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1. INTRODUCTION

The purpose of this note– inspired by and using a number of properties
from Barbara and Jackson [2] – is to characterize the Pareto dominance
relation. The set-up and interpretation is completely analogous to [2].
In particular, situations are considered where different actions are to be
compared on the basis of their consequences, which are described by vectors
of real numbers. Ranking actions then becomes equivalent with ranking
vectors and a decision criterion can be seen as a binary relation on the set
of real vectors (see [2, p. 35]).

If the coordinates of a vector x ∈ Rn measure positive attributes, like a
firm’s profit, utility of a decision maker, or the quantity of a certain good
to a nonsatiable consumer, it Pareto dominates a vector y ∈ Rn if xi � yi
for all coordinates i, with strict inequality for at least one coordinate. Con-
versely, if coordinates measure negative attributes (loss, disutility, quanti-
ties of ‘bads’, etc.), x Pareto dominates y if xi � yi for all coordinates i,
with strict inequality for at least one coordinate. If an alternative x is not
Pareto dominated in a given set of alternatives, it is Pareto optimal.

1Financial support from a Marie Curie Research Fellowship is gratefully acknowl-

edged. I am indebted to Yves Sprumont, who – during his 1999 visit to CentER,

Tilburg University – drew my attention to the question addressed in this note. I thank

Jörgen Weibull, Stef Tijs, and several seminar audiences for comments and discussions.
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Pareto dominance and Pareto optimality lie at the basis of numerous
economic and game theoretic studies. Pareto optimality is in fact so fun-
damental, that it is often used as a characterizing property in axiomatiza-
tions of equilibria and solution concepts, rather than as the subject of an
axiomatic study.

There are some exceptions in the related literature. Sen [6, p. 76] char-
acterizes the collective choice rule that assigns to each tuple of preference
relations the social order where an alternative a is weakly preferred to al-
ternative b unless all agents weakly prefer b over a and at least one agent’s
preference is strict. His axiom P∗ [6, p. 53], however, explicitly uses the
Pareto dominance criterion. Campbell and Nagahisa [3] replace this prop-
erty with a weaker topological condition. Another strand of literature, cf.
[1], [4], [7], investigates which type of orders on a choice set can be obtained
as a Pareto order through a suitable choice of preferences of the concerned
agents.

The current note has a different starting point – that of Barbara and
Jackson [2] and the classical Milnor [5] – by basing the comparison on
vectors of real numbers. After settling matters of notation, a number of
axioms is provided in Section 2. In Section 3, the Pareto dominance relation
is shown to be the unique nontrivial binary relation on the set of finite-
dimensional real vectors satisfying these properties. The axioms are shown
to be logically independent in Section 4.

2. NOTATION AND AXIOMS

Let N be the set of positive integers. For n ∈ N, Rn is the n-dimensional
Euclidean space. Let R = ∪n∈N Rn be the set of finite-dimensional vectors
of real numbers. Let x ∈ R. The dimension of x is denoted by dim(x).
For i ∈ {1, . . . , dim(x)}, xi is the i-th coordinate of x. If dim(x) � 2,
then x−i ∈ R is the (dim(x) − 1)-dimensional vector obtained from x by
deleting its i-th coordinate. A partial order on R is a binary relation � on
R satisfying for all x, y, z ∈ R: (i) reflexivity: x � x, (ii) antisymmetry:
x � y and y � x imply x = y, (iii) transitivity: x � y and y � z imply
x � z.

Equality, the Pareto order associated with positive attributes, and the
Pareto order associated with negative attributes are three such partial or-
ders on R. They are, respectively, defined as follows:

x = y ⇔ dim(x) = dim(y) and xi = yi for all coordinates i,

x � y ⇔ dim(x) = dim(y) and xi � yi for all coordinates i,

x � y ⇔ dim(x) = dim(y) and xi � yi for all coordinates i.

Equality is a trivial partial order. It is the smallest possible partial or-
der on R: only identical elements are comparable, in accordance with the
reflexivity condition.
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A partial order � coincides with a partial order � on a subset S ⊆ R
if for all x, y ∈ S: x � y if and only if x � y.

A function f : R → R is strictly increasing if x > y implies f(x) > f(y).
Let us proceed to the axioms. Axioms (A0), (A2), and (A3) are taken

from Barbara and Jackson [2], to which the reader is referred for further
discussion. The axioms require, for each x, y ∈ R, the following:

(A0) x � y ⇒ dim(x) = dim(y).

This axiom states that only vectors of the same dimension are to be com-
pared. It is consistent with the interpretation that the different coordinates
reflect different attributes.

(A1) Partial order: � is a partial order.

Analogously to axiom (1) in Barbara and Jackson [2], this axiom specifies
the type of binary relation this note aims to characterize.

(A2) Independence of duplicated states: if dim(x) = dim(y) � 2 and
there are coordinates i, j with i �= j, xi = xj, and yi = yj , then

x � y ⇔ x−i � y−i.

According to this axiom, the order does not depend on the number of
attributes giving rise to the same evaluation.

(A3) Independence of identical consequences: if dim(x) = dim(y) �
2 and xi = yi for some coordinate i, then

x � y ⇔ x−i � y−i.

This axiom states that the order depends only on coordinates with different
evaluations.

(A4) Ordinality: if dim(x) = dim(y) = n and fi : R → R is a strictly
increasing function for each i ∈ {1, . . . , n}, then

x � y ⇔ (f1(x1), . . . , fn(xn)) � (f1(y1), . . . , fn(yn)).

Ordinality states that the evaluations are based on qualitative, rather than
quantitative, differences: it is the direction of the difference that matters,
not its size. This axiom reflects the ordinal, rather than the cardinal,
character of utilities as a means to represent preferences.

Remark 1. Strictly increasing functions mapping the smaller of two
numbers to zero and the larger to one are important tools in the proof
of Theorem 1.
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3. CHARACTERIZATION

The characterization result indicates that the Pareto orders � and �

are the only nontrivial partial orders on R satisfying (A0) to (A4).

T������ 1. There are only three binary relations onR satisfying (A0)
to (A4). They are =, �, and �.

Proof. The binary relations =, �, and � satisfy (A0) to (A4). Let �

be a binary relation on R that also satisfies the properties. We prove by
induction on n ∈ N the statement

P (n): � coincides with one of the relations =, �, or � on ∪n
k=1

Rk.

For n = 1, � either coincides with = on R, or there exist x, y ∈ R with
x �= y and x � y. If x > y, we show that a � b for all a, b ∈ R with a > b,
i.e., � coincides with � on R. Let a, b ∈ R, a > b. Consider the strictly
increasing function f : R → R given, for each z ∈ R, by

f(z) =
a− b

x− y
(z − y) + b.

Ordinality (A4) implies that a = f(x) � f(y) = b. Similarly, if x < y, it
follows that � coincides with � on R. This proves P (1).

Let n ∈ N, n � 2, and assume P (k) is true for all k ∈ N with k < n. By
induction, the binary relation� coincides with one of the orders=, �, or �
on ∪n−1

k=1
Rk. To show that � coincides with the same order on ∪n

k=1
Rk, it

suffices by (A0), (A1), and reflexivity of partial orders to consider vectors
x, y ∈ Rn with x �= y.

Case A: x � y and x � y.
To show: x and y are also incomparable according to �. This is done in
two steps.

Step 1: We prove that the vectors (0, 1) and (1,0) in R2 are incomparable
according to �. Suppose (1,0) � (0, 1). We derive a contradiction2 . Let
a = (1, 0, 1) and b = (0,1,0). Since a1 = a3 and b1 = b3, independence of
duplicated states (A2) together with a−3 = (1, 0) � (0,1) = b−3 implies
that x � y. Independence of duplicated states (A2) together with a � b

then implies that a−1 = (0, 1) � (1, 0) = b−1. Hence (1, 0) � (0, 1) and
(0, 1) � (1,0), which together with antisymmetry of the partial order �

(see (A1)) implies that (1,0) = (0, 1), a contradiction.

Step 2: We proceed to show that x and y are incomparable according to
�. Since x � y, there is an i ∈ {1, . . . , n} with xi < yi. Since y � x,
there is a j ∈ {1, . . . , n} with xj > yj . Define v, w ∈ Rn by taking for each

2The case (0,1) � (1, 0) is similar and therefore omitted.
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k ∈ {1, . . . , n}:
vk = 0, wk = 1 if xk < yk,

vk = 0, wk = 0 if xk = yk,

vk = 1, wk = 0 if xk > yk.

Ordinality (A4) and Remark 1 imply that � orders x and y the same
way as v and w. By definition, v1 = 0,w1 = 1, v2 = 1,w2 = 0. For all
other coordinates k ∈ {1, . . . , n} \ {i, j}, either vk = wk, in which case
coordinate k can be eliminated by independence of identical consequences
(A3), or {vk,wk} = {0, 1}, in which case coordinate k can be eliminated
by independence of duplicated states, since it is a duplication of either
coordinate i or j. Thus eliminating all but the i-th and j-th coordinate,
the vectors v and w, and hence x and y, are incomparable according to �,
since (1, 0) and (0,1) are incomparable by Step 1.

Case B: x � y or y � x.
Assume without loss of generality that x � y. To show:

(a) If � coincides with = on ∪n−1

k=1
Rk, then x and y are incomparable;

(b) If � coincides with � on ∪n−1

k=1
Rk, then x � y;

(c) If � coincides with � on ∪n−1

k=1
Rk, then y � x.

By independence of identical consequences (A3), we may assume that xk �=
yk for all coordinates k. Hence xk > yk for all k ∈ {1, . . . , n}. By ordinality
(A4) and Remark 1, � orders x and y the same way as (1, . . . ,1) ∈ Rn and
(0, . . . , 0) ∈ Rn. By independence of duplicated states (A2), � orders
(1, . . . , 1) and (0, . . . , 0), and hence x and y, the same way as the real
numbers 1 and 0. Apply the induction step:

(a) If � coincides with = on ∪n−1

k=1
Rk, then 1 and 0 and consequently x

and y are incomparable;

(b) If � coincides with � on ∪n−1

k=1
Rk, then 1 � 0. Consequently x � y;

(c) If � coincides with � on ∪n−1

k=1
Rk, then 0 � 1. Consequently y � x.

Since x and y were arbitrary elements of Rn, this finishes the proof.

As mentioned before, the equality = is a trivial partial order in which
only identical vectors are comparable. Hence, the theorem indicates that
the Pareto dominance relations � and � are the unique nontrivial partial
orders on R satisfying the properties (A0) till (A4). Their difference is
a benchmark property indicating whether attributes measure positive or
negative qualities of the alternatives: setting 1 � 0 (‘something is better
than nothing’) would single out the �-relation:

∀x, y ∈ R : x � y ⇔ dim(x) = dim(y) and x � y,

while the opposite would select the �-relation.
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4. LOGICAL INDEPENDENCE

In this section it is shown that none of the axioms used in Theorem 1
is implied by the others:

P���������� 1. Axioms (A0) till (A4) are logically independent.

This result is proven by five examples of binary relations on R, each
of which violates exactly one of the axioms. In each of the examples it is
straightforward to check that certain axioms are indeed satisfied. This part
is left to the reader.

E�
���� 1. Define the binary relation � on R by taking for each
x, y ∈ R:

x � y ⇔ dim(x) � dim(y) and xi = yi for all i = 1, . . . , dim(y).

This binary relation satisfies all axioms, except (A0): (1,0) � 1.

E�
���� 2. Define the binary relation � on R by taking for each
x, y ∈ R:

x � y ⇔ x = y or (dim(x) = dim(y) and

xi > yi for some i ∈ {1, . . . , dim(x)}).

This binary relation satisfies all axioms, except (A1): (0,1) � (3, 0) and
(3, 0) � (2, 2), but (0, 1) �� (2,2), so � is not transitive. (It is not antisym-
metric either). Hence � is not a partial order.

E�
���� 3 (T�� ��������
���� �����). Define the binary relation
� on R by taking for each x, y ∈ R:

x � y ⇔ x = y or (dim(x) = dim(y) and

∃k ∈ {1, . . . ,dim(x)} : xi = yi for all i < k and xk > yk).

This binary relation satisfies all axioms, except independence of duplicated
states (A2): (1, 0, 1) � (0,1,0), yet after deleting the first coordinate:
(0, 1) �� (1, 0).

E�
���� 4. Define the binary relation � on R by taking for each
x, y ∈ R:

x � y ⇔ x = y or (dim(x) = dim(y) and

xi > yi for all i = 1, . . . , dim(x)).

This binary relation satisfies all axioms, except independence of identical
consequences (A3): (1, 1) and (1, 0) are incomparable according to �, yet
after deleting the first coordinate: 1 � 0.
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E�
���� 5. Define the binary relation � on R by taking for each
x, y ∈ R:

x � y ⇔ x = y or (dim(x) = dim(y) and

xi � yi +2 for all i = 1, . . . , dim(x) with xi �= yi).

This binary relation satisfies all axioms, except ordinality (A4): (2, 2) �

(0, 0), yet after dividing each coordinate by two: (1, 1) �� (0,0).
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