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Abstract

This paper contains a survey of univariate models of conditional
heteroskedasticity. The classical ARCH model is mentioned, and var-
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1 Introduction

Financial economists are concerned with modelling volatility in asset returns.
This is important as volatility is considered a measure of risk, and investors
want a premium for investing in risky assets. Banks and other �nancial insti-
tutions apply so-called value-at-risk models to assess their risks. Modelling
and forecasting volatility or, in other words, the covariance structure of asset
returns, is therefore important.
The fact that volatility in returns �uctuates over time has been known for

a long time. Originally, the emphasis was on another aspect of return series:
their marginal distributions were found to be leptokurtic. Returns were mod-
elled as independent and identically distributed over time. In a classic work,
Mandelbrot (1963) and Mandelbrot and Taylor (1967) applied so-called sta-
ble Paretian distributions to characterize the distribution of returns. Rachev
and Mittnik (2000) contains an informative discussion of stable Paretian dis-
tributions and their use in �nance and econometrics.
Observations in return series of �nancial assets observed at weekly and

higher frequencies are in fact not independent. While observations in these
series are uncorrelated or nearly uncorrelated, the series contain higher-
order dependence. Models of Autoregressive Conditional Heteroskedastic-
ity (ARCH) form the most popular way of parameterizing this dependence.
There are several articles in this Handbook devoted to di¤erent aspects of
ARCH models. This article provides an overview of di¤erent parameteriza-
tions of these models and thus serves as an introduction to autoregressive
conditional heteroskedasticity. The article is organized as follows. Section
2 introduces the classic ARCH model. Its generalization, the Generalized
ARCH (GARCH) model is presented in Section 3. This section also de-
scribes a number of extensions to the standard GARCH models. Section 4
considers the Exponential GARCH model whose structure is rather di¤er-
ent from that of the standard GARCH model, and Section 5 discusses ways
of comparing EGARCH models with GARCH ones. Suggestions for further
reading can be found at the end.

2 The ARCH model

The autoregressive conditional heteroskedasticity (ARCH) model is the �rst
model of conditional heteroskedasticity. According to Engle (2004), the orig-
inal idea was to �nd a model that could assess the validity of the conjecture
of Friedman (1977) that the unpredictability of in�ation was a primary cause
of business cycles. Uncertainty due to this unpredictability would a¤ect the
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investors�behaviour. Pursuing this idea required a model in which this un-
certainty could change over time. Engle (1982) applied his resulting ARCH
model to parameterizing conditional heteroskedasticity in a wage-price equa-
tion for the United Kingdom. Let "t be a random variable that has a mean
and a variance conditionally on the information set Ft�1 (the �-�eld gener-
ated by "t�j; j � 1): The ARCH model of "t has the following properties.
First, Ef"tjFt�1g = 0 and, second, the conditional variance ht = Ef"2t jFt�1g
is a nontrivial positive-valued parametric function of Ft�1: The sequence {"tg
may be observed directly, or it may be an error or innovation sequence of an
econometric model. In the latter case,

"t = yt � �t(yt) (1)

where yt is an observable random variable and �t(yt) = EfytjFt�1g; the con-
ditional mean of yt given Ft�1: Engle�s (1982) application was of this type.
In what follows, the focus will be on parametric forms of ht; and �t(yt) will
be ignored.
Engle assumed that "t can be decomposed as follows:

"t = zth
1=2
t (2)

where {ztg is a sequence of independent, identically distributed (iid) random
variables with zero mean and unit variance. This implies "tjFt�1 � D(0; ht)
where D stands for the distribution (typically assumed to be a normal or a
leptokurtic one). The following conditional variance de�nes an ARCH model
of order q:

ht = �0 +

qX
j=1

�j"
2
t�j (3)

where �0 > 0; �j � 0; j = 1; :::; q� 1; and �q > 0: The parameter restrictions
in (3) form a necessary and su¢ cient condition for positivity of the condi-
tional variance. Suppose the unconditional variance E"2t = �2 < 1. The
de�nition of "t through the decomposition (2) involving zt then guarantees
the white noise property of the sequence {"tg; since {ztg is a sequence of iid
variables. Although the application in Engle (1982) was not a �nancial one,
Engle and others soon realized the potential of the ARCH model in �nancial
applications that required forecasting volatility.
The ARCH model and its generalizations are thus applied to modelling,

among other things, interest rates, exchange rates and stock and stock in-
dex returns. Bollerslev, Chou and Kroner (1992) already listed a variety of
applications in their survey of these models. Forecasting volatility of these
series is di¤erent from forecasting the conditional mean of a process because
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volatility, the object to be forecast, is not observed. The question then is
how volatility should be measured. Using "2t is an obvious but not necessarily
a very good solution if data of higher frequency are available; see Andersen
and Bollerslev (1998) and 2007ANDERSEN for discussion.

3 The Generalized ARCH model

3.1 Why Generalized ARCH?

In applications, the ARCH model has been replaced by the so-called gen-
eralized ARCH (GARCH) model that Bollerslev (1986) and Taylor (1986)
proposed independently of each other. In this model, the conditional vari-
ance is also a linear function of its own lags and has the form

ht = �0 +

qX
j=1

�j"
2
t�j +

pX
j=1

�jht�j: (4)

The conditional variance de�ned by (4) has the property that the uncondi-
tional autocorrelation function of "2t ; if it exists, can decay slowly, albeit still
exponentially. For the ARCH family, the decay rate is too rapid compared
to what is typically observed in �nancial time series, unless the maximum
lag q in (3) is long. As (4) is a more parsimonious model of the conditional
variance than a high-order ARCH model, most users prefer it to the simpler
ARCH alternative.
The overwhelmingly most popular GARCH model in applications has

been the GARCH(1,1) model, that is, p = q = 1 in (4). A su¢ cient condition
for the conditional variance to be positive with probability one is �0 > 0; �j �
0; j = 1; :::; q; �j � 0; j = 1; :::; p: The necessary and su¢ cient conditions
for positivity of the conditional variance in higher-order GARCH models are
more complicated than the su¢ cient conditions just mentioned and have been
given in Nelson and Cao (1992). The GARCH(2,2) case has been studied in
detail by He and Teräsvirta (1999b). Note that for the GARCH model to
be identi�ed if at least one �j > 0 (the model is a genuine GARCH model)
one has to require that also at least one �j > 0: If �1 = ::: = �q = 0;
the conditional and unconditional variances of "t are equal and �1; :::; �p
are unidenti�ed nuisance parameters. The GARCH(p,q) process is weakly
stationary if and only if

Pq
j=1 �j +

Pp
j=1 �j < 1:

The stationary GARCH model has been slightly simpli�ed by �variance
targeting�, see Engle and Mezrich (1996). This implies replacing the inter-
cept �0 in (4) by (1�

Pq
j=1 �j �

Pp
j=1 �j)�

2 where �2 = E"2t : The estimate
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b�2 = T�1
PT

t=1 "
2
t is substituted for �

2 before estimating the other parame-
ters. As a result, the conditional variance converges towards the �long-run�
unconditional variance, and the model contains one parameter less than the
standard GARCH(p,q) model.
It may be pointed out that the GARCH model is a special case of an

in�nite-order (ARCH(1)) model (2) with

ht = �0 +
1X
j=1

�j"
2
t�j: (5)

The ARCH(1) representation is useful in considering properties of ARCH
and GARCH models such as the existence of moments and long memory;
see Giraitis, Kokoszka and Leipus (2000). The moment structure of GARCH
models is considered in detail in 2007LINDNER.

3.2 Families of univariate GARCH models

Since its introduction the GARCH model has been generalized and extended
in various directions. This has been done to increase the �exibility of the
original model. For example, the original GARCH speci�cation assumes the
response of the variance to a shock to be independent of the sign of the
shock and just be a function of the size of the shock. Several extensions of
the GARCH model aim at accommodating the asymmetry in the response.
These include the GJR-GARCH model of Glosten, Jagannathan and Runkle
(1993), the asymmetric GARCH models of Engle and Ng (1993) and the
quadratic GARCH of Sentana (1995). The GJR-GARCH model has the
form (2) ; where

ht = �0 +

qX
j=1

f�j + �jI("t�j > 0)g"2t�j +
pX
j=1

�jht�j: (6)

In (6) ; I("t�j > 0) is an indicator function obtaining value one when the
argument is true and zero otherwise.
In the asymmetric models of both Engle and Ng, and Sentana, the centre

of symmetry of the response to shocks is shifted away from zero. For example,

ht = �0 + �1("t�1 � )2 + �1ht�1 (7)

with  6= 0 in Engle and Ng (1993). The conditional variance in Sentana�s
Quadratic ARCH (QARCH) model (the model is presented in the ARCH
form) is de�ned as follows:

ht = �0+�
0"t�1+"

0
t�1A"t�1 (8)
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where "t = ("t; :::; "t�q+1)
0 is a q � 1 vector, � = (�1; :::; �q)

0 is a q � 1
parameter vector and A a q � q symmetric parameter matrix. In (8), not
only squares of "t�i but also cross-products "t�i"t�j; i 6= j; contribute to
the conditional variance. When �6= 0; the QARCH generates asymmetric
responses. The ARCH equivalent of (7) is a special case of Sentana�s model.
Coinstraints on parameters required for positivity of ht in (8) become clear
by rewriting (8) as follows:

ht =
�
"t�1 1

�0 � A �=2
�0=2 �0

� �
"t�1
1

�
: (9)

The conditional variance ht is positive if and only if the matrix in the
quadratic form on the right-hand side of (9) is positive de�nite.
Some authors have suggested modelling the conditional standard devia-

tion instead of the conditional variance: see Taylor (1986), Schwert (1990),
and for an asymmetric version, Zakoïan (1994). A further generalization
of this idea appeared in Ding, Granger and Engle (1993). These authors
proposed a GARCH model for hkt where k > 0 is also a parameter to be
estimated. Their power GARCH model is (2) with

hkt = �0 +

qX
j=1

�jj"t�jj2k +
pX
j=1

�jh
k
t�j; k > 0: (10)

The authors argued that this extension provides �exibility lacking in the
original GARCH speci�cation of Bollerslev (1986) and Taylor (1986).
The proliferation of GARCH models has inspired some authors to de�ne

families of GARCH models that would accommodate as many individual
models as possible. Hentschel (1995) de�ned one such family. The �rst-order
GARCH model has the general form

h
�=2
t � 1
�

= ! + �h
�=2
t�1f

�(zt�1) + �
h
�=2
t�1 � 1
�

(11)

where
f �(zt) = jzt � bj � c(zt � b):

Family (11) contains a large number of well-known GARCH models. The
Box-Cox type transformation of the conditional standard deviation h1=2t makes
it possible, by allowing � ! 0; to accommodate models in which the loga-
rithm of the conditional variance is parameterized, such as the exponential
GARCH model to be considered in Section 4. Parameters b and c in f v(zt)
allow the inclusion of di¤erent asymmetric GARCH models such as the GJR-
GARCH or threshold GARCH models in (11).
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Another family of GARCH models that is of interest is the one He and
Teräsvirta (1999a) de�ned as follows:

hkt =

qX
j=1

g(zt�j) +

qX
j=1

cj(zt�j)h
k
t�j; k > 0 (12)

where fg(zt)g and {c(zt)g are sequences of independent and identically dis-
tributed random variables. In fact, the family was originally de�ned for q = 1;
but the de�nition can be generalized to higher-order models. For example,
the standard GARCH(q; q) model is obtained by setting g(zt) = �0=q and
cj(zt�j) = �jz

2
t�j +�j; j = 1; :::; q; in (12) : Many other GARCH models such

as the GJR-GARCH, the absolute-value GARCH, the Quadratic GARCH
and the power GARCH model belong to this family.
Note that the power GARCHmodel itself nests several well-known GARCH

models; see Ding et al. (1993) for details. De�nition (12) has been used for
deriving expressions of fourth moments, kurtosis and the autocorrelation
function of "2t for a number of �rst-order GARCH models and the standard
GARCH(p; q) model.
The family of augmented GARCH models, de�ned by Duan (1997), is a

rather general family. The �rst-order augmented GARCH model is de�ned
as follows. Consider (2) and assume that

ht =

�
j��t � �� 1j if � 6= 0
expf�t � 1g if � = 0

(13)

where
�t = �0 + �1;t�1�t�1 + �2;t�1: (14)

In (14), (�1t; �2t) is a strictly stationary sequence of random vectors with a
continuous distribution, measurable with respect to the available information
until t: Duan de�ned an augmented GARCH(1,1) process as (2) with (13)
and (14), such that

�1t = �1 + �2j"t � cj� + �3max(0; c� "t)
�

�2t = �4
j"t � cj� � 1

�
+ �5

max(0; c� "t)
� � 1

�
:

This process contains as special cases all the GARCH models previously
mentioned, as well as the Exponential GARCH model to be considered in
Section 4. Duan (1997) generalized this family to the GARCH(p; q) case
and derived su¢ cient conditions for strict stationarity for this general family
as well as conditions for the existence of the unconditional variance of "t.
Furthermore, he suggested misspeci�cation tests for the augmented GARCH
model.
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3.3 Nonlinear GARCH

3.3.1 Smooth transition GARCH

As mentioned above, the GARCH model has been extended to characterize
asymmetric responses to shocks. The GJR-GARCH model, obtained as set-
ting g(zt) = �0 and cj(zt�j) = (�j + !jI(zt�j > 0))z

2
t�j + �j; j = 1; :::; q; in

(12), is an example of that. A nonlinear version of the GJR-GARCHmodel is
obtained by making the transition between regimes smooth. Hagerud (1997),
Gonzalez-Rivera (1998) and Anderson, Nam and Vahid (1999) proposed this
extension. A smooth transition GARCH (STGARCH) model may be de�ned
as equation (2) with

ht = �10 +

qX
j=1

�1j"
2
t�j + (�20 +

qX
j=1

�2j"
2
t�j)G(; c; "t�j) +

pX
j=1

�jht�j

(15)

where the transition function

G(; c; "t�j) = (1 + expf�
KY
k=1

("t�j � ck)g)�1;  > 0: (16)

When K = 1; (16) is a simple logistic function that controls the change
of the coe¢ cient of "2t�j from �1j to �1j + �2j as a function of "t�j; and
similarly for the intercept. In that case, as  ! 1; the transition function
becomes a step function and represents an abrupt switch from one regime
to the other. Furthermore, at the same time setting c1 = 0 yields the GJR-
GARCH model because "t and zt have the same sign. When K = 2 and, in
addition, c1 = �c2 in (16), the resulting smooth transition GARCH model
is still symmetric about zero, but the response of the conditional variance
to a shock is a nonlinear function of lags of "2t : Smooth transition GARCH
models are useful in situations where the assumption of two distinct regimes
is too rough an approximation to the asymmetric behaviour of the conditional
variance. Hagerud (1997) also discussed a speci�cation strategy that allows
the investigator to choose between K = 1 and K = 2 in (16). Values of
K > 2 may also be considered, but they are likely to be less common in
applications than the two simplest cases.
The smooth transition GARCHmodel (15) withK = 1 in (16) is designed

for modelling asymmetric responses to shocks. On the other hand, the stan-
dard GARCH model has the undesirable property that the estimated model
often exaggerates the persistence in volatility (the estimated sum of the �-
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and �-coe¢ cients is close to one). This in turn results in poor volatility
forecasts. In order to remedy this problem, Lanne and Saikkonen (2005)
proposed a smooth transition GARCH model whose �rst-order version has
the form

ht = �0 + �1"
2
t�1 + �1G1(�;ht�1) + �1ht�1: (17)

In (17) ; G1(�;ht�1) is a continuous bounded function such as (16): Lanne and
Saikkonen use the cumulative distribution function of the gamma-distribution.
A major di¤erence between (15) and (17) is that in the latter model the tran-
sition variable is a lagged conditional variance. In empirical examples given
in the paper, this parameterization clearly alleviates the problem of exag-
gerated persistence. The model may also be generalized to include a term
of the form G1(�;ht�1)ht�1; but according to the authors, such an extension
appeared unnecessary in practice.

3.3.2 Threshold GARCH and extensions

If (15) is de�ned as a model for the conditional standard deviation such
that ht is replaced by h

1=2
t ; ht�j by h

1=2
t�j; j = 1; :::; p; and "2t�j by j"t�jj;

j = 1; :::; q; then choosing K = 1; c1 = 0 and letting  ! 1 in (16) yields
the threshold GARCH (TGARCH) model that Zakoïan (1994) considered.
The TGARCH(p; q)model is thus the counterpart of the GJR-GARCHmodel
in the case where the entity to be modelled is the conditional standard devi-
ation instead of the conditional variance. Note that in both of these models,
the threshold parameter has a known value (zero). In Zakoïan (1994), the
conditional standard deviation is de�ned as follows:

h
1=2
t = �0 +

qX
j=1

(�+j "
+
t�j � ��j "

�
t�j) +

qX
j=1

�jh
1=2
t�j (18)

where "+t�j = max("t�j; 0) and "
�
t�j = min("t�j; 0): Rabemananjara and Za-

koïan (1993) introduced an even more general model in which h1=2t can obtain
negative values, but it has not gained wide acceptance. Nevertheless, these
authors provide evidence of asymmetry in the French stock market by �tting
the TGARCH model (18) to the daily return series of stocks included in the
CAC 40 index of the Paris Bourse.
The TGARCH model is linear in parameters because the threshold para-

meter is assumed to equal zero. A genuine nonlinear threshold model is the
Double Threshold ARCH (DTARCH) model of Li and Li (1996). It is called
a double threshold model because both the autoregressive conditional mean
and the conditional variance have a threshold-type structure as de�ned in
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Tong (1990). The conditional mean is de�ned as follows:

yt =
KX
k=1

(�0k +

pkX
j=1

�jkyt�j)I(c
(m)
k�1 < yt�b � c

(m)
k ) + "t (19)

and the conditional variance has the form

ht =
LX
`=1

(�0` +

pX̀
j=1

�j`"
2
t�j)I(c

(v)
`�1 < yt�d � c

(v)
` ): (20)

Furthermore, k = 1; :::; K; ` = 1; :::; L; and b and d are delay parameters,
b; d � 1: The number of regimes in (19) and (20) ; K and L; respectively,
need not be the same, nor do the two threshold variables have to be equal.
Other threshold variables than lags of yt are possible. For example, replacing
yt�d in (20) by "t�d or "2t�d may sometimes be an interesting possibility.
Another variant of the DTARCH model is the model that Audrino and

Bühlmann (2001) who introduced it called the Tree-Structured GARCH
model. It has an autoregressive conditional mean:

yt = �yt�1 + "t (21)

where "t is decomposed as in (2), and the �rst-order conditional variance

ht =
KX
k=1

(�0k + �1ky
2
t�1 + �kht�1)If(yt�1; ht�1) 2 Rkg: (22)

In (22), Rk is a subset in a partition P = fR1; :::;RKg of the sample space
of (yt�1; ht�1): For example, if K = 2; either R1 = fyt�1 > cy; ht�1 > 0g
or R1 = f�1 < yt�1 < 1; ht�1 > chg; ch > 0; and R2 is the complement
of R1: Note that, strictly speaking, equation (22) does not de�ne a GARCH
model unless � = 0 in (21), because the squared variable in the equation
is y2t�1; not "

2
t�1. A practical problem is that the tree-growing strategy of

Audrino and Bühlmann (2001) does not seem to prevent underidenti�cation:
if K is chosen too large, (22) is not identi�ed. A similar problem is present
in the DTARCH model as well as in the STGARCH one. Hagerud (1997)
and Gonzalez-Rivera (1998), however, do provide linearity tests in order to
avoid this problem in the STGARCH framework.

3.4 Time-varying GARCH

An argument brought forward in the literature, see for instance Mikosch and
St¼aric¼a (2004), is that in applications the assumption of the GARCH models
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having constant parameters may not be appropriate when the series to be
modelled are long. Parameter constancy is a testable proposition, and if it is
rejected, the model can be generalized. One possibility is to assume that the
parameters change at speci�c points of time, divide the series into subseries
according to the location of the break-points, and �t separate GARCHmodels
to the subseries. The main statistical problem is then �nding the number
of break-points and their location because they are normally not known in
advance. Chu (1995) has developed tests for this purpose.
Another possibility is to modify the smooth transition GARCH model

(15) to �t this situation. This is done by de�ning the transition function
(16) as a function of time:

G(; c; t�) = (1 + expf�
KY
k=1

(t� � ck)g)�1;  > 0

where t� = t=T: Standardizing the time variable between zero and unity
makes interpretation of the parameters ck; k = 1; :::; K; easy as they indicate
where in relative terms the changes in the process occur. The resulting time-
varying parameter GARCH (TV-GARCH) model has the form

ht = �0(t) +

qX
j=1

�j(t)"
2
t�j +

pX
j=1

�j(t)ht�j (23)

where �0(t) = �01 + �02G(; c; t
�); �j(t) = �j1 + �j2G(; c; t

�); j = 1; :::; q;
and �j(t) = �j1 + �j2G(; c; t

�); j = 1; :::; p: This is the most �exible para-
meterization. Some of the time-varying parameters in (23) may be restricted
to constants a priori. For example, it may be assumed that only the in-
tercept �0(t) is time-varying. This implies that the �baseline volatility�or
unconditional variance is changing over time. If change is allowed in the
other GARCH parameters then the model is capable of accommodating sys-
tematic changes in the amplitude of the volatility clusters that cannot be
explained by a constant-parameter GARCH model.
This type of time-varying GARCH is mentioned here because it is a spe-

cial case of the smooth transition GARCH model. Other time-varying para-
meter models of conditional heteroskedasticity, such as nonstationary ARCH
models with locally changing parameters, are discussed in 2007SPOKOINY.

3.5 Markov-switching ARCH and GARCH

Markov-switching or hidden Markov models of conditional heteroskedasticity
constitute another class of nonlinear models of volatility. These models are
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an alternative way of modelling volatility processes that contains breaks.
Hamilton and Susmel (1994) argued that very large shocks, such as the one
a¤ecting the stocks in October 1987, may have consequences for subsequent
volatility so di¤erent from consequences of small shocks that a standard
ARCH or GARCH model cannot describe them properly. Their Markov-
switching ARCH model is de�ned as follows:

ht =
kX
i=1

(�
(i)
0 +

qX
j=1

�
(i)
j "

2
t�j)I(st = i) (24)

where st is a discrete unobservable random variable obtaining values from
the set S = f1; :::; kg. It follows a (usually �rst-order) homogeneous Markov
chain:

Prfst = jjst = ig = pij; i; j = 1; :::; k:

Cai (1994) considered a special case of (24) in which only the intercept �(i)0
is switching, and k = 2: But then, his model also contains a switching con-
ditional mean. Furthermore, Rydén, Teräsvirta and Åsbrink (1998) showed
that a simpli�ed version of (24) where �(i)j = 0 for j � 1 and all i; is already
capable of generating data that display most of the stylized facts that Granger
and Ding (1995) ascribe to high-frequency, daily, say, �nancial return series.
This suggests that a Markov-switching variance alone without any ARCH
structure may in many cases explain a large portion of the variation in these
series.
Nevertheless, it can be argued that shocks drive economic processes, and

this motivates the ARCH structure. If the shocks have a persistent e¤ect on
volatility, however, a parsimonious GARCH representation may be preferred
to (24) : Generalizing (24) into a GARCHmodel involves one major di¢ culty.
A straightforward (�rst-order) generalization would have the following form:

ht = (�
(i)
0 + �

(i)
1 "

2
t�1 + �

(i)
1 ht�1)I(st = i): (25)

From the autoregressive structure of (25) it follows that ht is completely
path-dependent: its value depends on the unobservable st�j; j = 0; 1; 2; ::::t:
This makes the model practically impossible to estimate because in order
to evaluate the log-likelihood, these unobservables have to be integrated out
of this function. Simpli�cations of the model that circumvent this problem
can be found in Gray (1996) and Klaassen (2002). A good discussion about
their models can be found in Haas, Mittnik and Paolella (2004). These au-
thors present another Markov-switching (MS-) GARCH model whose fourth-
moment structure they are able to work out. That does not seem possible
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for the other models. The MS-GARCH model of Haas et al. (2004) is de�ned
as follows:

"t = zt

kX
i=1

h
1=2
it I(st = i)

where st is de�ned as in (24). Furthermore,

ht = �0 +�1"
2
t�1 +Bht�1

where ht = (h1t; :::; h1k)0;�i = (�i1; :::; �ik)0; i = 0; 1; andB = diag(�11; :::; �1k)
0:

Thus, each volatility regime has its own GARCH equation. The conditional
variance in a given regime is only a function of the lagged conditional vari-
ance in the same regime, which is not the case in the other models. The
identi�cation problem mentioned in Section 3.3.2 is present here as well. If
the true model has fewer regimes than the speci�ed one, the latter contains
unidenti�ed nuisance parameters. Liu (2006) provides a number of results,
including conditions for strict stationarity and the existence of higher-order
moments, for this MS-GARCH model.
More information about Markov-switching ARCH and GARCH models

can be found in Lange and Rahbek (2007).

3.6 Integrated and fractionally integrated GARCH

In applications it often occurs that the estimated sum of the parameters
�1 and �1 in the standard �rst-order GARCH model (4) with p = q = 1
is close to unity. Engle and Bollerslev (1986), who �rst paid attention to
this phenomenon, suggested imposing the restriction �1 + �1 = 1 and called
the ensuing model an integrated GARCH (IGARCH) model. The IGARCH
process is not weakly stationary as E"2t is not �nite. Nevertheless, the term
�integrated GARCH�may be somewhat misleading as the IGARCH process
is strongly stationary. Nelson (1991) showed that under mild conditions for
{ztg and assuming �0 > 0; the GARCH(1,1) process is strongly stationary if

E ln(�1 + �1z
2
t ) < 0: (26)

The IGARCH process satis�es (26). The analogy with integrated processes,
that is, ones with a unit root, is therefore not as straightforward as one might
think. For a general discussion of stationarity conditions in GARCH models,
see 2007LINDNER.
Nelson (1991) also showed that when an IGARCH process is started at

some �nite time point, its behaviour depends on the intercept �0: On the
one hand, if the intercept is positive then the unconditional variance of the
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process grows linearly with time. In practice this means that the amplitude
of the clusters of volatility to be parameterized by the model on the average
increases over time. The rate of increase need not, however, be particularly
rapid. One may thus think that in applications with, say, a few thousand
observations, IGARCH processes nevertheless provide a reasonable approxi-
mation to the true data-generating volatility process. On the other hand, if
�0 = 0 in the IGARCH model, the realizations from the process collapse to
zero almost surely. How rapidly this happens, depends on the parameter �1:
Although the investigator may be prepared to accept an IGARCH model

as an approximation, a potentially disturbing fact is that this means assuming
that the unconditional variance of the process to be modelled does not exist.
It is not clear that this is what one always wants to do. There exist other
explanations to the fact that the sum �1 + �1 estimates to one or very close
to one. First Diebold (1986) and later Lamoureux and Lastrapes (1990)
suggested that this often happens if there is a switch in the intercept of a
GARCH model during the estimation period. This may not be surprising as
such a switch means that the underlying GARCH process is not stationary.
Another, perhaps more puzzling, observation is related to exponential

GARCH models to be considered in Section 4. Malmsten (2004) noticed
that if a GARCH(1,1) model is �tted to a time series generated by a sta-
tionary �rst-order exponential GARCH model (see Section 4), the probabil-
ity of the estimated sum �1 + �1 exceeding unity can sometimes be rather
large. In short, if the estimated sum of these two parameters in a standard
GARCH(1,1) model is close to unity, imposing the restriction �1 + �1 = 1
without further investigation may not necessarily be the most reasonable
action to take.
Assuming p = q = 1; the GARCH(p; q) equation (4) can also be written

in the �ARMA(1,1) form�by adding "2t to both sides and moving ht to the
right-hand side:

"2t = �0 + (�1 + �1)"
2
t�1 + �t � �1�t�1 (27)

where {�tg = f"2t � htg is a martingale di¤erence sequence with respect to
ht: For the IGARCH process, (27) has the �ARIMA(0,1,1) form�

(1� L)"2t = �0 + �t � �1�t�1: (28)

Equation (28) has served as a starting-point for the fractionally integrated
GARCH (FIGARCH) model. The FIGARCH(1,d; 0) model is obtained from
(28) by replacing the di¤erence operator by a fractional di¤erence operator:

(1� L)d"2t = �0 + �t � �1�t�1: (29)
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The FIGARCH equation (29) can be written as an in�nite-order ARCH
model by applying the de�nition �t = "2t � ht to it. This yields

ht = �0(1� �1)
�1 + �(L)"2t

where �(L) = f1 � (1 � L)d(1 � �1L)
�1g"2t =

P1
j=1 �jL

j"2t ; and �j � 0 for
all j: Expanding the fractional di¤erence operator into an in�nite sum yields
the result that for long lags j;

�j = f(1� �1)�(d)
�1gj�(1�d) = cj�(1�d); c > 0 (30)

where d 2 (0; 1) and �(d) is the gamma function. From (30) it is seen that
the e¤ect of the lagged "2t on the conditional variance decays hyperbolically
as a function of the lag length. This is the reason why Baillie, Bollerslev and
Mikkelsen (1996) introduced the FIGARCH model, as it would conveniently
explain the apparent slow decay in autocorrelation functions of squared ob-
servations of many daily return series. The FIGARCH model thus o¤ers a
competing view to the one according to which changes in parameters in a
GARCH model are the main cause of the slow decay in the autocorrelations.
The �rst-order FIGARCH model (29) can of course be generalized into a
FIGARCH(p; d; q) model.
The probabilistic properties of FIGARCH processes such as stationar-

ity, still an open question, are quite complex, see, for example, Davidson
(2004) and 2007GIRAITIS for discussion. The hyperbolic GARCH model
introduced in the �rst-mentioned paper contains the standard GARCH and
the FIGARCH models as two extreme special cases; for details see Davidson
(2004).

3.7 Semi- and nonparametric ARCH models

The ARCH decomposition of returns (2) has also been used in a semi- or
nonparametric approach. The semiparametric approach is typically employed
in situations where the distribution of zt is left unspeci�ed and is estimated
nonparametrically. In nonparametric models, the issue is the estimation of
the functional form of the relationship between "2t and "

2
t�1; :::; "

2
t�q: Semi-

and nonparametric ARCH models are considered in detail in Linton (2007).

3.8 GARCH-in-mean model

GARCH models are often used for predicting the risk of a portfolio at a
given point of time. From this it follows that the GARCH type conditional
variance could be useful as a representation of the time-varying risk premium

15



in explaining excess returns, that is, returns compared to the return of a
riskless asset. An excess return would be a combination of the unforecastable
di¤erence "t between the ex ante and ex post rates of return and a function
of the conditional variance of the portfolio. Thus, if yt is the excess return
at time t,

yt = "t + � + g(ht)� Eg(ht) (31)

where ht is de�ned as a GARCH process (4) and g(ht) is a positive-valued
function. Engle, Lilien and Robins (1987) originally de�ned g(ht) = �h

1=2
t ; � >

0; which corresponds to the assumption that changes in the conditional stan-
dard deviation appear less than proportionally in the mean. The alternative
g(ht) = �ht has also appeared in the literature. Equations (31) and (4) form
the GARCH-in-mean or GARCH-M model. It has been quite frequently
applied in the applied econometrics and �nance literature. Glosten et al.
(1993) developed their asymmetric GARCH model as a generalization of the
GARCH-M model.
The GARCH-M process has an interesting moment structure: Assume

that Ez3t = 0 and E"
4
t < 1: From (31) it follows that the kth order autoco-

variance

E(yt � Eyt)(yt�k � Eyt) = E"t�kg(ht) + cov(g(ht); g(ht�k)) 6= 0:

This means that there is forecastable structure in yt; which may contradict
some economic theory if yt is a return series. Hong (1991) showed this in
a special case where g(ht) = �ht; E"

4
t < 1; and ht follows a GARCH(p,q)

model. In that situation, all autocorrelations of yt are nonzero. Furthermore,

E(yt � Eyt)3 = 3Ehtfg(ht)� Eg(ht)g+ Efg(ht)� Eg(ht)g3 6= 0: (32)

It follows from (32) that a GARCH-M model implies postulating a skewed
marginal distribution for yt unless g(ht) � constant: For example, if g(ht) =
�h

1=2
t ; � < 0; this marginal distribution is negatively skewed. If the model

builder is not prepared to make this assumption or the one of forecastable
structure in yt; the GARCH-M model, despite its theoretical motivation,
does not seem an appropriate alternative to use. For more discussion of this
situation, see He, Silvennoinen and Teräsvirta (2006).

3.9 Stylized facts and the �rst-order GARCH model

As already mentioned, �nancial time series such as high-frequency return
series constitute the most common �eld of applications for GARCH models.
These series typically display rather high kurtosis. At the same time, the
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autocorrelations of the absolute values or squares of the observations are low
and decay slowly. These two features are sometimes called stylized facts
of �nancial time series. Granger and Ding (1995) listed a few more such
features. Among them is the empirical observation that in a remarkable
number of �nancial series, the autocorrelations of the powers of observations,
j"tjk, peak around k = 1:Granger and Ding called this stylized fact the Taylor
e¤ect as Taylor (1986) was the �rst to draw attention to it (by comparing
the autocorrelations of "2t and j"tj):
One way of evaluating the adequacy of GARCH models is to ask how

well they can be expected to capture the features or stylized facts present
in the series to be modelled. The expressions for kurtosis and the autocor-
relation function of absolute values and squared observations are available
for the purpose. They allow one to �nd out, for example, whether or not
a GARCH(1,1) model is capable of producing realizations with high kurto-
sis and low, slowly decaying autocorrelations. The results of Malmsten and
Teräsvirta (2004) who have used these expressions, illustrate the well known
fact, see, for example, Bollerslev, Engle and Nelson (1994), that a GARCH
model with normally distributed errors does not seem to be a su¢ ciently
�exible model for explaining these two features in �nancial return series.
This is shown in Figure 1. The panels contain a number of isoquants for
which the sum �1+�1 remains constant as a function of the kurtosis and the
�rst-order autocorrelation of squared observations. Note that �1 + �1 is the
decay rate of the autocorrelation function, that is, the jth autocorrelation
�j = (�1+�1)

j�1�1 for j � 1: They also contain combinations of the kurtosis
and the �rst-order autocorrelation estimated directly from time series. It is
seen that very often the kurtosis/autocorrelation combinations do not tend
to lie in the vicinity of these isoquants even when �1 + �1 is very close to
one. The isoquants are od course only de�ned for combinations of �1 and �1
for which E"4t <1:
Malmsten and Teräsvirta (2004) also demonstrated how the situation can

be improved, as is customary in practice, by replacing the normal error dis-
tribution by a more fat-tailed one. In Figure 2 it is seen how increasing
the �baseline kurtosis�, that is, the kurtosis of the distribution of zt; the
error, helps the GARCH(1,1) model to capture the stylized fact of high kur-
tosis/low autocorrelation. The isoquants are moved to the right because the
baseline kurtosis increases. At the same time it seems that the level of the
autocorrelations decreases. But then, this does not simultaneously a¤ect the
decay rate �1 + �1 of the autocorrelations.
Recently, Kim and White (2004) suggested that the standard estimator

of kurtosis exaggerates the true kurtosis and that robust measures yield more
reliable results. It follows that high kurtosis values estimated from return

17



Figure 1: Kurtosis/�rst-order autocorrelation isoquants for the GARCH(1,1)
model, from highest to lowest: �+� = 0:9; 0:95; 0:99; 0:999; and correspond-
ing combinations estimated from data: Upper left panel: Daily returns of
the 27 most actively traded stocks at the Stockholm Stock Exchange; Upper
right panel: Returns of �ve major daily exchange rates, divided into 34 sub-
series; Lower left panel: Daily returns of the S&P 500 index from 3 January
1928 to 19 September 2001, divided into 20 equally long subseries; Lower
right panel: All observations
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Figure 2: Isoquants of pairs of kurtosis and �rst-order autocorrelation of
squared observations in the GARCH(1,1) model with t(7)-distributed (left-
hand panel) and t(5)-distributed errors (right-hand panel), for (from above)
�+� = 0:90; 0.95, 0.99 and 0.999, and corresponding observations (the same
ones as in the lower right panel of Figure 1)

series are a result of a limited number of outliers. If this is the case, then
the use of a non-normal (heavy-tailed) error distribution may not necessarily
be an optimal extension to the standard normal-error GARCH model. How-
ever, Teräsvirta and Zhao (2006) recently studied 160 daily return series and,
following Kim and White (2004), used robust kurtosis and autocorrelation
estimates instead of standard ones. Their results indicate that leptokurtic
distributions for zt are needed in capturing the kurtosis-autocorrelation styl-
ized fact even when the in�uence of extreme observations is dampened by
the use of robust estimates.
As to the Taylor e¤ect, He and Teräsvirta (1999a) de�ned a correspond-

ing theoretical property, the Taylor property, as follows. Let �(j"tjk; j"t�jjk)
be the jth order autocorrelation of fj"tjkg: The stochastic process has the
Taylor property when �(j"tjk; j"t�jjk) is maximized for k = 1 for j = 1; 2; :::
. In practice, He and Teräsvirta (1999a) were able to �nd analytical re-
sults for the AVGARCH(1,1) model, but they were restricted to compar-
ing the �rst-order autocorrelations for k = 1 and k = 2. For this model,
�(j"tj; j"t�1j) > �("2t ; "

2
t�1) when the kurtosis of the process is su¢ ciently

high. The corresponding results for the standard GARCH(1,1) model (4)
with p = q = 1 and normal errors are not available as the autocorrelation
function of fj"tjg cannot be derived analytically. Simulations conducted by
He and Teräsvirta (1999a) showed that the GARCH(1,1) model probably
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does not possess the Taylor property, which may seem disappointing. But
then, the results of Teräsvirta and Zhao (2006) show that if the standard kur-
tosis and autocorrelation estimates are replaced by robust ones, the evidence
of the Taylor e¤ect completely disappears. This stylized fact may thus be a
consequence of just a small number of extreme observations in the series.

4 Family of Exponential GARCH models

4.1 De�nition and properties

The Exponential GARCH (EGARCH) model is another popular GARCH
model. Nelson (1991) who introduced it had three criticisms of the standard
GARCH model in mind. First, parameter restrictions are required to ensure
positivity of the conditional variance at every point of time. Second, the
standard GARCH model does not allow an asymmetric response to shocks.
Third, if the model is an IGARCH one, measuring the persistence is di¢ cult
since this model is strongly but not weakly stationary. Shocks may be viewed
persistent as the IGARCH process looks like a random walk. However, the
IGARCH model with �0 > 0 is strictly stationary and ergodic, and when
�0 = 0; the realizations collapse into zero almost surely, as already indicated
in Section 3.6. The second drawback has since been removed as asymmet-
ric GARCH models such as GJR-GARCH (Glosten et al. (1993)) or smooth
transition GARCH have become available. A family of EGARCH(p; q) mod-
els may be de�ned as in (2) with

lnht = �0 +

qX
j=1

gj(zt�j) +

pX
j=1

�j lnht�j: (33)

When gj(zt�j) = �jzt�j +  j(jzt�jj � Ejzt�jj); j = 1; :::; q; (33) becomes the
EGARCH model of Nelson (1991). It is seen from (33) that no parameter re-
strictions are necessary to ensure positivity of ht: Parameters �j; j = 1; :::; q;
make an asymmetric response to shocks possible.
When gj(zt�j) = �j ln z

2
t�j; j = 1; :::; q; (2) and (33) form the logarithmic

GARCH (LGARCH) model that Geweke (1986) and Pantula (1986) pro-
posed. The LGARCH model has not become popular among practitioners.
A principal reason for this may be that for parameter values encountered
in practice, the theoretical values of the �rst few autocorrelations of {"2tg at
short lags tend to be so high that such autocorrelations can hardly be found
in �nancial series such as return series. This being the case, the LGARCH
model cannot be expected to provide an acceptable �t when applied to �-
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nancial series. Another reason are the occasional small values of ln "2t that
complicate the estimation of parameters.
As in the standard GARCH case, the �rst-order model is the most popu-

lar EGARCH model in practice. Nelson (1991) derived existence conditions
for moments of the general in�nite-order Exponential ARCH model. Trans-
lated to the case of the EGARCH model (2) and (33) such that gj(zt�j) =
�jzt�j +  j(jzt�jj � Ejzt�jj), j = 1; :::; q; where not all �j and  j equal
zero, the conditions imply that if the error process {ztg has all moments andPp

j=1 �
2
j < 1 in (33), then all moments for the EGARCH process {"tg exist.

For example, if {ztg is a sequence of independent standard normal variables
then the restrictions on �j; j = 1; :::; p; are necessary and su¢ cient for the
existence of all moments simultaneously. This is di¤erent from the family
(12) of GARCH models considered in Section 3.2. For those models, the mo-
ment conditions become more and more stringent for higher and higher even
moments. The expressions for moments of the �rst-order EGARCH process
can be found in He, Teräsvirta and Malmsten (2002); for the more general
case, see He (2000).

4.2 Stylized facts and the �rst-order EGARCH model

In Section 3.9 we considered the capability of �rst-order GARCH models to
characterize certain stylized facts in �nancial time series. It is instructive to
do the same for EGARCH models. For the �rst-order EGARCH model, the
decay of autocorrelations of squared observations is faster than exponential in
the beginning before it slows down towards an exponential rate; see He et al.
(2002). Thus it does not appear possible to use a standard EGARCH(1,1)
model to characterize processes with very slowly decaying autocorrelations.
Malmsten and Teräsvirta (2004) showed that the symmetric EGARCH(1,1)
model with normal errors is not su¢ ciently �exible either for characterizing
series with high kurtosis and slowly decaying autocorrelations. As in the
standard GARCH case, assuming normal errors means that the �rst-order
autocorrelation of squared observations increases quite rapidly as a function
of kurtosis for any �xed �1 before the increase slows down. Analogously
to GARCH, the observed kurtosis/autocorrelation combinations cannot be
reached by the EGARCH(1,1) model with standard normal errors. The asym-
metry parameter is unlikely to change things much.
Nelson (1991) recommended the use of the so-called Generalized Error

Distribution (GED) for the errors. It contains the normal distribution as a
special case but also allows heavier tails than the ones in the normal distri-
bution. Nelson (1991) also pointed out that a t-distribution for the errors
may imply in�nite unconditional variance for {"tg: As in the case of the
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GARCH(1,1) model, an error distribution with fatter tails than the normal
one helps to increase the kurtosis and, at the same time, lower the autocor-
relations of squared observations or absolute values.
Because of analytical expressions of the autocorrelations for k > 0 given

in He et al. (2002) it is possible to study the existence of the Taylor property
in EGARCH models. Using the formulas for the autocorrelations of {j"tjkg;
k > 0; it is possible to �nd parameter combinations for which these autocor-
relations peak in a neighbourhood of k = 1. A subset of �rst-order EGARCH
models thus has the Taylor property. This subset is also a relevant one in
practice in the sense that it contains EGARCH processes with the kurtosis of
the magnitude frequently found in �nancial time series. For more discussion
on stylized facts and the EGARCH(1,1) model, see Malmsten and Teräsvirta
(2004).

4.3 Stochastic volatility

The EGARCH equation may be modi�ed by replacing gj(zt�j) by gj(st�j)
where {stg is a sequence of continuous unobservable independent random
variables that are often assumed independent of zt at all lags. Typically in
applications, p = q = 1 and g1(st�1) = �st�1 where � is a parameter to be
estimated: This generalization is called the autoregressive stochastic volatil-
ity (SV) model, and it substantially increases the �exibility of the EGARCH
parameterization. For evidence of this, see Malmsten and Teräsvirta (2004)
and Carnero, Peña and Ruiz (2004). A disadvantage is that model evalua-
tion becomes more complicated than that of EGARCH models because the
estimation does not yield residuals. Several articles in this Handbook are
devoted to SV models.

5 Comparing EGARCH with GARCH

The standard GARCH model is probably the most frequently applied pa-
rameterization of conditional heteroskedasticity. This being the case, it is
natural to evaluate an estimated EGARCH model by testing it against the
corresponding GARCH model. Since the EGARCH model can characterize
asymmetric responses to shocks, a GARCH model with the same property,
such as the GJR-GARCH or the smooth transition GARCH model, would
be a natural counterpart in such a comparison. If the aim of the comparison
is to choose between these models, they may be compared by an appropriate
model selection criterion as in Shephard (1996). Since the GJR-GARCH and
the EGARCH model of the same order have equally many parameters, this
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amounts to comparing their maximized likelihoods.
If the investigator has a preferred model or is just interested in knowing

if there are signi�cant di¤erences in the �t between the two, the models may
be tested against each other. The testing problem is a non-standard one
because the two models do not nest each other. Several approaches have
been suggested for this situation. Engle and Ng (1993) proposed combining
the two models into an encompassing model. If the GARCHmodel is an GJR-
GARCH(p; q) one (both models can account for asymmetries), this leads to
the following speci�cation of the conditional variance:

lnht =

qX
j=1

f��jzt�j +  �j(jzt�jj � Ejzt�jj)g+
pX
j=1

��j lnht�j

+ ln(�0 +

qX
j=1

f�j + !jI("t�j)g"2t�j +
pX
j=1

�jht�j): (34)

Setting (�j; !j) = (0; 0); j = 1; :::; q; and �j = 0; j = 1; :::; p; in (34) yields
an EGARCH(p; q) model. Correspondingly, the restrictions (��j ;  

�
j) = (0; 0);

j = 1; :::; q; and ��j = 0; j = 1; :::; p; de�ne the GJR-GARCH(p; q) model.
Testing the models against each other amounts to testing the appropriate
restrictions in (34) : A Lagrange Multiplier test may be constructed for the
purpose. The test may also be viewed as another misspeci�cation test and
not only as a test against the alternative model.
Another way of testing the EGARCH model against GARCH consists of

forming the likelihood ratio statistic despite the fact that the null model is
not nested in the alternative. This is discussed in Lee and Brorsen (1997) and
Kim, Shephard and Chib (1998). LetM0 be the EGARCH model andM1

the GARCH one, and let the corresponding log-likelihoods be LT (";M0;�0)
and LT (";M1;�1); respectively. The test statistic is

LR = 2fLT (";M1; b�1)� LT (";M0; e�0)g: (35)

The asymptotic null distribution of (35) is unknown but can be approxi-
mated by simulation. Assuming that the EGARCH model is the null model
and that e�0 is the true parameter, one generates N realizations of T obser-
vations from this model and estimates both models and calculates the value
of (35) using each realization. Ranking the N values gives an empirical dis-
tribution with which one compares the original value of (35) : The true value
of �0 is unknown, but the approximation error due to the use of e�0 as a
replacement vanishes asymptotically as T !1. If the value of (35) exceeds
the 100(1� �)% quantile of the empirical distribution, the null model is re-
jected at signi�cance level �: Note that the models under comparison need
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not have the same number of parameters, and the value of the statistic can
also be negative. Reversing the roles of the models, one can test GARCH
models against EGARCH ones.
Chen and Kuan (2002) proposed yet another method based on the pseudo-

score, whose estimator under the null hypothesis and assuming the custom-
ary regularity conditions is asymptotically normally distributed. This result
forms the basis for a �2-distributed test statistic; see Chen and Kuan (2002)
for details.
Results of small-sample simulations in Malmsten (2004) indicate that

the pseudo-score test tends to be oversized. Furthermore, the Monte Carlo
likelihood ratio statistic seems to have consistently higher power than the
encompassing test, which suggests that the former rather than the latter
should be applied in practice.

6 Final remarks and further reading

The literature on univariate GARCH models is quite voluminous, and it is
not possible to incorporate all developments and extensions of the original
model in the present text. Several articles of this Handbook provide detailed
analyses of various aspects of GARCH models. Modern econometrics texts
contain accounts of conditional heteroskedasticity. A number of surveys of
GARCH models exist as well. Bollerslev et al. (1994), Diebold and Lopez
(1995), Palm (1996), and Guégan (1994, Ch. 5), survey developments till
the early 1990s; see Giraitis, Leipus and Surgailis (2006) for a very recent
survey. Shephard (1996) considers both univariate GARCH and stochastic
volatility models. The focus in Gouriéroux (1996) lies on both univariate
and multivariate ARCH models. The survey by Bollerslev et al. (1992) also
reviews applications to �nancial series. The focus in Straumann (2004) is on
estimation in models of conditional heteroskedasticity. Theoretical results on
time series models with conditional heteroskedasticity are also reviewed in
Li, Ling and McAleer (2002). Engle (1995) contains a selection of the most
important articles on ARCH and GARCH models up until 1993.
Multivariate GARCHmodels are not included in this article. There exists

a recent survey by Bauwens, Laurent and Rombouts (2006), and these models
are also considered in Silvennoinen and Teräsvirta (2007).
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