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Optimal Categorization�

Erik Mohliny

December 12, 2011.

Abstract

This paper provides a model of categorizations that are optimal for the purpose
of making predictions. In the beginning of each period a subject observes a two-
dimensional object in one dimension and wants to predict the object�s value in the
other dimension. The subject partitions the space of objects into categories. She
has a data base of objects that were observed in both dimensions in the past. The
subject determines what category the new object belongs to on the basis of its �rst
dimension. She predicts that its value in the second dimension will be equal to the
average value among the past observations in the corresponding category. At the
end of each period the second dimension is observed. The optimal categorization
minimizes the expected prediction error. The main results are driven by a trade-o¤
between (a) decreasing the size of categories in order to enhance category homo-
geneity, and (b) increasing the size of categories in order to enhance category sample
size.
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1 Introduction

Numerous studies in psychology and cognitive science have demonstrated the importance
of categorical reasoning for human cognition in general.1 In particular, categorical think-
ing matters in many economic contexts: Consumers categorize goods and services when
deciding what to purchase, and this leads to segmentation of markets (Smith (1965)).
Firms may respond with marketing strategies that take advantage of the consumers�cat-
egorizations (Punj and Moon (2002)). In �nancial markets, investors engage in "style
investing", the practice of allocating funds among classes of assets rather than to indi-
vidual assets (Bernstein (1995)). Rating agencies categorize �rms in order to re�ect the
probability that a �rm will default on its debt (Coval et al. (2009)).
In the psychological literature it is widely acknowledged that an important function

of categories is to facilitate predictions (e.g. Anderson (1991)). Prediction on the basis
of categorical reasoning is relevant in situations where one has to predict the value of
a variable on the basis of one�s previous experience with similar situations, but where
the past experience does not necessarily include any situation that is identical to the
present situation. One may then divide the experienced situations into categories, such
that situations in the same category are similar to each other. When a new situation
is encountered one determines what category this situation belongs to, and the past
experiences in this category are used to make a prediction about the current situation.
These predictions can be computed in advance, thereby facilitating a fast response.
Assuming that we use categorizations to make predictions, this paper asks which cate-

gorizations are optimal in the sense that they minimize prediction error.2 In particular, I
study the optimal number of categories without imposing any exogenous costs and bene-
�ts of the number of categories. Instead costs and bene�ts are derived endogenously from
the objective of making accurate predictions. The advantage of �ne categorizations is that
objects in a category are similar to each other. The advantage of coarse categorizations
is that a prediction about a category is based on many observations.
The focus on optimal categorizations is based on evolutionary considerations. Many

categorizations are acquired early in life, through socialization and education, or because
they are innate. From an evolutionary perspective we would expect humans to employ
categorizations that generate predictions that induce behaviour that maximize �tness.
It seems reasonable to assume that �tness is generally increasing in how accurate the
predictions are. For instance, a subject encountering a poisonous plant will presumably
be better o¤ if she predicts that the plant is indeed poisonous, rather than nutritious. For
this reason we would expect that humans have developed, and passed on, categorizations

1For overviews of the voluminous literature see e.g. Laurence and Margolis (1999), or Murphy (2002).
2Although this paper presumes that we do use categorizations to make predictions, I also discuss why

it might be more useful to base prediction on categorizations rather than some other form of case-based
reasoning, such as kernel-based estimation. It is argued that categorization is a cognitively less demanding
way of producing fast predictions. See section 4.1.
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that are at least approximately optimal, in the sense that they tend to minimize prediction
error in the relevant environments. Such a categorization will be called ex ante optimal.3

Other categorizations are developed only after experience has been accumulated �e.g.
for some area of investigation where one did not have useful concepts before. In this case
we would expect evolution to have endowed us with heuristics or algorithms that allow
us to form categorizations that organize our experience in way that tends to minimize
prediction error. Categorizations that attain this goal will be called ex post optimal.
The model is centred on a subject who lives for a certain number of periods. First

she goes through a learning phase and then a prediction phase. In each period of the
learning phase she observes an object, represented by a vector (x; y). (Extensions to
more dimensions are discussed in section 3.4.) All objects are independently drawn from
the same distribution, and are stored in a data base. The �xed distribution over objects
is intended to represent a mixture of distributions that are relevant for the subject. A
categorization is a set of categories which together partition the set of objects. Each
object�s category membership is determined by its x-value. In the beginning of each
period of the prediction phase the subject encounters a new object, drawn from the same
distribution as before, and observes the x-value but not the y-value. The y-value has to
be predicted with the help of the object�s x-value and the data base of past experiences.
The new object is put in one of the categories on the basis of its x-value. The empirical
mean y-value, of the previously experienced objects in that category, serves as prediction
for the y-value of the new object. At the end of the period, the y-value is revealed and the
information is added to the data base.4 In the case of categorizations that are acquired
prior to accumulating a data base, the model assumes that the subject is endowed with
a categorization at the beginning of the learning phase, and this categorization is kept
�xed for the subject�s whole life time. In the case of categorizations that are formed after
a data base has been accumulated, a categorization may be formed or modi�ed in each
period of the prediction phase.
It has been debated whether categorization presupposes a notion of similarity or not

(see Goldstone (1994) and Gärdenfors (2000)). The model presented in this paper is
neutral in this respect. The x-dimension may, but need not, be endowed with a metric.

3One might ask why categorizations are learned or inherited from previous generations while the exact
distribution of objects is not transmitted. For the purpose of this paper is su¢ cient to note that it is an
empirical fact that many categorizations are transmitted between generations. Hence there must be some
factors that at least sometimes make it infeasible or ine¢ cient to transmit the more detailed information
contained in a distribution.

4The model re�ects two �ndings regarding predictions based on categorization: First, predictions
about a particular category are generally formed only on the basis of objects that were put into that
category in the past, not on the basis of objects that were put into other categories (Malt et al. (1995)
and Murphy and Ross (1994)). Second, a prediction about a particular object is generally based only on
what category the object belongs to, and does not take into account within-category correlations between
properties. This means that roughly the same prediction is made for all objects in the same category
(Krueger and Clement (1994)).
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The y-dimension is taken to be the real line and prediction error is measured as the
squared di¤erence between the prediction and the actual y-value of the object. Using
the probability density function over the set of objects one can de�ne the (unconditional)
expected prediction error of a categorization. In this case expectation is taken over the
set of data bases that the subject may encounter in the future. One can also de�ne
the expected prediction error conditional on a given data base. In this case expectation
is taken only over the next observation. The unconditional expected prediction error is
minimized by an ex ante optimal categorization, i.e. a categorization that is optimal prior
to a data base has been accumulated. The expected prediction error conditional on a
given data base is minimized by the ex post optimal categorization, i.e. a categorization
that is optimal for predicting the next observation, given the current data base.
Note that the set-up does not presume the existence of any natural kinds, in the sense

of Quine (1969). There does not have to exist an objectively true categorization "out
there". The optimal categorization is a framework we impose on our environment in
order to predict it.5

As an example of a categorization that is acquired very early on, think of colour
concepts. The subset of the spectrum of electromagnetic radiation that is visible to the
human eye allows for in�nitely �ne grained distinctions. However, in every day reasoning
and discourse we seem to employ only a coarse colour classi�cation, using words such as
red and green. Presumably the colour categorizations that were developed and passed
on to new generations were successful in the kind of environments that we faced.6 As
an example of categorizations that are formed after a data base has been accumulated,
one may think of the many classi�cations that science has produced. The two modes of
categorization are often combined. Think of a physician who �rst goes to medical school
and learns a set of (ex ante) categories while observing various patients�characteristics
(y-dimension) together with their subsequent health state (x-dimension). Later she works
in a hospital: In the beginning of each period she receives information about a patient,
predicts some aspect of the patient�s health, based on a categorizations and her past
experience. At the end of each period she observes the outcome for the current patient.
Eventually she might have accumulated su¢ ciently many observations to motivate the
development of a re�ned (ex post) categorization on her own.
The main result of this paper is that the optimal number of categories is determined

by a trade-o¤ between the value of within-category similarity of objects and the value of
having many stored observations in each category. Increasing the number of categories
has two e¤ects. (a) The average size of each category decreases and thus the di¤erences
between objects that belong to the same category will be relatively small. (b) The av-
erage number of experienced objects in each category decreases. Thus generalizations

5In this respect the approach builds on ideas that have been around since Kant (1781/87). The
question as to which categories that are most useful for inductive generalizations is of course also central
to Goodman�s "new riddle of induction" (Goodman (1955)).

6For inter-cultural comparisons, see Kay and Ma¢ (1999) and references therein.
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about a category are based on a smaller sample, making inferences from observed objects
to future cases less reliable. The trade-o¤ sheds light on the phenomenon of basic-level
categories, which has received much attention from psychologists; the most salient level
of categorization is neither the most �ne-grained, nor the most general level of categoriza-
tion (Rosch et al. (1976)); for instance, bird is more salient than either the superordinate
category animal or the subordinate category robin. The model also explains why ex-
perts will have a more �ne-grained conceptual structure than laymen (Tanaka and Taylor
(1991)). Furthermore, comparative statics with respect to the distribution of objects with
di¤erent properties show that (i) the larger the variability in the y-dimension, the larger
is the optimal number of categories, and (ii) the more frequent objects in one subset of
the x-dimension are, the larger is the optimal number of categories in that subset. In
particular, assuming that the relationship between x- and y-values is given by a linear
regression model, the optimal number of categories is decreasing in the variance of the
error term and increasing in the slope of the regression line. The model can be extended
in various ways: The set Y may be multidimensional, and di¤erent subject may then
weigh the di¤erent dimensions di¤erently. A subject�s cost of prediction errors may vary
with x. The model also has implications for the case of a �xed number of categories.
There are some interesting recent studies of categorization in game theoretic contexts:

Jehiel (2005) develops a notion of analogy based expectations equilibrium for extensive
form games. Players bundle the nodes of the opponents into analogy classes in order
to predict the opponents�behaviour. A player expects the same behaviour in all nodes
in an analogy class. In equilibrium these expectations are correct on average, within
each analogy class. The equilibrium is parameterized by the analogy classes, which are
exogenous. Similarly Jehiel and Samet (2007) de�ne a notion of valuation equilibrium,
according to which players bundle their own strategies into di¤erent similarity classes,
when predicting their own payo¤s. Other papers study players�categorizations of their
opponents, Azrieli (2009); their opponent�s types, Jehiel and Koessler (2008); or the games
they face, Mengel (2009). The results obtained in this paper may potentially be used as
a way of endogenizing the categorizations in such models. To illustrate this possibility I
study optimal categorization of actions in a noisy version of the Traveler�s Dilemma and
optimal categorization of games in a class of noisy 2�2-games. Optimal categorizations
might induce behaviour that is di¤erent from the behaviour that would result from a
maximally �ne categorization.
It should be emphasized that the inference, from properties of objects in the data

base, to the unobserved property of the present object, is not Bayesian. In particular,
the subject does not have a prior about an object�s properties before it is categorized.
On the contrary, the model of this paper is intended to shed some light on how priors
are generated. Binmore (2007) and Gilboa et al. (2008) have argued for the need to
complement Bayesian decision theory with a theory of belief formation that accounts for
how priors are formed. Gilboa and Schmeidler (2003) model case-based predictions; given
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a data base of past cases the subject�s task is to rank the likelihood of di¤erent outcomes in
a new case. Gilboa et al. (2006) provide an axiomatization of a similarity based prediction
rule for the case of predicting a real-valued variable. The axiomatization tells us when a
similarity function exists, but not what it looks like. One may view a categorization as a
certain psychologically relevant similarity function that treats all cases in one category as
exactly similar to each other and treats a case in a category as completely dissimilar to
any case outside that category. I restrict attention to the set of such similarity functions
and I seek to characterize the optimal such function.
Categories are closely related to concepts. Categories can be said to be de�ned by

concepts in the sense that an object belongs to a category if and only if it falls under the
corresponding concept. Conversely, categorization is one of the most important functions
of concepts. One might suggest that we use categories because language is categorical and
say that a categorization is optimal if it is induced by a language that is optimal in some
sense. Language is undoubtedly important in shaping our concepts and categories, but
concepts seem to have come prior to language in evolution �there are animals that use
concepts even though they do not use language �and children can use certain concepts
before they have a language.7 Therefore I suggest that we try to explain the use of
categories without reference to language.
There are only a few explicit models of categorization in economics and the question

of optimality has rarely been discussed. In an important paper, Fryer and Jackson (2008)
consider a notion of optimal categorization. Their model has some similarities with the
present one; objects are represented as vectors in some space of features, and the prediction
about a new object in a category is based on the average of past objects in that category.
But there are also some crucial di¤erences: First, the number of categories is exogenously
given. Second, although the purpose of categorization is to generate predictions Fryer and
Jackson do not de�ne optimality in terms of minimization of prediction error. Instead they
de�ne the optimal categorization as the one that minimizes the sum of within-category
di¤erences between objects that have already been encountered. Third, the probability
of encountering di¤erent objects is not modelled. As a consequence the trade-o¤ that is
central to the present paper cannot be formulated within their framework.
Al-Najjar and Pai (2010) develop a model of coarse decision making, which is ap-

plied to categorization. Like in this paper a subject categorizes two-dimensional objects
with respect to one dimension in order to predict the other dimension. Moreover, some
of their results are similar to mine; the trade-o¤ between �tting and over-�tting is im-
portant in their paper too. However, their focus and methodology is di¤erent: They seek
categorizations whose worst case prediction error is below some threshold, while I seek
categorizations that minimize prediction error. They use Vapnik Chervonenkis theory

7Regarding animals there is evidence that pigeons have concepts, at least in a way that enables them
to categorize objects (Herrnstein et al. (1976)). There are also studies indicating that rhesus monkeys
(Hauser et al. (1997)) have simple numerical concepts. Regarding children Franklin et al. (2005) provides
evidence that toddlers have a pre-linguistic understanding of colour concepts.

5



whereas I use simple probability theory. Also their set-up is essentially con�ned to what I
have called ex ante categorization. Finally it should also be noted that the �rst version of
their paper is dated December 2008, whereas the �rst version of my paper was presented
on November 14, 2008, at the Third Nordic Workshop in Behavioral and Experimental
Economics in Copenhagen.
Peski (2010) studies categorization in a di¤erent setting and he takes on the important

task of investigating when categorization may be an optimal tool for generating predic-
tions. There are in�nitely many properties and objects. A state of the world speci�es
which of the properties that each object has. Properties are modelled as discrete, and
similarity is de�ned in terms of sharing properties. Peski compares predictions based on
Bayesian updating with predictions based on a categorization algorithm. The analysis
depends crucially on an assumption that the Bayesian prior over the states of the world is
symmetric. Under this assumption predictions based on the categorization algorithm will
asymptotically approach the predictions based on Bayesian updating. Thus a Bayesian
subject with a symmetric prior will expect to asymptotically perform approximately the
same regardless of whether she uses Bayesian updating or follows a categorization al-
gorithm. If the state of nature is in fact drawn from a symmetric distribution, then a
subject following the categorization algorithm will asymptotically make predictions that
are no worse than the predictions made by a subject who knows the distribution. In
my model, there is no subjective prior, and the true distribution need not be symmetric.
It should also be noted that Peski�s results are asymptotic, relying on a su¢ cient data
condition, which states that the number of observations asymptotically becomes in�nitely
much larger than the number of distinct features in the data base of past observations
(although there are in�nitely many properties and objects). In my model categorization
is instead a consequence of scarcity of data.8

In the �eld of machine learning there are several models related to categorization. The
approach most relevant to the kind of unsupervised categorization studied in this paper is
cluster analysis (for a review see e.g. Jain et al. (1999)). In cluster analysis one seeks to
partition a set of objects in a way that maximizes some measure of within cluster similarity
and between cluster dissimilarity. Still, there are important di¤erences compared to the
present paper. In cluster analysis in cluster analysis the goal function is not de�ned in
terms of the underlying distribution generating the data base. Moreover, the same set of
dimensions are used to de�ne and evaluate clusters, whereas I de�ne categorizations in
terms of one dimension and evaluate them in terms of another dimension,
The rest of the paper is organized as follows. Section 2 describes the model and de�nes

prediction error and optimality. The results are developed in Section 3 presents the results
regarding ex ante and ex post optimality, and discusses extensions. Section 4 discusses
the results and applications. Section 5 concludes. All proofs are in the appendix.

8Other, more distantly related models of categorization are due to Anderson (1991), Dow (1991),
Mullainathan (2002), and Pothos and Chater (2002).
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2 Model

2.1 Subject and Objects

A subject lives for T periods; �rst a learning phase of L < T periods, and then a prediction
phase of T�L periods. In each period t 2 f1; :::; Tg she encounters an object, represented
by a point vt = (xt; yt) in a two-dimensional space V = X � Y , where Y = R. The set
X may be a closed interval [a; b] � R, or some arbitrary �nite set. Hence, the set X need
not be endowed with a metric, allowing for categorizations not based on similarity, but in
this case X is assumed to be �nite in order to assure existence of a solution.
All objects are drawn independently according to a continuous probability density

function f : V ! [0; 1], with satisfying
R
y2Y f (x; y) dy > 0 for all x 2 X. In order to

abstract from trivialities I will assume that if X = [a; b] � R then E [yjx] 6= E [yjx0] for
some x; x0 2 X, and if X is �nite then E [yjx] 6= E [yjx0] for all x; x0 2 X, x 6= x0.
Experienced objects are stored in a data base, so at the beginning of any period t > 1

the subject has a data base vt�1 = (v1; :::; vt�1) 2 V t�1. In each period t 2 f1; :::; Lg of
the learning phase the subject observes each object in both dimensions. In the beginning
of each period t 2 fL+1; :::; Tg of the prediction phase she observes the x-value, xt, of an
object vt, and not its y-value, yt. She makes a prediction about yt on the basis of xt, and
the data base vt�1. At the end of the period uncertainty is resolved; the subject observes
yt, and updates the data base. Thus learning does not only occur in the learning phase
but continues through the whole life time.
In the context of ex ante optimal categorizations, one categorization is formed at

the beginning of the �rst period of the learning phase, and used for prediction in all
periods of the prediction phase. In the context of ex post optimal categorizations, a new
categorization may be formed at the beginning of each period of the prediction phase �
though in reality re-categorization is not likely to happen after every single observation.

2.2 Categories

A categoryCi is a subset of V . A categorization is a �nite set of categories C = fC1; :::; Ckg
that constitutes a partitioning of V . Let Xi be the projection of Ci onto X. Since the
category membership of an object only depends on the object�s x-value, the collection of
sets fX1; :::; Xkg form a partitioning of X, and we can write Ci = Xi � Y . Each set Xi

is assumed to be the union of �nitely many intervals.9 The relative size of categories is
constrained by some (small) number � 2 (0; 1) such that Pr (x 2 Xi) =Pr (x 2 Xj) > �
for all i and j. For the case of a �nite number of categories this implies that all categories
have positive probability. When the number of categories goes to in�nity (requiring that
X is in�nite) the assumption implies that no category becomes relatively in�nitely larger

9If categories are only composed of one interval then categories are required to be convex. See Gär-
denfors (2000) for arguments as to why the extension of natural concepts may be convex.
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than another category. Furthermore, the number of categories per objects is bounded
by some arbitrarily large but �nite �, i.e. k=T < �. This assumption is only made in
order to assure existence of a solution when T is small. When T is su¢ ciently large,
existence can be proved without this assumption. The set of categorizations satisfying
these assumptions, the feasible categorizations, is denoted 	.
It might seem problematic to assume that categories are mutually exclusive. For

instance, hierarchically organized concepts, such as the two categories of stone and granite,
are not mutually exclusive. However, we generally do not use such overlapping categories
for the same prediction tasks. If I am interested in whether an object will burn when
thrown on the �re I might categorize the object as made of stone rather than wood, and
infer that it will not burn. In this context it is useless to know whether the object is of
granite or not. But if I want to build a house it may be useful to employ a narrower
categorization of materials, since granite is more solid than e.g. limestone.

2.3 Prediction

For each category Ci 2 C, and for date t, the subject has a prediction ŷit about the y-value
of objects in that category. As discussed above, it will be assumed that the prediction
equals the mean of all previously experienced objects in that category. Let

Dit = fs 2 N : s < t ^ vs 2 Cig.

This is the set of dates, prior to date t, at which objects in category Ci were observed.
Let mit = jDitj, so that

Pk
i=1mit = t� 1, for all t. Thus at date t > L the prediction for

category i is

ŷit =

�
1
mit

P
s2Dit ys if mit > 0

ŷt if mit = 0
, (1)

where

ŷt =
1

t� 1

t�1X
s=1

ys. (2)

This de�nition says that if the data base does not contain any objects in the category
that object vt belongs to, then the prediction for this object is made on the basis of all
objects currently in the data base. This seems like a natural assumption, but there are
alternatives: For instance one could modify the model and assume that the subject is
endowed with at least one object in each category, in period. This assumption would not
a¤ect the results of the paper, and will be used at some points in the paper for reasons
of tractability (propositions 5 and 9, and section 4.3).10

10Alternatively one could assume that there is some �xed prediction error associated with empty
categories. Again, all the results will go through under this alternative assumption.

8



2.4 Prediction Error and Optimality

For any object vt that the subject may encounter at date t, there is a unique category Ci
such that vt 2 Ci. For any data base vt�1 2 V t�1 that the subject may have at date t the
prediction yit is then determined according to (1) and (2). Given a categorization C and
a data base vt�1, the prediction error associated with a new object vt 2 Ci is de�ned as
the squared Euclidean distance between the predicted value ŷit and the true value yt, i.e.

PE
�
C; vt; v

t�1� = (yt � ŷit)2 . (3)

At the beginning of period t the data base vt�1 has been accumulated, but object vt
has not been observed yet. Given a categorization C, one might ask what the expected
prediction error associated with vt is. The answer is given by taking expectation over all
objects vt 2 V . That is, conditional on a data base vt�1 the expected (ex post) prediction
error of categorization C at date t is

EPE
�
C; vt�1

�
= E

�
PE

�
C; vt; v

t�1� jvt�1� . (4)

Furthermore, by taking expectation also over data bases vt�1 2 V t�1, one obtains the
unconditional expected (ex ante) prediction error of categorization C at date t;

EPE (C; t) = E
�
PE

�
C; vt; v

t�1�� . (5)

Summing over the T �L prediction tasks that the subject has to perform, one can de�ne
the total expected (ex ante) prediction error of a categorization C as

EPE (C; T; L) =
1

T � L

TX
t=L+1

EPE (C; t) (6)

With these equations one may de�ne the two notions of optimal categorizations that
will be the focus of this paper. For the case of categories that are acquired before a data
base has been accumulated, the relevant notion of optimality is the following:

De�nition 1 A categorization C 2 	 is optimal prior to data, or ex ante optimal, if
it minimizes EPE (C; T; L).

The set of such ex ante optimal categorizations is

	� = argmin
C2	

EPE (C; T; L) .

Let k�min (and k
�
max) be the smallest (and largest) number of categories among the ex ante

9



optimal categorizations;

k�min = arg min
C2	�

jCj , k�max = arg max
C2	�

jCj .

The relevant notion of optimality for categorizations that are developed conditional on a
data base is:

De�nition 2 A categorization C 2 	 is optimal conditional on a data base vt�1, or ex
post optimal, if it minimizes EPE (C; vt�1).

Thus ex ante optimality is de�ned in terms of the total (unconditional) expected
prediction error over all the periods of the prediction phase while ex post optimality is
de�ned only in terms of the (conditional) expected prediction error over the next period
in the prediction phase. This apparent asymmetry is due to the fact that an ex ante
categorizations is formed only once, at the beginning of the �rst period of the learning
phase, and used in all periods of the prediction phase, while a new ex post categorization
may be formed at the beginning of each period of the prediction phase.

3 Results

3.1 Preliminary Results

In order to derive an expression for EPE (C; vt�1), the expected prediction error condi-
tional on a data base vt�1, note that, for X = [a; b],

Pr (x 2 Xi) =

Z
x2Xi

Z
y2Y

f (x; y) dxdy,

and de�ne

f (yjx 2 Xi) =
1

Pr (x 2 Xi)

Z
x2Xi

f (x; y) dx.

In caseX is �nite the integral overXi in these two expressions is replaced by a summation.
Also de�ne V ar (yi) = V ar (yjx 2 Xi). Using this one can show.

Lemma 1 The expected prediction error for a categorization C, conditional on a data
base vt�1, is

EPE
�
C; vt�1

�
=

kX
i=1

Pr (x 2 Xi)
�
V ar (yi) + (ŷit � �i)2

�
.

10



This expression reveals the basic trade-o¤ that determines the ex post optimal number
of categories. The term V ar (yi) measures how similar (with respect to the y-dimension)
di¤erent objects in category Ci are. The term (ŷit � �i)2 measures how close the prediction
is to the actual average of categoryCi. The ex post optimal categorization strikes a balance
between the goal of having a low within category variance and the goal of estimating the
category mean correctly. The same trade-o¤ determines the ex ante optimal number of
categories.
In order to derive EPE (C; t), �x the date t and take expectation of EPE (C; vt�1)

with respect to the data bases of size t� 1:

Lemma 2 The (unconditional) expected prediction error for a categorization C, at time
t, is

EPE (C; t) =
kX
i=1

Pr (x 2 Xi)V ar (yi)

 
1 +

t�1X
r=1

Pr (mit = r)
1

r

!

+
kX
i=1

Pr (x 2 Xi) Pr (mit = 0)E
�
(ŷt � �i)2 jmit = 0

�
,

where mit has a binomial distribution

Pr (mit = r) =

�
t� 1
r

�
(Pr (x 2 Xi))

r (1� Pr (x 2 Xi))
t�1�r .

It will be fruitful to decompose the within-category variance, with respect to the
y-dimension, V ar (yi), into the contribution of the within-category average conditional
variance

E [V ar (yjx) jx 2 Xi] =

Z
x2Xi

f (x)

Pr (x 2 Xi)
V ar (yjx) dx,

and, what I will call, the within-category variance of the conditional expected value

V ar (E [yjx] jx 2 Xi) =

Z
x2Xi

f (x)

Pr (x 2 Xi)

�
E [yjx]�

Z
x2Xi

f (x)

Pr (x 2 Xi)
E [yjx] dx

�2
dx.

(Again, in case X is �nite the integral over Xi in these two expressions above is replaced
by a summation.) The within-category variance is the sum of the within-category average
conditional variance, and the within-category variance of the conditional expected value;11

V ar (yi) = E [V ar (yjx) jx 2 Xi] + V ar (E [yjx] jx 2 Xi) . (7)

11It is a standard result that V ar (y) = E [V ar (yjx)] + V ar (E [yjx]). Conditioning on x 2 Xi is
straightforward.
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A �nal preliminary result establishes the existence of optimal categorizations:

Proposition 1 For any t, there exists a solution to the problem of minimizing EPE (C; t),
with respect to C 2 	. For any L and T , there exists a solution to the problem of mini-
mizing EPE (C; T; L), with respect to C 2 	. For any vt�1 there exists a solution to the
problem of minimizing EPE (C; vt�1) with respect to C 2 	(vt�1).

It can be noted that there is no guarantee that any of these solutions are unique, thus
allowing for a (mild) form of conceptual relativism.

3.2 Ex Ante Optimal Categorizations

The following proposition describes how the ex ante optimal categorization changes with
lengths of the learning and prediction phases.

Proposition 2 (a) If T ! 1 then k�max=T ! 0 and k�min ! jXj. (b) There are �nite
L0 and T 0, with L0 < T 0, such that if L0 < L < T < T 0, then k�max < L.

Part (a) establishes that as T goes to in�nity it is optimal to let the number of
categories increase too, but a slower rate, so that the number of categories per object
goes to zero. In the case of a �nite X this result is a direct consequence of the �niteness
of X but in the case of an in�nite X this is a non-trivial result. Also note that part (a)
implies if the learning phase, or the prediction phase, is su¢ ciently long, then all optimal
categorizations have more than one category. Part (b) says that if the learning phase
is su¢ ciently long in relation to the prediction phase then all optimal categorizations
have a smaller number of categories than the number of observations made during the
learning phase. In total, proposition 2 provides an explanation for why we typically
employ categorizations that are neither maximally �ne-grained nor maximally coarse.
This is discussed further section 4.2.
Now consider two subjects 1 and 2, with di¤erent total number of observations. Denote

their numbers of observations by T1 and T2 respectively. (In section 4.2 subjects 1 and
2 are interpreted as being a layman and an expert, respectively.) It is a corollary of the
previous proposition that if the di¤erences between the two subjects are large enough then
it is optimal for individual 1 to have fewer categories than individual 2. Write k�min (T )
and k�max (T ) to make the dependence of k

�
min and k

�
max on T explicit.

Corollary 1 For any T1, if k�max (T1) < jXj, then there is a T 0 such that if T2 > T 0, then
k�max (T1) < k

�
min (T2).

12

The next three propositions concern the relationship between the density f (x; y) and
the optimal categorization. The �rst result considers the marginal density over X, i.e.
f (x). Write k�min (f) and k

�
max (f) to make the dependence of k

�
min and k

�
max on f explicit.

12Of course, the restriction k�max (T1) < jXj is always satis�ed for in�nite X.
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Proposition 3 Restrict attention to the categorization of a proper subset E � X. Con-
sider two densities f0 and f1, such that for all x 2 E; f0 (yjx) = f1 (yjx) and �f0 (x) =
f1 (x), for some � > 0. Under f1, the lowest optimal number of categories in E, k�min (f1),
is weakly increasing in �.

The more common objects from one subset of X are, the more �ne-grained should the
optimal categorization for that subset be. This is a generalization of the result in Fryer and
Jackson (2008), to the e¤ect that less frequent objects will be categorized more coarsely.
Their result assumes a �xed number of categories, whereas mine does not. They relate
the result to the possibility that ethnic minorities will be categorized more coarsely than
majorities. This will tend to lead to more stereotypical predictions about the minority
than about the majority.
The next result concerns the e¤ect of the conditional variance, V ar (yjx), on the

optimal categorization.

Proposition 4 Consider two densities f0 and f1, such that f0 (x) = f1 (x), Ef0 [yjx] =
Ef1 [yjx] and V arf1 (yjx) > V arf0 (yjx) for all x 2 X. The lowest optimal number of
categories (k�min) is at least as large with f1 as with f0, i.e. k

�
min (f0) � k�min (f1).

The proposition states that the optimal number of categories increases as the con-
ditional variance increases (weakly). The reason is that increased variance makes the
estimates of category averages less reliable. In order to counteract this e¤ect, categories
need to contain larger samples.
We saw above (equation 7) that V ar (yi) is the sum of E [V ar (yjx) jx 2 Xi] and

V ar (E [yjx] jx 2 Xi). Proposition 4 concerns comparative statics with respect to the
former term. Comparative statics with respect to the latter term requires more detailed
assumptions about the distribution f . For this reason I now restrict attention to the
following special case: Suppose X = [0; 1] (and Y = R as before) and suppose that the
relation between X and Y is described by the classical linear regression model;

y = �+ �x+ z, (8)

where z � N (0; �2). Furthermore assume that x is uniformly distributed on X. Assume
also that the subject only makes one prediction during her life, i.e. T �L = 1 (extension
to T � L > 1 is straightforward but does not add insight). Finally, for simplicity, also
assume that subjects are endowed with one observation in each category already during
the learning phase, as mentioned in section 2.3. (The results become more tractable with
this assumption but the general insight is unaltered.) Under these assumptions we have
the following result:

Proposition 5 For any T and L the number of categories in the optimal categorization
is unique and all categories are convex with the same length along the x-axis. The optimal
number of categories is increasing in � and decreasing in �2.
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Recall that for the linear regression model it holds that

� =
Cov (x; y)

V ar (y)
,

so increasing covariance of x and y increases the optimal number of categories. Increasing
the conditional variance of y decreases the optimal number of categories. This result is
very intuitive: If the covariance is large then the categories have to be narrow in order
to keep the heterogeneity of objects in each category within limits. If the variance of y is
large then (in line with proposition 4) the categories have to be broad in order to contain
enough objects to allow reasonably accurate estimates of the means of each category.
Proposition 5 can be extended to the case of a �nite X even when there is no metric

on X, provided that we can infer an order on X from E [yjx], as described by (8).

3.3 Ex Post Optimal Categorizations

Some categorizations are formed only after a data base has been accumulated. In the
introduction it was argued that humans might have evolved an ability to form catego-
rizations that tend to minimize expected prediction error conditional on the accumulated
data base. That is, humans would have access to algorithms or heuristics that takes a
given data base as input and deliver an approximately (ex post) optimal categorization as
output, without using any information that is not in the given data base. As analysts we
might be willing to abstract from these heuristics and assume that subjects act as if they
minimized EPE (C; vt�1) on the basis of knowledge of f . However, a more realistic ap-
proach would specify some heuristic that could potentially be used to �nd approximately
ex post optimal categorizations. In this section I present results along both these lines.
The notion of ex post optimal categorizations is de�ned with reference to a given data

base vt�1. This means that the optimal categorization may look very di¤erent depending
on the particular data base. The results presented in this section are therefore formulated
in terms of how changes in the model�s parameters in�uence the probability that the
optimal categorizations will have certain properties. With this phrasing, it turns out that
one can prove results that are fairly direct counterparts to the results provided for ex ante
optimal categorizations, though in some cases more restrictive assumptions are applied.
What heuristics might a categorizing subject use to form categorizations given a data

base? The subject should not be assumed to know f , because if she did, there would be
no need to base predictions on categorization, rather than using knowledge of f directly.
However, the subject could use the data base to compute some estimator of EPE (C; vt�1),
and then pick a categorization that minimizes this value �possibly within an a priori
restricted set of categorizations. The following estimator could be used:

De�nition 3 Let 	̂ (vt�1) denote the set of categorizations in which all categories have
at least two elements (mit � 2) given the data base vt�1. The sample prediction error for
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a categorization C 2 	̂ (vt�1), conditional on a data base vt�1, is

\EPE (C; vt�1) =
kX
i=1

mit

t� 1

�
1 +

1

mit

�
s2it,

where
s2it =

1

mit � 1
X
s2Dit

(ys � ŷit)2 .

The motivation for the de�nition of \EPE (C; vt�1) comes from the following obser-
vation, which follows directly from the facts that E[ (ŷit � �i)2] = V ar (yi) =mit, and
E [s2it] = V ar (yi).

Lemma 3 For a given categorization C, a number t�1 of observations, and an allocation
of observations to categories fm1t;m2t; :::;mktg, with mit � 2 for all i, let ~	 be the set of
data bases ~vt�1 such that ~mit = mit for all i. If expectation is taken over ~	, then

E
�
EPE

�
C; vt�1

��
=

kX
i=1

Pr (x 2 Xi)

�
1 +

1

mit

�
V ar (yi) ,

and

E
h

\EPE (C; vt�1)
i
=

kX
i=1

mit

t� 1

�
1 +

1

mit

�
V ar (yi) .

The lemma implies that if the actual fraction of objects in each category,mit= (t� 1), is
equal to the probability of receiving an object in the corresponding category, Pr (x 2 Xi),

then EPE (C; vt�1) and \EPE (C; vt�1) have the same expected value.

A categorization that minimizes \EPE (C; vt�1) will be called an estimated optimal
categorization. De�ne the sets of ex post optimal, and ex post estimated optimal, cate-
gorizations,

	�
�
vt�1

�
= arg min

C2	(vt�1)
EPE

�
C; vt�1

�
, 	̂�

�
vt�1

�
= arg min

	̂2(vt�1)
\EPE (C; vt�1).

Let k�min (v
t�1) (k̂�min (v

t�1)) be the smallest number of categories among the ex post (es-
timated) optimal categorizations,

k�min
�
vt�1

�
= arg min

C2	�(vt�1)
jCj , k̂�min

�
vt�1

�
= arg min

C2	̂�(vt�1)
jCj .

We are now in a position to state results both regarding the actual expected prediction
error and the estimated expected prediction. More speci�cally, each of the following results
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states how the categorizations that minimize EPE (C; vt�1) and the categorizations that

minimize \EPE (C; vt�1) are likely to be a¤ected by changes in di¤erent parameters. It

turns out that these e¤ects are very similar, indicating that \EPE (C; vt�1) is a useful
estimator of EPE (C; vt�1). The �rst result regards the e¤ect of varying the size of the
data base, it corresponds to proposition 2 in the case of ex ante optimality.

Proposition 6 (a) For any k0 < jXj and � 2 (0; 1) there is a t0 such that if t > t0 then

Pr
�
k�
�
vt�1

�
> k0

�
> �. (9)

(b) The statement in (a) holds if (9) is replaced with

Pr
�
k̂�
�
vt�1

�
> k0

�
> �. (10)

Part (a) says that by increasing the size of the data base, we can ensure that the
ex post optimal categorizations are arbitrarily likely to have more than k0 categories.
By increasing the size of the data base su¢ ciently much we can push this probability
arbitrarily close to one. Part (b) goes on to state that the same relationship holds for the
estimated expected prediction error.13

To see why it is necessary to formulate the proposition in probabilistic terms, con-
sider the following example which shows that adding an observation to a data base may
sometimes lead the optimal number of categories to decrease. Similar examples may be
constructed for minimization of estimated expected prediction error.

Example 4 Assume X = [0; 1],Y = R, V ar (yjx) = �2, f (x) = 1, and

E [yjx] =
�
0:5 if x < 0:5
0:1 if x � 0:5 .

Consider the data base v = f(0:1; 0:6) ; (0:2; 0:6) ; (0:7; 0)g. Compare a categorization C 0
consisting of only one category, with a categorization C 00 that divides X into two categories
C1 = [0; 0:5)�R and C2 = [0:5; 1]�R. It is straightforward to compute EPE (C 0; vt�1) =
�2+0:05 and EPE (C 00; vt�1) = �2+0:01. Thus C 00 is the ex ante optimal categorization.
Now suppose one object (0:8;�0:6) is added to the data base, so that EPE (C 0; vt�1)
�2 + 0:0625 and EPE (C 00; vt�1) = �2 + 0:085. Hence C 0 is the new ex ante optimal
categorization. The intuition behind this result is that the added object is such an outlier
that it needs to be "neutralized" in a larger sample, which is achieved by merging the
categories.

13In this case the lower bound t0 also serves to ensure that it is su¢ ciently likely that a categorizations
with more than k0 categories will be feasible given a data base of size t� 1.
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The next proposition tells us what happens if we restrict attention to categorize of a
subset E of X, and vary the density on E.

Proposition 7 Restrict attention to the categorization of a proper subset E � X. Con-
sider two densities f0 and f1, such that for all x 2 E; f0 (yjx) = f1 (yjx) and �f0 (x) =
f1 (x), for some � > 0. (a) For any k0 < jEj and � 2 (0; 1) there is a t such that if t > t0
then there is an �0 (t) such that if � > �0 (t) then

Pr
�
k�
�
vt�1

�
> k0

�
> �, (11)

and if � = �0 (t) then the above does not hold. Moreover, �0 (t) is decreasing in t. (b)
The statement in (a) holds if (11) is replaced with

Pr
�
k̂�
�
vt�1

�
> k0

�
> �. (12)

In other words, if t is large enough then by increasing the density over E, as para-
meterized by �, we can guarantee a lower bound on the probability that the optimal
categorizations, and the estimated optimal categorizations, have more than k0 categories.
The e¤ect of changing the conditional variance is described by the following propo-

sition. Compared to proposition 4 it makes the stronger assumption that y is normally
distributed conditional on x. This assumption is made in order to obtain analytical re-
sults, and it could be conjectured that a similar result would hold in its absence.

Proposition 8 Consider a density f such that yjx � N (E [yjx] ; �2) for all x 2 X.14 (a)
For any k0 < jXj, the probability

Pr
�
k�
�
vt�1

�
> k0

�
, (13)

is weakly decreasing in �2. (b) The statement in (a) holds if (13) is replaced with

Pr
�
k̂�
�
vt�1

�
> k0

�
. (14)

By decreasing the variance of y conditional on x one can increase the probability that
the optimal categorizations, and the estimated optimal categorizations, have more than
k0 categories.
Finally, if we make the same assumptions as for proposition 5 then we obtain the

following result. Compared to proposition 5 this result is weaker since it assumes convex
categories, rather than deriving them as a result.15

14If one did not assume yjx � N
�
E [yjx] ; �2

�
, the proposition would still hold for large enough t, as a

consequence of the central limit theorem.
15The probability that convex categories outperform non-convex categories, can be made arbitrarily

large by increasing t.
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Proposition 9 Restrict attention to categorizations with convex categories. (a) For any
k0 < jXj, the probability

Pr
�
k�
�
vt�1

�
> k0

�
, (15)

is weakly decreasing in �2, and weakly increasing in �. (b) The statement in (a) holds if
(15) is replaced with

Pr
�
k̂�
�
vt�1

�
> k0

�
. (16)

By increasing the slope � one can increase the probability that the optimal catego-
rizations, and the estimated optimal categorizations, have more than k0 categories. The
e¤ect of changing the conditional variance is, of course, the same as in proposition 8.
Propositions 6-9 indicate that \EPE (C; vt�1) might be a reasonable guide to choices

between di¤erent ways of categorizing a given data base. However, it might be too cogni-
tively demanding and time consuming to compute \EPE (C; vt�1) for all categorizations
in 	̂ (vt�1). For this reason the set of categories may be restricted in some way. For
instance, one could use the following procedure that restricts the set of categorizations to
those that can be obtained by successively re�ning some initial categorization:16

� Start out with an initial categorization C 0. This could either be some prior catego-
rization that needs to be updated or it could be the trivial categorization with only
one category.

� Pick a category C 0i 2 C 0, and perform the following test: Create a new categorization
C 00 by splitting C 0i into two categories C

00
i1 and C

00
i2.

� If either C 00i1 or C
00
i2 contain less than two objects (given v

t�1), pick another
category C 0j (j 6= i) in C 0, and do the same test with that category.

� If both C 00i1 and C
00
i2 contain at least two objects (given v

t�1), compute the
estimator of the expected prediction error for both C 0 and C 00.

� If \EPE (C 00; vt�1) > \EPE (C 0; vt�1) then pick another category C 0j (j 6= i)
in C 0, and do the same test with that category.

� If \EPE (C 00; vt�1) < \EPE (C 0; vt�1) then let C 00 be the new benchmark
categorization.

� Continue this process until splitting categories further either would result in cate-
gories with less than two objects or would result in an increase in estimated expected
prediction error.

16Alternatively, if the subject already has some prior categorization (that needs to be updated) then
the set 	̂

�
vt�1

�
could be restricted to only include that prior categorization together with categorizations

that are in some way similar to that categorization.
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The process ends in a �nite number of steps. Since it restricts the choice of catego-
rizations there is no guarantee that it will deliver a categorization that is optimal within
a larger set of categories. However propositions 6-9 indicate that, among the categoriza-
tions that it considers, it will tend to pick categorizations in a way that is similar to what
minimization of expected prediction error dictates. In the language of machine learning,
this amounts to a divisive hierarchical clustering algorithm. I have not found an algorithm
in the existing literature that uses an evaluation criterion like the one proposed here. As
mentioned in the introduction, this is likely due to the fact that I cluster objects on the
basis of the x-dimension while my evaluation criterion is based on the y-dimension.
Categorizations that are formed in response to a data base may, of course, be modi�ed

as more data is accumulated. Eventually, the subject might suspect that the old catego-
rization could be improved to such an extent that it is worth the trouble of going through
the above procedure again. In such a setting of occasional re-categorizations, it is likely
that the succession of categorizations will display some path dependence, in the sense
that the order of observations matter for the end result. The reason is that the suggested
procedure takes the current categorization as starting point and only considers certain
re�nements thereof. The data that has been accumulated before the �rst categorization
is formed will therefore have a decisive in�uence on how the categorization is subsequently
modi�ed in response to added data points.

3.4 Extensions

3.4.1 Interest-dependent Predictions

The cost of a prediction error has been assumed independent of x, only depending on
the distance between the predicted and the actual y-value. More realistically it could be
that predictions associated with some set E � X are considered more important than
predictions in some other set F � X. It is easy to extend the model to handle this
possibility. One may simply add a function w : X ! [0; 1] such that w (x) measures the
importance of predictions associated with x. It is straightforward to verify that changes
in w (x) will have much the same e¤ect as changes in f (x). Increasing the importance of
predictions in a set E will weakly increase the optimal number of categories in that set.

3.4.2 Multi-dimensional X and Y

The model can be extended to allow for prediction of many di¤erent attributes of an
object, represented by a vector yt 2 Y = Rn. The easiest way of doing this is to let the
prediction error be a weighted "city-block" metric. Let y (j) denote the jth component
of y and let z (j) be the weight put on the jth dimension. The prediction error may
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be de�ned as PE (C; vt; vt�1) =
Pn

j=1 z (j) (yt (j)� ŷit (j))
2.17 With this speci�cation all

of the results presented above hold for a multi-dimensional Y . The weights may di¤er
between subjects, allowing for another form of interest-dependent predictions.
It was assumed that either X is �nite or X is a closed interval on the real line. When

X is a �nite set it is inconsequential whether objects are multidimensional or not. It
is more complicated to allow for an in�nite set X that is not one-dimensional. The
di¢ culty lies in proving that an optimal categorization exists. The problem can of course
be handled by restricting attention to �nding an optimal categorization within a �nite
subset of categorizations.

3.4.3 Fixed Number of Categories

It has been shown that a subject basing predictions on categories might be better o¤
using a coarse rather than a �ne categorization. Still, the number of categories may be
restricted for other reasons which are external to the model (e.g. some cognitive cost
that is increasing in the number of categories). The model can be adapted to deliver
predictions about how the optimal categorization divides X into an exogenously given
number of categories. For simplicity I con�ne the discussion to ex ante optimality.
First, note that

Pt�1
r=1 Pr (mit = r) =r ! 0 as t ! 1, implying that EPE (C; t)

approaches
Pk

i=1 Pr (x 2 Xi)V ar (yi). The term
Pt�1

r=1 Pr (mit = r) =r is decreasing in
Pr (x 2 Xi). It follows that, as t increases it becomes less important that categories with
a high variance V ar (yi) are also categories with a high Pr (x 2 Xi). In the limit as t!1,
the optimal categorization is completely determined by V ar (yi). In this case the optimal
categorization simply maximizes the sum of within category variances. Second, suppose
that the subject categorizes a proper subset E � X and its complement separately. Re-
strict attention to the categorization of E and consider the e¤ect of increasing f (x) for
all x 2 E. The results depend on whether the total number of categories, or the number
of categories in E, is �xed. If the number of categories in E is allowed to vary, but the
total number of categories is �xed, then it follows from proposition 3 that increasing f (x)
for all x 2 E will result in a larger optimal number of categories in E. If the number of
categories in E is �xed, then increasing f (x) for all x 2 E will have an e¤ect similar to
that of increasing t, since it will decrease the term

Pt�1
r=1 Pr (mit = r) =r. Third, increasing

V ar (yjx) for all x will make expected variance E [V ar (yjx) jx 2 Xi], more decisive than
the variance of the expected mean V ar (E [yjx] jx 2 Xi), in determining the optimal cate-
gorization. Finally, in the context of the linear regression model studied in propositions 5
and 9, changing �2 or � will not a¤ect the optimal categorization, since it a¤ects V ar (yi)
equally for all categories.

17A similar modelling choice is made by Fryer and Jackson (2008), who also refer to empirical evidence
on the psychological relevance of the city-block metric.
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4 Discussion

4.1 Why use Categories?

This paper builds on the assumption that we use categories to make predictions. The
assumption is based on a substantial body of psychological research establishing that
categorical thinking permeates human cognition, including prediction. Nevertheless, one
might ask why we use categorizations rather than some other method for making pre-
dictions. In particular one might suggest that one could employ some form of similarity
based reasoning, for instance as formalized by kernel-based estimation. On this approach
the prediction of y conditional on x will be a weighted average of nearby observations,
where the weights put on an observation (x0; y0) is a decreasing function of the distance
between x and x0. One obvious limitation of this approach is that it will not work unless
the subject has access to some metric on X. In contrast, as shown above, prediction based
on categorization is possible even when there is no such metric available. The objects are
then grouped solely on the basis of their y-values. In essence such a categorization cre-
ates a similarity relation �objects sharing the same category are similar and objects not
sharing the same category are dissimilar. As indicated in the introduction, the question
of whether categorizations are based on similarity relations or not is subject to debate,
and will not be discussed further here. However, even if one is willing to assume that sub-
jects have a metric on X there are some further potential shortcomings of kernel based
predictions, compared with predictions based on categorizations.
Presumably categorizations are used in order to facilitate fast predictions; when facing

a new object the subject simply puts the object in a category and uses the corresponding
prediction. Of course, the subject might decide to devote more time to the prediction
problem, but in that case the categorization-based prediction might be modi�ed by other
modes of prediction-making. Hence category-based and kernel-based predictions should be
compared for the case when predictions are produced in a relatively fast and automatic
way. In this case predictions have to be computed in advance. Note that this line of
reasoning does not depend of on whether the categorization was acquired before the
subject had accumulated a data base, or formed on the basis of an accumulated data
base; once a categorization is in place predictions are computed in advance.
A subject basing predictions of categories will use something like the following proce-

dure: At the beginning of period t the subject has stored k pairs (ŷit;mit) of predictions
and samples sizes, one for each category. She then observes xt, identi�es Ci, such that
xt 2 Ci and predicts ŷit. At the end of period t she observes yt and uses it to compute an
updated prediction ŷit+1 = (mitŷit + yt) = (mit + 1) for category Ci, and replaces (ŷit;mit)
with (ŷit+1;mit+1).
In contrast, a subject basing predictions on kernel based estimation will use a pro-

cedure akin to the following: At the beginning of period t the subject has stored t � 1
di¤erent objects (x; y) and a number of jXj predictions ŷtjx. She then observes xt, and
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uses the corresponding prediction ŷtjxt. At the end of period t she adds the observation
(xt; yt) to her memory. She computes an updated prediction ŷt+1jx for each x within
some distance � of the observed xt. (Observation xt has positive weight only in the
computations of predictions ŷtjx0 for x0 that are within distance � from xt.)
In conclusion, the kernel-based procedure has at least three drawbacks.

1. The kernel-based procedure requires the subject to store a larger number of predic-
tions; jXj rather than k predictions.

2. The kernel-based procedure requires the subject to update a larger number of predic-
tions after each new observation; the subject has to update all predictions associated
with values x that are within distance � of the new observation xt. In the category
based procedure only k predictions are updated.

3. The kernel-based procedure requires the subject to store more information about
observations; t� 1 individual observations rather than k pairs (ŷit;mit).

4.2 Psychological Applications

4.2.1 Basic Level Categories

In studies of concepts and categorization with hierarchically organized concepts (e.g. an-
imal �bird �robin) it is found that there is a privileged level in the hierarchy, called the
basic level. Generally this level is named spontaneously in categorization tasks, learned
�rst by children, and is in other ways salient (Rosch et al. (1976)). The basic level is
neither the most general level nor the most detailed level (e.g. bird rather than animal or
robin). The model put forward in this paper suggests that the reason that we do not use
the �nest categorization as our basic level is the need to have a su¢ ciently large sample
in each category to generalize from. The dominant view in psychology has instead been
that the cost of �ne-grained categorizations has to do with the di¢ culty of categorizing
objects into �ne-grained categories: In order to categorize something as belonging to a
very narrow category one must observe many properties of an object, something that
may be inconvenient or impossible (Medin (1983), and Jones (1983)). It is di¢ cult to
come up with a clean test between these two explanations. The reason is that lower level
categories both contain less objects and are associated with more stringent conditions
for application. Experimentally one could try to �nd a superordinate category and a
subordinate category which are equally easy to apply. The conventional psychological
explanation would then predict that the basic level will not be the superordinate of these
two categories. In contrast, explanation suggested in this paper would predict the su-
perordinate category to be basic if the subordinate category contains too few exemplars,
or is associated with too much variance. The explanations are probably best viewed as
complementary. Both may describe forces that shape our categorizations.
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4.2.2 Experts and Laymen

Experts tend to have a more �ne grained conceptual structure than laymen (Tanaka and
Taylor (1991), Johnson and Mervis (1998)). This can be explained in the present model,
with the help of corollary 1. Consider a layman with a learning phase of length L1 and
a prediction phase of T1 � L2 periods. Suppose the optimal number of categories for this
person is k1. An expert is distinguished by that she goes through more extensive training,
L2, or a longer prediction phase T2 � L1, than the layman The model predicts that if
these di¤erences are large enough, then it is optimal for the expert to have larger number
of categories than the layman; k2 > k1. This may also explain why some populations use
a more �ne-grained category structure than other populations: For instance, people in
traditional subsistence cultures tend to have more speci�c biological categories than e.g.
American college students (Berlin et al. (1973), Solomon et al. (1999)). Needless to say
there are other possible explanations for this phenomenon.

4.2.3 Heterogeneous Priors

As mentioned in the introduction the model can be seen as describing a way of generating
priors. This interpretation allows us to distinguish various sources of heterogeneous pri-
ors. Clearly, di¤erent experience, in the form of di¤erent databases will lead to di¤erent
predictions, for a given common categorization. More importantly even subjects with the
same experience may arrive at di¤erent priors, if they use di¤erent categorizations. In
the case of ex ante categorizations this might be due to the fact that they have learned
categorizations from cultures or trades which have developed in response to di¤erent dis-
tributions f . In the case of ex post categorizations is may be due to the subjects having
had di¤erent data bases at time they formed their categorizations, even if subsequent
observations have made their data bases identical. Furthermore di¤erent interests, as
discussed in section 3.4, and as represented by di¤erent weights w (on X) and z (on Y ),
will lead to di¤erent optimal categorizations.

4.3 Categorization in Game Theory

The primary purpose of this paper is to investigate what categories are optimal for the
purpose of making predictions in non-strategic setting. However, in the following I adapt
the above framework to two examples of strategic interactions. The categorizations are
determined by the same ex ante optimality considerations as before, but the probability
distribution entering the optimality calculation is derived from an equilibrium in a game or
a class of games. Moreover, each player�s equilibrium action is required to be a best reply
according to the predictions generated by that player�s optimal categorization. Hopefully
the examples in this section indicate how the framework of this paper may be applied
to models of categorization where the categories are otherwise exogenously given. At
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least, the results could motivate restrictions on the set of feasible categorizations in such
models.18 For reasons of tractability I will use the ex ante optimality criterion. For similar
reasons I will employ the assumption (mentioned in section 2.3) that each category is
initially endowed with one observation.

4.3.1 Categorization of Games

The �rst example concerns categorization of games. Consider a class of games (borrowed
and adapted from Steiner and Stewart (2008)) with payo¤s � (ai; aj) described by

S H
S 2� � 1

2
; 2� � 1

2
2� � 3

2
; 0

H 0; 2� � 3
2

0; 0
.

Each time the a game from this class is played the parameter � 2 � = [0; 1] is drawn
according to a uniform distribution, and before playing the game, the parameter � is
made common knowledge among the players. To the payo¤s represented by the matrix
above, a stochastic term " is added, with mean 0 and variance �2, which is independent
of the chosen actions. The utility function of player i is u (ai; aj) = � (ai; aj) + ". Restrict
attention to pure strategies. If � < 1=4 then the unique equilibrium is (H;H), if � > 3=4
then the unique equilibrium is (S; S), and if � 2 (0:25; 0:75) then both (H;H) and (S; S)
are equilibria.19 The pure action set of player i is Ai = fS;Hg. A policy qi 2 Qi for this
environment is a mapping from � to Ai.
Players categorize the parameter space � in order to predict the payo¤ di¤erence

between choosing strategies S and H. The parameter space � corresponds to the x-
dimension in the model developed above and the payo¤ di¤erence corresponds to the y-
dimension. A categorization pro�le c = fC1; C2g = ffC11 ; C12 ; :::C1k1 ; g; fC

2
1 ; C

2
2 ; :::C

2
k2
; gg

consists of one categorization for each player. Player j�s policy qj, together with the payo¤
noise ", generates a p.d.f. f qj (�j�) over player i�s payo¤di¤erential, yj� = u (S; �)�u (H; �),
conditional on �. Integrating over� we get an unconditional distribution f qj (�) over games
and player i�s payo¤di¤erential. This distribution, together with the size of the data base
(t�1) determines the ex ante optimal categorizations for player i. The equilibrium notion
suggested here will assume that in equilibrium players use some such ex ante optimal
categorizations in order to predict the payo¤ di¤erence between S and H. Moreover it

18Propositions 6 and 7 imply that optimal categories should not contain too few observations. This
could motivate a restriction that each cell of a feasible partition needs to be reached with at least
some minimum probability in equilibrium. Moreover, in accordance with proposition 8 this threshold
probability should be increasing in the expected variance E [V ar (yjx) jx 2 Xi], and in line with line
with proposition 9 it should be decreasing in the variance of the expected mean V ar (E [yjx] jx 2 Xi).
Analysing the implications of such restrictions is beyond the scope of this paper.
19Of course there is also a symmetric mixed equilibrium in which each player plays S with probability

1� �, but we can ignore it without losing any insights from this example.

24



will be assumed that in equilibrium players�predictions for a certain category coincide
with the ex ante expected payo¤ di¤erential in that category, and the players will pick
the action that is predicted to earn most. That is, if the game � belongs to category Cil ,
then player i will predict that the payo¤di¤erential is E[u (S; �)�u (H; �) j� 2 Cil ], and she
will play action S (or H) only if this is non-negative (or non-positive). This assumption
is not quite realistic as it amounts to assuming that both players are perfectly correct in
their prediction even though they base them on a �nite sample of size t � 1. Without
the assumption the analysis would have to involve stochastic elements that will now be
avoided.
It seems reasonable to impose a restriction on the policies: If two games (two values

of �) are in the same category of a player then she plays the same action in both these
games. Hence the fact that two games are bundled together in the same category not
only means that the player does not distinguish them for predictive purpose. It is also
taken to imply that these two games are not distinguished when it comes to choice.20 Let
QC

i

i denote the set of feasible policies given the categorization Ci, i.e.

QC
i

i = fqi 2 Qi : �; �0 2 Cil ) qi (�) = qi (�
0)g.

Intuitively an equilibrium consists of a categorization and a policy for each player,
such that the policy pro�le generates a distribution over payo¤s and games which renders
the categorizations optimal, for a given size of the data base. Moreover, given these
categorizations each player predicts that the policy she uses is indeed a best reply to the
policy used by the opponent. Formally:

De�nition 5 An optimal game-categorization equilibrium, for a data base of size
t� 1, is a pro�le of policies and categorizations (q; c) such that:
(i) The policy pro�le is feasible given the categorization pro�le: qi 2 QCii for i 2 f1; 2g.
(ii) The categorization pro�le is optimal: Ci is an optimal categorization given f qj

and t� 1, for i 2 f1; 2g, j 6= i.
(iii) Each player perceives her policy to be optimal given her categorization: For all

� 2 �; if qi (�) = S (H) then E[u (S; �)� u (H; �) j� 2 Cil ] >(<) 0, for i 2 f1; 2g, j 6= i.

One can now prove that there are optimal game-categorization equilibria in which play-
ers optimal categorizations of � are coarse and induce them to play something di¤erent
than what they would play if they distinguished all values of � 2 �.

Claim 6 There are values of t and �2, and numbers � < 1=4, �0 > 3=4, such that there
is an optimal game-categorization equilibrium in which qi (�) = S for all � 2 (�0; 1=4) and
qi (�) = H for all � 2 (3=4; �00), i 2 f1; 2g.
20Since we only consider pure strategies this restriction on policies will only matter when at least one

category is associated with a prediction that the payo¤ di¤erential will be zero.
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This implies that there is a set of games, with positive measure, where a player with a
maximally �ne categorization would �nd one action strictly dominant, while a player with
an optimal categorization would play this strictly dominant strategy with probability one.

4.3.2 Categorization of Actions

The second example concerns categorization of actions. Consider a noisy two-player
Traveler�s Dilemma, where each player i has the action set Ai = f1; 2; :::; ng.21 The payo¤
� (ai; aj) to player i choosing action ai against action aj is equal to ai if ai = aj, equal to
ai+ r if ai < aj, and aj � p if ai > aj, where r > 0 is a reward and p > 1 is a punishment.
As before, a stochastic term ", with mean 0 and variance �2, is added to these payo¤s,
so that the utility function of player i is u (ai; aj) = � (ai; aj) + ". The Nash equilibrium
pro�le is (1; 1).
In order to predict the expected payo¤s associated with di¤erent actions the players use

categorizations. A categorization pro�le c consists of each player�s categorization of her
own action space. Thus the payo¤s and the actions correspond to the y- and x-dimensions
of the model developed above. Again it seems reasonable to restrict the set of feasible
actions in accordance with the categorization a player uses: All actions within a certain
category of a player are played with equal probability by that player. For simplicity (and
without loss of generality for the result below) further restrict attention to strategies that
only put positive weight on one category. Thus it is as if each player perceived that her
set of pure actions was constituted by her set of categories, and that she only played
such pure "category-actions". The mixed action (or strategy) set is denoted Si and the
probability put on pure action ai by the mixed action si is denoted si (ai). The set of
feasible mixed action pro�les given the categorization Ci is.

SC
i

i =
�
si 2 Si :

�
ai; a

0
i 2 Cil ) si (ai) = si (a

0
i)
�
^
�
si (ai) > 0; ai 2 Cil ; a0i =2 Cil ) si (a

0
i) = 0

�	
.

Now assume that each player plays her intended strategy with probability 1 � � and,
by mistake, randomizes uniformly over the remaining actions (the actions outside the
support of the intended strategy) with probability �. An intended mixed action pro�le s
generates a p.d.f. f s (�) over realized actions and payo¤s, which depends on payo¤noise ",
mistake probability �, as well as parameters n, r, and p. Let f s (�jai) denote the marginal
distribution over player i�s payo¤s conditional on player i�s pure action ai.
Intuitively an equilibrium consists of a categorization and an intended mixed action

for each player such that the pro�le of intended actions generates a distribution over
payo¤s which renders the categorizations optimal. Moreover, given these categorizations
each player predicts that the actions she uses are indeed best replies. Formally:

21In his original presentation of the Traveler�s Dilemma Basu (1994) discusses the possibility to explain
the behaviour in this game as resulting from coarse reasoning.
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De�nition 7 An optimal action-categorization equilibrium is a pro�le of (intended)
mixed actions and categorizations (s; c) such that:
(i) The mixed action pro�le is feasible given the categorization: si 2 SCii for all

i 2 f1; 2g.
(ii) The categorization pro�le is optimal: Ci is an optimal categorization given f s, for

all i 2 f1; 2g, j 6= i.
(iii) Each player perceives her (intended) mixed action to be optimal given her cate-

gorization: If si (ai) > 0 then ai 2 argmax~ai2Ai E[u (~ai; aj) j~ai].

Giving a complete analytical characterization of the optimal action categorization
equilibria of the Traveler�s Dilemma, is a very complicated task. Instead I will simply point
out that there are equilibria in which both players optimally use coarse categorizations
and pick the highest number, rather than the lowest number, which would be the case if
players used maximally �ne categorizations.

Claim 8 There are values of p, r, n, t, �, and �2, for which there is an optimal action-
categorization equilibrium in which both players play the pure action n.

5 Conclusion

I have provided a framework for the study of optimal categorization for the purpose of
making predictions. The optimal number of categories is endogenous to the model. A
small category results in smaller variance of objects in that category. A large category
leads to a large number of experienced objects in the category, thus improving the preci-
sion of the predictions of the category mean. This can explain the fact that the privileged
level of categorization is neither the coarsest nor the �nest one. Comparative statics yield
several predictions about how the optimal categorization varies with the number of obser-
vations and the distribution of objects. The model was adapted to handle categorizations
in game-theoretic contexts, and hopefully such applications can be developed further. It
would also be interesting to experimentally test some of the predictions of the model, such
as the predictions that the optimal number of categories are increasing in the variance of
the density. Furthermore, the framework might potentially be applied to questions from
the philosophy of science.
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6 Appendix

All proof are given for the case of an in�nite set X = [a; b], and extending the results to
the case of a �nite X is straightforward, unless stated otherwise.

6.1 Preliminaries

Proof of Lemma 1. We have

EPE
�
C; vt�1

�
=

kX
i=1

Z
(x;y)2Ci

f (x; y) (y � ŷit)2 d (x; y)

=

kX
i=1

Z
y2Y

�Z
x2Xi

f (x; y) dx

�
(y � ŷit)2 dy

=

kX
i=1

Z
y2Y

Pr (x 2 Xi) f (yjx 2 Xi) (y � ŷit)2 dy,

where the last equality uses the de�nition of f (yjx 2 Xi). Note that

(y � ŷit)2 = (y � �i)2 + (ŷit � �i)2 � 2 (y � �i) (ŷit � �i) .

Using this we have

EPE
�
C; vt�1

�
=

kX
i=1

Pr (x 2 Xi)

�Z
y2Y

f (yjx 2 Xi) (y � �i)2 dy + (ŷit � �i)2
�

�
kX
i=1

Pr (x 2 Xi) 2

�Z
y2Y

f (yjx 2 Xi) ydy � �i
�
(ŷit � �i) .

The desired result follows from the facts that the second factor on the right hand side is
equal to zero, andZ

y2Y
f (yjx 2 Xi) (y � �i)2 dy = V ar (yjx 2 Xi) = V ar (yi) .
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Proof of Lemma 2. We have

EPE (C; t) = E
�
EPE

�
C; vt�1

��
=

kX
i=1

Pr (x 2 Xi)V ar (yi)

+

kX
i=1

Pr (x 2 Xi)

t�1X
r=1

Pr (mit = r)E
�
(ŷit � �i)2 jmit = r

�
+

kX
i=1

Pr (x 2 Xi) Pr (mit = 0)E
�
(ŷt � �i)2 jmit = 0

�
.

The number of objects in a category, mit, has a binomial distribution as follows

Pr (mit = r) =

�
t� 1
r

�
(Pr (x 2 Xi))

r (1� Pr (x 2 Xi))
t�1�r .

If r > 0 then E [ŷitjmit = r] = �i, so

E
�
(ŷit � �i)2 jmit = r

�
= V ar (ŷitjmit = r)

=
rX
j=1

1

r2
V ar (yijmit = r)

=
1

r
V ar (yi) .

Plugging this into the expression above yields the desired result.

Proof of Proposition 1. (i) First consider minimization of EPE (C; t). Since t � T
we require k < �T . For any T let 	(�; �) � 	 be the set of categorizations such that
k < �T and such that the number of unconnected subsets of each category is uniformly
bounded above by �. Any categorization C 2 	(�; �) with k categories can be described
by a set of T�� � 1 points on [a; b] together with a mapping from the induced (T��)
subintervals to the set f1; 2; :::; kg. Take any mapping � from subintervals to f1; 2; :::; kg.
Choosing a categorization among the categorizations that are consistent with the mapping
� is equivalent to choosing a point z in the compact set

Z =
n
z 2 [a; b]T���1 : zj � zj+18j 2 f1; :::; T��� 2g

o
.

Furthermore, since f is continuous in x, EPE (C; t) is continuous in z. Hence by Weier-
strass�maximum theorem there exists a solution z� (�) to the problem of minimizing
EPE (C; t) with respect to categorizations that are consistent with the mapping �. This
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was for a given mapping � from subintervals to f1; 2; :::; kg. Since there are only a �-
nite number of mappings from T�� subintervals to the set f1; 2; :::; kg, the desired result
follows for minimization of EPE (C; t).
(ii) Extension to EPE (C; T; L) is straightforward.
(iii) Finally consider minimization of EPE (C; vt�1). Recall that by de�nition all

categories in 	(vt�1) are non-empty under vt�1. Since vt�1 is �nite, the set 	(vt�1) is
therefore �nite. Existence of a solution is therefore trivial.

6.2 Ex Ante Optimality

The following two lemmata will be used in the proof of proposition 2.

Lemma 4 Let E and F be disjoint intervals. We have

Pr (x 2 E [ F )V ar (yjx 2 E [ F )�
X

I2fE;Fg

Pr (x 2 I)V ar (yjx 2 I) � 0,

with equality if and only if E [yjx 2 E] = E [yjx 2 F ].

Proof of Lemma 4. Note

Pr (x 2 I)V ar (yjx 2 I) =
Z
y2Y

Pr (x 2 I) f (yjx 2 I) (y � E [yjx 2 I])2 dy,

and

Pr (x 2 I) f (yjx 2 I) =
Z
x2I
f (x; y) dx,

for I 2 fE;F;E [ Fg. Using this one can show

Pr (x 2 E [ F )V ar (yjx 2 E [ F )�
X

I2fE;Fg

Pr (x 2 I)V ar (yjx 2 I)

=
X

I2fE;Fg

Pr (x 2 I)
Z
y2Y

f (yjx 2 I)
�
(y � E [yjx 2 E [ F ])2 � (y � E [yjx 2 I])2

�
dy.

That the left hand side is weakly positive follows from the fact that the function

q (z) =

Z
y2Y

f (yjx 2 I) (y � z)2 dy.

is minimized at z = E [yjx 2 I]. The weak inequality holds with equality if and only if
E [yjx 2 E [ F ] = E [yjx 2 E] = E [yjx 2 F ].
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Lemma 5 If k=t �  then

t�1X
r=1

Pr (mit = r)
1

r
>

�

(1� 1=t) .

Proof of Lemma 5. Since r is binomially distributed we have

E [mit] =
t�1X
r=0

Pr (mit = r) r = (t� 1) Pr (x 2 Xi) .

This implies

t�1X
r=1

Pr (mit = r) r = (t� 1) Pr (x 2 Xi)� Pr (mit = 0) � 0 = (t� 1) Pr (x 2 Xi) .

Since g (x) = 1=x is concave, Jensen�s inequality implies

t�1X
r=1

Pr (mit = r)
1

r
� 1Pt�1

r=1 Pr (mit = r) r
=

1

(t� 1) Pr (x 2 Xi)
. (17)

Let pmax = maxi Pr (x 2 Xi) and pmin = mini Pr (x 2 Xi). Note that pmax < 1 �
(k � 1) pmin. Since pmin > �pmax we have pmax < 1� (k � 1) �pmax, or equivalently

pmax <
1

((k � 1) �+ 1) =
1

k�� �+ 1 .

Since � 2 (0; 1) this implies pmax < 1=k�. Using these relationships in (17) we get

1

(t� 1) Pr (x 2 Xi)
� 1

(t� 1) pmax
>

k�

(t� 1) .

Use k=t �  to obtain the desired result.

Proof of Proposition 2. The proof of part (b) is very similar to the proof of part
(a), and therefore omitted. The proof of part (a) is as follows:
(i) Assume k =

p
t. If t ! 1 then k =

p
t ! 1 and k=t = 1=

p
t ! 0. Moreover,

by the assumption mini Pr (x 2 Xi) > �maxi Pr (x 2 Xi) t!1 implies Pr (x 2 Xi)! 0
for all i. Write

kX
i=1

Pr (x 2 Xi)V ar (yi) =
kX
i=1

�Z
x2Xi

f (x) dx

�Z
y2Y

f (yjx 2 Xi) (y � �i)2 dy.
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For any t, let all sets Xi be intervals of length (b� a) =k. (Note that it is not su¢ cient to
let Pr (x 2 Xi)! 0, we need the categories to be convex). If k !1 then the right hand
side approachesZ

x2X
f (x)

�Z
y2Y

f (yjx) (y � E (yjx))2 dy
�
dx =

Z
x2X

f (x)V ar (yjx) dx. (18)

Moreover, note that if k=t! 0 then, for then for all i,

t�1X
r=1

Pr (mit = r)
1

r
! 0.

Hence if t!1 then

EPE (C; t)!
Z
x2X

f (x)V ar (yjx) dx, (19)

and thus

EPE (C; T; L)! 1

T � L

TX
t=L+1

Z
x2X

f (x)V ar (yjx) dx =
Z
x2X

f (x)V ar (yjx) dx.

It follows that for any " > 0 there are �nite numbers k0, L0 and T 0 such that if L > L0 or
T > T 0, then there is a categorization with k > k0, in such that����EPE (C; T; L)� Z

x2X
f (x)V ar (yjx) dx

���� < ".
(ii) Assume that there is some � such that k � �. If t!1 then

EPE (C; t)!
kX
i=1

Pr (x 2 Xi)V ar (yi) .

The continuity of f and the assumption that E [yjx] 6= � for some x, together with lemma
4, implies that

kX
i=1

Pr (x 2 Xi)V ar (yi) >

Z
x2X

f (x)V ar (yjx) dx.

Hence not allowing k !1 as t!1 is suboptimal.
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(iii) Now restrict attention to the set of categorizations with k=t �  > 0. By lemma
5 we have

EPE (C; t) >

kX
i=1

Pr (x 2 Xi)V ar (yi)

�
1 +

�

(1� 1=t)

�
. (20)

Let t!1. By t � k= this implies k !1. As before this also implies Pr (x 2 Xi)! 0
for all i. In this limit the right hand side of the above equation is minimized by using con-
vex categories. The reason is that since f is continuous, maxx;x2Xi jV ar (yjx)� V ar (yjx0)j
approaches zero if Xi is convex, whereas this need not be the case of categories are not
convex. If categories are convex and t!1, then the right hand side of (20) approachesZ

x2X
f (x)V ar (yjx) dx (1 + �) .

Thus, for any " there is some t0 such that if t > t0 then�����
kX
i=1

Pr (x 2 Xi)V ar (yi)

�
1 +

�

(1� 1=t)

�
�
Z
x2X

f (x)V ar (yjx) dx (1 + �)
����� < ".

This implies that there is some t0 such that if t > t0 then

EPE (C; t) >

Z
x2X

f (x)V ar (yjx) dx (1 + �) .

Comparing this with (19) we see that it is suboptimal to restrict attention to categoriza-
tions with t � k=.

Proof of Corollary 1. Omitted since it follows fairly directly from proposition 2.

Proof of Proposition 3. Write EPEE;f (C; t) to make the dependence upon f
explicit. Suppose C 0 is an optimal categorization of E at date t given f0, i.e. C 0 2
argminC2	EPEE;f0 (C; t), and suppose that there is no other optimal categorization with
a lower number of categories. This categorization C 0 strikes an optimal balance between
the goal of having a few large categories in order to minimize the factors

Pt�1
r=1 Pr (mit = r)

1
r

and Pr (mit = 0) (one of each for each category), and the goal of having many small cat-
egories in order to minimize the factors V ar (yi) (one for each category). Decreasing the
number of categories will increase at least one of the factors V ar (yi) and decrease at least
one of the factors

Pt�1
r=1 Pr (mit = r)

1
r
and Pr (mit = 0). The former e¤ect will dominate

the latter so that the total e¤ect will be an increase in prediction error �otherwise C 0

would not be an optimal categorization with a minimal number of categories.22

22The e¤ect on the factors E
h
(ŷt � �i)2 jmit = 0

i
of increasing the number of categories is ambiguous,

but if these terms are decreased by increasing the number of categories it still must be the case that the
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Now suppose one uses the same categorization C 0 when the distribution is f1 (rather
than f0). All the factors

Pt�1
r=1 Pr (mit = r)

1
r
and Pr (mit = 0) are smaller under f1 than

under f0. But we have
f (x)

Pr (x 2 Xi)
=

f (x)R
x2Xi f (x) dx

,

and
f1 (x)R

x2Xi f1 (x) dx
=

�f0 (x)R
x2Xi �f0 (x) dx

=
f0 (x)R

x2Xi f0 (x) dx
.

so from the expressions for E [V ar (yjx) jx 2 Xi] and V ar (E [yjx] jx 2 Xi) together with
equation (7), one sees that all the factors V ar (yi) and E

�
(ŷt � �i)2 jmit = 0

�
are the same

under f0 and f1. Also all the factors E
�
(ŷt � �i)2 jmit = 0

�
are una¤ected. Hence, keeping

C 0 �xed, the only di¤erence between f0 and f1 is that the factors
Pt�1

r=1 Pr (mit = r)
1
r
and

Pr (mit = 0), are smaller under f1 than under f0. Since it was suboptimal to decrease
the number of categories relative to C 0 under f0 it must be (even more) suboptimal to
decrease the number of categories relative to C 0 under f1.

Proof of Proposition 4. Write EPEf0 (C; t) and EPEf1 (C; t) to make the depen-
dence on the distribution explicit. Note that f0 (x) = f1 (x) = f (x) for all x, so that
E [yjx], and Pr (mit = r) are the same for f0 and f1 for all x, i, t, and r.
(i) Use (7) and note that V ar (E [yjx] jx 2 Xi) is the same under f0 and f1, to get

V arf1 (yi)� V arf0 (yi) = Ef1 [V arf1 (yjx) jx 2 Xi]� Ef0 [V arf0 (yjx) jx 2 Xi]

= E [V arf1 (yjx)� V arf0 (yjx) jx 2 Xi]

=
1

Pr (x 2 Xi)

Z
x2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx.

(ii) For j 2 f0; 1g we have

Efj
�
(ŷt � �i)2 jmit = 0

�
= Efj

�
(ŷt � �)2 jmit = 0

�
+ (�� �i)2 + 2 (�� �i)2 (E [ŷtjmit = 0]� �) ,

and

Efj
�
(ŷt � �)2 jmit = 0

�
= V arfj (ŷtjmit = 0)

=
1

t� 1V arfj (yjx =2 Xi)

=
1

t� 1
�
E
�
V arfj (yjx) jx =2 Xi

�
+ V ar (E [yjx] jx =2 Xi)

�
,

total e¤ect on expected prediction error, of increasing the number of categories, is positive.
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so

Ef1
�
(ŷt � �i)2 jmit = 0

�
� Ef0

�
(ŷt � �i)2 jmit = 0

�
=

1

t� 1 (E [V arf1 (yjx) jx =2 Xi]� E [V arf0 (yjx) jx =2 Xi])

=
1

Pr (x 2 Xi)

1

t� 1

Z
x=2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx.

(iii) From (i) and (ii) it follows that EPEf1 (C; t)� EPEf0 (C; t) =M1 +M2, where

M1 =

kX
i=1

�Z
x2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx
� 

1 +
t�1X
r=1

Pr (mit = r)
1

r

!
,

and

M2 =
1

t� 1

kX
i=1

Pr (mit = 0)

Z
x=2Xi

f (x) (V arf1 (yjx)� V arf0 (yjx)) dx.

For any categorization C 0 with k > 1, note that both M1 and M2 can be decreased by
switching to some categorization with fewer categories. Suppose that C 0 is an optimal
categorization for t, and f1, i.e. C 0 2 argminC2	EPEf1 (C; t), and suppose that there
is no other optimal categorization with a lower number of categories. We see that any
categorization that minimizes EPEf0 (C; t) will have at least as many categories as C

0.

Proof of Proposition 5. We assume that the subject observes at least one object
in each category during the learning phase. Thus the maximal number of categories in a
category is now t � 1 � (k � 1) = t � 1 rather that t � 1. This requires us to revise the
expression for the expected prediction error as follows:

EPE (C; t) =

kX
i=1

Pr (x 2 Xi)V ar (yi)

 
1 +

t�kX
r=0

Pr (mit = r)
1

r + 1

!
,

where mit has a binomial distribution

Pr (mit = r) =

�
t� k
r

�
(Pr (x 2 Xi))

r (1� Pr (x 2 Xi))
t�k�r .

Note that the assumption that x is uniformly distributed on X, implies that f (x) = 1
for all x 2 X, and hence that f (x; y) = f (yjx). Now derive the variance of y in interval
Xi = [ai; bi). We have

Pr (x 2 Xi) = bi � ai,
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and

f (yjx 2 Xi) =

R
x2A f (y; x) dx

Pr (x 2 Xi)
=

1

bi � ai

Z
x2Ai

f (yjx) dx,

and

E (yjx 2 Xi) = �+ �
(ai + bi)

2
.

Using this we get, after a fair amount of manipulation,

V ar (yi) =
�2 (bi � ai)2

12
+ �2. (21)

(a) Now we show that the optimal categories are intervals on the x-axis. Take a
categorization C where not all categories are convex. Without loss of generality one can
assume that there is a category C� such that X� = [Ss=1[as; bs), with bs < as+1. Let
EPE� (C; t) denote the expected prediction error for objects in this category;

EPE� (C; t) = V ar (y�)

 
1 +

t�kX
r=0

Pr (m�t = r)
1

r + 1

!
.

Consider a categorization C 0 that is a modi�cation of C such that X 0
� = [a1; b) where

b = a1 +
PS

s=1 (bs � as). The other categories are only moved to the right so that if,
under categorization C the point p > a1 was a boundary point between two categories
then, under categorization C 0 this boundary is located at the point p +

PS
s=1 (bs � as).

Let EPE� (C 0; t) denote the expected prediction error for objects in category C� 2 C 0;

EPE� (C; t) = V ar (y�)

 
1 +

t�kX
r=0

Pr (m�t = r)
1

r + 1

!
.

Since Pr (m�t = r) = Pr (m�t = r) and V ar (y�) > V ar (y�) we have EPE� (C 0; t) <
EPE� (C; t). From (21) we see that the expected prediction error for objects in the other
categories are una¤ected so EPE (C 0; t) < EPE (C; t). Hence the categorization with a
convex category is better than the one with a non-convex category.
We have shown that an optimal categorization with k categories has Xi = [ai; bi) for

i 2 f1; :::; k� 1g and Xk = [ak; bk] = [ak; 1]. Letting di = bi� ai, we seek a categorization
that minimizes

EPE (C; t) =

kX
i=1

(bi � ai)
 
�2 (bi � ai)2

12
+ �2

! 
1 +

t�kX
r=0

Pr (mit = r)
1

r + 1

!
,
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where

Pr (mit = r) =
(t� k)!

r! (t� k � r)! (bi � ai)
r (1� (bi � ai))t�k�r .

Since EPE (C; t) is quadratic in bi � ai it is optimal to have bi � ai = 1=k for all i. Since
we have assumed T � L = 1 this �nishes the proof of (a).
(b) With bi � ai = 1=k for all i, the probability Pr (mit = r) is the same for all i so

write Pr (mit = r) = Pr (mt = r). We have

EPE (C; t) =

 
�2

12

�
1

k

�2
+ �2

! 
1 +

t�kX
r=1

Pr (mt = r)
1

r + 1

!
.

Let C 0 and C 00 be categorizations with k0 and k00 categories respectively. It is easy to
verify that EPE (C 00; t)� EPE (C 0; t) = �2M1 + �

2M2, where

M1 =
1

12

 �
1

k00

�2 
1 +

t�k00X
r=0

Pr (m00
it = r)

1

r + 1

!
�
�
1

k0

�2 
1 +

t�k0X
r=0

Pr (m0
it = r)

1

r + 1

!!
,

and

M2 =
t�k00X
r=0

Pr (m00
it = r)

1

r + 1
�

t�k0X
r=0

Pr (m0
it = r)

1

r + 1
.

Note that M2 > 0. Thus EPE (C 00; t) � EPE (C 0; t) is increasing in �2. If M1 > 0 then
EPE (C 00; t) > EPE (C 0; t) for all � and �2. If M1 < 0 then EPE (C 00; t) � EPE (C 0; t)
is decreasing in � and attains negative values if � is large enough.

6.3 Ex Post Optimality

Lemma 6 (a) For any � 2 (0; 1) and " > 0 there is a t0 such that if t > t0 then for any
C with k � k0 it holds that

Pr

 �����EPE �C; vt�1��
kX
i=1

Pr (x 2 Xi)V ar (yi)

����� < "
!
< �.

(b) For any � 2 (0; 1) and " > 0 there is a t0 such that if t > t0 then for any C with k � k0
it holds that

Pr

 ����� \EPE (C; vt�1)�
kX
i=1

Pr (x 2 Xi)V ar (yi)

����� < " and C 2 	̂
�
vt�1

�!
< �.
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Proof of Lemma 6. (a) Consider a category Ci 2 C. Suppose that mit � 1. It can
be veri�ed that

(ŷit � �i)2 =
 
1

mit

X
s2Dit

ys

!2
+ �2i � 2�i

1

mit

X
s2Dit

ys.

Let mit ! 1. Since, for each category i, fysg is an i.i.d. sequence with E [ys] = �i we
can use Kinchine�s law of large numbers and Slutsky�s lemma to conclude that

P lim
mit!1

(ŷit � �i)2 =
�
�2i + �

2
i � 2�i�i

�
= 0.

In other words, for any " > 0 and � 2 (0; 1), there is an M such that if mit > M then
Pr
�
(ŷit � �i)2 < "

�
> �1=2. Recall the assumption that there is some � 2 (0; 1) such that

Pr (x 2 Xi) =Pr (x 2 Xj) > � for all i and j. This assumption implies that for any k
there is a pmin > 0 such that mini Pr (x 2 Xi) � pmin. Hence, for any � and M there
is a t0 such that if t > t0 then Pr (mit > M) > �1=2, for all Ci 2 C such that C has
k � k0. It follows that, for any " > 0 and � 2 (0; 1), there is a t0 such that if t > t0 then
Pr
�
(ŷit � �i)2 < "

�
> � for all Ci 2 C such that C has k � k0. The desired result follows:

(b) Similar to the proof of (a), using P limmit!1 s
2
it = V ar (yi). Note that by choosing

t0 su¢ ciently large we can make Pr
�
C 2 	̂ (vt�1)

�
su¢ ciently large.

Proof of Proposition 6. (a) Since E [yjx] is not constant across X there will be at
least one category with V ar (yi) >

R
x2Xi f (x)V ar (yjx) dx in any categorization. Fix k

0

and consider the problem minC2fC:jCj�kgmaxi V ar (yi). By the same kind of arguments
as in the proof of proposition 1 we know that this problem has a solution. From the
assumption that there is some � 2 (0; 1) such that Pr (x 2 Xi) =Pr (x 2 Xj) > � for all i
and j, it follows that there is a pmin > 0 such that Pr (x 2 Xi) > pmin for all Ci and all C,
with k � k0. This implies that there is a  such that for all categorizations C with k � k0Z

x2X
f (x)V ar (yjx) dx <  <

kX
i=1

Pr (x 2 Xi)V ar (yi) .

We also know that by letting k ! 1 and simultaneously letting Pr (x 2 Xi) ! 0 for
all i we get

Pk
i=1 Pr (x 2 Xi)V ar (yi) !

R
x2X f (x)V ar (yjx) dx. Hence there exists a

categorization C 00 with k00 > k0 categories such that, for some " > 0,Z
x2X

f (x)V ar (yjx) dx <
k00X
i=1

Pr (x 2 X 00
i )V ar (yi) <  � ".
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Thus, if
Pk00

i=1 Pr (x 2 X 00
i ) (ŷit � �i)

2 < " then categorization C 00 achieves a strictly lower
value of EPE (C; vt�1) than all categorizations with k � k0. The desired result now
follows from lemma 6.
(b) Analogous to (a). Note that the probability of C 00 2 	̂ (vt�1) can be made su¢ -

ciently large by increasing t.

Proof of Proposition 7. Similar to the proof of proposition 6. Note that, for a
given t, increasing � leads to an increase in the probability that mit > M .

Lemma 7 Consider a density f such that yjx � N (E [yjx] ; �2) for all x 2 X. (a) For
any categorization C 0 with k0 < jXj categories, there is a re�nement C 00 with k00 > k0

categories such that, in the set of databases with mit � 1 for all categories Ci 2 C 00, the
probability

Pr
�
EPE

�
C 00; vt�1

�
< EPE

�
C 0; vt�1

��
, (22)

is weakly increasing in �2. (b) Restrict attention to databases such that mit � 2 for all
categories in C 0 and C 00. The statement in (a) holds if (22) is replaced with

Pr
�

\EPE (C 00; vt�1) < \EPE (C 0; vt�1)
�
. (23)

Proof of Lemma 7. Without loss of generality suppose that C 0 has one category,
named 0, and C 00 has two categories, named 1 and 2. Without loss of generality assume
that C 00 is chosen so that, for i 2 f1; 2g,

V ar (E [yjx] jx 2 Xi) < V ar (E [yjx] jx 2 X0) . (24)

(a) Fix m1t � 1 and m2t � 1 and only consider data bases with these numbers of
objects in each category. We have

EPE
�
C 00; vt�1

�
� EPE

�
C 0; vt�1

�
= Pr (x 2 X1)

�
V ar (y1) + (ŷ1t � �1)2

�
+ Pr (x 2 X2)

�
V ar (y2) + (ŷ2t � �2)2

�
� Pr (x 2 X0)

�
V ar (y0) + (ŷt � �0)2

�
.

The assumption that V ar (yjx) is constant across X implies

E [V ar (yjx) jx 2 X0] = Pr (x 2 X1)E [V ar (yjx) jx 2 X1]

+ Pr (x 2 X2)E [V ar (yjx) jx 2 X2] .
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Together with the decomposition of V ar (yi) given by (7) this implies

EPE
�
C 00; vt�1

�
� EPE

�
C 0; vt�1

�
= Pr (x 2 X1)

�
V ar (E [yjx] jx 2 X1) + (ŷ1t � �1)2

�
+ Pr (x 2 X2)

�
V ar (E [yjx] jx 2 X2) + (ŷ2t � �2)2

�
� Pr (x 2 X0)

�
V ar (E [yjx] jx 2 X0) + (ŷt � �0)2

�
=M1 +M ,

where

M1 =
X
i2f1;2g

Pr (x 2 Xi) (V ar (E [yjx] jx 2 Xi)� V ar (E [yjx] jx 2 X0)) ,

and
M =

X
i2f1;2g

Pr (x 2 Xi)
�
(ŷit � �1)2 � (ŷt � �0)2

�
.

Note that M1 is independent of V ar (yjx). We can rewrite M as

M = Pr (x 2 X1)

�
�21
m1t

�
Z1 + Pr (x 2 X2)

�
�22
m2t

�
Z2 � Pr (x 2 X)

�
�20
m0t

�
Z0,

where

Zi =

�
ŷit � �i
�i=
p
mit

�2
,

for i 2 f0; 1; 2g. Since f (yjx) is normally distributed f (yjx 2 Xi) is normally distributed,
with some variance �2i . Then ŷit (being the average of i.i.d. draws) is normally distributed
with variance �2i =mit, and

p
Zi � N (0; 1). It follows that Zi � �2(1), for i 2 f0; 1; 2g.23

Using (7), M can be further decomposed as M =M2 +M3 where

M2 =
X
i2f1;2g

Pr (x 2 Xi)

�
V ar (E [yjx] jx 2 Xi)

mit

Zi �
V ar (E [yjx] jx 2 Xi)

m0t

Z0

�
,

and

M3 = V ar (yjx)
X
i2f1;2g

Pr (x 2 Xi)

�
1

mit

Zi �
1

m0t

Z0

�
.

Thus we have found that EPE (C 00; vt�1)� EPE (C 0; vt�1) = M1 +M2 +M3, where M1

and M2 are independent of V ar (yjx). Note that the assumption (24) implies M1 > 0. It
also implies that, for any realization (z1; z2; z0) of (Z1; Z2; Z0), it holds that ifM3 > 0 then

23If mit ! 1 is large then
p
Zi � N (0; 1) by virtue of the central limit theorem, even if yjx is not

normally distributed.
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M2 > 0. Pick any realization (z1; z2; z0). If M3 > 0 and M2 > 0 then EPE (C 00; vt�1)
� EPE (C 0; vt�1) > 0 independently of V ar (yjx). If M3 < 0 then EPE (C 00; vt�1) �
EPE (C 0; vt�1) is increasing in V ar (yjx). This latter fact shows that the probability of
EPE (C 00; vt�1) > EPE (C 0; vt�1) is increasing in V ar (yjx). This was for given numbers
m1t and m2t, but the same reasoning holds for any choice of m1t � 1 and m2t � 1.
(b) Fix m1t � 2 and m2t � 2 and only consider data bases with these numbers of

objects in each category. We have

\EPE (C 00; vt�1)� \EPE (C 0; vt�1) =
1

t� 1
�
(m1t + 1) s

2
1t + (m2t + 1) s

2
2t � (m0t + 1) s

2
0t

�
=

1

t� 1

�
m1t + 1

m1t � 1
�21Z1 +

m2t + 1

m2t � 1
�22Z2 �

m0t + 1

m0t � 1
�20Z0

�
,

where
Zi =

mit � 1
�2i

s2it.

Since yjx � N (E [yjx] ; �2) we have Zi � �2(mit�1). Note that this distribution is indepen-
dent of �2i . We can write

\EPE (C 00; vt�1)� \EPE (C 0; vt�1) =
1

t� 1 (M1 +M2) ,

where

M1 =
m1t + 1

m1t � 1
V ar (E [yjx] jx 2 X1)Z1 +

m2t + 1

m2t � 1
V ar (E [yjx] jx 2 X2)Z2

� m0t + 1

m0t � 1
V ar (E [yjx] jx 2 X0)Z0,

and

M2 = V ar (yjx)
�
m1t + 1

m1t � 1
Z1 +

m2t + 1

m2t � 1
Z2 �

m0t + 1

m0t � 1
Z0

�
.

Note that M1 is independent of V ar (yjx). The assumption (24) implies that, for any
realization (z1; z2; z0) of (Z1; Z2; Z0), it holds that if M2 < 0 then M1 < 0. If M2 < 0 and

M1 < 0 then \EPE (C 00; vt�1) < \EPE (C 0; vt�1) regardless of V ar (yjx). If M2 > 0 and

M1 > 0 then \EPE (C 00; vt�1) > \EPE (C 0; vt�1) regardless of V ar (yjx). If M2 > 0 and

M1 < 0 then \EPE (C 00; vt�1)� \EPE (C 0; vt�1) is increasing in V ar (yjx). This shows that
the probability of \EPE (C 00; vt�1) > \EPE (C 0; vt�1) is increasing in V ar (yjx). The same
reasoning holds for any choice of m1t � 2 and m2t � 2.

Proof of Proposition 8. (a) Consider a categorization C 0 with k0 < jXj categories
and a re�nement C 00 with k00 > k0 categories, which satisfy the property described in
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lemma 7a. Consider all data bases of size t � 1. In the subset of data bases such that
mit = 0 for some category Ci 2 C 00, categorization C 00 is not feasible and so the probability
that Pr (EPE (C 00; vt�1) < EPE (C 0; vt�1)) is independent of �2. In the subset of data
bases such that mit � 1 for all categories Ci 2 C 00, we can apply lemma 7.
(b) Analogous to (a).

Lemma 8 (a) Restrict attention to categorizations with convex categories. (a) For any
categorization C 0 there is a re�nement C 00 such that, in the set of databases with mit � 1
for all categories Ci 2 C 00, the probability

Pr
�
EPE

�
C 00; vt�1

�
< EPE

�
C 0; vt�1

��
, (25)

is weakly decreasing in �2, and weakly increasing in �. (b) Restrict attention to databases
such that mit � 2 for all categories in C 0 and C 00. The statement in (a) holds if (25) is
replaced with

Pr
�

\EPE (C 00; vt�1) < \EPE (C 0; vt�1)
�
. (26)

Proof. (a) The proof is similar to the proof of lemma 7, and therefore only sketched.
Without loss of generality suppose that C 0 has one category, named 0, and C 00 has two
categories, named 1 and 2. Fix m1t � 1 and m2t � 1 and only consider data bases with
these numbers of objects in each category. We can write EPE (C 00; vt�1)�EPE (C 0; vt�1)
=M1 +M2, where

M1 =
X
i2f1;2g

Pr (x 2 Xi)
�2

12

��
1 +

1

mit

Zi

�
d2i �

�
1� 1

m0t

Z0

�
d20

�
,

where di is de�ned as in the proof of proposition 5, and

M2 =
X
i2f1;2g

Pr (x 2 Xi)�
2

�
1

mit

Zi �
1

m0t

Z0

�
.

Note that, for any realization (z1; z2; z0) of (Z1; Z2; Z0); if M2 < 0 then M1 < 0. Pick any
realization (z1; z2; z0). If M2 < 0 and M1 < 0 then EPE (C 00; vt�1)� EPE (C 0; vt�1) < 0
regardless of � and �2. If M2 > 0 and M1 > 0 then EPE (C 00; vt�1)�EPE (C 0; vt�1) > 0
regardless of � and �2. If M2 > 0 and M1 < 0 then EPE (C 00; vt�1) � EPE (C 0; vt�1) is
decreasing in � and increasing in �2.
(b) From the proof of proposition 7, using the expressions for V ar (E [yjx] jx 2 Xi)

and E [V ar (yjx) jx 2 X0] we have

M1 =
�2

12

�
d21
m1t + 1

m1t � 1
Z1 + d

2
2

m2t + 1

m2t � 1
Z2 � d20

m0t + 1

m0t � 1
Z0

�
,
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and

M2 = �
2

�
m1t + 1

m1t � 1
Z1 +

m2t + 1

m2t � 1
Z2 �

m0t + 1

m0t � 1
Z0

�
.

We know the e¤ect of �2 from proposition 7. To see the e¤ect of �, note that if M2 < 0

then M1 < 0 so that \EPE (C 00; vt�1) < \EPE (C 0; vt�1) regardless of �. If M2 > 0 and

M1 > 0 then \EPE (C 00; vt�1) > \EPE (C 0; vt�1) regardless of �. If M2 > 0 and M1 < 0

then \EPE (C 00; vt�1)� \EPE (C 0; vt�1) is decreasing in �.

Proof of Proposition 9. Analogous to the proof of proposition 8.

6.4 Game Theoretic Applications

Proof of Claim 6. Note that E[u (S; S) � u (H;S) j�] = 2� � 0:5 and E[u (S;H) �
u (H;H) j�] = 2� � 1:5. Thus, if either qj (�) = H for all � 2 �, or qj (�) = S for all
� 2 �, one can write y = 2� � � for all � 2 �. The numbers �� and 2 correspond
to the parameters � and � in proposition 5. Hence, by proposition 5, if qj (�) is the
same for all � 2 �, then player i has an optimal categorization C with k categories such
that Xi = [ai; bi) for i 2 f1; :::; k � 1g, Xk = [ak; bk] = [ak; 1], and bi � ai = 1=k for each
category i. Since � (here ��) does not matter for optimality, the described categorization
will be optimal even if � is not constant across �, provided that � is constant within each
category, i.e. provided that �; �0 2 Xi implies q (�) = q (�0) for each category i.
By part (b) of proposition 5 we can adjust t and �2 so that the optimal categorization

has k = 5. Furthermore, we have E (yj� 2 Xi) = (2i� 1) =k � �. Note that 1=4 2
[1=5; 2=5) = X2, so that if qj (�) = S for all � 2 X2, then E (yj� 2 X2) = 1=10. Since this
is positive, player i predicts that S yields a higher payo¤ than H, and will play S when
� 2 X2. A similar argument establishes that if qj (�) = H for all � 2 [3=5; 4=5) = X4 then
player i predicts that H yields a higher payo¤ than S and will play H when � 2 X4.

Proof of Claim 8. A Mathematica notebook for calculation of optimal categoriza-
tions in the Traveler�s Dilemma can be obtained from the author upon request. If p = 1=2,
r = 3=2, n = 7, t = 10, � = 1=20, and �2 = 40 then the unique optimal categorization
is {{1,2,3},{4,5,6},{7}} and the predicted expected utility for these three categories are
{3.46,6.33,6.80}. Hence both players pick n = 7.
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