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Abstract

In this paper I define an evolutionary stability criterion for
learning rules. Using Monte Carlo simulations, I then apply this
criterion to a class of learning rules that can be represented by
Camerer and Ho's (1999) model of learning. This class contains
perturbed versions of reinforcement and belief learning as special
cases. A large population of individuals with learning rules in this
class are repeatedly rematched for a finite number of periods and
play one out of four symmetric two-player games. Belief learning
is the only learning rule which is evolutionarily stable in almost
all cases, whereas reinforcement learning is unstable in almost all
cases. I also find that in certain games, the stability of interme-
diate learning rules hinges critically on a parameter of the model

and the relative payoffs.
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1 Introduction

The bounded rationality paradigm is based on the assumption that people
learn to play games by using simple rules of adaptation, often referred to as
learning rules. The objective is generally to predict which strategies are more
likely to be observed in the long run, given that all players use a specific
learning rule. A problem with this setting is that the learning rule is treated
as exogenous and that no motivation is provided for the particular choice
of learning rule. Evolutionary forces are usually only allowed on the level
of simple strategies and not on the higher level of learning rules. In this
paper, 1 attempt to take a step towards closing this open-endedness of the
paradigm by developing an evolutionary stability criterion for learning rules
and applying this criterion to a set of well-known learning rules using Monte
Carlo simulations.

More specifically, I ask if there is a rule such that if applied by a homo-
geneous population of individuals, it cannot be invaded by mutants using a
different rule. I call such an uninvadable rule an evolutionarily stable learning
rule (ESLR). This concept is an extension of the classical definition of evolu-
tionarily stable strategies (Maynard Smith and Price (1973), Maynard Smith
(1974)) to learning rules and dynamic strategies.

The setting is a world where the members of a large population, consisting
of an even number of individuals, in each of a finite number of periods are all
randomly matched in pairs to play a finite two-player game.! Each individual
uses a learning rule, which is a function of her private history of past play,
and fitness is measured in terms of expected average payoff. This framework

provides a rationale for the use of learning rules and it is of particular interest

1To check the robustness of my results, I have also analyzed a different matching scheme,
where the individuals only are randomly matched at the start of the first period, and then
continue to play against the same opponent for a finite number of periods. The results from
the simulation of this matching scheme are in general consistent with the results for the the

matching scheme in this paper.



since very little analysis of learning in this “repeated rematching” context has
previously been done.

Technically, learning rules are mappings from the history of past play to
the set of pure or mixed strategies. There are many models of learning and I
therefore restrict the numerical analysis to a class of learning rules that can
be described by the general parametric model of Camerer and Ho (1999),
called experience-weighted attraction learning (EWA). The rules in this class
have experimental support and perform well in an environment where the
game changes from time to time. Moreover, the class contains rules which
differ considerably in their use of information. Two of the most well-known
learning rules, reinforcement learning and fictitious play (or belief learning),
are special cases of this model for specific parameter values.

Reinforcement learning is an important model in the psychological litera-
ture on individual learning. It was introduced by Bush and Mosteller (1951)
although the principle behind the model, that choices which have led to good
outcomes in the past are more likely to be repeated in the future, is due
to Thorndike (1898). Under reinforcement learning in games, players assign
probability distributions to their available pure strategies. If a pure strategy
is employed in a particular period, the probability of the same pure strategy
being used in the subsequent period increases as a function of the realized
payoff. The model has very low information and rationality requirements
in the sense that individuals need not know the strategy realizations of the
opponents or the payoffs of the game; all that is necessary is knowledge of
player-specific past strategy and payoff realizations.

Fictitious play, or belief learning, is a model where the individuals in
each of the roles of a game in every period play a pure strategy that is a best
reply to the accumulated empirical distribution of their opponents’ play. This
means that knowledge of the opponents’ strategy realizations and the player’s
own payoff function is required.

Several different models of both reinforcement and fictitious play have



been developed over the years. The ones that can be represented by Camerer
and Ho'’s (1999) model correspond to stochastic versions with exponential
probabilities.> This means that each pure strategy in each period is assigned
an attraction, which is a function of the attraction in the previous period and
the payoff to the particular strategy in the current period.> The attractions
are then exponentially weighted in order to determine the mixed strategy to
be employed in the next period. In the case of reinforcement learning, the
attractions only depend on the payoff to the pure strategy actually chosen.
In the case of belief learning, the hypothetical payoffs to the pure strategies
that were not chosen are of equal importance (this is sometimes referred to as
hypothetical reinforcement). However, Camerer and Ho’s (1999) model also
permits intermediate cases where payoffs corresponding to pure strategies that
were not chosen are given a weight strictly between zero and one. The weight
of such hypothetical payoffs is given by a single parameter, 6.

Camerer and Ho’s (1999) model also allows initial attractions of different
sizes which, in the case of belief learning, correspond to expected payoffs, given
a prior distribution over the opponents’ pure strategies. 1 depart from this
assumption and set all initial attractions to zero, such that the individuals
have almost no prior knowledge of the game they are drawn to play. This
implies that the numerical analysis in this paper boils down to testing if any
particular value 6 corresponds to an ESLR.

In order to test the stability of learning rules, I simulate a large number of
outcomes when all members of a finite population with a large share of incum-
bents and a small share of mutants are randomly matched for a finite number

of periods. I then calculate the average payoff for each share of the popu-

2Fudenberg and Levine (1998) show that stochastic fictitious play can be derived by
maximizing expected payoff given an empirical distribution of the opponents’ past play

when payoffs are subject to noise.

3The term “attraction” is used to make the terminology in this paper consistent with
that in Camerer and Ho (1999). This term should not be interpreted in the mathematical

sense, but as the weight assigned to a particular strategy.



lation. I consider four different games: Prisoners’ Dilemma, Coordination,

Hawk-Dove and Rock-Scissors-Paper. The main findings are:

e In almost all cases, the learning rule with full hypothetical reinforcement
is an ESLR, whereas the learning rule with no hypothetical reinforce-

ment is unstable.

e In the two games with no symmetric pure Nash equilibria — the Hawk-
Dove and Rock-Scissors-Paper Games — the results depend on the level
of payoff sensitivity of the learning rules. This is a parameter of the
EWA model determining to what extent differences in attractions for
the pure strategies should translate into differences in probabilities. For
low payoff sensitivity, several rules appear to be stable, whereas for
high payoff sensitivity, only belief learning is stable. The latter finding
is, in part, due to that reinforcement learners with a high level of payoff
sensitivity quickly become absorbed by a pure strategy, whereas belief
learners with the same level of payoff sensitivity continue to adjust their

mixed strategies until the last period.

e In 2x2 Coordination Games, the results also depend on the equilibrium
payoffs. In such games, belief learning is generally a unique ESLR, but
if the ratio of equilibrium payoffs becomes sufficiently small and payoff

sensitivity is low, then there are also other stable learning rules.

1.1 Related Literature

The present paper is related to the theoretical literature on learning, but
also to experimental tests of different learning rules. An early theoretical
reference, asking similar questions, is Harley (1981). He analyzes the evolution
of learning rules in the context of games with a unique evolutionarily stable
strategy (ESS). He assumes the existence of an ESLR and then discusses
the properties of such a rule. Harley claims that, given certain assumptions,

”...the evolutionarily stable learning rule is a rule for learning evolutionarily



stable strategies.” He also develops an approximation to such a rule and
simulates its behavior in a homogeneous population. The current paper differs
from that of Harley (1981) in that it explicitly formulates an evolutionary
criterion for learning rules and does not assume the existence of an ESLR.
Moreover, the analysis is not limited to games with a single ESS.

Anderlini and Sabourian (1995) develop a dynamic model of the evolution
of algorithmic learning rules. They claim that under certain conditions, the
frequencies of different learning rules in the population are globally stable and
that the limit points of the distribution of strategies correspond to Nash equi-
libria. However, they do not investigate the properties of the stable learning
rules.

Hopkins (2000) investigates the theoretical properties of stochastic ficti-
tious play and perturbed reinforcement learning. The model in this paper is a
special case of stochastic fictitious play, when the parameter 6 is equal to one,
and is similar to Hopkins’ version of reinforcement learning when 6 is equal to
zero. Hopkins finds that the expected motion of both stochastic fictitious play
and perturbed reinforcement learning can be written as a perturbed form of
the replicator dynamics, and that in many cases, they will therefore have the
same asymptotic behavior. In particular, he claims that they have identical
local stability properties at mixed equilibria. He also finds that the main
difference between the two learning rules is that fictitious play gives rise to
faster learning. The analysis in Hopkins (2000) differs from the analysis in
this paper, in that it is based on infinite interaction between two players using
identical learning rules, but my findings are consistent with Hopkins’ (2000)
results.

The topic of this paper is also somewhat related to the theoretical litera-
ture on evolution in asset markets, such as Blume and Easley (1992, 2000), and
Sandroni (2000). In these models, selection operates over beliefs and utility
functions and not directly over learning rules, and the authors use a dynamic

evolutionary criterion based on wealth accumulation. They find that, under



fairly general conditions, correct beliefs are selected for in complete markets,
but not necessarily in incomplete markets.

The experimental literature uses a criterion which differs from the evo-
lutionary one introduced in this paper to motivate the use of a particular
learning rule. The objective is to find the learning rule which gives the best
fit of experimental data. Camerer and Ho (1999) give a concise overview of
the most important findings in earlier studies. They argue that the over-
all picture is unclear, but that comparisons appear to favor reinforcement
in constant-sum games and belief learning in Coordination Games. In their
own study of asymmetric Constant-Sum Games, Median-Action Games, and
Beauty-Contest Games, they find support for a learning rule with parameter
values in between reinforcement learning and belief based learning. In partic-
ular, they estimate game-specific values of the é-parameter, which captures
the degree of hypothetical reinforcement, strictly between zero and one, and
generally around 0.5.

Stahl (2000) compares the prediction performance of seven learning mod-
els, including a restricted version of the EWA model. He pools data from
a variety of symmetric two-player games and finds a logit best-reply model
with inertia and adaptive expectations to perform best, closely followed by
the EWA. For the latter, he estimates a value of the §-parameter of 0.67.

This paper is organized as follows. Section 2 introduces the theoretical
model underlying the simulations. Section 3 present the results of the Monte
Carlo simulations. Section 4 contains a discussion of the results and Section
5 concludes. Tables and diagrams of some of the simulations can be found in

the Appendix.
2 Model

Let I' be a symmetric two-player game on normal form, where each player has
a finite pure strategy set X = {x!,...,2”}, with the mixed-strategy extension

AX)={peR]| Z}‘le p’ = 1}. Bach player’s payoff is represented by the



function 7 : X x X — R, where 7(z,y) is the payoff to playing pure strategy =
when the opponent is playing pure strategy y. From time to time, all individ-
uals of a finite population, consisting of an even number M of individuals, are
drawn to play this game for I’ periods. The mixed strategy of individual & in
period ¢ € {1,2,...,T} = T is denoted by pg(t). The pure strategy realization
of individual k is denoted by x (%) and that of her opponent (in this period)
by yr(t). The sequence

hs(8) = ((21(0), 94(0)) , (2 (1), (1)) ooy (i = 1)y yx (L = 1))

where (z(0),yx(0)) = 0, is referred to as individual k’s history in period t.
Let H(t) be the finite set of possible such histories at time ¢, let H = UL, H(¢),
and let Q2 = H(T) be the set of outcomes. I define a learning rule as a function
f: H— A(X) that maps histories to mixed strategies and denote the set
of possible learning rules by §. Note that according to this definition, initial
conditions such as initial history or initial strategy weights are given by the
learning rule.

The matching procedure can be described as follows. In each of 1" periods,
all members of the population are randomly matched in pairs to play the game
I' against each other. This can be illustrated by an urn with n balls, from
which randomly selected pairs of balls (with equal probability) are drawn
successively until the urn is empty. This procedure is repeated for a total of
T periods, and the draws in each period are independent of the draws in all
other periods. Each individual & receives a payoff m(xx (%), yx(¢)) in each period
and has a private history of realized strategy profiles. The expected payoff
for an individual & employing learning rule f in a heterogenous population
of size M, where the share of individuals employing rule f is (1 —¢) and the
share of individuals employing rule g is ¢, is the expected average payoff under

the probability measure, /uby(lfs) Fieg induced by the two rules present in the



population and their respective shares,

t=1

VI(f,(1=e)f +eg) (1)
= Z (% Zﬂ@k(f)vy’“@))) ey req(h) (2)
- Eljr\?(lfs)erSg %Zﬂ<xk<t)7yk<t))] ) (3)

where 7(z(t), yr(t)) refers to the realized payoff to individual & in period ¢,
induced by history hg.
Let §' be an arbitrary non-empty subset of §. I define the following evo-

lutionary stability criterion for learning rules.

Definition 1 A learning rule f € § is evolutionarily stable in the class

§ if for every g € F\ [, there exists an &5 > 0 such that for all € € (0,&,),
VI, =) f +eg) > VM(g, (1 - o) f +29). (4)

2.1 Experience Weighted Attraction Learning

In the present paper, I focus on a set of learning rules that can be described
by Camerer and Ho’s (1999) model of experienced-weighted attraction (EWA)
learning. These are learning rules such that individual k’s probability of
strategy =7 in period ¢ € T can be written as

AL (1)

J _
O = = (5)
J:

where the attraction of strategy =7 is updated according to the formula

ON(t— DAt —1) + [6 + (1 = ) I(a, ax(1))] w(a7, yx (1))
N(t) 7

Al(t) = (6)

for t € T, and AJ(0) is a constant, and where

N(@)=oN({t—1)+1, (7)



for ¢ € T, and N(0) is a constant.* I(z?,z4(t)) is an indicator function which
takes the value of one if z(t) = 27 and zero otherwise, yy () is the realized
pure strategy of the opponent in period ¢, and ¢ and ¢ are positive constants.

Note that this class of learning rules includes two of the most common

learning rules used in the literature. When 6 = 0, 0 = ¢ and N(0) = ﬁ,

EWA reduces to (average) reinforcement learning.” When § =1, ¢ = ¢ and

J l
| | N (0)
A0) = w2y )y =, (8)
2 ST O
N, (0) . s .
where —5—2>—— is some initial relative frequency of strategy I, EWA be-
2= N1, (0)

comes belief learning.
In order to make the analysis more tractable, I further restrict the set of

rules to EWA learning rules such that ¢ = ¢ < 1, N(0) = 7=, and

To
AL(0) = 0 Yk, V). (9)

This means that the initial attractions will not generally correspond to those
of belief learning. The assumption of equal initial attractions is motivated by a
setting where the players have very limited information about the game before
the first period and where they cannot use previous experience.® The assump-
tion that ¢ = ¢ implies that the discount factor for a belief learner’s historical
observations of strategy realizations is the same as that for a reinforcement
learner’s historical attractions. Finally, the value of N(0) corresponds to the

steady state value of N(t).”

*Camerer and Ho (1999) note that it is also possible to model probabilities as a power

function of attractors.

®Camerer and Ho (1999) distinguishes between average and cumulative reinforcement,
which results if p = 0 and N(0) = 1. The analysis in the present paper is based on average

reinforcement.

6 Although the game is fixed in the below analysis, a rationale for the assumption of
uniform initial weight could be a setting where the game is drawn at random from some set

of games before the first round of play.
"Stahl (2000) finds that a time varying N(t) only improves the predictive power of the

model marginally and assumes N(t) = 1 for all . He also assumes all initial attractors to

be zero and uses the updating formula to determine the attractors in period one.

10



I denote the set of rules with the above parameter values by §.. Substi-

tuting in (6) and (7) gives

NG = - L forter (10)
and
AW =cA =1+ 0 —0)[6+ (1 = I, z(t)] 7@, yu(t)) (1)

for t € Y, and AJ(0) = 0. The formula in (5) now corresponds to belief
learning (with modified initial weights) for § = 1 and to reinforcement learning
for 6 = 0. The parameter 6 captures the extent to which the hypothetical
payoffs of pure strategies not played in a period are taken into account. o is
a constant determining the relative weights of recent and historical payoffs in

the updating of mixed strategies.
3 Numerical Analysis

The analysis is based on Monte Carlo simulations of repeated encounters
between individuals using different learning rules (i.e. with different values of
8) belonging to the set . I focus on four types of games, Prisoners’ Dilemma,
2x2 Coordination, Hawk-Dove, and Rock-Scissors-Paper Games. 1 generally
set the payoff sensitivity parameter \ in (5) to either 1 or 10, o equal to 0.95
and I assume that § is an element of the set D = {0,0.25,0.5,0.75,1}, but I
also test the robustness of my results by trying other parameter values (see
the Appendix for a list of simulations).

In the simulations, each member of a population of 100 individuals, among
which 10 are mutants with a different learning rule, is randomly matched with
another member every period for T = 100 periods. The expected payoff to
a learning rule is estimated by computing the mean of the average payoff for
all individuals with the same learning rule in the population and by simulat-
ing 1000 such T-period outcomes. Since the mean payoff difference in each
simulation is independently and identically distributed relative to the mean

payoff difference in another simulation with the same population mixture,

11



the Central Limit Theorem applies and the mean payoff difference is approx-
imately normally distributed. For each value of 6, the null hypothesis is that
the corresponding learning rule is an ESLR. This hypothesis is rejected if the
mean payoff to any mutant rule is statistically significantly higher than the
mean payoff to the incumbent rule in the class, in accordance with Definition

1 above. More specifically, the decision rule is as follows. The null hypothesis,
Hg : fs 1s an ESLR in the class §.,
is rejected in favor of the alternative hypothesis,
Hf : fs is not an ESLR in the class §.,

if and only if, for some & € D\ 6,

Vs, (= ) fs +efy) = Vs (1= ) fs + <)
Tsal(l— s +<fy]

< —Zq, (12)

where V is the estimated average payoff, sa [(1 —¢)fs+ efs] denotes the
sample standard deviation of the difference in mean average payoffs, computed
over the 1000 simulations, and z, is the critical value of the standard normal

distribution.
3.0.1 Prisoners’ Dilemma Games

Table 1 depicts the mean of the average payoffs among 90 incumbents, with
a 6 given in the left-most column, and 10 mutants, with a 6 given in the
top row, playing the game in Figure 1 for 1000 x 100 periods, when payoff
sensitivity A = 10. The value in brackets corresponds to the z-statistic of the
differences in means, i.e. the difference, computed as the average incumbent
payoff minus the average mutant payoff, divided by the standard error of the
difference. As explained above, the null hypothesis that a learning rule with a
particular ¢ is an ESLR can be rejected if this value is smaller than the critical
value of the standard normal distribution, —z, for some mutant learning rule

in the class, different from fs.

12



It follows from the table that the null can be rejected for all learning rules
except the one with 6 =1 at the 10% and 5% significance level (2,05 = 1.645,
and zp.10 = 1.282). This is also illustrated by the diagram in Figure 2, where
the standardized payoff difference (the z-statistic) between incumbent and
mutant payoffs is plotted for different values of incumbent and mutant 6. In
the diagram, the difference is set to zero for homogenous populations. The
result is robust to changes in payoff sensitivity A, initial conditions, payoff
matrix, and the size of the mutant invasion.

The standard deviation of payoffs among learning rules with é = 0 is
considerably larger than for other values of 8. The volatility of payoffs also
depends on payoff sensitivity. If A is reduced from 10 to 1, the range of stan-
dard deviations decreases considerably. For the high value of A, convergence
to the Nash equilibrium is fast. For the low value, the population share using

the equilibrium strategy increases more slowly and keeps oscillating.

y' | y?
21| 4 0
22| 5 3
FiGURE 1
Delta Mutant 0.00 0.25 0.50 075 1.00
Delta Incumben
0.00 2.8977 2.887¢ 2.8574 3.30p5 2.8570 3.3B33 2.8582 3303 2.8572 $.3315
' (1.01) (-70.20) (-65.55) (-65.97) (-67.70)
0.25 3.0001 2.861( 2.9906 2.99p7 2.9891 3.0L06 2.9886 3166 2.9883 3$.0185
' (33.65) (-0.14) (-38.93) (-54.25) (-56.95)
0.50 3.0030 2.901% 2.9973 2.97B8 2.9959 2.9p62 2.9955 3015 2.9953 }$.0031
' (36.79) (27.54) (-0.88) (-19.07) (-26.46)
075 3.0039 2.906] 2.9987 2.97f4 2.9975 2.9p18 2.9970 2973 2.9969 $.9988
(38.71) (33.98) (14.86) (-1.05) (-6.85)
1.00 3.0037 2.9126 2.9991 2.97p5 2.9979 2.9p03 2.9975 2952 2.9973 $.9979
(39.39) (34.83) (21.62) (8.07) (-2.17)

TABLE 1-Mean payoffs and standardized payoff

differences from playing the game in Figure 1.

13



0.75

L/

0 0.25 0.5
Mutant Delta

0.5 Incumbent Delta 00-50
0-50-0
[0-100--50
I
0.25
0
0.75 1

FicUurE 2-Standardized payofl difference between

incumbents and mutants from Table 1.

3.0.2 2x2 Coordination Games

Table 2 and Figure 4 show the results from the simulations of the Coordination

Game in Figure 3, with payoff sensitivity A = 10. Once again, the null

hypothesis can be rejected for all learning rules except 6 = 1 at 5% or 10%

significance. This result is robust to changes in A, the size of the invasion,

and the initial conditions. However, when the ratio of diagonal payoffs is

small (m(z!,y') = 1.1 instead of 2) and A = 1, then the null cannot be

rejected for any of the rules 6 = 1,6 = 0.75, and 6 = 0.25. From the table, it

also follows that the outcome for a homogenous population of belief learners

Pareto dominates that of a population of reinforcement learners.

y' | y?
2| 2
22| 0 1
FiGURE 3

14



Delta Mutant 0.00 0.25 0.50 075 1.00
Delta Incumben
000 1.8583 1.858% 1.8618 1.87)0 1.8640 1.8B33 1.8651 1866 1.8654 1.8868
: (-0.58) (-24.61) (-36.44) (-40.05) (-40.00)
025 1.8993 1.886¢ 1.0020 1.90p0 1.9022 1.0D69 1.9042 10108 1.9036 1.9113
: (17.67) (0.12) (-11.17) (-16.35) (-19.32)
050 10131 1.897 1.0148 1.01p3 1.9157 10165 1.9161 1P184 1.9168 1.9207
: (23.86) (10.45) (-2.14) (-6.12) (-10.23)
o7e 10202 1.902p 1.0222 1.91b2 1.9227 1.0P06 1.9235 1.0239 1.9240 1.9249
(28.15) (15.89) (5.19) (-1.17) (-2.53)
o0 10257 1.9074 1.0268 1.91b4 1.9274 1.0p35 1.9280 10260 1.9286 1.9290
(28.57) (16.94) (9.89) (5.49) (-1.28)

/

0.25

0.25

0.5 0.75

Mutant Delta

o

0.5 Incumbent Delta

TABLE 2-Mean payoffs and standardized payoff

differences from playing the game in Figure 3.

W 20-40
@0-20
0-20-0
[0-40--20
0-60--40

FicUurRE 4-Standardized payofl difference between

incumbents and mutants from Table 2.

3.0.3 Hawk-Dove Games

Table 3 and Figure 6 illustrate the results from the simulations of the game

in Figure 5. For this game, the results are sensitive to the level of payoff

sensitivity A and the payoff matrix. When A = 10, the null hypothesis cannot

be rejected for the learning rules with 6 = 0.75 and 6 = 1 at the 10% level,

whereas all other learning rules in the class appear to be unstable. If 7(z!, y?)

is increased from 4 to 10, such that the initial uniform distribution is further

15



from the mixed equilibrium, then the null can be rejected for all rules except
6 =0.75.

Part of the reason why learning rules with low é are not stable and cannot
invade other learning rules in this game when payoff sensitivity is high is that
they quickly become absorbed by a pure strategy (see Figure 12 in the Ap-
pendix), something which can be exploited by learning rules with high é that
do not lock in on a particular pure strategy. This tendency for reinforcement
learners to be absorbed has previously been noted by Fudenberg and Levine
(1998).

For A = 1, reinforcement learners no longer lock in on a particular strategy,
but oscillate around the mixed equilibrium (see Figure 11 in the Appendix),
which somewhat reduces the evolutionary advantage of belief-learners. For
the game in Figure 5, the null hypothesis can be rejected for all rules except
§=0.25,8 = 0.75, and § = 1.0 at the 10% level. In the game with 7(z!,y?) =
10, the result is unchanged and all rules except 6 = 0.75 can be rejected.

The matrix in Table 3 also illustrates the potential trade-off between the
Pareto efficiency and the evolutionary stability of a learning rule. The learning
rule with & = 0 strictly dominates all other learning rules, but it is not
sustainable since, in the case of an invasion, mutants with higher 6 earn

higher mean payoffs.

1 2

yvly

z! 4
2| 1 2
FIGURE 5
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Delta Mutant

0.00 0.25 0.50 0.75 1.00
Delta Incumben

0.00 1.7605 1.761%2 1.7508 1.78#3 1.7100 1.8B53 1.6692 18445 1.6794 1.8397
(-0.20) (-9.23) (-36.42) (-54.56) (-50.94)

0.25 1.6889 1.6657 1.6819 1.6795 1.6518 1.7)L150 1.6148 1Jr302 1.6238 1.7249
(8.06) (0.82) (-22.42) (-43.28) (-38.13)

0.50 1.5512 1.520¢ 1.5527 1.5283 1.5420 1.5p02 1.5183 1505 1.5256 1.5557

' (14.25) (11.29) (0.77) (-14.54) (-14.27)

0.75 1.4512 1.4279 1.4510 1.43p6 1.4469 1.4B46 1.4418 14402 1.4422 1.4397
(13.94) (11.78) (6.69) (0.82) (1.32)

1.00 1.4604 1.439] 1.4601 1.43p7 1.4551 1.4p19 1.4469 14473 1.4468 1.4446
(12.37) (11.47) (6.99) (-0.19) (1.21)

TABLE 3-Mean payoffs and standardized payoff

differences from playing the game in Figure 5.

0.75

0.25

0.25

0.5 0.75

Mutant Delta

o

0.5 Incumbent Delta

@0-20
0-20-0
0-40--20
0-60--40

FicURE 6-Standardized payoff difference between

incumbents and mutants from Table 3.

3.0.4 Rock-Scissors-Paper

In the Rock-Scissors-Paper Game of Figure 7, the outcome is sensitive to

payoff sensitivity. When the payoff sensitivity is A = 1, the null hypothesis

can be rejected for all learning rules in the class except 6 = 0.0, § = 0.75, and

6 = 1.0. All learning rules oscillate around the mixed equilibrium.

Table 4 and Figure 8 illustrate the case when A = 10. As can be seen, the

null hypothesis can be rejected for all learning rules except 6§ = 1. As in the

Haw-Dove game, the instability of rules with low 6 for high values of payoff
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sensitivity can, in part, be explained by their tendency to lock in on a pure

strategy at an early stage.

N}
W

v [yt |y
2] 1 2 0
22| 0 1 2
2| 2 0 1
FIGURE 7
Delta Mutant 0.00 0.25 0.50 075 1.00
Delta Incumben
0.00 1.0001 0.9994 0.9987 1.01pP1 0.9969 1.0p78 0.9970 1271 0.9974 1.0236
’ (0.58) (-11.14) (-23.92) (-22.98) (-21.35)
0.25 1.0006 0.994% 1.0000 0.99P8 0.9984 1.0[L46 0.9978 1,200 0.9981 1.0175
: (5.46) (0.25) (-15.01) (-21.19) (-18.65)
0.50 1.0001 0.998% 1.0003 0.99f6 0.9999 1.0p09 0.9995 1047 0.9992 }.0071
: (1.44) (3.01) (-1.16) (-5.92) (-8.89)
075 1.0004 0.9967 1.0002 0.99B3 1.0002 0.9p84 1.0000 1004 0.9997 1.0026
' (4.16) (2.24) (2.22) (-0.50) (-3.34)
1.00 1.0003 0.997] 1.0003 0.99F1 1.0005 0.9p53 1.0002 00980 1.0000 .9998
: (3.66) (3.59) (6.06) (2.65) (0.28)

TABLE 4-Mean payoffs and standardized payoff

differences from playing the game in Figure

0.75

P
-/

0.25

0.25

0.5

0.75

Mutant Delta

0.5 Incumbent Delta

@0-10
0-10-0
0-20--10
00-30--20

FicUrRE 8-Standardized payoff difference between

incumbents and mutants from Table &.
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3.1 Summary of Results

Table 9 summarizes the results of the simulations. The main finding is that
belief learning is the only learning rule which is evolutionarily stable in almost
all settings, whereas reinforcement learning is unstable in almost all settings.

In the Hawk-Dove and Rock-Scissors-Paper Games, the results depend
on the payoff sensitivity. Learning rules with low degrees of hypothetical
reinforcement are highly unstable for high payoff sensitivity. Part of the
explanation is that such rules rapidly become absorbed by a pure strategy,
whereas belief learners with the same level of payoff sensitivity continue to
adjust their mixed strategies until the last period.

In Coordination and Hawk-Dove Games, the results also depend on the
equilibrium payoffs. In the Coordination Game, belief learning is generally
a unique ESLR, but if the ratio of equilibrium payoffs becomes sufficiently
small, then there are also other learning rules for which the null cannot be
rejected. Similarly, in the Hawk-Dove Game, belief learning with 6 = 0.75
is a unique ESLR for high payoff ratio, but for a smaller ratio it seems that

there are also other stable learning rules.

Game A | ESLR at the 10% significance level
Prisoners’ Dilemma [ 1 [ 6= 1.0
106=1.0
Coordination 1 | 6 =1.0, for low payoff ratio 6 = 0.25,0.75,1.0
10 | 6 = 1.0, for low payoff ratio 6 = 1.0
Hawk-Dove 1 | $§=0.25,0.75, 1.0, for high payoff ratio 6 = 0.75
10 | 6 = 0.75, 1.0, for high payoff ratio 6 = 0.75
Rock-Scissors-Paper | 1 [ 6 =0.0,0.75,1.0
106=1.0

TABLE 9-Summary of the results from the different simulations.

4 Discussion

Hopkins (2000) investigates the theoretical properties of stochastic fictitious
play and perturbed reinforcement learning in a setting where two individuals

using identical learning rules interact for an infinite number of periods. He
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demonstrates that the expected motion of both stochastic fictitious play and
perturbed reinforcement learning can be written as a perturbed form of the
replicator dynamics, and therefore, in many cases, will have the same asymp-
totic behavior. In particular, he claims that they have identical local stability
properties at mixed equilibria and that the main difference between the two
learning rules is that fictitious play gives rise to faster learning. The results
in this paper indicate that speed of learning is indeed an important factor in
explaining the stability of belief learning and that the difference between rules
with high and low degrees of hypothetical reinforcement is smaller in games
with mixed equilibria. However, other factors, such as a high probability of
convergence to the equilibrium with the highest payoff in 2x2 Coordination
Games and a low probability of absorption by a pure strategy in games with
no symmetric pure equilibria, also seem important.

Camerer and Ho (2000) estimate separate sets of parameters for asymmet-
ric Constant-Sum Games, Median-Action Games and Beauty-Contest Games.
Their estimates of the degree of hypothetical enforcement, &, are generally
around 0.5, that of the discount factor, ¢, in the range of 0.8 to 1.0, that of
the second discount factor, o, in the range of 0 to ¢, and the payoff sensitivity,
A, varies from 0.2 to 18. Reinforcement learning and belief learning are gener-
ally rejected in favor of an intermediate model. Stahl (2000) pools data from
several symmetric two-player games and estimates a 6 of 0.67. Hence, the two
studies lend support to the hypothesis that people take hypothetical payoffs
into account, but especially the former study seems to find lower degrees of
hypothetical reinforcement than predicted by the evolutionary analysis in this
paper.

One should, however, be cautious in making a direct comparison with
the results in Camerer and Ho (2000). First of all, the games played in
their experiments differ considerably from, and are more complex, than the
ones analyzed in this paper. Second, the learning rules in this paper do not

exactly correspond to theirs. In particular, Camerer and Ho allow learning
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rules with different initial attractions, whereas I assume that the players give
equal weight to all their pure strategies at the start of the first period of play.

The setting in this paper is, at least in some respects, more similar to
that in Stahl (2000). He also considers finite symmetric two-player games
with and without symmetric pure equilibria. Moreover, he assumes the initial
attractions of the EWA model to be zero, and use the updating formula to
determine their values in period one.

A final comment concerns the environment where the learning rules op-
erate. Although the game is fixed in this paper, the general idea is to find a
learning rule which is evolutionarily stable under various conditions and can
survive in a setting where the game changes from time to time — in many
ways a more realistic description of human interaction. The results in this
paper indicate that belief learning is indeed such a robust rule, although more

analysis is needed to confirm this hypothesis.
5 Conclusion

In this paper, I define an evolutionary stability criterion for learning rules. I
then apply this criterion to a class of rules which contains versions of two of
the most well-known learning rules, reinforcement learning and belief learn-
ing, as well as intermediate rules in terms of hypothetical reinforcement. I
perform Monte Carlo simulations of a matching scheme where all members of
a large population are rematched in every period and I find that maximum or
close to maximum hypothetical reinforcement is the only learning rule that is
evolutionarily stable for almost all the games studied. I also find that evolu-
tionary stability in some games hinges critically on payoff sensitivity and the
relative payoffs of the game.

The objective of this paper is to take a step towards closing the open-
endedness of the bounded rationality paradigm. A next step might be to
apply this analysis to a larger set of learning rules or, more importantly, to

obtain theoretical results which can explain the observations in this paper.
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Appendix
Plots of Simulated Outcomes

The following diagrams illustrate the share of individuals playing strategy '
among 90 incumbents, using a learning rule with 6 = 1, and 10 mutants, using
a learning rule with 6 = 0, in a single simulation. Initial attractions are zero

for all pure strategies and ¢ = 0.95.

—Inc. delta=1
- - - Mut. delta=Q

Share using strategy one

0.2

1 100
Round

FIGURE 9-Share of incumbents (solid) and mutants (dashed)

using pure strategy z' in the game in Figure 3 when A = 1.
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Share using strategy one
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- - - Mut. delta=Q

Round

100

FIGURE 10-Share of incumbents (solid) and mutants (dashed)

using pure strategy z' in the game in Figure 3. when A = 10.
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FIGURE 11-Share of incumbents (solid) and mutants (dashed)

using pure strategy z' in the game in Figure 5 when \ = 1.
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FIGURE 12-Share of incumbents (solid) and mutants (dashed)

using pure strategy z' in in the game in Figure 5 when A = 10.
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Tables of Simulated Payoffs

The following tables report the simulated average payoffs to an incumbent
learning rule with a 6 given by the left-most column, and an incumbent rule
with a 6 given by the top row. In each cell, the top-left number is the aver-
age payoff for all individuals with the incumbent rule, the top-right number
the average payoff for all individuals with the mutant rule, and the figure in
brackets is the difference between these numbers divided by the estimated
standard error of the difference. In all simulations reported below, a popu-
lation, consisting of 90 incumbents and 10 mutants, plays the game for 100

periods. Initial attractions are zero for all pure strategies and ¢ = 0.95.

Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 2.9252 2.9239 2.9218 2.95(6 2.9201 2.9696 2.9200 2722 2.9195 2.9738
(0.61) (-21.86) (-34.76) (-39.55) (-42.92)
0.25 2.9306 2.895p% 2.9280 2.92##1 2.9259 2.9§425 2.9252 2490 2.9246 2.9543
(16.77) (2.45) (-11.59) (-18.95) (-24.89)
0.50 2.9328 2.8823 2.9298 2.91#3 2.9282 2.9p75 2.9270 2373 2.9269 2.9410
(24.80) (9.96) (0.49) (-8.36) (-12.20)
0.75 2.9342 2.8711 2.9312 2.90p2 2.9296 2.9[[94 2.9286 29287 2.9282 2.9341
(33.24) (18.88) (7.86) (:0.10) (-5.23)
1.00 2.9346 2.867¢p 2.9321 2.89#0 2.9304 2.9|124 2.9295 29221 2.9286 2.9280
(36.11) (24.95) (13.73) (6.10) (0.61)
TABLE 10-Mean payoffs and standardized payoff differences
from playing the game in Figure 1 when A =1 and ¢ = 0.1.
Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 0.8918 0.8906 0.8958 0.90p4 0.8992 0.9p05 0.9011 0J9293 0.9015 (.9402
(1.07) (-9.08) (-18.73) (-25.21) (-34.43)
0.25 0.9310 0.9172 0.9361 0.93§1 0.9389 0.9496 0.9421 09627 0.9439 (.9713
(11.80) (1.74) (-9.50) (-18.15) (-25.32)
0.50 0.9692 0.9419 0.9734 0.96R3 0.9765 0.9)Y75 0.9893 0J9896 0.9838 1.0015
(24.00) (10.10) (:0.91) (-0.26) (-15.11)
0.75 1.0066 0.965f 1.0097 0.98p8 1.0130 1.0p23 1.0170 10169 1.0182 1.0269
(34.92) (20.71) (9.74) (0.08) (-7.83)
1.00 1.0390 0.9854f 1.0441 1.00f2 1.0464 1.0p53 1.0488 10394 1.0527 1.0529
(45.31) (30.63) (17.68) (8.12) (-0.21)

TABLE 11-Mean payoffs and standardized payoff differences

from playing the game in Figure 3 when A =1 and ¢ = 0.1.
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Y Y
2V 1.1 ] 0
x2 0 1
FIGURE 13
Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 0.5263 0.525% 0.5262 0.52p8 0.5259 0.5p70 0.5258 05266 0.5264 (.5265
(1.45) (-1.12) (-1.99) (-1.42) (:0.13)
0.25 0.5262 0.5269 0.5261 0.52p0 0.5263 0.5p63 0.5263 0257 0.5262 (.5265
(0.33) (2.16) (-0.14) (1.08) (-0.64)
0.50 0.5265 0.526 0.5264 0.52f5 0.5264 0.5p59 0.5265 0274 0.5270 (.5265
(0.90) (-2.01) (0.97) (-1.63) (0.87)
0.75 0.5269 0.5266 0.5268 0.52p2 0.5274 0.5p78 0.5272 0262 0.5274 (.5273
(0.60) (1.15) (-0.59) (1.73) (0.17)
1.00 0.5269 0.526B 0.5271 0.52fy6 0.5271 0.5p74 0.5266 0J/p261 0.5274 (.5270
(1.02) (-1.02) (-0.52) (0.87) (0.78)
TABLE 12-Mean payoffs and standardized payoff differences
from playing the game in Figure 13 when A =1 and ¢ = 0.1.
Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 0.7548 0.7548 0.7686 0.7980 0.7817 0.8[[81 0.7738 0B117 0.7757 0.8131
(0.48) (-34.63) (-41.35) (-45.47) (-46.57)
0.25 0.8888 0.860P 0.8938 0.89B6 0.9067 0.9[L47 0.9054 09159 0.9054 .9158
(26.82) (0.33) (-15.91) (-22.81) (-22.31)
0.50 0.9302 0.895p 0.9376 0.93p8 0.9446 0.9451 0.9431 00457 0.9415 (.9441
(32.96) (12.82) (-1.35) (-6.86) (-6.64)
0.75 0.9473 0.912f 0.9581 0.94p3 0.9562 0.9p38 0.9632 09638 0.9626 (.9634
(32.57) (17.28) (5.90) (-1.66) (-2.41)
1.00 0.9604 0.9279 0.9656 0.95%6 0.9713 0.9680 0.9718 0J9709 0.9727 (.9728
(32.69) (22.00) (8.64) (2.56) (-0.43)

TABLE 13-Mean payoffs and standardized payoff differences

from playing the game in Figure 13 when A = 10 and ¢ = 0.1.
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Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 1.6079 1.607p 1.6067 1.60f4 1.6082 1.6Pp94 1.6080 16104 1.6080 1.6111
(0.35) (-0.37) (-0.67) (-1.43) (-1.80)
0.25 1.6055 1.605 1.6053 1.60p7 1.6050 1.6Pp61 1.6060 1055 1.6066 1.6057
(0.07) (:0.22) (-0.62) (0.29) (0.52)
0.50 1.6073 1.606p 1.6060 1.60f6 1.6067 1.6p41 1.6066 1079 1.6067 1.6089
(0.64) (-0.90) (1.54) (:0.73) (-1.40)
0.75 1.6097 1.6103 1.6089 1.60p9 1.6103 1.6p70 1.6100 1p115 1.6100 1.6088
(:0.33) (-0.57) (1.89) (-0.88) 0.73)
1.00 1.6124 1.609p 1.6117 1.61B4 1.6123 1.6[132 1.6123 1p125 1.6132 1.6124
(1.63) (-1.00) (-0.52) (:0.01) (0.46)
TABLE 14-Mean payoffs and standardized payoff differences
from playing the game in Figure 5 when A =1 and ¢ = 0.1.
y' |y
'] 0] 10
22| 1 2
FIGURE 14
Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 2.2135 2.2164 2.2103 2.23p7 2.2131 2.2B11 2.2150 2[]p248 2.2188 2.2322
(-0.57) (-5.10) (-3.71) (-2.08) (-2.95)
0.25 2.2072 2.188p 2.2026 2.20p8 2.2042 2.2p62 2.2044 2]130 2.2082 2.2052
(3.51) (0.35) (:0.41) (-1.88) (0.63)
0.50 2.2166 2.193¢ 2.2134 2.21p1 2.2130 2.2[124 2.2160 2]138 2.2181 2.2105
(4.34) (0.66) (0.14) (0.46) (1.65)
0.75 2.2349 2.2071 2.2300 2.22)y1 2.2290 2.2B65 2.2342 2[]262 2.2362 2.2219
(5.30) (0.56) (-1.55) (1.65) (3.10)
1.00 2.2524 2.238B 2.2485 2.25p4 2.2476 2.2p50 2.2502 2627 2.2542 2.2553
(2.72) (-0.81) (-1.49) (:2.72) (:0.23)

TABLE 15-Mean payoffs and standardized payoff differences

from playing the game in Figure 14 when A =1 and ¢ = 0.1.
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Delta Mutant

0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 3.1040 3.082p 2.8984 3.88B0 2.8590 3.9B61 2.8618 4014 2.8655 4.0164
(1.34) (-83.83) (-112.93) (-118.06) (-119.27)
0.25 2.2468 1.9268 2.1574 2.16p6 2.0830 2.2P53 2.0814 23095 2.0944 2.3237
(39.42) (-1.32) (-37.73) (-43.77) (-42.27)
0.50 1.7555 1.521) 1.7190 1.60f6 1.6824 1.6B74 1.6824 16896 1.6872 ].6863
(47.15) (22.07) (-1.09) (-1.62) (0.20)
0.75 1.7327 1.499¢ 1.7002 1.56p5 1.6563 1.6B69 1.6492 16517 1.6537 1.6473
(48.20) (28.17) (4.29) (:0.57) (1.52)
1.00 1.7903 1.541p 1.7503 1.61#i2 1.6979 1.6P45 1.6903 1[7068 1.6966 ].6968
(44.56) (24.55) (0.73) (-3.69) (-0.04)
TABLE 16-Mean payoffs and standardized payoff differences
from playing the game in Figure 14 when A = 10 and ¢ = 0.1.
Delta Mutant 0.00 0.25 0.50 0.75 1.00
Delta Incumben
0.00 1.0000 1.0002 1.0001 0.99p2 1.0000 1.0p02 1.0000 14000 1.0002 0.9983
(:0.22) (0.98) (-0.19) (0.00) (2.14)
0.25 0.9998 1.0016 1.0000 0.99p6 1.0000 1.0p0O0 0.9998 10020 1.0000 1.0004
(-2.01) (0.57) (-0.03) (-2.66) (-0.53)
0.50 1.0000 0.9999 1.0000 0.99p7 1.0000 0.9p99 0.9998 1019 1.0000 }1.0001
(0.11) (0.44) (0.07) (-2.39) (-0.08)
0.75 1.0001 0.999% 1.0001 0.9988 1.0000 1.0p01 1.0001 09994 1.0001 0.9992
(0.64) (1.52) (-0.11) (0.79) (1.14)
1.00 1.0001 0.999% 0.9999 1.00p5 1.0000 1.0p00 1.0000 14001 1.0000 0.9998
(0.64) (-0.67) (0.01) (:0.13) 0.27)

TABLE 17-Mean payoffs and standardized payoff differences

from playing the game in Figure 7 when A =1 and € = 0.1.
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