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Abstract 

 

Most standard hypothesis tests have high power only against a limited space of alternative 

hypotheses. With the advent of new tests for the same hypothesis, claimed to have higher 

power for some alternatives, but lower power for other, the practitioner often has to make a 

choice between two alternative tests. This paper recommends the use of a pre-test to guide 

this choice, or the combined use of both tests.   
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1. Introduction 
 

Many classical statistical hypothesis tests are based on rather rigid assumptions regarding the 

distribution under scrutiny, for example that it is normal. Since empirical evidence often 

shows that this property can be doubted, new tests have been developed which are optimal 

when the distribution is non-normal. The existence of several alternative tests for one and the 

same hypothesis naturally leads to a problem of choice between them in a practical situation.   

 

As part of  a description  of a suggested new test, its power is usually calculated for the space 

of alternative hypotheses. This space is sometimes multi-parametric, which makes it difficult 

or impossible to derive the power as an analytic function of  all parameters, so it is often 

evaluated by simulation for a limited number of points. This is the case we are going to 

investigate.  

 

Ordinarily, it turns out that the new test has higher power than the traditional one for some 

combinations of parameter values, while the opposite is true for other combinations. Thus, the 

decision on which test to use in a practical situation is not easily made. Existing criteria for 

comparing two tests or for finding an optimal one usually require the knowledge of the power 

function of each test over the whole hypothesis space, and are consequently not directly 

applicable in the present case. In the following, we will suggest three possible ways to act in a 

situation of this kind. First, we will modify some existing criteria to make them applicable 

also in the present case. As these modifications may be critizised for having  a large 

subjective element, we have two alternative solutions.  

 

A natural thought in this situation is to take advantage of both tests, preferably by using the 

most powerful one in each situation. There may exist a test which indicates whether the 

present distribution belongs or not to a subclass of alternatives  where one of the two tests has 

low power. This preliminary test  can then be used as a mechanism for choosing between the 

alternative tests, and the expected power of the combined test is probably for each distribution 

close to that of the better one of the two alternative tests.  Such a procedure is used as one 

alternative in testing Granger noncausality by Péguin-Feisolle and Teräsvirta (1999). 

 

In cases where no such preliminary test is available, one may choose between the alternative 

tests by a pure random mechanism with a pre-set probability. The expected power would then 

for all cases lie between those of the alternative tests, and may be better than both according 

to some criteria. It may, however, not seem to be very rational to let a random process decide 

the choice of test. Instead, as a third solution, we suggest the use of both tests. Thus, the 

decision would be to reject the null hypothesis if at least one of the alternative tests rejects it. 

Of course, the level of such a combined test has to be modified compared to the original tests. 

If these have the size 5 per cent, the combined test will have a size between 5 and 10 per cent, 

if the critical values of the test statistics are unchanged. Thus, these have to be modified in 

order to give the combined test the desired size. This can of course be done by changing the 

critical value of one or the other, or both, tests. How this should be done in an optimal way is 

a problem to be solved. The power of such a combined test will in most cases, but not 

necessarily, fall between those of its components. 
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2. Choice of an optimal test 
 

The problem of choosing between several tests, or rather finding a test that is optimal in some 

sense has been discussed at least since the 1930s. Let us introduce the following notations: 

 

The distribution or Data Generation Process  F under consideration is known to belong to a 

class Ω . We want to decide to which subclass 
i

ω  of Ω  that F belongs. Normally, only two 

subclasses are considered, so that Ω=∪
21

ωω  . In many cases, 
1

ω  consists of only one 

element – a simple hypothesis – but we shall not make this restriction. Let us denote the 

decision to accept F
i

ω∈  by 
i

d , i=1,2. To make this decision, we use a test  ϕ  , which for 

every sample point x indicates the probability with which decision 
2

d  should be made. To 

achieve this, the testϕ  is associated with a function )(xψ , the test criterion, by the relation 

                ⎧  1 if cx >)(ψ  

=)(xϕ    ⎨  q if cx =)(ψ    (1) 

               ⎩  0 if cx <)(ψ   

 

where c and q are parameters, 10 ≤≤ q . Often, P( cx =)(ψ ) = 0, and the value of q is 

irrelevant. 

 

The decision we take on the basis of )(xϕ  may be wrong, but we want of course to minimize 

the probability of a wrong decision. In accordance with common practice, we denote 

   )|(sup
12

1

ωα

ω

dP=  = size of the test 

                  )(
21

ωdP  = 1 – power 

Thus, while the test´s size is unique, its power is a function of the distribution F. 

Now, in order to find an optimal test or to compare two tests, we can either look at their 

performance over the whole of Ω , or subjectively choose a value of α  and investigate the 

power over various points of 
2

ω .We will mainly discuss this second procedure.  

 

As was noted already by Neyman and Pearson (1936), there may exist a  Uniformly Most 

Powerful test, i.e. one test that has higher power than all other tests over the whole range of 

2
ω . This is, however, true mainly for rather restricted Ωs, e.g. normal distributions. In the 

more common case, when one test has higher power in one part of 
2

ω , and a different test has 

higher power in the other part, additional criteria have to be used.  

 

Wald (1942) suggested that one should evaluate for each 
2

ω∈F the highest power that is 

achieved by any test under consideration, and then choose the most stringent one, i.e. the test 

´ϕ  with the smallest maximal deviation from this envelope power function. This test will thus 

minimize 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

∈

)´,(),(supmax
22

2

FdPFdP
F

ϕϕ
ϕ

ω

 

To our knowledge, this criterion has seldom, if ever, been used in practical applications. We 

will, however, return to it in a later section.  
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Most other criteria for selection of an optimal test require that a weight W(F) is attached to 

each F in 
2

ω , and sometimes also in 
1

ω  . These weights may be interpreted either as prior 

probabilities within Ω, or as indications of the seriousness of, or loss incurred by, a wrong 

decision, given that the true distribution is F. Lindley (1953) included both probability and 

loss in his interpretation of the weights, and was thus able to compute an expected loss for 

every test. Then of course the test with the lowest expected loss is the optimal one. Due to the 

difficulty in determining such weights, also this criterion is seldom used.  

 

In connection with his work on statistical decision functions, Wald (1950) also weighted the 

Fs, but interpreted the weights only as indications of the losses from a wrong decision. Thus, 

for any 
2

ω∈F , the expected loss is 

 )(),(),(
1

FWFdPFr ⋅= ϕϕ  

In fact, Wald also included the expected loss from an error of the first kind, i.e. the error of 

choosing 
2

d when 
1

ω∈F  , but we may, following Hoeffding (1951), disregard this 

complication here. 

 

For any test ϕ , the distribution 
2

´ ω∈F  that maximizes the expected loss, so that 

 ),(max´),(
2

FrFr ϕϕ
ω

=  

may be called the least favorable distribution with respect to ϕ. The test ϕ´ is said to be of 

minimax risk if its maximal risk is smaller than that for all other tests, i.e. 

 ),(maxmin)´,(
2

FrFr ϕϕ
ωϕ

=  

The minimax risk test is thus optimal for its least favorable distribution. This criterion for the 

choice of a test will be further discussed below. 

 

In order to apply any of the criteria discussed above, it is clear that we need an evaluation of 

the power of each test over the whole of 
2

ω . For most criteria, we also need a weight 

function, defined over 
2

ω . In the situation that we describe here, there are practical obstacles 

to the derivation of both of these data. First, there is usually no rule to guide the allocation of 

weights to the various F in 
2

ω . Second, we calculate the power of the test only for a limited 

number of Fs. We shall return to this second objection in the next section. 

 

3. Modified Choice Criteria 

 

When investigating a new test it is important to evaluate its power throughout the whole of 

2
ω . In many cases, the power can be expressed as an analytic function of the parameters  that 

characterize Ω , and thus 
2

ω . However, when Ω  is  a multi-parameter class of distributions 

or DGPs, this may be difficult or even impossible. Then, the praxis is to use Monte Carlo 

simulations to find the power for some pre-determined parameter value combinations, see e.g. 

Eklund (2003), Gonzalez (2004), Sandberg (2005), and Strikholm (2004). Let us denote the 

set of investigated points in 
2

ω  by 
20

ω .  

 

In order to use one of the criteria listed above for the choice between two or more tests, it is 

essential to express the power as a function of the elements of 
2

ω . If this function were linear, 

or at least polynomial, it would be possible to estimate it with a regression equation based on 

the observed points 
20

ω . Whether or not this gives a reasonable description of the data could 
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be investigated with an analysis of variance, which could indicate if there are any interaction 

effects. If such effects are present, it seems difficult to construct a reasonable analytic 

expression of the power function. Apparently, other criteria for the choice between tests have 

to be used. 

 

The minimax criterion, as it was originally developed by Wald, applied weights to all 

elements F´of Ω (
1

ω  as well as 
2

ω ), indicating the “loss” incurred by a wrong decision, given 

that F=F´. Hoeffding(1951) modified this, and looked only into 
2

ω , thus preferring the test 

(or rather the test family, with α  to be determined exogenously) that has smallest maximal 

expected loss. It seems that a similar criterion can be used,  even if the power is evaluated 

only for the points in 
20

ω , say 
i

F  , i =1,…,k. It is usually not feasible to attach weights to 
i

F  , 

so we have to base our comparisons on the estimated power values only. Let the power 

estimate of test 
j

ϕ  for 
i

FF =  be ),(
2 ijij

FdPp ϕ= . Then the test ϕ´ which satisfies  

  

ij
ij

ij
pp minmax

'

=  

is the maximin power test in terms of the present information. Thus, if we look at the worst 

performance for each test within 
20

ω , the maximin power test is not so bad as the other ones. 

We may call the distribution 
L

F  for which the minimum power for a test is obtained, for its 

least favorable investigated distribution. 

  

In a similar way, we may define a test ϕ´ to be most stringent for the points in 
20

ω  if it has  

the smallest maximum deviation from the highest power observed in each point, i.e. it 

minimizes 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

∈

)´,(),(supmax
22

20

FdPFdP
F

ϕϕ
ϕ

ω

 

In spite of the fact that the stringency criterion has been little used by statisticians since it was 

introduced, we are inclined to prefer it to the minimax criterion. It favours a test that is a little 

worse than the other one for some 
20

ω∈F , but much better for others. This seems to be more 

reasonable than to let the F with the lowest test power be decisive for the choice. We shall 

scrutinize the outcome of our simulations according to both criteria.  

 

If it seems inappropriate to use the test which has the best performance in the worst possible 

case, whether in absolute power or in deviation from the envelope, this general idea still 

points to the importance of choosing Ω properly and not unnecessarily wide. It may be 

profitable to ask: Can we reduce Ω so as to exclude the least favorable distribution of one of 

the tests? 

 

Instead of choosing between the two tests according to some criterion of the type discussed 

above, perhaps it would be possible to find some random mechanism for the choice. Already a 

50/50 choice would produce a combined test which is in many cases better in the minimax 

sense and more stringent than each of its two components, since the expected power lies 

between those of the two original tests.  

 

Sometimes it is possible to use a preliminary test instead of a purely random mechanism. This 

test may be able to indicate if we are in a part of Ω where one of the main tests generally has 

higher power than the other one. If this is possible, the expected power of the combined test 

will be higher than with a purely random choice. The results given by Péguin-Feissolle and 
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Teräsvirta (1999), who used this idea in testing Granger causality, show that the combined 

test was rather successful in terms of stringency: it was never best, but on the other hand 

never very far from the best among the five investigated tests.     

 

There is a third possibility in the choice between two tests, and that is to use both of them. 

The test criterion would then be: reject the null hypothesis if it is rejected by at least one of 

the two tests. This is equivalent to using a two-dimensional rejection region. Thus, if the test 

criterion of the first test is 
1

ψ  with a rejection region { }
111
cR >= ψ , and that of the second 

test is 
2

ψ  with rejection region { }
222
cR >= ψ  , we now use the rejection region 

21
RRR ∪= . It is clear that the size of this combined test will be higher than those of the 

original tests. If these are both 5 per cent, the combined test will have a size of between 5 and 

10 per cent, depending upon how correlated the two test criteria are. In order to return to the 

intended size, 5 per cent, we have to modify the critical limits of the original tests upwards, to  

)(
111
cc + and )(

212
cc + . Several choices of 

11
c  and 

21
c  would yield the desired result, and the 

problem of finding an optimal ),(
2111
cc  remains to be solved. 

 

4. A practical illustration 
 

As an illustration of the procedures discussed above, we have elaborated an example, which is 

not primarily intended to provide new information about the tests, but only to show the 

practical handling of the data in a specific situation. 

 

Suppose we know that the distribution we want to investigate is symmetric about its mean, 

but may otherwise be of any form. We want to test the hypothesis that the mean µ is = 0 

against the alternative µ > 0, and we take a sample of  n independent observations. 

 

From classical theory we know that the t-test is uniformly most powerful, if Ω only contains 

normal distributions. For other Ωs , other tests may be more powerful. We shall here 

investigate the performance of the sign test. This test can of course only test the situation of 

the median of the distribution, but since we decided that Ω only contains  symmetrical 

distributions, the median is equal to the mean.  

 

The t-test and the sign test have been compared many times before. An early example is 

Gibbons (1964), who calculated the power of the two tests for distributions with various 

values of skewness and kurtosis. The comparison did, however, not result in any 

recommendation on which test to use, which is the ultimate goal of the present investigation. 

 

To find out if and when the sign test outperforms the t-test, we have calculated the power of 

the two tests for a number of cases in 
2

ω  by Monte Carlo simulation. The choice of points 

in
2

ω  is by no means self-evident. It is clear that the power depends on the sample size n, on 

our choice of test size α, and further on the characteristics of 
2

ω , i.a. the mean µ.. We have 

estimated the power of the two tests for the following values of the parameters: 

 Sample size  n = 25, 100 

 Mean µ = 0.25, 0.5 

 Size of the test  0.01< α <0.20 

 

and for the following  five different forms of distributions: 

 1. Rectangular distribution 
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 2. Normal distribution 

 3. Logistic distribution 

4. The 2

1
χ distribution, mirrored around x=0 to make it symmetrical. For               

simplicity, we will call this symmetrical distribution the normal-square 

distribution 

5. A 2

2
χ - like distribution, similarly mirrored. Its absolute value was obtained as 

minus the logarithm of a rectangularly distributed variable, and we thus call it 

the log-rectangular distribution. 

 

All distributions have been normalized to have σ =1. To give an impression of the characters 

of these distributions, a  frequency histogram of a sample of 1000 observations of each non-

normal distribution, together with the corresponding normal curve, is given in the Appendix.  

 

To estimate the power of the tests, 10 000 simulations have been made at each point. This 

gives a 5 per cent confidence interval for the power estimations of about ± 0.010 around the 

tabulated values for power around 0.5, and ± 0.006 for power around 0.9. 

 

We start by establishing the critical values of the test quantities for the two tests. To begin 

with, we restrict ourselves to consider tests at the 5 per cent significance level. The 

determination of critical values is not trivial, since 
1

ω  contains not only one element, but the 

whole set of symmetrical distributions with µ = 0. The size of the test is then the highest value 

of the probability of an error of the first kind for any element in this set. In practice, we have 

to restrict ourselves to the values for those distributions that we intend to investigate.  

 

For the sign test, this does not cause any trouble. The test criterion ψ (x) in (1) is here G, the  

ratio of positive observations. Since for all elements of 
1

ω  the probability of any observation 

to be positive is ½, the distribution of G is the same over the whole of 
1

ω  . We can easily find 

out that the probability of 17 or more positive observations in a sample of 25 is 0.054. Thus, if 

we reject the hypothesis µ = 0 when the proportion of positive observations G is ≥17/25 = 

0.68, we have a test of size 0.054. In order to construct a test of size 0.050, we will have to let 

q in equation (1) have a value between 0 and 1 for G = 0.68. Even if this is not a solution that 

is used in practice, we use this construction to get a sign test of the same size as the t test.We 

thus let q be 0.880. 

 

For the t test, the critical value is not so easily obtained. From a table of the t distribution we 

can state that for a normal distribution and for n = 25, the statistic 
25/s

x
t =  has for 24 d.fr. 

the 0.05 critical value 1.711 . However, for other 
1

ω  distributions, this critical value may give 

higher rejection probabilities, and the size of the test is then higher than 0.05. 

 

By simulation, we have estimated the rejection probabilities for various critical values of t for 

the distributions mentioned above. As a matter of fact, we have for each distribution estimated 

the critical limit that gives the rejection probability = 0.05. The result was the following: 

 

 Rectangular  1.732 

 Logistic  1.726 

 Log-rectangular 1.734 

 Normal-square 1.688 
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Table 1. Power of the t-test and the sign test at selected points in 
2

ω . n=25, α = 0.05 

    µ=0.25               µ=0.5 

 t test    sign test  difference t test   sign test  difference 

 

Rectangular 0.31 0.18 0.13 0.78 0.43 0.35 

Normal 0.31 0.25 0.06 0.78 0.63 0.15 

Logistic 0.33 0.30 0.03 0.78 0.70 0.08 

Log-rectangular 0.35 0.44 -0.09 0.77 0.84 -0.07 

Normal-square 0.39 0.82 -0.43 0.80 0.98 -0.18 

 

Now, if we choose the largest of these values, i.e.1.734, as the critical limit of the t test, we 

will for all of the investigated distributions get a rejection probability of at most 0.05, which is 

thus the size of the test within the investigated part of 
1

ω . Using these critical values, the 

power of the two tests was found to assume the values given in Table 1.  

It is seen that the t-test has higher power than the sign test for the rectangular, the normal, and 

the logistic distribution. For the more extreme distributions  the sign test is, however, more 

powerful. Since for µ = 0.25 as well as for µ = 0.5 the lowest power obtained for the t-test is 

higher than that of the sign test, the t-test is better than the sign test in the minimax sense for 

the investigated distributions. 

Looking for the most stringent test, we find on the other hand that for µ = 0.25, the power of 

the t- test is 0.43 lower than that of the sign test for the Normal-square distribution. The sign 

test is never more than 0.35 below the t-test. Thus, the sign test is the more stringent one. 

 For a further analysis of the power it would be advantageous to express it as a function of one 

or more parameters that characterize the distributions in 
2

ω . One obvious candidate 

parameter is the kurtosis of the distribution. To illustrate its possible influence, Figure 1 

shows the power for the five investigated distributions, where these have been characterized 

by their obtained average kurtosis. The power of the t-test is relatively unaffected by the 

 

   Power         µ = 0.25               Power             µ = 0.5                            
 

 

 

          

 
 
 
 
 
 
 
 
 
 
 
 

  Kurtosis                                             Kurtosis           

 

Figure 1. Power for the t-test and the sign test for distributions with different kurtosis. n = 25; α=0.05 
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kurtosis, while the sign test has a much higher power when the distribution has a high 

kurtosis. This is true for each of the two values of µ that we have investigated, even if the 

level of the power is different. It seems reasonable to suppose that we would find the same for 

other values of µ.  

 

We should, however, also investigate whether this behaviour is independent of the sample 

size and of the test size. As to the sample size it should be clear that an increase by the factor 

four gives the same effect on the t-test as a decrease in µ to the half, except for the slight 

differences between the t distributions for various degrees of freedom. The same is probably 

approximately true for the sign test. This is confirmed by our simulations. The difference in 

power between the combinations (n = 25; µ = 0.5) and (n = 100; µ = 0.25) is at most 0.02 for 

the t-test and 0.05 for the sign test.  

 

The influence of the test size can be shown as in Figure 2, where the power is calculated as a 

function of the test size for a couple of specific points in 
2

ω , i.e. for (n = 25 ; µ = 0.5) and for 

the normal and the normal-square distributions. The results for the other investigated 

distributions (not shown here) confirm the conclusions that can be drawn from this picture. As 

we have noted for α = 0.05 , the power of the t-test is rather unaffected by the form of the 

distribution, while the sign test is rather sensitive. The sign test is clearly less powerful than 

the t test for the normal distribution, but more powerful for the normal-square. Since the 

maximum advantage of the sign test in the latter case is larger than its disadvantage in the 

fomer, the sign test is more stringent than the t-test for these cases, while the t-test is better 

according to the minimax criterion.  

 

After these investigations we can be fairly confident that the difference between the t-test and 

the sign test that we have found are valid – although with varying magnitude – for most  
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                            Figure 2. Power as a function of test size for n=25, µ=0.5 
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Table 2. Power of four tests at selected points in 
2

ω . n=25, a=0.05 

                                                   µ=0.25                       µ=0.5 
 t test sign test comb 

test 

two-dim 

 test 

t test sign test comb 

test 

two-dim 

test 

         

Rectangular 0.31 0.18 0.31 0.27 0.78 0.43 0.78 0.74 

Normal 0.31 0.25 0.31 0.30 0.78 0.63 0.78 0.76 

Logistic 0.33 0.30 0.33 0.33 0.78 0.70 0.77 0.78 

Log-rectangular 0.35 0.44 0.37 0.40 0.77 0.84 0.80 0.83 

Normal-square  0.39 0.82 0.67 0.72 0.80 0.98 0.93 0.96 

 

values of n, α, and µ. Thus, if we could use the sign test for distributions with high kurtosis, 

and the t test in more “normal” situations, we might get a better result on average.  

 

 

5. Combined tests 
 
In order to exploit this possibility we have constructed a combined test in the following way: 

The kurtosis of the sample is calculated, and if it is less than 2, the t-test is used for testing 

whether the average is 0 or positive. If we get a kurtosis above 2, the sign test is used instead. 

It turns out that the size of this combined test is in fact slightly higher than 0.05. We have 

corrected this by setting q to 0.13 instead of 0.88 in the sign test. 

 

It is clear that when the distribution is in fact normal or rectangular, we seldom get an 

observed kurtosis above 2, and the t-test is used in the majority of cases. Thus, the average 

power of the combined test is very close to that of the t-test for those distributions. On the 

other hand, for more extreme distributions, the power is close to that of the sign test, see 

Table 2. Note that the power of the combined test does not necessarily fall between those of 

its components, since the election probability is correlated with the power. In this case we 

have, however, not detected any such result. 

 

According to our results for µ = 0.5, the lowest power found for the combined test as well as  

for the t-test is 0.77, and for the sign test 0.43. Thus, for this µ the combined test is, together 

with the t-test,  better in the minimax sense than the sign test, when the comparison is 

restricted to the investigated distributions. The same is true for µ = 0.25. 

 

Comparing the combined test with the best test in each investigated situation, we find that it is 

never more than 0.15 below (for µ = 0.25, normal-square), while the t-test in the same case is 

0.43 behind, and the sign test has 0.35 lower power than the best for µ = 0.5, rectangular 

distribution. Thus, the combined test is without competition the best one according to the 

stringency criterion. It is never best, but it is seldom very far from the best!   

 

6. A two-dimensional criterion test 
 

The alternative solution to the choice between two tests that we suggested earlier was to use a 

two-dimensional rejection criterion. We constructed such a test (for n = 25) by increasing the 

critical limit for the sign test to 0.70, and then finding the t value that gives the combined size 

0.05.  As before, the limit is different for the investigated distributions, and we chose the  
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Table 3. Power of two-dimensional tests with different critical limits. n=25, α=0.05 

 

 µ =0.25 µ =0.5 

  70.0=
G
c  

 855.1=
t
c  

 
755.1

74.0

=

=

t

G

c

c

 
855.1

70.0

=

=

t

G

c

c

  
755.1

74.0

=

=

t

G

c

c

 

Rectangular 0.27 0.31 0.74 0.77 

Normal 0.30 0.31 0.76 0.78 

Logistic 0.33 0.33 0.78 0.78 

Log-rectangular 0.40 0.37 0.83 0.80 

Normal-square 0.72 0.60 0.96 0.92 

 

 

highest value, which was 1.855. We thus rejected the null hypothesis if G > 0.70 and/or  t > 

1.855. This choice is certainly arbitrary. We will discuss the choice below. 

 

The power of this two-dimensional criterion test is rather close to that of the combined test, 

see Table 2. In general, the differences are not statistically significant. Both are better than the 

sign test according to both criteria used here,  and more stringent than the t-test, but not better 

according to the minimax criterion. The two-dimensional test also beats the combined test 

according to the stringency, but not according to the minimax criterion. It has also the 

advantage that it does not require a preliminary test in order to discriminate between points in 

2
ω  . It can easily be constructed when we have two alternative tests for our main hypothesis. 

The remaining question is to find the optimal pair of values (
2111

,cc ) for the changes in the 

critical values of the test criteria. In order to illustrate the effect of varying the limits, we have 

calculated the power also for a test with c = (0.74, 1.755) and compared it with the one 

discussed above with c = (0.70, 1.855). The result is shown in Table 3. As could be expected, 

the test with the larger 
G
c  has a power closer to that of the t-test than that with the smaller 

G
c , as fewer observations are rejected because of a high G, and more because of a high t. It 

seems that, from a stringency point of view, the rather small improvement for the low-kurtosis 

distributions does not compensate for the losses for the high-kurtosis distributions.  

 

 We have certainly not solved the problem of an optimal choice of ),(
2111
cc . We recommend 

some experimentation in order to find values that make the two-dimensional test superior to 

its two components according to the preferred criterion. 

 

7. Conclusions 
 

We have investigated the problem of choosing between two tests in a situation when the 

power of the tests could be computed (mainly by simulation) for only a limited number of 

elements
20

ω  in 
2

ω . We expressed a preference for using Wald´s stringency criterion for the 

choice. We also suggested that both tests should be used together, either by selecting one of 

them by a preliminary test, or by using a two-dimensional test criterion. For the example that 

we used, a test of the mean in a symmetrical distribution, it turned out that the combined test 

and the two-dimensional criterion test performed equally well, and were more stringent than 

the t-test as well as the sign test.  

 

If this similarity in performance of the two ways to use both tests is common for a great many 

other situations, it seems clear that the two-dimensional criterion test is preferable, since it 
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does not require the existence of a preliminary test. We thus recommend that this solution is 

investigated in other cases of choice between tests.  
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Frequency histograms of the investigated distributions. The normal distribution is 
inserted in all diagrams for comparison. 


