by our models are similar in magnitude.
In addition, our model compares favourably to the results of a study of out-
of-sample performance by Bakshi et al. (2001). Overall, our results lead us
to be more optimistic about the prospects of structural modelling of credit
risk as a practical tool in finance than most earlier studies have given us
reason to feel.

The structure of our paper is as follows. We begin by describing our
capital structure and security valuation model. We then describe the econo-
metric methodology and the data sources employed. A small simulation
study forms the introduction to the main section where we present the re-
sults of various tests, relate them to previous work and analyze the model
errors. Finally we provide a concluding discussion.

2 Theoretical Model

In this section, we discuss the basic economic setting on which we base
our model.7 We make the standard assumptions of Black & Scholes (1973)
and Merton (1974) about the economy. Arbitrage opportunities are ruled
out and investors are price takers. Furthermore, for at least some large
investors, there are no restrictions on short selling stocks or risk free bonds
and these can be traded costlessly and continuously in time.8 There are no
assumptions about the tradeability of corporate bonds.

7The presentation is a condensed version of Reneby (1998).
8See Merton (1990) chapter 14 for a discussion.
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The constant risk free interest rate is r. Many models incorporate sto-
chastic interest rates.9 This is important to the degree that credit risk is
correlated with interest rate risk. Although from an economic perspective it
appears natural that high interest rates are correlated with harsh business
conditions and thereby increased default risk, it is not obvious that this is a
first order effect. Unique credit risk might be by far the most important risk
factor. Indeed, to quote Fridson et al. (1997), “empirical investigations have
not identified interest rates as an important determinant of default rates on
high-yield bonds”.10 The comparative statics of the Longstaff & Schwartz
(1995) model suggest a negative relationship between the level of interest
rates and yield spreads and they find empirical support for their result. Duf-
fee (1999) similarly finds a negative but weaker correlation. We will return
to this issue in the discussion of our empirical results, examining whether
omitted term structure variables can explain yield spread prediction errors.

2.1 The state variable

The state variable used in structural models is based on the value of the
firm’s assets. The prices of the firm’s securities depend on the share of the
firm value that each security holder is entitled to, when the firm is solvent
as when it is in financial distress. In this setting, corporate securities and
their derivatives are valued as claims contingent on the underlying asset
state variable.

Assets are assumed to generate revenue that is not reinvested. This “free
cash flow” is used to service debt or paid out as dividends to shareholders.
Throughout, we assume that our state variable has the following dynamics½

dωt = (r + λσ − β) ωt dt+ σ ωt dWt

ω0 = ω
(1)

where the generated cash flow is equal to β · ωt with β a constant revenue
rate. The variable ω has a natural interpretation as the (after-tax) value
of assets in that it is indeed equal to the value of receiving all future cash
flow.11 The term (r + λσ) is the expected return from holding the assets —

9E.g. Longstaff & Schwartz (1995), Kim et al. (1993), Saá-Requejo & Santa-Clara
(1997) and Nielsen et al. (1993).
10Examples of such studies are Fridson & Kenney (1994) and Reilly & Wright (1994).
11 I.e., the solution to the integral EB

hR T
t
e−r(s−t) βωs ds

i
, where EB respresents the

expected value under the risk-adjusted probability measure, is ωt. Observe that we do
not assume that assets or corporate bonds are traded; we only need to assume that some
corporate security, e.g. equity, is traded. This issue is discussed in detail in Ericsson &
Reneby (1999).
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including accumulating the free cash flow βω. The growth rate of assets is
(r + λσ − β). The parameter σ is the volatility of the asset value and λ can
be interpreted as the market price of risk associated with the operations of
the firm.

2.2 The firm’s liabilities

It is important to make a distinction between securities that, in nominal
terms, constitute a small part of the firm’s debt — such as a bond issue — and
securities that appear on an aggregate level — such as equity. In many papers
it is assumed, at least indirectly, that total debt is made up of a single bond
issue. Consider for example the model of Geske (1977), in which a coupon
payment is valued as a compound option on later payments. Bankruptcy
occurs when the value of assets is so low that equity holders no longer find it
profitable to honour a coupon payment. Although the idea of shareholders
taking into account future debt obligations when deciding on debt service
is important, modelling individual payments is not tractable.12 In practice,
there will be a multitude of other payments, in between payments to the
holder of the bond you want to value, that might be the cause of bankruptcy.
Thus equity cannot be valued as the residual of a single bond issue, but as
a residual claim to a cluster of liabilities.

A firm’s debt consists of bank loans, bonds, accounts payable, salaries
due, accrued taxes etc. Dues to suppliers, employees and the government
are substitutes for other forms of debt. Part of the price of a supplied good
and part of salary paid can be viewed as corresponding to compensation
for the debt that, in substance, it constitutes. The cost of debt conse-
quently includes not only regular interest payments to lenders and coupons
to bondholders, but also fractions of most other payments made by a com-
pany. Clearly, a comprehensive model of all these payments would not be
tractable.

To obtain a simple closed form value for equity, we assume that debt
service takes place continuously. Also, since most companies do not have
a predetermined life span, a firm is assumed, conditional on no default, to
continue its operations indefinitely. Equity is then valued in the spirit of the
Black & Cox (1976) and Leland (1994) models.

However, unlike in those models, we allow the firm to alter the total
amount of debt over time. A model that does not account for the possible

12 In Geske’s framework each coupon payment leads to an additional compound option
and quickly requires solving high-dimensional normal distributions. When there are more
than a few payments this becomes difficult to deal with computationally.
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increase in total debt, may imply a term structure of default probabilities
at odds with reality. Since the expected value of the asset value increases
exponentially, the expected debt to equity ratio would tend toward zero
at long horizons and the probability of financial distress would be heavily
skewed to the early part of the company’s life — in effect, to the first couple
of years (see Reneby (1998)).

We denote total nominal debt by Nt. Although the increase in total
debt is the result of many small debt issues, we assume that it can be
approximated, on an aggregate level, by a continuous growth rate α:½

dNt = αNt dt
N0 = N

In other words: αNt dt is the extra principal to which the firm must commit
itself in a given moment. For future reference, let d (ωt, t) dt denote the
market value of a loan with principal αNt dt. Since all issues are assumed
to be floated at a fair price, d (ωt, t) dt is also the amount borrowed each
instant.13

Total debt service at time t is denoted by Ct which consequently also
increases at rate α. Interest payments increase as new debt is contracted
and needs to be serviced, and not because the debt service to a given liability
increases. Interest payments are tax-deductible and the corporate tax rate
is τ.

Assuming that aggregate debt has the simple structure outlined above
implies that it will not be affected by the characteristics of the specific debt
instrument to be valued. Since equity is valued as the residual of aggregate
debt, those characteristics will not affect the valuation formula for equity
either. Intuitively, the single debt issue is too small to have a significant
effect on the overall debt level. One can thus derive pricing formulae for
equity and individual debt instruments separately. This is crucial to combine
realistic modelling of debt instruments — allowing for discrete coupons or
callability, for example — with retained analytic formulae for equity value.

2.3 Financial distress

The firm is assumed to enter financial distress when the value of its assets
falls below Lt — the reorganization threshold. The time of this event is
denoted T . We assume that at this point the value of the assets, net of
reorganization costs, is distributed to claimants. We allow for violations

13The pricing equation for debt is given in appendix.
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of the absolute priority rule and thus shareholders can also be expected to
acquire a fraction of the assets. Reorganization should be understood to
encompass events ranging from write-downs of certain claims or infusion of
capital to asset liquidations.

The payoff to claimants in reorganization may be in the form of cash or
new securities. We use ε to denote the fractions of assets paid out to equity
holders and k the fractional bankruptcy costs. Hence LT − ε · LT − k · LT
quantifies the payoff to debtholders. These payoffs can be thought of, and
even modelled as, the outcome of a strategic game played between equity
holders and various debtholders over the reorganizing firm.

We assume that the reorganization threshold is the level of asset value
at which shareholders are no longer willing to contribute funds to stave
off financial distress.14 This choice of Lt is the lowest possible which is
consistent with limited liability. Hence, the Lt is endogenously determined
and will depend on firm specific parameters such as riskiness of the assets,
the cash flow rate as well as the risk free interest rate.15 One obvious but
important implication of our assumption of debt growth is that Lt will also
grow at a rate α.

2.4 Equity

Equity derives its value from dividends (DIV ) and, to a lesser degree, from
payoffs in the event of default — i.e. violations of the absolute priority rule.
To denote default formally, we use an indicator function. The indicator
function IT ≮s takes on the value of unity if default has not yet occurred
at time s, and the value of zero if it has. The value of equity is calculated
as the discounted expected value, under the risk-adjusted measure QB, of
future payoffs:

E (ωt, t) ≡


EB

hR T
t e−r(s−t)DIV (ωs, s) IT ≮s ds

i
+EB

£
e−r(T −t)εT LT

¤ (2)

No profits or losses are carried forward — cash flows net of taxes and interest
payments are distributed to the equity holders. At any given point in time
s, the following cash flow is available:

DIV (ωs, s) = βωs −Cs + τCs + d (ωs, s) (3)
14However, several other choices are possible. E.g. the barrier can be set equal to (a

fraction of) the nominal amount or as the outcome of a strategic game. Since aggregate
debt is of infinite maturity, the solution to a game will be time-invariant.
15A closed form solution for the default threshold can be found in the appendix.
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i.e., the dividend stream is determined by four components:

• the (after-tax) earnings generated by the firm’s operations16

• less coupon payments

• plus the tax-savings on coupons

• plus the inflow from debt issues. This is interpreted as borrowing to
keep up the payout ratio; if the firm would not borrow, it would have
to plow back more earnings — reducing dividends — to uphold a given
investment strategy. Thus external funds (α) and free cash flow (β)
are complementary for this purpose.

A negative dividend corresponds to a situation where equity holders
contribute funds to stave off financial distress. This is, of course, done in
their own self interest since the value of expected gains in the future exceeds
those payments.

Before providing the solution to the integrals in (2), we define two fictive
claims, both related to payoffs in default, that will be the building blocks of
the equity formula.

Lemma 1 Define G as the value of a claim paying off unity in financial
distress.

G (ωt, t) ≡ EB
£
e−rT · 1

¤
Its value is

G (ωt, t) =

µ
ωt
Lt

¶−θ
with the constant given by

θ =
√
(µB)2+2r+µB

σ

µB = r−β−α−0.5σ2
σ

The result is derived in the appendix.

16All values in the model are after-tax; thus βω can be thought of as “EBIT plus taxes”:
EBI.
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Lemma 2 Define Gα as the value of a claim paying off eα(T −t) in financial
distress.

Gα (ωt, t) ≡ EB
h
e−rT · eα(T −t)

i
Its value is

Gα (ωt, t) =

µ
ωt
Lt

¶−θα
with the constant given by

θα =

√
(µB)2+2(r−α)+µB

σ

µB = r−β−α−0.5σ2
σ

The result is derived in the appendix.

The first claim, G, quantifies the risk of default. Its value is related to
the probability of default, but adjusted for the time value of money. It will
henceforth be referred to as the “dollar-in-default” claim. The second claim,
Gα , pays off a dollar in default which has been compounded at a rate α.
Consider e.g. a claim to receive the assets in default: the potential payoff is
ωT = LT = Lt · eα(T −t) and the value must be Lt · Gα. Finally, note that
0 ≤ G ≤ 1, G ≤ Gα and that Gα can be worth more than one when α > r.

With the help of the claims in Lemmas 1 and 2, the solution to equation
(2) is rather simple and intuitive. It is given in the following proposition.

Proposition 1 The price of equity is given by

E (ωt, t) = ωt − Lt ·Gα (ωt, t)

−Nt · (1−G (ωt, t))

+τNt ·
r

r − α
· (1−Gα (ωt, t))

+ (1− ε− k) · Lt · (Gα (ωt, t)−G (ωt, t))

+εLt ·Gα (ωt, t)

where G and Gα are given by Lemmas 1 and 2. The result is derived in the
appendix. (This formula only holds provided r 6= α; the formula for r = α
is found as the limiting case. It does hold for β = 0.)

The interpretations of the terms of the formula are the following:

• The first line is equal to the value of receiving all the firm’s earnings
conditional on no default.
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• The second line is the cost of servicing current debt holders — intu-
itively, it is the value of risk free debt (Nt) times a factor reflecting
the risk of default.

• The third line corresponds to the value of the tax shield (τ is the
tax rate). It incorporates the tax shield accruing from debt service
to current debtholders as well as the tax shield stemming from debt
floated in the future.

• The fourth line is the value, for equity holders, of being able to borrow
in the future using the assets as collateral. Since (1− ε− k)Lt is
recovered by debtholders in default, it can be interpreted as the current
value of that collateral.

• The fifth line, finally, is the value of expected payouts to equity holders
in reorganization.

To obtain some additional intuition for the equity formula, consider the
following scenarios: As the value of assets approaches the barrier, G and Gα

tend toward unity so that lines 1-4 tend toward zero — and equity takes on
a value equal to the expected payoff in a reorganization: εLt. Conversely,
as the value of assets increases and the risk of default decreases, G and Gα

tend toward zero and the value of equity approaches the value of assets less
the value of the now risk free debt plus the tax-shield: ωt −Nt + τNt

r
r−α .

We now turn to the valuation of individual bond issues.

2.5 Bonds

In this section, we derive the value of a straight coupon bond. The valuation
method exploits the fact that payoffs to the bond can be expressed as com-
binations of two building blocks. To value contracted payoffs, i.e. coupons
and repayment of the principal, we use a down-and-out binary option. A
down-and-out claim is one that expires worthless if the value of the under-
lying asset hits a given barrier prior to the expiration date — a binary option
yields a unit payoff at the expiration date conditional on the underlying
asset exceeding the exercise price. To capture payoffs in financial distress,
one additional claim is required: the dollar-in-default claim. This claim will
differ from the one in Lemma 1 in that it is subject to an expiration date
(equal to the maturity of the corporate security). Consequently, it will be
worth less than its perpetual counterpart.

The price formulae for the two building blocks are given in Lemmas
4-5 below. They contain a term that expresses the probabilities (under

12



different measures) of the asset value (ωT ) not having hit the barrier prior
to maturity (T £ T ) — in other words, the survival probability. To clarify
this common structure, we first state those probabilities in the following
lemma.17 Specifically, we will consider the two probability measures QB

and QG. They are characterized by having the money market account and
the dollar-in-default claim, respectively, as numeraires.

Lemma 3 The probabilities of the event (T £ T ) (the “survival event”) at
t under the probability measures Qm : m = {B,G} are

Qm (T £ T ) = φ

µ
km
µ
ωt
Lt

¶¶
−
µ
ωt
Lt

¶− 2
σ
µm

φ

µ
km
µ
Lt

ωt

¶¶
where

km (x) =
lnx+ (α+ σ · µm) (T − t)

σ
√
T − t

µB =
r−β−α− 1

2
σ2

σ

µG = µB − θσ

φ (k) denotes the cumulative standard normal distribution function with in-
tegration limit k.

Using this lemma we obtain the pricing formulae for the building blocks,
the binary option and the dollar-in-default claim, in a convenient form.

Lemma 4 The price of a down-and-out binary option (with unit payoff at
T conditional on no prior default) is

H (ωt, t;T ) = e−r(T−t) ·QB (T £ T )

with the probability given by Lemma 3.

The value of the binary option thus reflects the time value of money and
the risk-adjusted survival probability for maturity T . If the bond is riskless,
QB = 1 and the binary “option” is equal to the value of a discounted dollar.

Lemma 5 The price of a dollar-in-default claim is

G (ωt, t |T < T ) = G (ωt, t) ·
¡
1−QG (T £ T )

¢
with probability given by Lemma 3. The result is derived in the appendix.
17The probabilities are previously known, as is the formula the down-and-out binary

option in Lemma 4 (see for example Björk (1998)).
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The claim in Lemma 5 gives us the value of receiving one dollar in case
of a reorganization before the maturity of the bond.18 Denote with ψ the
recovery rate for the bond and with P the principal. The payout ψP can
be a partial repayment, or come in the form of new securities. The value of
payouts in reorganization to bondholders is ψP ·G (ωt, t |T < T ).

Proposition 2 A straight coupon bond. The value of a coupon bond
with M coupons c paid out at times {ti : i = 1..M} is

B (ωt, t) =
M−1X
i=1

c ·H (ωt, t; ti)

+ (c+ P ) ·H (ωt, t;T )

+ψP ·G (ωt, t |T < T )

The value of the bond is equal to the value of the coupons (c), the value of
the nominal repayment (P ) plus the value of the recovery in a default (ψP ).
Each payment is weighted with a claim capturing the value of receiving $1
at the respective date.

2.6 Yield spreads

Structural models are often criticized for generating too low credit spreads.
In this section, we will argue that this critique can be misleading for technical
as well as theoretical reasons.

For tractability, many models approximate actual bonds’ coupons and
nominal repayment with continuous coupons, infinite maturity or zero coupon
debt. However, this implies different relationships between yields and prices
in the model and in reality.19 For this reason, a model which produces the

18Note the relationship between Lemmas 2 and 5: lim
T→∞

G (ωt, t |T < T ) = G (ωt, t) .
19 In a model like Black & Cox (1976), the yield is obtained as

y =
rP

B
whereas for an actual bond, it is obtained by numerically solving the following expression

B =
M−1X
i=1

e−y·tic+ e−y·tM (c+ P )
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correct price will not necessarily produce the correct credit spread. The dif-
ference in model spread and actual spread — for the same bond price — may
be several hundred percent (see Reneby (1998)). In what follows, we will
compute actual and predicted spreads in the same way so as allow consistent
comparisons.

Another important issue is the influence of liquidity. Besides the credit
risk component, actual yield spreads are very likely to include compensation
for liquidity (marketability) risk. This component is not modelled in stan-
dard contingent claims models. Thus, even if a model perfectly captures the
default risk of a security, it will predict yield spreads that are lower than
market spreads.

There are few empirical studies of the size of the liquidity premium.
Amihud & Mendelson (1991) and Daves & Ehrhardt (1993) investigate the
yield on treasury instruments that have identical cash flows but different
levels of marketability. They find that yields differ in the range of 20 to 40
basis points. However, these numbers are most likely only a lower bound
for the liquidity spread for corporate bonds as they are generally less liquid
than government bonds. Unfortunately, empirical studies of the corporate
bond market are even more rare. Fridson & Bersh (1993) measure liquidity
in a bond issue as a function of the amount outstanding. They find that
yields in the primary market increase by 40 basis points when the size of
the issue decreases by $100 million.

Delianedis & Geske (2001) study the components of yield spreads on
investment grade US corporate debt. They show that default risk can only
explain a small fraction of the total spread (ranging from about 20% for
BBB firms to around 5% for AAA firms). They argue that the remainder is
mainly driven by the liquidity of the bonds and can only to a lesser extent
be explained by taxes, jump risk, recovery risk and other market factors.

Perraudin & Taylor (2002) seek to measure the liquidity premium by
comparing yields on corporate bonds sorted according different liquidity
proxies. They find that yields for less liquid bonds are higher by 10 to 28
basis points. Again, this estimate is a lower limit for the total spread as it
does not include the differential relative to government securities. Moreover,
their sample is one of high quality bonds (rated A or higher), which tend to
be the most liquid.

Huang & Huang (2002) calibrate several structural bond pricing models
to historical default and recovery data, the equity premium and leverage, in
order to assess the resulting default spreads. They find that for investment
grade bonds, it constitutes no more than 20% of the overall spread, but that
the fraction is higher for lower rated bonds.
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If, as we have argued, liquidity risk is an important determinant for
bond spreads, a structural credit risk model should be expected to overprice
bonds, in particular investment grade ones.

3 Empirical Model

In the previous section we derived the necessary pricing formulae for bonds
and equity. In this section we discuss issues related to the practical imple-
mentation of our framework.

The following inputs are needed to price a bond:

• the principal amount, P , the coupons c, and the coupon dates.

• the risk free interest rate, r,

• the default threshold, Lt,

• the growth rate of debt (which is also the growth rate of the default
threshold), α,

• the recovery rate of the bond in case of a reorganization, ψ

• the rate, β, at which earnings are generated by the assets, and finally,

• the current value, ω, and volatility of assets, σ.

An inspection of the equity formula in Proposition 1 reveals that three
additional parameters are needed to value equity: the total nominal amount
of debt, the expected deviations from the absolute priority rule as well the
recovery rate for total debt — that is, the triplet (Nt, ε, δ).

The bond specific and term structure variables are readily observable.
The default threshold will be determined endogenously as discussed above.
We will rely on earlier empirical work to determine the recovery rate, δ, of the
aggregate debt and APR deviations parameter ε. The recovery rate of the
bond, ψ, will be estimated from historical industry and seniority averages.

This leaves us with a parameter vector (α, β, ω, σ) which will be esti-
mated from equity and balance sheet data. The idea, first proposed by
Duan (1994) in the context of deposit insurance, is to use price data from
one or several derivatives written on ω to infer, using maximum likelihood
(ML) techniques, the characteristics of the underlying, unobserved, process.
In principle the ”derivatives” can be any of the firm’s securities that are
traded in liquid markets. In practice, only equity is likely to offer a precise
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and undisrupted price series since corporate bonds tend to be liquid only
immediately following issuance. Therefore, the price data used will be a
series of stock prices complemented, in some of the tests, with one bond
quote.

We will analyze the pricing of a non-callable straight coupon bond. This
security serves as a useful benchmark which disentangles credit risk from
issues such as call and put features. Furthermore it is becoming an increas-
ingly popular financing vehicle. 20

Ericsson & Reneby (2002) evaluate this maximum likelihood approach
using several theoretical models and compare it to the traditional estima-
tion technique.21 The former clearly dominates. Moreover, the traditional
approach cannot be used at all if one wants to estimate variables beyond
asset value and volatility.

The maximum likelihood estimation will rely on a time series of stock
prices, Eobs =

©
Eobsi : i = 1...n

ª
. Subscript ‘i’ is used to index observations,

in contrast to subscript ‘t’, which refers to a point in time in years. We re-
quire the likelihood function of the observed price variable. Defining f (·) as
the conditional density for Eobsi gives us the following log-likelihood function
for equity

LE
³
Eobs; ξ, λ

´
=

nX
i=2

ln f
³
Eobsi

¯̄̄
Eobsi−1 ; ξ, λ

´
(4)

where we let ξ ≡ {α, β, σ} denote the parameters needed to price the bond.
To derive an expression for the density function for equity, we make a change
of variables as suggested in Duan (1994):

f
³
Eobsi

¯̄̄
Eobsi−1 ; ξ, λ

´
= g (lnωi |lnωi−1 ;β, σ, λ)|ωi=w(Eobsi ,ti;ξ) (5)

×
"

∂ Ei
∂ lnωi

¯̄̄̄
ωi=w(Eobsi ,ti;ξ)

#−1
The equity density is now expressed as a function of g, the conditional
density for a normally distributed variable — the log of the asset value. Note
that Ei = Ei (ωi, ti; ·) refers to the equity formula, whereas Eobsi denotes an
observed market value. The function transforming equity to asset value is
20For example, in 1982, only 20% of the issues were non-callable, whereas in 1990, only

20% were callable (Crabbe (1991)).
21Examples of applications of the traditional approach can be found in Jones et al.

(1984) and Ronn & Verma (1986), Ogden (1987), Delianedis & Geske (1999), Delianedis
& Geske (2001), Eom et al. (2002) and Hull (2000).
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defined as w
¡
Eobsi , ti; ξ

¢
≡ E−1

¡
Eobsi , ti; ξ

¢
, the inverse of the equity value

function. Hence there is, given ξ, a one-to-one correspondence between the
stock price Eobsi and the implied asset value ωi.

By inserting (5) into (4) we obtain the log-likelihood of the vector Eobs
for a given choice of ξ as

LE
³
Eobs; ξ, λ

´
= Llnω

³
lnw

³
Eobsi , ti; ξ

´
: i = 2...n; ξ, λ

´
(6)

−
nX
i=2

lnωi
∂ E (ωi, ti; ξ)

∂ ωi

¯̄̄̄
ωi=w(Eobsi ,ti;ξ)

It is straightforward to calculate a closed form solution for ∂ Ei
∂ωi
, the “delta”

of the equity formula.
The estimated parameter vector

³bξ, bλ´ is obtained by maximizing equa-
tion (6) with respect to (ξ, λ) and subject to constraints captured by the
vector h.

max
ξ,λ

LE
³
Eobs; ξ, λ

´
s.t. h (ξ) = 0

The constraints used are discussed in more detail below. In brief we can
allow the estimation procedure to use information in market dividend yields
or bond prices by constraining the model to produce theoretical values in
accordance with observed ones.

Finally, an estimate of the value of assets is obtained using the inverse
equity function: ω̂t = w

³
Eobsn , tn;bξ´. Once we have obtained the pair³bωt,bξ´ it is straightforward to compute the corresponding bond price esti-

mate bB = B
³bωt, t;bξ´ and spread bS. The spread is calculated solving the

bond price formula in Proposition 2 for the risky yield, and subtracting the
yield for the corresponding risk free bond.

4 Simulation Study

To investigate the small sample properties of the model and the estimation
technique before bringing them to market data, we performed a Monte Carlo
study. We consider two scenarios: investment grade (yield spread 64 bp) and
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speculative grade (yield spread 158 bp).22 In the Monte Carlo experiment,
we simulate asset value paths consistent with the chosen scenario.

For each stock price path, we estimate — with and without bond price
information — the current asset value and model parameters and use these
to price a 10 year bond. Finally, we calculate the estimated yield spread
and compare it to the true yield spread.

With bond price information, estimation is very efficient: the spread
estimator is unbiased with a 1 bp. standard deviation in both firm scenarios.
Without bond prices a slight small sample bias becomes apparent — the
model underestimates the yield spread by 6 bp. (t-stat: 1.34) and 11 bp.
(t-stat: 2.33) in the investment grade and speculative grade firm scenarios,
respectively. The standard deviations of the spread errors increase to 19 bp.
and 33 bp.

Comparing high and low yield debt we note that even though the spread
error increases as the yield is higher, the relative error actually decreases.
The reason is that the stock price is more volatile when the yield is higher,
and so conveys more information about the parameters of the underlying
asset value process and the firm’s default risk.

5 Data

Our database consists of bond prices and characteristics, firm balance sheet
information, equity prices and term structure data. As a starting point we
took the FISD bond database which contains data for bonds that were part
of the Lehman Brothers indices. It contains monthly prices for a large array
of fixed income securities. We chose to focus exclusively on industrial bonds
for firms based in the US during the coverage of our version of the database,
i.e. between January 1994 and February 1998.

An important advantage of the FISD database is that it distinguishes
between trader quotes and matrix quotes. As matrix quotes may not provide
a reliable estimate of the price at which a trade could take place we chose
to eliminate them.

To concentrate on credit risk and avoid dealing with option features we
eliminated all callable and putable bonds as well as those with sinking fund
features. Furthermore, as we wish to analyze both the time series as well as
22The bond specific parameters were: T = 10, c = 4%, ψ = 40%. The firm specific

parameters were: α = 3%, σ = 20%, β = 3%, r = 6%, ε = 3%, δ = 40%, τ = 20%,
N = 1000. The investment grade firm’s asset value was 1400, providing a leverage of 57%
and an equity volatility of 37%, whereas the speculative grade firm’s asset value was 1050,
providing a leverage of 71% and a volatility of 47%.
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the cross-sectional aspects of corporate bond yield spreads, we eliminated
all bonds with less than 12 consecutive monthly observations. In addition,
we eliminated bonds for which it was clear that prices were stale (e.g. the
same quote for more than two months despite changing risk free interest
rates), where data entry errors were apparent or for which corresponding
equity or balance sheet data was simply not available. Two additional firms
were dropped because of convergence problems in the estimation procedure.
In the end we were left with 141 bond issues by as many firms; the number
of monthly price observations we have on each bond ranges from 12 to
50. In total there are 5594 bond price observations on which our pricing
performance and model specification analysis is carried out. This can be
compared to the sample used by Jones et al. (1984) which consists of a total
of 305 prices from 27 firms, and that of Eom et al. (2002) which encompasses
182 bond prices from as many firms.

The FISD database also provides all the characteristics of the individual
bonds such as coupon, maturity and ratings. However, we also require
information about the liability structure of the firm. As mentioned above,
we use the aggregate nominal debt of the firm as an input to derive the
market value of equity and thus give us a model for default probabilities.
Our empirical measure of the total debt of the firm is the total liabilities as
reported in firms’ EDGAR filings compiled and provided by Mergent FIS.

In addition to this, we require daily market values for the outstanding
equity as well as information about the risk free interest term structures
over time. This data was obtained from DATASTREAM.

All the bonds we consider are unsecured bullet bonds. Table 2 lists
descriptive statistics for the 141 bonds and the issuing firms. We also pro-
vide statistics for subgroups across rating and maturity. Note that FISD
corporate bond data is dominated by investment grade issues.23 Thus the
subcategory of speculative grade bonds — rated BB or lower — make up only
slightly more than 10% of the total bond price data at 588 observations. We
decided to also split the data into two groups which we refer to as ”high”
(rated A or higher) and ”low” (rated BBB or lower) rated issues.

The average book leverage is 41% and the average equity volatility during
the 250 trading days preceding a bond quote is 28%. Bond maturities range
from 1 to 30 years and coupon rates from 5.6% to 10.88%. The average

23The term investment grade applies to bonds with an S&P rating higher than BB+.
The numerical conversion reported in Table 1 works as follows: a 1 represents AAA+, 2
AAA and so on. The lowest investment grade bond has a numerical rating of 11 (BBB-
). The lowest (highest numerical) rating in the beginning of our sample is a 16 which
corresponds to a B.

20



numerical rating (8) corresponds to a A- rating. This produces credit spreads
from 10 to 1589 basis points, the average being 89.

The recovery rate for individual bonds, ψ, are set as a function of indus-
try and seniority. We categorize the 141 companies in our sample according
to the SIC codes used by Altman & Kishore (1996) and assign the bonds re-
covery rates accordingly, allowing for seniority. Finally, we set the deviations
from the absolute priority rule to 5% of the asset value in default.

The growth rate of debt (α), the earnings (β), the volatility of the as-
set value (σ) and the values of the assets {ωt} are then estimated using
maximum likelihood.

6 Results

We present the results in several steps. First, before discussing the pricing
performance of the model, we briefly examine the estimated firm specific
parameters. Second, we discuss the estimation of the model using only
stock prices

©
Eobsi : i = 1..n

ª
and using it to predict the bond price at tn.

Then, we estimate the model using the same stock prices plus the bond price
at tn and value the bond out-of-sample. To compare our findings with other
studies, we attempt to price the bond the following month only (at tn+1).
Then we provide an extended version of the same theme; we price the bond
during a long period of time (i.e. up to 50 months, or 5 years, after tn) using
only updated market capitalizations, risk free term structures and balance
sheet data. All of these different approaches have different motivations that
will be discussed for each experiment as we proceed.

We then turn to an analysis of the correlations between yield spreads
and the risk free term structure, and then consider the valuation of bond
portfolios. Once the pricing performance of the model has been analyzed
we study the model’s prediction errors by regressing them against a variety
of firm specific, bond specific and economy wide variables. This is done for
errors both in predicted levels and changes in yield spreads.

6.1 Estimation of firm specific variables and parameters

An advantage of a structural approach to valuing corporate liabilities, is that
in the process one has to estimate parameters which give rise to quantities
that can be directly related to observable measures. Furthermore, one can
infer other quantities which are difficult to observe but likely of greater
economic interest. Examples include asset volatility, the market value of
the firm, expected bankruptcy costs, the value of tax shields as well as
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default probabilities. An in-depth discussion of all variables that can be
estimated lies outside the scope of this paper. We focus our attention on
the estimation of the debt growth rate, the cash flow rate, asset volatility,
the default threshold and firm value. The results are summarized in Table
2.

We observe some cross-sectional variation in the estimates of the debt
growth rate α, the asset volatility σ, and the cash flow rate β. It is notewor-
thy that although it is difficult to confront these estimates with observed
benchmarks, they appear economically reasonable. Asset volatilities range
from 3.8% to almost 110% with an average of 26%. They are also strongly
negatively correlated with book leverage (ρ = −0.61), indicating that firms
with high business risk tend to operate with lower leverage. The debt growth
rate ranges from 0% to 33% per annum with an average of just over 8%.
This metric is negatively related to firm leverage (ρ = −0.65), consistent
with high leverage firms having less potential to increase debt.

An interesting pattern appears when we look at estimated asset volatil-
ities over time. Figure 1 plots the average estimate of σ between 1994 and
early 1998. Campbell & Taksler (2002) argue that the relative underperfor-
mance of corporate bonds relative to equities during the late nineties can
be explained by the systematic increase in idiosyncratic equity volatilities.
We see the same pattern in our sample, and may take the explanation one
step further. Figure 1 shows a dramatic increase in average estimated as-
set volatilities over time. In addition book leverage, if anything, decreases
for the firms in our sample during this period. Hence our results support
the findings of Campbell & Taksler (2002) and point out that the cause of
increased idiosyncratic equity volatilities during this period is not leverage
related but rather due to an increase in the firm specific levels of business
risks.

6.2 Estimation without bond prices

In this section, we address the pricing of bonds using market prices from
stocks only. Specifically, we use the model to price the bond on the first day
its price appears in our sample (the pricing date). To this end, we use a
sample of 250 stock prices prior to and including the pricing date. In order
to exploit the additional information contained in dividends we constrain the
yield implied by the model to coincide with the market yield. The dividend
yield is calculated from the average dividend during those 250 trading days.
The constraint h of the likelihood function is that the theoretical dividends
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during the sample period

DIV theo (ξ) =

Z tn

t1

DIV (ωs, s; ξ) ds

should equal actual dividends. Thus

h (ξ, λ) = DIV obs −DIV theo (ξ)

The results of the test are presented in Table 3. The relative pricing error
is somewhat higher than 4% and the model tends to underpredict the yield
spread by about 70% on average. The direction of this error is the same,
although larger in magnitude, as for the implementations of the Merton
(1974) and Geske (1977) by Eom et al. (2002). The direction is the opposite
to what Eom et al. (2002) find for the models by Longstaff& Schwartz (1995)
and Collin-Dufresne & Goldstein (2001). Such a distinct underestimation of
yield spreads may at first glance appear disappointing. However, recall that
the model only captures default risk and that, as discussed above, a large
fraction of the spread may be induced by liquidity. Huang & Huang (2002)
show that default risk may contribute to only about 20% of yield spreads
for investment grade bonds, although this fraction increases for more risky
bonds. Our model’s relative spread errors for investment grade bonds almost
coincides with the fraction predicted by Huang & Huang (2002), and the
errors decrease as bonds become more risky.

The standard errors of our relative spread errors are smaller than for the
best performing model evaluated by Eom et al. (2002) and less than a third
of the standard errors for less precise implementations.

6.3 Estimation with bond prices

Incorporating bond price information into the estimation procedure provides
crucial additional information. Having less upside potential, bond prices are,
relative to stock prices, more sensitive to financial risk than to asset risk.
Moreover, the yield spread of a bond, which has a fixed maturity, contains
information about the term structure of default probabilities — something
that stocks, with infinite maturity, are less likely to convey. Therefore, we
expect the maximum likelihood estimation to improve substantially when
we include a bond price in the data set.

When we add bond price information, we simply extend the constraint
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vector h:24

h (ξ) =

 DIV obs −DIV theo (ξ)

Bobs − B (ωtn ,tn ; ξ)


A potential drawback of thus constraining the model to price the bond
correctly in-sample, is that we may effectively overestimate credit risk to
make the model capture other sources of risk, such as illiquidity.25 As a
result of overestimating the default risk of a bond, we may make predicted
spread changes more sensitive to changes in stock prices than it should
be. However, it turns out that the changes in spreads predicted by our
model with or without bond price information are similar and no significant
oversensitiveness is detected.

When incorporating bond price information in practice, we can think
of a situation where the bond is actively traded when issued and hence
that the observed price at that time can be used to draw inferences about
the creditworthiness of the firm. However, after the first month, liquidity
typically declines and the bond prices quoted in the market are not reliable;
we need a model to predict the credit spread.

6.3.1 One month out-of-sample prediction

We now estimate the model using stock prices as in section 6.2 plus the last
observed bond price during the stock sample period. Then, we attempt to
predict the bond price the following month (at time tn+1). This prediction is
based on the observed stock price at tn+1 and the parameter vector estimated
at tn. This is then repeated for the subsequent month; i.e. estimating
the model at tn+1 and predicting the bond price at tn+2. By thus rolling
the estimation forward including all available observed prices for all 141
companies, we arrive at a sample size of 5452 predictions. The outcome of
the test is presented in Table 4.

The mean predicted error is -2 basis points (-2% of the total spread)
and thus our estimator now appears unbiased for all practical purposes.
The standard deviation of the error is down to 19 bp (18%). Compared to
the previous numbers, when we had no bond price information, we observe
a marked improvement, as expected. We also note that even though the
absolute errors are higher for speculative than investment grade debt, the

24Equivalently, we could have extended the likelihood function.
25The same effect would of course show up in any credit risk model using bond prices

as inputs, such as the reduced form models.
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relative performance is better for higher yield debt; this is in line with the
outcome of the Monte Carlo experiment presented earlier.

Again we can compare with the findings of Eom et al. (2002). When they
conduct a similar test to ours with the Merton model — incorporating bond
prices and predicting one month ahead — they also find a marked improve-
ment.26 Instead of underestimating the spread, as the model does without
bond price information in the estimation process, it then overestimates the
spread by about 12% with a standard deviation of 72%, almost four times
higher than for our model.

We can also compare our figures with those found by Bakshi et al. (2001)
(BMZ), who test a set of reduced form models with stochastic interest rates.
BMZ extend the basic framework into several models by also including firm
specific variables such as leverage, book-to-market or the stock price. The
models are estimated using the firm specific variable, the risk free term
structure and at least 12 observations on bonds issued by the firm. They
predict prices for firms’ bonds one month out-of-sample. The predictions
are based on the out-of-sample value of the firm specific variable, the out-of-
sample term interest rate and the parameter vector estimated in the previous
quarter. Hence this setup is comparable to ours.

BMZ report an average absolute percentage pricing error between 1.4%
and 1.8% for all models and all rating classes. In contrast, our average
absolute relative pricing error is about 0.7%. They find, like us, that the er-
rors in both prices and spreads tend to increase as the credit rating worsens.
Their average absolute spread error increases from about 24 basis points for
AA rated debt to 32 basis points for BBB debt. Our average absolute spread
error is 11 basis points for all bonds (compared to their 28 basis points) and
reaches 30 basis points for speculative grade debt. They do not however,
report percentage spread errors. Our relative spread errors decrease as the
credit ratings worsen from about 3% to 1%.

It seems that our model compares fairly well to the reduced form models
of BMZ. One interesting aspect of their study is that their approach performs
less well when the stock price is used as firm specific variable, i.e. when it
incorporates (part of) the information that is crucial to our model. It thus
appears that a structural model for the link between stock prices and bond
prices improves performance.

It is worth noting that almost any model would likely produce a relatively

26They incorporate bond price information by using as their estimate of the asset volatil-
ity the value which gives the correct bond price one month prior to the valuation date.
They refer to this as the “bond implied volatility”.
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low mean error when bond price information from the immediately preceding
month is included. As Eom et al. (2002) point out when discussing their
results for the Merton model : ”While [including bond prices makes the
model] more effective in predicting future prices [...], it is not clear that [the
estimated] volatility is so much a measure of volatility as a catch-all for errors
in the structural model.” Although this may be less of a problem in our test
as we use time series of stock prices to estimate the model parameters, we
can address this issue by using the model predict bond price changes.

To our knowledge, the ability to predict yield spread changes is a criterion
to which models of defaultable bond valuation have not yet been subjected.
As we will show, and as has been shown by Collin-Dufresne et al. (2001),
this is a much more challenging task. Table 6 reports the results for this
question for estimation with bond prices.27 Although the errors in spread
changes are relatively small (-2 basis points for all bonds with an average
absolute spread change error of 11 basis points), the correlation between
actual changes and predicted changes is low at 13% overall (Panel A). The
correlations for highly rated issues and lower rated ones are not significantly
different. It is only when we look at the smaller subsample of speculative
grade bonds that the correlation increases. In fact it is almost twice as high.
This suggests that the model performs better when default risk is a more
important factor.

At this point it is tempting to hypothesize that the poor predictive ability
of the model is due to noise in the data. To examine this issue we split our
sample of changes into three categories: those less than 15 basis points,
those larger than 15 basis points and those larger than 30 basis points. The
standard deviation of the predicted spread changes in our sample is about
15 basis points, not far from that of the realized spread changes at 17 basis
points. We then regress the actual market spread changes (SCmarket) on
the model’s predicted change (SCmodel) according to the following equation

SCmarket
i,t = a+ b · SCmodel

i,t + εi,t

The results are reported in panel B of Table 6. When all changes are consid-
ered we find an estimated b of 0.28 and an adjusted R2 of 6.30%. This stands
in stark contrast to the results for the subsample of changes less than 15
basis points. The estimated b then falls to 0.05 and the R2 to just over 1%.
As the cut-off size of the spread changes increases the coefficient estimate
of b approaches 1 (0.72 for changes larger than 15 basis points and 0.94 for
those larger than 30 basis points) and the adjusted R2 increases to almost

27Results for estimation without bonds are very similar.
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13% for the largest changes. Figure 3 provides a compelling visual presen-
tation of this result. A plausible explanation for these results is that large
changes in spreads are driven mainly by changes in the default risk of the
issuer whereas smaller changes are due to noise or other factors that impact
bond yield spreads. Related evidence is provided by Liu et al. (2002) who
find that although the main component of swap spreads is default risk, most
of the variation in these spreads is driven by changes in liquidity premia. As
we will see later when we regress spread errors on firm specific and economy
wide variables, those emanating from small changes can be explained to a
large extent by proxies for liquidity and aggregate market variables. For
larger changes, the errors do not seem to be liquidity related at all and can
be explained only marginally by other variables.

6.3.2 Longer horizon out-of-sample prediction

We will now repeat what is essentially the same experiment as above, except
that we look at bond prices further out-of-sample. We will fix the model’s
parameters to their initially estimated values and only allow updating of
observed quantities such as stock price, book leverage and term structure
data. This is clearly likely to generate larger errors than a more pragmatic
approach of reestimating the model for each monthly valuation date.

The estimation of the parameters is done exactly as before (incorporating
bond price information at tn), but instead of predicting the bond price at just
tn+1, we predict the bond price at {tn+j : j = 1..J} where J is equal to the
total number of bond price observations available (the prediction horizon).
Therefore, we also need the out-of-sample observations on the stock pricen
Eobsn+j : i = 1..J

o
. I.e. the prediction at time tn+j is made using Eobsn+j (and

the parameter vector estimated at tn).
The results of the test are presented in Table 5. The correlation between

the predicted and actual yield spread is on average 34%, and 57% in the
speculative subsample. This figure suggests that the model indeed captures
an important fraction of the actual changes in the value of bonds using stock
price information only.

The average (across firms and pricing dates) prediction error is now -18%
of the total yield spread, and thus the model overprices bonds further out
of sample. Compared to the one-month predictions in table 4, the accuracy
of the model’s spread predictions has decreased as well: the average cross-
sectional absolute error has increased from 18% of the spread to 47%. Recall,
however, that we are now attempting to predict bond prices up to 5 years
after the model’s parameters were estimated. The figures 2 at the end of
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this paper allow a visual inspection of the performance of our model.
One apparent explanation for overpricing over longer horizons, would be

that, as reported above, business risk (asset volatilities) on average have
increased over the sample period (figure 1). Since we do not re-estimate the
model, this source of increased credit risk will not be captured and spreads
will be underestimated.

6.4 Correlations between risk free interest rates and corpo-
rate bond yield spreads

Longstaff & Schwartz (1995) predicted and documented a negative corre-
lation between credit spreads and the overall level of the term structure.
Duffee (1998) provides a more in-depth empirical study of this question. He
finds that changes in corporate bond yield spreads are systematically nega-
tively related to both increases in the level of the three month US Treasury
yield and the slope of the Treasury yield curve. The relationships between
both the short term Treasury yield and slope are stronger for lower quality
bonds. Overall the same picture emerges in our dataset — see the leftmost
columns labeled Market Spread Changes in Table 7 — although perhaps not
as distinct as in Duffee (1998). This is likely due to the longer time window
covered by his data.

It might appear natural that to capture this correlation, a model would
have to explicitly allow for stochastic interest rates. However, it may also
be the case that the correlation can be generated by our static interest rate
framework as interest rate inputs are updated in our estimation procedure.
To address this issue, we repeat the exercise above, but this time with the
model spread changes as dependent variable. Our findings are reported in
the rightmost columns of Table 7 — Model Spread Changes.

The parameter estimates are of the same order of magnitude for the
model and market spreads. For long maturity bonds and those with a high
credit rating the results are essentially the same for both measures of the
spread. In cases where parameter estimates differ in sign, they are not
significantly different from zero. We conclude from this exercise that the
sensitivities of corporate bond yield spreads to the risk free term structure
of interest rates generated by our model are not dissimilar to those observed
in the market spreads. This suggests that it may not be a priority to extend
our approach to allow for stochastic interest rates.
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6.5 Valuing bond portfolios

We have so far considered the performance of our approach on individual
bonds. We shall now see how well one can expect it to perform when valuing
bond portfolios of different sizes. If model errors are cross-sectionally inde-
pendent, the pricing of bond portfolios would turn out much more efficient
than the pricing of individual bonds.

Figure 4 illustrated how the standard deviation of the relative pricing
error decreases as portfolio size increases. The thin solid line represents the
standard deviation for estimation without bond prices, and the thick solid
line that for estimation with bond prices. In both cases efficiency is improved
substantially, even for small portfolios. A portfolio of 20 bonds produces a
marked decrease in standard deviation — for example the standard deviation
for estimation without bonds is four times lower. Expanding it beyond this
size has little effect.

We can compare achieved efficiency with the hypothetical efficiency ob-
tained assuming independent errors. In figure 4 the hypothetical efficiency is
given by the dotted lines. It seems that errors without bond price informa-
tion are more successfully diversified away than errors based on estimation
with bond prices; however, one should keep in mind that the former is biased
whereas the latter is not.

Diversified estimation errors in either case attain the same maximum
efficiency: 0.29% standard deviation of the relative pricing error. The stan-
dard deviations before diversification were 0.80% and 2.32% for estimation
with and without bonds, respectively. Apparently, a large fraction of the
model’s errors are diversifiable, but a non-negligible cross-sectional compo-
nent remains. Figure 5 shows how this component evolves over time. Even
though it may at first glance appear random, note that the corresponding
hypothetical standard deviation assuming independent errors (0.07%) is far
too small to generate such swings. In the next section, we will seek to explain
the cross sectional error component.

6.6 Error analysis

Up to this point we have shown that the performance of the structural bond
pricing approach suggested in this paper — together with the estimation ap-
proach used — appears quite successful when compared to earlier studies.
The errors we obtain are typically smaller and less variable than previously
reported. Nevertheless, our study points to weaknesses of the model — no-
tably, overpriced bonds when no bond prices are incorporated in the infor-
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mation set. Understanding the errors of our approach may provide insights
that can be used to design improved models for the valuation of credit risky
securities.

6.6.1 The explanatory variables

To understand the source of the errors in the model’s bond price predictions,
we have chosen to examine the relationship between the spread errors and
a set of bond specific, firm specific and economy wide variables. These are
listed in Table 8.

First consider the bond specific variables. We do not have a prior as
to the relationship between the rating and the model errors insofar as the
rating measures credit risk only. If our model fully captures default risk
then the rating should add no further information. However, the rating may
proxy for other factors such as market segmentation effects. There may be
different clienteles in the markets for speculative and investment grade debt
respectively. If these clienteles differ in size then rating may in fact proxy for
liquidity. Suppose, as seems likely, that there are more active investors in
the market for investment grade debt. Then a higher rating (lower numerical
rating) indicates higher liquidity. If we believe this interpretation then we
would expect our model to yield larger errors for speculative grade bonds as
they would tend to be less liquid.

A more direct proxy for liquidity risk is the age of a bond. Younger
bonds tend to be more liquid, and in particular just issued ones. Hence we
would expect our model to perform better for just issued bonds. However,
a problem with age is its negative correlation with maturity. If our model
performs better for on-the-run bonds it could instead suggest that we do
better in valuing longer bonds. Nevertheless, even this second interpretation
is consistent with a liquidity problem: Ericsson & Renault (2000) show that
the liquidity component in corporate bond yield spreads should be smaller
for long bonds. We try to separate these two effects by including an “on-
the-run” dummy, rather than age, together with maturity.

The size of an issue — amount outstanding — is yet another variable
that has been suggested to proxy for bond liquidity. A larger issue would
intuitively be more liquid. The coupon of a bond will reflect the credit rating
as well as the level of the interest rates at the point in time the bond was
issued.

Second, consider the firm specific variables. The sum of book value of
debt and market capitalization is used to measure firm size and the ratio
of book value to size to measure leverage. We also include historical stock
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return and volatility as explanatory variables.
Third and finally, we incorporate several economy wide variables. In

order to examine the impact of liquidity effects we consider three proxies.
First and foremost, we use the difference between the yields on the on-the-
run and off-the run Treasuries for four maturities (2, 5, 10 and 30 years).
We presume that if investors are willing to pay a premium for holding the
most liquid Treasury bond (as would be the case in a ”flight to quality”
episode such as during the Russian default crisis) then it is likely that the
liquidity spread on corporates is higher as well. A related but less direct
measure of market-wide liquidity is the Federal Reserve Bank’s supply of
short term funds, money of zero maturity. A high supply could correspond
to a liquid short term fixed income market, lower spreads and thus lower
errors. On the other hand, the Fed’s decisions are driven by market condi-
tions. For example, an increased supply could be a response to low liquidity,
and therefore be correlated with illiquid market conditions. A third related
variable has recently been suggested by Newman & Rierson (2002). They
argue that demand curves for corporate debt may be downward sloping, and
that therefore the issuance activity may impact on the spreads of outstand-
ing corporate bonds.28 We expect that, if significant, the total issuance of
corporate debt should increase market spreads and thus our yield spread
errors.

The VIX (CBOE volatility index) is a measure of implied volatility on
US index options. It may be viewed as a proxy for the volatility of the US
stock market as a whole. We use this variable together with the return on the
S&P 500 index and the default premium (the difference between Moody’s
Aaa and Baa corporate bond yield indices) as diagnostics of overall market
conditions. Lastly, we investigate if the model spread errors are related to
term structure variables: we use the ten year yield to measure its level and
the difference between ten and two year yields to measure the slope.

As a first check on our explanatory variables, we ran a regression with
the market spread as the dependent variable.29 Of the bond specific vari-
ables, low quality rating is strongly associated with higher spreads. Longer
bonds and bonds in small issues also have higher spreads. The latter ob-
servation is consistent with the liquidity story given above. Furthermore,
highly leveraged and volatile firms have higher spreads, and so have bigger
firms. Of the economy wide variables, the difference between the yields on

28We compiled this data using prices at issue of corporate bonds included in the Fixed
Income database supplied by LJS Information Services.
29The regression is pooled, multivariate OLS with White (1980) standard errors and

random intercepts. Results are available upon request.
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on- and off-the run Treasuries of maturities 2, 5 and 10 years have a pos-
itive effect on market spreads, and thus confirms the hypothesis that the
liquidity premium in the corporate bond market at least to some degree
is determined by liquidity premium in the Treasury market. High market
volatility is associated with lower market spreads. It is noteworthy that the
default premium — the aggregate market credit risk spread — does not turn
out significant in a multivariate regression. Finally, the slope of the risk free
yield curve is associated with lower spreads, as discussed in section 6.4.

6.6.2 Error analysis results

We run pooled multivariate regressions on errors resulting from pricing with-
out bond prices. The dependent variable is the spread error SE, which is
negative on average.30 The regressions are also run on two subsamples; one
consisting of all positive errors, the other of all negative errors. It is not
unreasonable to expect that they should be affected by different variables.
Table 9 presents the results from the multivariate regressions.

Turning first to the bond specific variables, the model underpredicts
spreads less for investment grade, on-the-run bonds from large issues. This
is in line with the idea that these bonds are more liquid, decreasing the
liquidity spread. We also note that the effect is more pronounced for negative
errors, as one would expect if underprediction is caused by liquidity premia
in the spreads.

All the firm specific explanatory variables are significant. For highly lev-
ered firms, the model’s errors are larger in magnitude — however, leverage
is a proxy for the market spread and the relative spread errors are smaller.
The model underprices small firms’ spreads more, but again the relation-
ship is reversed for relative errors. Furthermore, following low returns and
high volatility, the model tends to predict higher spreads. The latter effect
could be explained by the estimation procedure, which has a slight tendency
to overestimate the asset volatility (and therefore spreads) when historical
stock return and volatility are high.31

Of the economy wide variables, we first note that although several vari-
ables have explanatory power, the power almost entirely comes from explain-
ing overpricing (i.e. negative spread errors). The direct liquidity proxies —

30We also ran regressions with the relative spread error, RSE, as dependent variable;
these results are not displayed but available upon request.
31An unusually high realized asset volatility results in an unusually high historical stock

volatility which, in turn, translates into an excessive asset volatility estimate (see Ericsson
& Reneby (2002) ).
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the liquidity spreads in the Treasury market — have a negative effect on the
(negative) errors, consistent with the liquidity hypothesis: the higher the
liquidity spread, the worse the overpricing.

Furthermore, low return and volatility of the market implies that the
model’s negative errors are smaller in magnitude. Contrarily, high interest
rates and a steep term structure implies that the negative errors are larger
in magnitude.

In summary, we find that negative and positive errors are to a large
extent driven by different variables; in particular, variables that measure the
liquidity premium explain underpredicted, but not overpredicted, spreads.
It seems plausible that positive errors to a large extent are explained by
noise, whereas negative errors are driven by factors that a pure credit risk
model, such as ours, does not capture.

We also sought to explain the bond portfolio error that could not be
diversified away as described in section 6.5. The dependent variable is now
the relative pricing error (from estimation with bond prices) of the portfo-
lio of all bonds, as plotted in figure 5. The explanatory variables are the
economy wide variables only. We find that the slope of the yield curve, the
realized return of the S&P 500 and the 10 year Treasury liquidity spread has
an impact on our pricing errors.32 The sign of the slope coefficient is in line
with the one found for the spread regressions, whereas the market return
comes with the opposite sign; high market return is associated with more
positive pricing errors. Note however that a more positive pricing error not
necessarily corresponds to a more negative spread error. The impact of the
Treasury liquidity spread on the portfolio errors — positive — provides a ro-
bustness check on our findings for individual bond spreads. It lends further
support to the idea that an important source of model error is the absence
of a model for liquidity risk.

Next, we consider the errors arising when using our model to predict
changes in corporate bond spreads. Since this is a more difficult task than
explaining levels of spreads, analyzing these residuals may provide additional
information about the shortcomings of our model. Table 10 reports the
results for three different regressions. The first one displays how well changes
in the explanatory variables can explain the errors in our model’s change
predictions. More or less the same explanatory variables are significant for
explaining these errors as the errors in level predictions.

As discussed above, our model is better able to predict the larger changes.
This led us to suggest that the smaller changes might not be related to

32For brevity these results are not reported.
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default risk as such. The last two regressions in this table report the results
when our sample of yield spread change errors is split into large and small
changes (larger or smaller than 15 basis points). For the small changes eight
out of seventeen explanatory variables are significant. In contrast, for the
larger changes only one is, the change in the slope of the risk free term
structure. Hence the results strengthen our previous hypothesis that small
spread changes are mainly driven by changes in liquidity. For the larger
ones, on the other hand, the predictive power of the model’s spread change
is substantially stronger and any residual error is much more likely to be
due to noise in the data.

7 Conclusion

We have presented an empirical study of a new structural approach to valu-
ing corporate bonds. Our model separates the treatment of firms’ aggregate
capital structures and the particular bond that is to be priced. This allows
us to combine a tractable model of equity with a realistic model for bonds.
We implement the model using a maximum likelihood method developed
by Duan (1994) on a large sample of US corporate bonds. This method
has been shown by means of Monte Carlo simulation to be superior to com-
monly used alternatives, yet has to date not been applied to market data.
As inputs to the estimation, we use stock prices, dividend yields, balance
sheet and risk free term structure information. In addition, we model the
recovery rates for individual bonds as a function of seniority and industry.

The overall performance of our approach is good relative to past attempts
at implementing structural bond pricing models. Moreover, it compares well
to recent tests of reduced form models, which tend to be viewed as superior
to structural models in terms of empirical performance.

We also investigate the ability of the model to price bond portfolios and
find that the greater part of the errors from individual bonds are diversifi-
able. However, there is a non-negligible component that appears systematic.
An analysis of the spread errors obtained with our approach reveals that
negative errors (when the model overprices bonds) are less likely to be noise
driven than positive errors. An important determinant of the negative er-
rors are liquidity proxies like the spread between on and off-the-run Treasury
bonds. In addition, errors in predicting small, but not large, spread changes
are explained by liquidity proxies. We conclude that liquidity risk is an
important determinant of corporate bond spreads.

In sum, our results lead us to be optimistic about the prospects of struc-
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tural modelling of credit risk as a practical tool in finance. However, models
clearly lack one or several vital components. A challenge for future research
is thus to develop tractable structural bond pricing models that are able to
empirically capture and distinguish default risk and for example liquidity
risk.
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A Preliminaries

• QB is the probability measure under which price processes normalized
with the money market account are martingales (the standard pricing
measure)

• QG is the measure under which price processes normalized with a
dollar-in-default claim, G (ωt, t), are martingales.

Define the default process

Xt ≡ 1
σ ln

ωt
Lt

(7)

Default is defined through XT ≡ 0. The dynamics of the default process
are

dX = µmdt+ dWm

where Wm is a Wiener-process under probability measure Qm and µm is its
appurtenant drift, as given in Lemma :

µB =
r − β − α− 0.5σ2

σ

µG = −
q
(µB)2 + 2r

The first passage time density at 0 for process the Xt under probability
measure Qm is

fm (Xt; s) =
Xtq

2π (s− t)3
e
− 1
2

³
Xt+µ

m·(s−t)√
s−t

´2

Remark 1 Integrating the density function. It is holds thatZ ∞

t
e−ρ(s−t)fm (Xt; s) ds = e

−Xt

³√
(µm)2+2ρ+µm

´

provided (µm)2 + 2ρ ≥ 0. .

Remark 2 Numeraires and change of probability measures. Loosely
speaking it holds that, for a general measure Qj,

Ej [Y ·m] = Em [Y ] ·Ej [m]
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where Em is the expected value under the probability measure Qm defined
through 

dQm = Rj→mdQj

Rj→m = m
Ej [m]

and Rj→m is the Radon-Nikodym derivative to take us from measure j to
m. See e.g. Geman et al. (1995).

B Pricing formulae

B.1 Value of debt

The pricing formula for debt issued at t with principal n = α · Nt · dt is
standard:

d (ωt, t) = n · (1−G (ωt, t)) + δ · n ·G (ωt, t)

with the recovery rate determined as

δ = (1− ε− k) · Lt

Nt

B.2 Lemmas 1 and 2

By definition it holds that

EB
h
e−ρ(T −t)

i
=

Z ∞

t
e−ρ(s−t)fB (Xt; s) ds

Applying Remark 1 this is equal toZ ∞

t
e−ρ(s−t)fB (Xt; s) ds = e

−Xt

³√
(µB)2+2ρ+µB

´

and the lemmas follow immediately.

B.3 Proposition 1

Inserting (3) into (2) we obtain
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E (ωt, t) ≡



EB
£R∞

t e−r(s−t)βωsIT ≮sds
¤

−EB
£R∞

t e−r(s−t) (1− τ)CsIT ≮sds
¤

+EB
£R∞

t e−r(s−t)d (ωs, s) IT ≮sds
¤

+EB
£
e−r(T −t)εT LT

¤
(8)

Consider first line 1:

EB

·Z ∞

t
e−r(s−t)βωs (1− IT <s)ds

¸

= EB

·Z ∞

t
e−r(s−t)βωsds

¸
.−EB

·Z ∞

t
e−r(s−t)βωsIT <sds

¸

= ωt − EB

·Z ∞

T
e−r(s−t)βωsds

¸
| {z }
value at t of earnings after default

= ωt −EB
h
e−r(T −t)ωT

i

= ωt −EB
h
e−r(T −t)LT

i
= ωt −EB

h
e−r(T −t)Lte

α(T −t)
i

(9)

Now split the coupon stream (line two of eq. (8)) into two parts: debt
service to current debtholders and debt service to future debtholders.Z ∞

t
e−r(s−t) (1− τ)CsIT ≮sds (10)

=

Z ∞

t
e−r(s−t) (1− τ)CtIT ≮sds

+

Z ∞

t
e−r(s−t) (1− τ)Ct

³
eα(s−t) − 1

´
IT ≮sds

(The coupon accruing to debt issued after time t, at time s, is Cs − Ct =
Cte

α(s−t) −Ct.) The value of future borrowed money (line three of eq. (8))
must be equal to the value of total debt service to future borrowed money
plus the value of payouts in default accruing to future borrowers. Formally

EB

·Z ∞

t
e−r(s−t)d (ωs, s) IT ≮sds

¸
(11)

= EB

·Z ∞

t
e−r(s−t)Ct

³
eα(s−t) − 1

´
IT ≮sds

¸
+(1− ε− k) ·EB

h
e−r(T −t) (LT − Lt)

i
43



Applying (9), (10) and (11) to (8) and cancelling terms, we arrive at

E (ωt, t) = ωt − Lt ·EB
h
e(α−r)(T −t)

i
−Ct · EB

·Z ∞

t
e−r(s−t)IT ≮sds

¸
+τCt · EB

·Z ∞

t
e−(r−α)(s−t)IT ≮sds

¸
+(1− ε− k)Lt · EB

h
e−(r−α)(T −t) − e−r(T −t)

i
+εLt · EB

h
e−(r−α)(T −t)

i
The proposition, for r 6= α, follows using Remark 1. The result for r = α is
obtained from taking the limit as α→ r.

B.4 Lemma 5

The value of receiving a dollar if default occurs prior to T must be equal to
receiving a dollar-in-default claim with infinite maturity, less a claim where
you receive a dollar in default conditional on it not occurring prior to T .
Formally

G (ωt, t |T < T ) = G (ωt, t)− e−r(T−t)EB
£
G (ωT , T ) · IT ≮T

¤
Using the QG-measure, we can separate the variables (cf. Remark 2 above)
within the expectation brackets.

G (ωt, t |T < T ) = G (ωt, t)− e−r(T−t)EB [G (ωT , T )] · EG
£
IT ≮T

¤
= G (ωt, t) ·

¡
1−QG (T £ T )

¢
B.5 The default threshold

The endogenous reorganization barrier is the value of assets at which the
value of equity in solvency equals the value of equity in reorganization.

E (ωt, t) = ε · Lt

Applying a smooth pasting condition implies that

∂ E (ωt, t)
∂ ωt

|ωt=Lt = ε
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The optimal barrier can be solved for in closed form. When β > 0 and
r 6= α, it is

Lt

¯̄
β>0,r 6=α =

τ r
r−αθ

α − θ

(ε− 1) · (1 + θα) + (1− ε− k) · (θα − θ)
Nt

As can be seen, the endogenous barrier grows at rate α.
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Table 1: descriptive statistics of bond issues and issuers.

Based on 141 bonds (firms) during the period January 1994 to February 1998.

Sample Market Market Coupon S&P Issue Issue Maturity Leverage Firm Stock
spread price rating size age size volatility

All (n = 5594) 89 106.64 8.09 8.0 191,431 3.8 11.8 41.1% 17,725 27.9%
Std. dev. 82 9.90 1.27 2.8 117,588 2.4 7.4 17.9% 29,412 10.5%

High rating (n = 2270) 58 108.30 7.89 5.7 203,263 4.3 12.6 30.6% 25,155 24.1%
Std. dev. 21 10.71 1.42 1.5 126,912 2.6 7.5 12.1% 28,638 6.3%

Low Rating (n = 3324) 109 105.50 8.22 9.6 183,337 3.4 11.2 48.3% 12,641 30.5%
Std. dev. 100 9.13 1.14 2.2 110,046 2.1 7.3 17.7% 28,852 12.0%

Speculative Grade (n = 588) 229 103.06 8.89 12.9 189,949 2.9 9.0 61.6% 10,048 40.5%
Std. dev. 189 10.94 1.32 2.8 91,000 1.9 5.8 19.4% 8,987 16.4%

Long Maturity (n = 2577) 92 109.79 8.39 7.6 196,602 4.4 17.9 42.2% 23,265 27.0%
Std. dev. 60 11.33 1.12 2.5 129,876 2.7 6.8 18.0% 37,960 10.5%

Short Maturity(n = 3017) 86 103.95 7.83 8.4 187,024 3.2 6.6 40.2% 13,002 28.7%
97 7.52 1.32 2.9 105,816 1.9 1.9 17.8% 18,055 10.5%
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Table 2: parameter estimates

Based on estimation with bond price information. Cross-sectional averages are displayed. The distance to default is defined as firm value divided by
default threshold. Sample size: 5452.

Sample Debt Free Asset Default Firm Distance
increase cash volatility threshold value to default

flow

All 8.3% 1.2% 26.4% 4,138 16,926 3.16
5.4% 1.3% 12.3% 13,926 28,472 0.86

High rating 11.0% 0.8% 27.4% 3,865 26,220 3.38
5.9% 1.0% 10.9% 5,879 32,181 0.98

Low Rating 6.5% 1.5% 25.8% 4,325 10,561 3.00
4.0% 1.4% 13.2% 17,408 23,605 0.73

Speculative Grade 5.3% 1.5% 27.3% 2,581 7,976 2.47
2.1% 1.7% 15.8% 2,537 7,849 0.65
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Table 3: One month out-of-sample performance. No bond info.

RPE denotes the Relative Pricing Error and RMSE the Root Mean Squared Error in Relative Prices (RP). RSE is the Relative Spread Error, and
SE the Spread Error. Absolute values are enclosed in | |.Corr(RP)/(corr(S) denote the correlation between estimated and actual Relative Prices and

Spreads, respectively. Sample size: 5594.

Prices Spreads

RPE |RPE| RMSE(RP) Corr(RP) RSE |RSE| SE |SE| Corr(S)

All bonds Mean 4.3% 5.0% 6.4% 87% -71% 85% -58 70 28%
Std. dev. 4.8% 4.0% 22% 63% 42% 73 61 41%

High Rating Mean 3.8% 4.1% 5.0% 94% -84% 91% -48 52 24%
Std. dev. 3.2% 2.9% 15% 45% 28% 30 23 38%

Low Rating Mean 4.8% 5.6% 7.1% 84% -66% 80% -69 81 31%
Std. dev. 5.3% 4.4% 22% 61% 42% 82 70 42%

Speculative Grade Mean 7.7% 8.8% 11.3% 74% -63% 70% -133 152 36%
Std. dev. 8.2% 7.0% 17% 42% 28% 144 124 39%
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Table 4: One month out-of-sample performance. Bond info.

RPE denotes the Relative Pricing Error and RMSE the Root Mean Squared Error in Relative Prices (RP). RSE is the Relative Spread Error, and
SE the Spread Error. Absolute values are enclosed in | |. Corr(RP)/(corr(S) denote the correlation between estimated and actual Relative Prices

and Spreads, respectively. Sample size: 5452.

Prices Spreads

RPE |RPE| RMSE(RP) Corr(RP) RSE |RSE| SE |SE| Corr(S)

All bonds Mean 0.1% 0.7% 1.2% 96% -2% 13% -2 11 61%
Std. dev. 1.2% 0.9% 6% 18% 12% 19 15 24%

High Rating Mean 0.1% 0.5% 0.7% 98% -3% 12% -2 7 61%
Std. dev. 0.7% 0.5% 4% 17% 12% 9 6 18%

Low Rating Mean 0.1% 0.9% 1.4% 95% -1% 14% -2 14 62%
Std. dev. 1.4% 1.1% 7% 18% 13% 23 19 27%

Speculative Grade Mean 0.2% 1.6% 2.4% 90% -1% 14% -4 30 76%
Std. dev. 2.4% 1.8% 10% 18% 12% 45 34 18%
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Table 5: Multiple months out-of-sample performance. Bond info.

RPE denotes the Relative Pricing Error and RMSE the Root Mean Squared Error in Relative Prices (RP). RSE is the Relative Spread Error, and
SE the Spread Error. Absolute values are enclosed in | |. Corr(RP)/Corr(S) denote the correlation between estimated and actual Relative Prices

and Spreads, respectively. Sample size: 5452.

Prices Spreads

RPE |RPE| RMSE(RP) Corr(RP) RSE |RSE| SE |SE| Corr(S)

All bonds Mean 0.9% 2.6% 3.8% 89% -18% 47% -13 38 34%
Std. dev. 3.7% 2.8% 18% 58% 38% 56 43 46%

High Rating Mean 0.7% 2.0% 2.7% 95% -25% 49% -11 26 28%
Std. dev. 2.6% 1.8% 15% 56% 36% 32 21 48%

Low Rating Mean 0.9% 3.0% 4.4% 86% -13% 46% -15 46 38%
Std. dev. 4.3% 3.2% 20% 59% 40% 68 52 44%

Speculative Grade Mean 2.0% 4.6% 6.3% 78% -17% 41% -38 89 57%
Std. dev. 6.0% 4.3% 19% 47% 27% 120 88 34%
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Table 6: One month out-of-sample performance in changes. Bond info.

Panel A: Basic Results

PCE denotes the Price Change Error and RMSE the Root Mean Squared Error in price changes (PC).SCE is the Spread Change Error. Absolute
values are enclosed in | |. Corr(PC)(corr(SC) denote the correlation between estimated and actual Price Changes and Spread Changes, respectively.

Sample size: 5452.

Price changes Spread changes

PCE |PCE| RMSE(PC) Corr(PC) SCE |SCE| Corr(SC)

All bonds Mean 0.10 0.78 1.21 91% -2 11 13%
Std. dev. 1.20 0.93 11% 19 15 23%

High Rating Mean 0.10 0.54 0.79 96% -2 7 13%
Std. dev. 0.78 0.57 3% 9 6 17%

Low Rating Mean 0.10 0.93 1.43 88% -2 14 13%
Std. dev. 1.42 1.08 12% 23 19 26%

Speculative Grade Mean 0.17 1.56 2.21 74% -4 30 22%
Std. dev. 2.21 1.57 19% 45 34 24%
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Table 6: One month out-of-sample performance in changes. Bond info.

Panel B: small and large spread changes

Based on pooled estimation of the following regression equation SCmarket
i,t = ai + b · SCmodel

i,t + εi,t. White (1980) heteroskedasticity consistent
covariance matrix estimator. Sample size: 5452

All changes Smaller than 15 bps Larger than 15 bps Larger than 30 bps

β 0.28 0.05 0.72 0.94
t-stat 5.16 7.03 5.71 5.90

Adjusted R2 6.30% 1.10% 5.50% 12.80%
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Table 7: Interest Rate sensitivities of model and market spreads.

Based on pooled estimation of the following regression equation SCi,t = ai + b · [level]i,t + c · [slope]i,t + εi,t. [?] heteroskedasticity consistent
covariance matrix estimator. Sample size: 5452

Dependent variable: Market spread changes Model spread changes

Coefficient t-stat Coefficient t-stat

All Level -0.02 -1.00 -0.01 -0.64
Slope -0.03 -2.80∗ -0.01 -0.91

High Rating -0.02 -2.38 -0.03 -3.32
-0.02 -3.91∗ -0.02 -2.51∗

Low Rating -0.01 -0.47 0.01 0.39
-0.04 -2.10∗ -0.01 -0.27

Speculative 0.12 0.93 0.03 0.27
-0.10 -1.17 0.12 1.61

Long -0.04 -3.06 -0.06 -3.03
-0.05 -4.39∗ -0.06 -3.15∗

Short 0.01 0.38 0.04 1.86
-0.01 -0.75 0.03 1.49
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Table 8: Explanatory variables for error analysis regressions

Bond specific
Rating Numerical S&P rating (AAA=1, D=23).
On-the-run Dummy: 1 if age<3 months, 0 otherwise
Maturity [Maturity date] - [Quote date] (years)
Issue size Dollar size of issue (amount outstanding)
Coupon Yearly coupon in dollar

Firm specific
Leverage BV of debt

MV of equity + BV of debt
Firm size MV of equity + BV of debt
Historical stock return During month preceeding pricing date
Historical stock volatility During 250 days preceeding pricing date.

Economy wide
Liquidity premium in
Treasury market

Spread between on-the-run and off-the-run
Treasury issues (2, 5, 10 and 30 years to maturity)

Money zero maturity Measure of liquidity provision by Federal Reserve
Issuance
activity

Monthly dollar value of new corporate bond issues in the US

Market Return Return on S&P 500 index
Market Volatility VIX: CBOE implied volatility index
Default Premium Moody’s AAA - Aaa yield index
Level of term structure 10 year Treasury yield
Slope of term strucure 10 year - 2 year Treasury yields
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Table 9: error analysis - yield spread levels.
The results are based on pooled OLS-regressions with White standard errors and random effects intercepts. The dependent variable is the spread

error, SE, from pricing without bond information. The explanatory variables are defined in table 8. An asterisk denotes 5% significance.

Bond specific variables Firm specific variables

Constant Rating On-the-run Maturity Issue Coupon Leverage Firm Historical Historical
size size stock ret. stock vol.

All 17.45 -14.75 7.05 -0.21 0.00 -4.90 19.53 0.00 -32.45 434.96
errors 0.47 -21.41∗ 2.19∗ -0.44 1.94 -1.76 2.06∗ -2.32∗ -5.09∗ 51.05∗

Negative -8.18 -7.48 5.00 -0.43 0.00 -2.08 -71.29 0.00 -15.93 107.10
errors -0.27 -13.08∗ 1.97∗ -1.04 2.32∗ -0.85 -8.77∗ -2.90∗ -3.01∗ 10.47∗

Positive -146.42 -26.82 36.19 -1.30 0.00 -13.89 276.09 0.00 -74.70 495.30
errors -0.65 -5.77∗ 1.72 -0.54 0.62 -0.63 7.09∗ -0.26 -4.47∗ 27.72∗

Economy wide variables

Liquidity premium in Treasury market Money zero Issuance Market Market Default Term structure
2 y. 5 y. 10 y. 30 y. maturity activity return volatility premium Level Slope

All -164.94 -244.30 -77.50 -99.40 -0.01 0.03 50.99 0.79 20.84 -5.64 -11.19
errors -3.10∗ -3.05∗ -2.55∗ -3.18∗ -1.41 0.33 2.58∗ 2.79∗ 1.38 -3.51∗ -3.54∗

Negative -121.87 -136.15 -58.03 -96.48 0.01 -0.01 29.61 0.57 23.64 -3.05 -7.94
errors -2.91∗ -2.15∗ -2.41∗ -3.92∗ 1.02 -0.10 1.88 2.51∗ 1.98∗ -2.40∗ -3.17∗

Positive -397.55 -205.62 227.61 98.00 0.04 0.53 -55.65 -1.85 -35.29 15.25 5.19
errors -1.58 -0.65 1.77 0.70 1.25 1.62 -0.70 -1.55 -0.49 2.17∗ 0.36
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Table 10 error analysis - yield spread changes
The results are based on pooled OLS-regressions with White standard errors and common intercept. The dependent variable is [one-month model
spread change] - [one-month market spread change]. Model spreads are calulated using bond price information. The explanatory variables are the

one-month changes in the variables defined in table 8. An asterisk denotes 5% significance.

Bond specific variables Firm specific variables

Constant Rating On-the-run Maturity Issue Coupon Leverage Firm Historical Historical
size size stock ret. stock vol.

All 0.23 -2.64 -2.56 NA NA NA 381.18 0.00 -31.09 39.06
changes 0.65 -1.64 -0.80 5.39∗ 0.89 -4.08∗ 1.86

Large 7.57 -26.84 -57.16 NA NA NA -208.51 0.00 -113.51 79.11
changes 0.74 -1.18 -1.21 -0.45 0.12 -1.82 1.21

Small -0.12 -0.35 -0.87 NA NA NA 364.91 0.00 -22.82 26.90
changes -0.70 -0.84 -0.86 4.93∗ -0.65 -3.58∗ 2.45∗

Economy wide variables

Liquidity premium in Treasury market Money zero Issuance Market Market Default Term structure
2 y. 5 y. 10 y. 30 y. maturity activity return volatility premium Level Slope

All -26.22 -157.16 -24.83 -50.60 -0.09 0.01 -0.97 -0.02 -18.93 2.42 0.91
changes -1.39 -5.66∗ -2.42∗ -3.87∗ -4.61∗ 0.15 -0.15 -0.18 -1.67 2.28∗ 0.41

Large -812.02 -486.87 170.86 -359.95 -0.47 -0.72 2.14 2.14 -36.00 36.30 126.02
changes -1.23 -0.69 0.60 -0.84 -1.00 -0.91 0.01 0.69 -0.11 1.46 2.00∗

Small -8.02 -94.92 -17.82 -38.34 -0.06 -0.02 -6.94 -0.09 1.39 -0.02 -2.41∗

changes -1.02 -5.77∗ -2.70∗ -5.11∗ -6.46∗ -1.06 -1.95 -1.58 0.25 -0.04 -2.18
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Figure 1: Estimated asset volatility over time.
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Figure 2: Multiple months out-of-sample performance. Some Examples.
The y-axis shows the spread in basis points. SPM (solid lines) denotes the market spread and SP011 (dotted lines) denotes the model spread.
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Figure 3: Predictive power of model spread changes - small and large spread changes

Plotter diagram of changes in market spreads (y-axis) vs. changes in model spreads (x-axis) from estimation with bond prices (however results are
similar for changes without bond prices).
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Figure 4: Error Diversification
The standard deviation of the portfolio pricing errors is calculated as the average, across portfolios, standard deviation of relative pricing errors.
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Figure 5: Non-diversifiable portfolio errors
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