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Abstract

This paper contains a forecasting exercise on 30 time series, ranging on several fields,
from economy to ecology. The statistical approach to artificial neural networks mod-
elling developed by the author is compared to linear modelling and to other three
well-known neural network modelling procedures: Information Criterion Pruning (ICP),
Cross-Validation Pruning (CVP) and Bayesian Regularization Pruning (BRP). The find-
ings are that 1) the linear models outperform the artificial neural network models and 2)
albeit selecting and estimating much more parsimonious models, the statistical approach
stands up well in comparison to other more sophisticated ANN models.
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1 Introduction

Over recent years, several nonlinear time series models have been proposed in the literature,
see f.i. Tong (1990), Granger and Teräsvirta (1993), van Dijk, Teräsvirta, and Franses
(2001). One model that has found a large number of successful applications is the Artificial
Neural Network model (hereafter ANN). The ANN model is a mathematical model inspired
by the function of the human brain and its use is mainly motivated by its capability of
approximating any Borel-measurable function to any degree of accuracy, as.pointed out in
Hornik, Stinchcombe, and White (1989).

In this paper the forecasting performance of a number of artificial neural network (ANN)
models is compared with that of linear models. The idea is to find out whether or not
different techniques of specifying ANN models, such as pruning and statistical techniques,
lead to vastly different models. If they do, then the next question is whether this matters from
a forecasting point of view. Values of 30 economic and other time series are predicted using
models obtained by a number of different modelling techniques and the forecasts compared
using a number of different criteria. The plan of the paper is as follows. Section 2 introduces
the ANN models. Section 3 discusses the techniques used in this paper to build ANN models.
Section 4 gives a brief discussion on linear ARMA models. The forecasting experiment is
described in Section 5. Concluding remarks are made in Section 6.

2 Neural Network Model

The Artificial Neural Network (ANN) time series model is usually defined as

yt = G(wt;Ψ) = β0 +

qX
j=1

βjψ(γ
0
jwt) + ut, (1)

where β =
¡
β1, ...,βq

¢0, γj = ¡γj0, γj1, ..., γj,k−1, cj¢0, j = 1, ..., q; wt = (w1t, w2t, ..., wkt, 1)0 =
(yt−1, yt−2, ..., yt−k, 1)0, ut is n.i.d. and ψ(γ0iwt) is the sigmoid function defined as

ψ(γ0iwt) =
1

1 + e−γ 0iwt
. (2)

In applications to economic time series it is normally useful to include a linear component
in (1). The resulting model is defined as in Granger and Teräsvirta (1993)

yt = G(wt;Ψ) = α
0wt +

qX
i=1

βiψ(γ
0
iwt) + ut, (3)

where α = (α1,α2, ...,αk,α0)
0 is a vector of real coefficients and ut is n.i.d.. One of the

characteristic features of this model is that it is not globally identified. There are three
characteristics of neural networks which cause the non-identifiability. The first one is due to
the symmetries in the neural network architecture. The likelihood function of the model will
be unchanged if one permutes the hidden units, resulting in q! possibilities for each one of the
coefficients of the model, and the same can occurr because of the fact that ψ(x) = 1−ψ(−x)
(see Hwang and Ding (1997)). The third reason is the mutual dependence of the parameters
βi and γi, i = 1, . . . , q. If βi = 0, the corresponding γi can assume any value without
affecting the value of the likelihood function. On the other hand, if γi = 0, then βi can
take any value. Nevertheless, under certain regularity conditions, the maximum likelihood
estimates of the parameters of (3) are consistent and asymptotically normal; for a broader
discussion, see Rech (2001).
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3 Modelling

3.1 What is Modelling?

In this paper, I consider modelling and forecasting of time series with ANN models. Mod-
elling in this context is taken to mean model specification, parameter estimation, and, finally,
evaluation of the estimated model. The idea is to find out whether or not different modelling
techniques lead to vastly different ANN models. If they do, the next question is whether
this matters from a forecasting point of view. I compare well-known techniques in the neural
network literature, such as, early stopping, pruning, and regularization, with a novel one
based on statistical tests. It is one of the few techniques making use of in-sample evaluation.
The other techniques considered in this work rely on out-of-sample evaluation, i.e., checking
the forecasting performance of the specified and estimated model.

In this paper, specification consists of selecting the variables of the ANN model from
a set of candidates and determining the number of hidden units. This stage is of crucial
importance in order to avoid overfitting and to find an adequate approximation of the true
data generating process. In most neural network applications, it is customary to carry out
the specification using some “rule of thumb”. A vast number of ANN models with different
combinations of variables and number of hidden units are estimated, and the one with the
best performance according to some known criterion is chosen as the final specification. The
statistical approach is based on a sequence of hypothesis tests and gradually increasing the
size of the ANN model until the test results suggest one to stop.

With the exception of methods of early stopping and regularization, estimation of para-
meters in ANNmodels is carried out by means of nonlinear least squares (NLS) or conditional
maximum likelihood (ML). If the errors are normal, independent, and identically distributed,
as assumed above, these two methods are equivalent. Hence, the parameter vector Ψ of (1)
or (3) is estimated as

Ψ̂ = argmin
Ψ

QT (Ψ) = argmin
Ψ

TX
t=1

(yt −G(wt;Ψ))2 (4)

In most applications a simple gradient descent algorithm (backpropagation) is used to esti-
mate the parameters. However, the estimation ofΨ is usually not easy (Hush (1999)), and in
general the optimization algorithm is very sensitive to the choice of the starting-values of the
parameters. The use of algorithms such as the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
algorithm or the Levenberg-Marquardt are strongly recommended for the final estimation.
See Bertsekas (1995) for details about optimization techniques.

Any estimated model must be evaluated. In econometrics, model misspecification tests
play an important role in model evaluation. Most often, these tests concern the estimated
residuals of the model. The residuals are used for testing assumed properties of the error
process, such as, serial independence and normality. Testing parameter stability is another
important model evaluation test. In typical ANN applications, out-of-sample forecasting
appears to be the only evaluation tool available. This is, however, not surprising because the
asymptotic properties of the parameter estimators are often unknown. The statistical ANN
modelling procedure considered here (referred hereafter by SA) is intended to fill the gap
between econometric model building and ANN modelling practices by proposing a number
of misspecification tests for ANN model building.
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3.2 ANN Modelling Based on a Statistical approach (SA)

The capability of single hidden-layer feedforward neural networks (hereafter NN) to ap-
proximating any Borel-measurable function to any degree of accuracy has been pointed out
in Hornik, Stinchcombe, and White (1989). Nonlinear features in time series can then be
successfully modelled applying statistical tools to the data of interest, since the connection
between NN and statistics is generally well accepted. I call the following model an autore-
gressive NN model of order k with q hidden units and a linear component:

yt = α
0wt +

qX
j=1

βjψ(γ
0
jwt) + ut, t = 1, ..., T (5)

where α = (α1,α2, ...,αk,α0)0, β =
¡
β1, ...,βq

¢0, γj = ¡γj0, γj1, ..., γj,k−1, cj¢0, j = 1, ..., q;
wt = (w1t, w2t, ..., wkt, 1)

0 = (yt−1, yt−2, ..., yt−k, 1)0 and ut is n.i.d.. Here, I assume for
simplicity that all lags from 1 to k enter model (5).

Summing up, the overall device works as follows. The set of variables to be included in
the model is selected as in Rech, Teräsvirta, and Tschernig (2001). The hypothesis of no
nonlinear hidden units (linear model) is tested at a given significance level α. If rejected,
a model with a linear part and one hidden unit is estimated and the approximate t-values
of the parameters computed, approximating the covariance matrix of the parameters by
the outer product of the gradient matrix. The lags with low t-values are removed and the
model re-estimated. The whole procedure is redone until the hidden unit contains only
significant estimates. Subsequently, the hypothesis of no additional hidden units is tested
at the significance level α/2. If rejected, a model with two hidden units is estimated and
the dimension of the model reduced by checking the t-values of its estimates as above.
The procedure continues halving the significance level again to α/4, α/8, ..., stopping the
procedure at the first acceptance of the null hypothesis of no additional hidden units. Letting
the significance level converge to zero as q → ∞ keeps the dimension of the model under
control.

Evaluating a model requires, as in Eitrheim and Teräsvirta (1996), to develop specific LM
tests for the hypothesis of no error autocorrelation and parameter constancy, while additional
nonlinearity is already checked when I choose the number of hidden units. The test for
error autocorrelation is based on model (5), where the residuals ut follow an autoregressive
process of order r, ut =

Pr
j=1 ajut−j + εt, εt ∼ n.i.d.(0,σ2). The corresponding LM test

for the hypotesis H0 : a = 0 can be carried out in 3 steps as in testing for q against q + 1
hidden units. As to parameter constancy, I generalize model (5) assuming that the hidden
units have constant parameters whereas both βs and αs may change smoothly over time.
Therefore α = α (t) = α0+λ2F1 (t, γ1, c1) and β (t) = β0+λ1Fj

¡
t, γj, cj

¢
, where the Fj (·) s

are transitional functions monotonically increasing and bounded between zero and one. The
null hypothesis of parameter constancy implies that Fj (t, γ1, c1) ≡ constant for any t. For
further details on the modelling procedure, see Rech (2001).

3.3 Early Stopping

In this paper, I compare forecasts from models obtained applying the modelling cycle of
Section 3.2 to forecasts from ANN models of the form of (1) obtained by other means. The
first alternative method to be considered is the so-called early stopping. It is perhaps one
of the most simple and vastly used modelling technique in the ANN framework. The key
idea is to split the available data into three subsets. The first subset is used to estimate the
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parameters. The second subset is called the validation set. The error on the validation set is
monitored during the estimation process. When the network begins to overfit the data, the
error on the validation set typically begins to rise. When the validation error increases for
a specified number of iterations, the estimation process is discontinued, and the parameters
estimated at the minimum of the validation error serve as final estimates.

The test set is not used for estimation, but it is saved for comparing different models. A
large number of different specifications are estimated and compared by means of the out-of-
sample performance. The model with the best forecasting performance is chosen as the final
specification.

3.4 Pruning

Pruning is another popular technique. The objective of pruning is to find the smallest net-
work that fits the data well and produces good forecasts. I consider three pruning techniques.
For a general survey on pruning see Reed (1993). The first two, information criterion pruning
and cross-validation pruning, are described in detail in Anders and Korn (1999). The third
one, interactive pruning, is based on the results of Kaashoek and van Dijk (1998), Siestma
and Dow (1991), and Siestma and Dow (1988).

Although there are many other pruning algorithms, the three to be considered here are
the one most frequently used in applications.

To estimate the parameters, I used the BFGS optimization procedure with the starting-
values given by the Nguyen-Widrow algorithm (Nguyen and Widrow (1990)).

3.4.1 Information Criterion Pruning

The idea of the Information Criterion Pruning (ICP) is to choose between two models with
different degrees of complexity. This is done using information criterion (IC) such as, AIC
Akaike (1974) or SBIC (Rissanen (1978); Schwarz (1978)). As pointed out in Anders and
Korn (1999), such information criteria are derived based on the assumption of asymptotic
normality of the maximum likelihood estimators in globally identified models. Hence, their
use is not theoretically justified in the neural network case when the ANNmodel may be over-
parametrized and thus unidentified. To circumvent this problem, Anders and Korn (1999)
suggested the following methodology to estimated ANN models based on IC measures.

First, estimate the ANN model with only one hidden unit. Next, compute the residuals
and regress them on a third-order Taylor expansion of an additional hidden unit. Calculate
the value of information criterion and accept the additional hidden unit if the value of the IC
is less than the IC of a white noise. Continue adding hidden units until there is no further
improvement. Note that this resembles the strategy presented in Section 3.2. However, in
determining the number of hidden units, information criteria are used in place of statistical
tests.

The second step of the procedure starts from the fully connected network obtained in
the first step and tries to detect irrelevant input connections. One thus proceeds in the
opposite direction. All submodels with one of the input connections removed are estimated
and compared with the full network by means of the IC. If the full network turns out to
have the lowest IC value, this model is accepted as the final one. Otherwise the lowest IC
submodel is chosen to serve as the baseline for the next round of the specification search.
Again all submodels having one input connection less than the baseline model are compared
with the latter using an appropriate IC.
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It is also possible to start with a network with a large number of hidden units and
proceed by removing units one at a time, if necessary. This “general to specific" alternative
may involve estimating a considerable amount of unidentified or near-unidentified models
and is not applied in this work.

3.4.2 Cross-Validation Pruning

The idea of the cross-validation pruning (CVP), or, more specifically, leave-k-out cross-
validation, is the following. In order to find an optimal number of hidden units and the
correct set of input variables, it is appealing to compare the mean squared prediction errors
(MSPE) of different model specifications. Such prediction errors are obtained by dividing
the sample into M subsets Sm, m = 1, ...,M , which contain k observations each. The ANN
model is repeatedly re-estimated, leaving out a different subset each time. The average
MSPE on the M subsets that have been left out defines the cross-validation error, CV:

CV =
1

M

MX
m=1

MSPEm, (6)

where

MSPEm =
1

k

kX
i=1

(ŷi − yi)2 . (7)

The model with the lowest cross-validation error is finally chosen. The CVP is inde-
pendent of probabilistic assumptions. The main disadvantage of the CVP method is that
re-estimating the models for each one of M subsets can be time-consuming. In principle, all
combinations of input variables and hidden units can be compared which requires plenty of
computational resources.

The CVP is carried out in two stages. The first one consists of estimating the number of
hidden units and the second one of removing any irrelevant input variables. The first step
is summarized as follows. Start fitting a model with only one hidden unit and compute the
value of CV . Add another hidden unit to the model and compute the CV again. Compare
the new CV value with the previous one. If the former is smaller than the latter, add
another hidden unit. Otherwise discontinue the process and proceed to the second stage,
which is the following. Compute the value of the cross-validation error for all submodels
containing one input connection less than the original model. If at least one submodel turns
out to have an smaller CV than the full model, remove that variable and continue without
it. Otherwise terminate the process. The finally chosen ANN model is such that no variable
can be removed without increasing the cross-validation error.

As in the ICP method, it is also possible to start with a network with a large number
of hidden units and proceed by removing one unit at each round. Again, this is not done in
this paper. Several papers have pointed out arguments for and against the CVP.

For example, Stone (1977) presented an insightful discussion of the limitations of cross-
validation. See also Zhu and Rohwer (1996), Goutte (1997), and Rivals and Personnaz
(1999).

3.4.3 Interactive Pruning

Another way of identifying irrelevant units and/or inputs is the so called interactive pruning
(IP). The main idea is to start by estimating an ANN model with a large number of both
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hidden units and variables. After estimating the parameters of the model, the incremental
contribution of each hidden unit is considered. This is done in several ways. Siestma and
Dow (1991) and Siestma and Dow (1988) tackled the problem by removing hidden units
with variance close to zero (< 10−8) and combining units with highly correlated responses
(ρ = 0.98, for example). Kaashoek and van Dijk (1998) suggested a different approach based
on the correlation coefficient of the fitted values ŷt, defined as

R2 = 1−
PT
t=1(yt − ŷt)2PT
t=1(yt − y)2

, (8)

where y = (1/T )
PT
t=1 yt. The idea is to remove the i

th hidden unit, i = 1, . . . , q, re-estimate
the model, and compute the value of the percentage difference in R2, defined as

∆R2 =
R2 −R2i
R2

, (9)

where R2i is the R
2 without the ith hidden unit. However, re-estimation means that only the

vector of “connection strengths”, β in (1) is re-estimated each time. If ∆R2 is small (≤ 1%),
I remove the unit from the model. After removing the hidden units deemed unimportant,
the procedure is continued by removing one input variable each time and comparing the
correlation coefficients. Irrelevant variables are removed from the model following the same
procedure as before, based on ∆R2. Again, only the connection strenght vector β is re-
estimated each time.

The main drawback of this method is that estimating an ANN model with a large number
of inputs and hidden units is very difficult and quite often the estimation algorithm does not
converge.

3.5 Regularization

The last modelling technique considered here is regularization. The idea, familiar from
statistics, is to find a balance between the number of parameters and goodness of fit by
penalizing large models. The objective function is modified in such a way that the estimation
algorithm effectively prunes the network by driving irrelevant parameter estimates to zero
during the estimation process. The parameter vector Ψ is estimated as

Ψ̂ = argmin
Ψ

Q̃T (Ψ) = argmin
Ψ

(QT (Ψ) + ηQ
∗
T (Ψ)) , (10)

where QT (Ψ) =
PT
t=1 (yt −G(wt;Ψ))2 as in (4), Q∗T (Ψ) is the regularization or penalty

term, and η > 0 is often called the decay constant.
To be in agreement with the terminology often used in the ANN literature, in this section

“weight" means parameter and “generalization" is a synonym to out-of-sample forecasting.

3.5.1 Weight Decay

The usual penalty is the sum of squared parameters times a constant. In a linear model, this
form of regularization, called weight decay, is equivalent to ridge regression. For the ANN
model (1), the parameters are estimated as

Ψ̂ = argmin
Ψ

Q̃T (Ψ) = argmin
Ψ

 TX
t=1

(yt −G(wt;Ψ))2 + η
nX
j=1

Ψ2i

 , (11)
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where Ψi is a typical element of the parameter vector Ψ and n is the number of parameters
of the model.

The penalty term in (11), by definition, penalizes large estimates. There exist other
regularization methods where the penalty term involves not only the parameter estimates
but various partial derivatives of G(wt;Ψ) as well.

The weight decay penalty term makes the parameter estimates smaller in absolute value
than they otherwise would be. Large estimates can affect the forecasting performance in
two different ways. Very large parameters estimates of γij , i = 1, . . . , q, j = 0, . . . , p, in
(1) or (3) lead to hidden units that cause G(wt;Ψ) to be too rough, possibly with near
discontinuities. Excessively large estimates of β can cause outputs far beyond the range
of the data, if the output activation function is not bounded to the same range as the
data. To put it another way, large parameter estimates can cause excessive variance of the
output (Geman, Bienenstock, and Doursat (1992)). According to Bartlett (1997), the size
(L1 norm) of the parameter estimates is more important than the number of parameters in
determining the out-of-sample performance of the estimated ANN model.

Other penalty terms besides the sum of squared weights are sometimes used.

3.5.2 Weight Elimination

Weigend, Rumelhart, and Huberman (1991) proposed the weight elimination where

Ψ̂ = argmin
Ψ

Q̃T (Ψ) = argmin
Ψ

Ã
TX
t=1

(yt −G(wt;Ψ))2 + η
Ã Pn

j=1Ψ
2
i

1 +
Pn
j=1Ψ

2
i

!!
. (12)

While the penalty term using the sum of squared weights tends to shrink the large estimates
more than the small ones, weight elimination tends to shrink the small coefficients more, and
is therefore more useful for suggesting subset models (pruning).

The forecasting ability of the ANN model can depend crucially on the decay constant η,
especially with small sets of data used for estimation. If η is too small, the network may still
overfit, and if it is too large, the ANN model does not have an adequate fit in the estimation
period. Usually, different types of parameters in the ANN model will usually require different
decay constants for good forecasting ability.

One approach to choosing the decay constant is to estimate several networks with differ-
ent values of η and choose the one that minimizes the sum of squared out-of-sample residuals.
Weigend, Rumelhart, and Huberman (1991) iteratively update the decay constant during es-
timation. Adjusting all these decay constants to produce the model with the best forecasting
ability often requires vast amounts of computation.

Fortunately, there is a superior alternative to weight decay and weight elimination: the
Bayesian regularization. Bayesian regularization makes it possible to estimate efficiently
numerous decay constants.

3.5.3 Bayesian Regularization

One approach to determining the optimal regularization parameter η is the Bayesian frame-
work of MacKay (1992). In this context the coefficients of the network are assumed to be
random variables with well-specified distributions. The regularization parameters are re-
lated to the unknown variances associated with these distributions and can be estimated
with statistical techniques. Foresee and Hagan (1997) gave a detailed discussion of the
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use of Bayesian regularization in combination with the Levenberg-Marquardt optimization
algorithm. The function to minimize is

argmin
Ψ

Ã
ζ

TX
t=1

(yt −G(wt;Ψ))2 + η
Ã Pn

j=1Ψ
2
i

1 +
Pn
j=1Ψ

2
i

!!
= argmin

Ψ
(ζQ1 (Ψ) + ηQ2 (Ψ))

The steps the authors follow to minimize the objective function are:

• set ζ = 1, η = 0 and use the Nguyen-Widrow method of inizializing the weights;
• Take one step of the Levenberg-Marquardt algorithm to minimize Q1 (Ψ);

• compute the effective number of parameters bδ = dim(Ψ)− 2η · tr ³bH−1
´
, where bH is

the Gauss-Newton approximation to the hessian;

• compute the new estimates for ζ and η, bζ̈ = T−bδ
2Q1( bΨ) and bη = bδ

2Q2( bΨ) , where T is the
number of observations;

• iterate step 2 to 4 until convergence.

The main advantage of this method is that even if the ANN model is over-parametrized,
the irrelevant parameter estimates are likely to be close to zero and the model behaves like
a small network.

4 AR approximation to Box & Jenkins’ ARMA modelling

The ARMA(p1, p2) model is defined as

(1− ρ1L− ρ2L2 − . . .− ρp1Lp1)yt = (1 + θ1L+ θ2L2 + . . .+ θp2Lp2)ut, (13)

where ρ1, . . . , ρp1 , θ1, . . . , θp2 are real parameters, L is the backshift operator defined as L
iyt =

yt−i, p1 is the autoregressive order, p2 is the moving-average order, and ut ∼ NID(0,σ2u).
Stationarity and invertibility are basic assumptions. Under such conditions, we may write
(13) in the autoregressive representation, that is, an AR(p =∞) process:

(1− ρ1L− ρ2L2 − . . .− ρp1Lp1)(1 + θ1L+ θ2L2 + . . .+ θp2Lp2)−1yt = ut, (14)

or, equivalently:

(1− a1L− a2L2 − . . .)yt = ut, (15)

A linear model of the type (15), with a finite number of lags, can approximate (13)
satisfactorily if a sufficient number of lags is encompassed. I choose the maximum lag p = 25
because several series are monthly and their need to be investigated at least 2 years back in
time. The estimation can be performed by ordinary least squares (herafter OLS).Hereafter,
I call such modelling procedure ”AR” and I shall refer to it by this abbreviation.

The AR model building procedure is summarized as follows:

1. Specification

(a) If necessary, take logarithm or power transformations.

8



(b) If necessary, take short and/or long (seasonal) differences of yt to achieve station-
arity in the mean.

(c) Determine the order of the AR model, i. e., choose the value of p. This is done by
examining the partial autocorrelation (PACF) functions of the series after taking
the differences and transforming the data (if it is necessary).

2. Estimate the parameters of model (15) by OLS.

3. Model evaluation.

(a) Test whether the errors are white noise (Ljung-Box statistic).

(b) Test whether the errors are normally distributed (skewness, kurtosis and the
Jarque-Bera test).

4. Reduce the dimension of the estimated model using some information criterion like
SBIC or AIC.

5 The Experiment

ANN models are mainly used for forecasting. To assess the practical usefulness of different
methods of building an ANN model and the linear ARIMA model I conduct a forecast-
ing experiment. The forecasts made by each estimated model are compared according to
several statistics. I estimated ANN models for 30 different time series using the follow-
ing model building procedures: statistical methods, information criterion pruning, cross-
validation pruning, and Bayesian regularization. I also tried to estimate ANN models based
on interactive pruning. However, in most of the cases considered here I was unable to es-
timate a satisfactory model. Thus, I discarded these results from the present paper. To
compare the performance of the ANN models with the linear model, I also estimate, for each
series, a linear autoregressive model.

5.1 Forecasting

The forecasts were made according to the following procedure.

1. Split the sample into two subsamples: the estimation set (t = 1, . . . , t0) and the fore-
casting set (t = t0 + 1, . . . , T ).

2. Estimate the parameters of each model using only the estimation set.

3. For t = t0, . . . , T − 12, compute the out-of-sample forecasts of one to 12-step-ahead,
ŷt(h), and the associated forecast errors denoted by but(h) where h is the forecasting
horizon.

4. For each forecasting horizon, compute the following performance measures:

(a) Normalized root mean squared error (nRMSE):

nRMSE(h) =

vuut 1

T − t0 − 11

PT−12
t=t0

bu2t (h)
σ̂2y

, (16)
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where σ̂2y is the estimated in-sample unconditional variance of the series. The
nRMSE(h) is a measure of the relative forecasting efficiency of the estimated
model in relation to ŷt(h) = y, where y is the in-sample mean of the series.

(b) Mean Absolute Error (MAE):

MAE(h) =
1

T − t0 − 11
T−12X
t=t0

|but(h)| (17)

(c) Median Absolute Deviation (MAD):

MAD(h) = median(|but(h)−median(but(h)|). (18)

Reporting the MAD was suggested by van Dijk (1999) and can be interpreted as
a measure that is robust to outliers.

Another interesting way of comparing the forecasting performance of different models is
to compare the sign of (yt+h−yt) with the sign of (ŷt+h−yt). This can be done with a 2×2
contingency table, known as the confusion matrix and defined as

actual
up down

up a11 a12
predicted

down a21 a22

(19)

The columns in (19) correspond to actual moves, up or down, while the rows correspond
to predicted moves. In this way, the diagonal cells correspond to correct directional predic-
tions, while the off-diagonal cells correspond to incorrect predictions. I measure the overall
performance in terms of the confusion rate, defined as

CR =
a12 + a21

a11 + a12 + a21 + a22
. (20)

In order to test the hypothesis of equal accuracy in forecast performance between two
estimated models, I use the Diebold-Mariano statistic Diebold and Mariano (1995) with the
correction proposed by Harvey, Leybourne, and Newbold (1997a). The Diebold-Mariano
test works as follows. Consider two competing models m1 and m2 which have produced a
vector of h−step ahead estimated forecast errors bεmi(h) = (bε1,mi(h), ...,bεtf ,mi(h))

0. Consider
the difference

dt = g (bεt,m1(h))− g (bεt,m2(h)) , t = 1, ..., tf

where g (·) is a generic loss function. Here I base g (bεt,mi(h)) on the nRMSE(h) and on
MAE(h), so that the null hypothesis of equal performance can be defined as

E [nRMSE (bεt,m1(h))− nRMSE (bεt,m2(h))] = 0

or

E [MAE (bεt,m1(h))−MAE (bεt,m2(h))] = 0
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for all t and h. Defining dt = bε2t,m1
(h)− bε2t,m2

(h), I denote its mean and variance as follows

d =
1

tf

tfX
t=1

dt, V̂
¡
d
¢
=
1

tf

Ã
γ̂0 + 2

h−1X
k=1

γ̂k

!

where γ̂k is the estimated k−th autocovariance and γ̂0 the estimate of the variance. The
Diebold-Mariano statistic is

S =
h
V̂
¡
d
¢i−1/2

d

which is asymptotically distributed as a N(0, 1) under the null hypothesis. The test is
oversized in small samples; Harvey, Leybourne, and Newbold (1997b) suggested to use:

S∗ = S ·
µ
tf + 1− 2h+ h(h− 1)/tf

tf

¶1/2
where the statistic S∗ is compared with the critical values of a student t distribution with
n− 1 degrees of freedom since V̂

¡
d
¢
has to be estimated.

5.2 The Data

The time series used in the forecasting experiment are summarized in Table 1. For each of
the 30 series, the applied transformation, the period of interest, the total number of obser-
vations T and the number of observations t0 utilized for estimating the models are given.
The first twelve series were obtained from Economagic (www.economagic.com). The rest
of the series were obtained from Rob J. Hyndman’s Time Series Data Library home page
(www-personal.buseco.monash.edu.au/ hyndman/TSDL/mhts/). Logarithmic transforma-
tions were applied to some of the series to stabilize the variance, and first or twelve-month
differences were taken to achieve stationarity and/or to remove seasonal variation. The idea
is to perform an investigation on a broad set of data with a different sample size, related to
topics from macro and financial economics, to physics, to ecology and health. As to macro-
economic data, I included the M1, M2 and M3 series for US money stock, the unemployment
rate, the industrial production, the consumer and the producer price index for the US. The
set of financial series includes 3 daily exchange rates (Canadian $/US $, German mark/US
$, Japanese yen/US $) and 2 monthly stock indexes (S&P 500 and Dow Jones). All these
series are monthly, seasonally adjusted, and transformed by taking the first difference of
logarithms, such that I model their approximated growth rates. One series represents the
volcanic dust veil index, 4 series relate to river flows, 2 to blow-flies population, 2 to ozone
concentration, 3 to temperatures (1 monthly and 2 yearly), and 3 to cases of chickenpox,
measles and mumps. Two classical benchmarks for nonlinear models, the lynx and the annual
sunspot series, are included too.

5.3 Estimation Results

Table 2 shows the specification results. The set of selected lags widely differ depending on
the different method employed. The SA approach is the most parsimonious both in terms
of number of hidden units included in the estimated models and number of selected lags.
It is also the only one which allows the detection of a linear model. Note that it leads to
the detection of a linear model in 17 cases over 30. If I compare such linear models to the
AR models estimated by OLS, I can notice that they are much more parsimonious. The
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AR approach detected even 10 lags in one case, while SA never detected more than 4 lags.
Likewise, if I compare the nonlinear models estimated by the SA approach to the ICP and
CVP methods (the BRP’s specification is fixed), it is seen from table 2 that SA is the most
parsimonious. The question now is if this fact will influence the performances of the SA
approach either in the sample fit (table 3) or in the forecasting performances (tables 4—11)
or in both of them.

As to the in-sample fit, table 3 shows the nRMSE of the estimated models. SA models
always have the largest nRMSE, but this is expected because the corresponding estimated
models are the most parsimonious. As a whole, the BRP approach performs better than
the others in 11 cases according to the nRMSE criterion, but this is not surprising because
it is the less parsimonious one, with 12 lags and 4 hidden units in each estimated model:
including more regressors gives, on the average, a better fit, but does not guarantee better
forecasts. The ICP has the lowest residual mean square error 7 times, and the CVP and the
AR follow, both with 6. Whether or not the larger models forecast better than the more
parsimonious ones will be discussed in the next paragraph.

5.4 Forecasting Results

Forecasting with nonlinear models is far more complicated than in the linear case, especially
in the case of multi-steps ahead forecasts. Techniques such as Monte-Carlo and Bootstrap
should be used. See Granger and Teräsvirta (1993), p. 130-135 for a discussion. In this
paper, I use the Monte-Carlo approach with 500 replications to produce multi-step forecasts
from the nonlinear estimated models. Let yt = (yt, yt−1, ..., yt−k)0 the set of lags entering
the estimated ANN function g (·) at time t + 1, and ŷt+1 the forecast one steps ahead, its
optimal value is computed as follows:

ŷt+1 = E [yt+1|It] = g(yt)

For h > 1, it still holds that E [yt+2|It] = g(yt+1), ...E [yt+h|It] = g(yt+h−1), but we still
base our forecast on the information set at time t, It. It follows that f.i. in vector yt+1, we
do not know yt+1. So forth so on, in vector yt+h−1 we do not know yt+h−1, yt+h−2, ..., yt+1,
and they have to be generated by taking their variances into account. The most sensible
assumption is that yt+1, ..., yt+h−1 follow the same process than yt, which we assume to be
normal: yt ∼ N

¡
µ,σ2

¢
. It follows that we can generate forecasts at time h > 1 by using

random numbers drawn by the same distribution, z(j) ∼ N ¡0,σ2¢. Therefore,
ŷt+2 = g(yt+1) =

1

500

500X
j=1

g
³
g (yt) + z

(j)
t+2

´

ŷt+3 = g(yt+2) =
1

500

500X
j=1

g
³
g
³
g (yt) + z

(j)
t+2

´
+ z

(j)
t+3

´
...

ŷt+h = g(yt+h−1) =
1

500

500X
j=1

g
³
g
³
...
³
g (yt) + z

(j)
t+2

´
...
´
+ z

(j)
t+h

´

where the sequences of random numbers
n
z
(j)
t+2, ..., z

(j)
t+h

o
, j = 1, ..., 500, are drawn from

the normal distribution, z(j)t+i ∼ N
¡
0,σ2

¢
, and are mutually independent for all i = 2, ..., h;
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j = 1, ..., 500. Results are reported in tables 4—15 and summarized in tables 4—10. In order
to examine the forecasting performances for the 5 different models at the 3 horizons h =1,
6 and 12, first I compute a set of indexes which allows to make a comparison in absolute
value for nRMSE, MAE (table 12) and MAD and the confusion rate CR (table 13). Albeit
this approach does not constitute any sort of valid statistical test, it helps to shed light on
the relative merits of the models. Results from tables 12 and 13 are summarized in tables
4 and 5, where the number of times each model performs best are demonstrated for each h
and each of the 4 criteria.

The hypothesis of equal accuracy of forecasting performances measured by the nRMSE
criterion as a function of the forecasting error is tested, by means of the modified Diebold-
Mariano test statistic S∗. Results are reported in table 14. The number of times each
modelling strategy performs better versus another one is reported in table 6, 7 and 8 for h =
1, 6 and 12 respectively. Likewise, in table 15, I use S∗ based on the MAE criterion. Tables
9,10 and 11 summarize the results for the 3 different forecasting horizons.

Let’s take the first series, the first difference of the logarithms of the monthly US M1
money stock, seasonally adjusted, for the period 1959.1-1999.7. As can be seen in table 2,
the sets of selected lags widely differ depending on the different models. The number of
hidden units is 1 for all the NN models but BRP which keeps them fixed to 4 in advance.
From tables 12 and 13, first line for model 1 corresponding to h =1, the AR model ranks
first as to the nRMSE criterion, MAE and MAD are the same for all the models, while BRP
performs best as to the CR criterion. As to h=6 (second line), the BRP performs best as
to the nRMSE, MAE and MAD are still the same for all the models, and CVP is the best
accroding to CR. At h=12 (third line), AR has the lowest nRMSE, MAE and MAD the same
for all the models, BRP has the lowest CR. Summarizing, for series 1 the BRP modelling
strategy and the AR are the best for h=1, BRP and CVP for h=6, and BRP and AR at h
=12.

In order to perform the analysis by using a statistically tool, the corrected Diebold-
Mariano test statistic S∗, I look into table 14 first (nRMSE). For h=1, AR and BRP are
still the models performing best. AR turns out to be significantly better than ICP at the
5% level and it is better than both SA and CVP slightly over the 10% level , while it cannot
be considered more accurate than BRP. BRP is better than SA at the 10% level, than ICP
at the 1%, than CVP at the 5%. Now, performing the same analysis for h = 1 in table 15,
the corresponding outcomes for MAE corroborates results in table 14. Proceeding now to
the forecasting horizon h = 6, BRP outperforms 2 models and so does AR (nRMSE), while
(MAE) BRP turns out to be better over 2 models and AR over 1. At h = 12, neither in table
14 or 15 is there a clear indication of the models perfoming best. Such outcome is expected,
because forecasting accuracy obviously diminishes as h increases, and at h = 12 (one year
ahead in the M1 series) it becomes difficult, if not impossible, to discriminate among the
forecasting performances.

Such analysis is performed for each of the 30 series. A synthetic picture of the forecasting
performances can be viewed in table 4 and 5. In the former, the ARmethodology outperforms
the other 5 ones both for h = 1, 6 and 12, both for the nRMSE criterion (11 ranks best for
h =1; 10 for h = 6; 9 for h = 12) and for the MAE (11 times for h = 1; 10 for h = 6; 11 for
h = 12). In the same table, neither of the 4 NN clearly outperforms any of the other. In the
latter, the AR methodology loses its predominance both as to the MAD and CR criteria,
but no clear dominant model can be observed.

If I now take tables 6-12, which summarize tables 14 and 15, I can find the confirmation
of the outcomes of table 4. Looking at the column ”sum wins - sum losses”, for table 6
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(nRMSE criterion, h = 1), I can see that the AR model performs best 24 times versus the
other models as a whole. In table 9 (MAE, h = 1), the corresponding figure is 20. The AR
methodology thus seems superior to the other 2 ones at the forecasting horizon h=1. As
to other models, the ICP performs worse both in table 6 (-22) and table 9 (-18), while SA
(+2 and +6) ranks second. As to h=6 (tables 7 and 10), results are less clear-cut. BRP
is ranked first as to the nRMSE criterion (+16 vs. +15 for AR) but results change for the
MAE (+5 vs +15 for AR). ICP is still the worst with -20 and -16, while SA performs quite
badly too (-10 and -6). At h=12, it is still clear that AR is the best (+15 for nRMSE and
+19 for MAE), but results for the other models are quite difficult to interpret, being all
negative or slightly positive (ICP = -2 and -7; CVP = -14 and -14; BRP =-1 and +1; SA
= -5 and +1). Therefore, from the analysis of table 6-11 I can conclude that, according to
the nRMSE and MAE criteria and on the forecasting comparison based on the DM test on
nRMSE and MAE, the AR methodology turns out to outperform all the other ones. Among
those methods for NN modeling, none can be considered the best.

Going to table 5, where results for MAD (median absolute deviation) and CR (confusion
rate, based on the comparison of the signs of (yt+h − yt) with the sign of (ŷt+h − yt)) are
summarized, I can notice that the predominance of the AR models disappears. This may
be due to the fact that that both MAD and the CR criteria are less sensitive to outlaiers
than nRMSE and MAE. At h = 1, AR ranks last as to MAD together with BRP, and last
together with SA as to CR. AR turns out to be the best as to MAD and around average
as to CR at h = 6, the second worst in MAD and the second best in CR at h = 12. As
to SA, at h = 1 it ranks second best as to MAD and the worst as to CR. Because the CR
criterion is a measure for the accuracy in forecasting the sign, and MAD is less sensitive to
large forecasting errors than nRMSE and MAE, based on the median of the data and not on
the mean, such 2 criteria are more useful to assess the goodness in forecasting the direction
of the value of a stochastic process. In such view, the NN models clearly outperform the AR
ones in forecasting one period ahead.

It is also of interest to see how the statistical methodology SA performs in the case of
financial series. In this forecasting exercise, I included 3 monthly series of exchange rates:
Canadian $ / US $ (series 9), German mark / US $ (series 10), and Japanese yen / US
$ (series 11). For such series, the SA approach leads to the acceptance of linearity (no
neuran network model for any). The corresponding linear autoregressive model selected by
the SBIC criterion is based on the first lag (see section 3.2 in this essay or section 3 in essay
I for an extensive discussion). All the other approaches produce models which are much
less parsimonious for each of the 3 series (see table 2). Furthermore, ranking the models
according to their in-sample fit measured by the nRMSE criterion (see table 3), SA is ranked
last for series 9,10 and 11. Now, if I look at the comparison for the forecasting performances
for series 9, h = 1, corresponding to one month ahead, (table 14 and 15), it is clear that the
hypothesis of equal accuracy between SA and ICP cannot be rejected either for nRMSE or
MAE. This result holds for SA vs CVP, SA vs BRP, and SA vs AR as well. Series 10 and
11 perform similarly at h =1. In this exercise, the SA methodology leads to parsimonious
but very efficient models for financial forecasting.

6 Conclusion

In order to draw some conclusion on the overall exercise, I summarize the analysis of the 3
monthly financial series first. As to those 3 special cases, I can conclude that 1) the well-
known property of parsimonious models of being the best forecasters is confirmed, 2) the
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SA approach is able to detect a parsimonious model which performs better than the more
complicated ones at the forecasting horizon h = 1 and 3) even when SA does not reject
linearity and leads to the estimation of a linear model, such model is still competitive to the
one estimated by the the AR approximation to Box & Jenkins’ methodology. More generally,
results from table 4 and 5 do not disagree with Swanson and White in (Swanson and White
(1997)). In their analysis, the authors found out that each model performs best in at least
one case and that there is no clear ”winner”. Likewise, what happens in this forecasting
exercise is the following: while the linear model can be considered the best as the nRMSE
and MAE criteria (table 4), it cannot definitely outperform the other models as to the MAD
and CR criterion.

An overall conclusion about the results of the SA modelling procedure in this forecasting
exercise is that, albeit it does not perform better than the other approaches, it produces
similar forecasting performances with the advantage of leading to the estimation of more
parsimonious models.
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Series D escription Transformation Period T t0

1 - M1 US M1 money sto ck, seasonally ad justed fi rst d iff . of log 1959 .1—1999 .7 486 365
2 - M2 US M2 money sto ck, seasonally ad justed fi rst d iff . of log 1959 .1—1999 .7 486 365
3 - M3 US M3 money sto ck, seasonally ad justed fi rst d iff . of log 1959 .1—1999 .7 486 365
4 - CUR US civ ilian unemploym ent rate , seasona lly ad j. fi rst d iff . of log 1959 .1—1999 .7 486 365
5 - IP US industrial production, seasonally adjusted fi rst d iff . of log 1959 .1—1999 .7 486 365
6 - CPI US consumer price index, seasonally ad justed fi rst d iff . of log 1959 .1—1999 .7 486 365
7 - PPI US producer price index, seasonally ad justed fi rst d iff . of log 1959 .1—1999 .7 486 365
8 - EPU US electric power use, seasonally ad justed fi rst d iff . of log 1972 .1—1999 .6 329 240
9 - EXCAUS Exchange rate : C anad ian $ to one US $ fi rst d iff . of log 1871 .1—1999 .8 331 240
10 - EXGEUS Exchange rate : G erman marks to one US $ fi rst d iff . of log 1871 .1—1999 .8 331 240
11 - EXJPUS Exchange rate : Japanese yens to one US $ fi rst d iff . of log 1871 .1—1999 .8 331 240
12 - SP500 S&P 500 monthly close fi rst d iff . of log 1950 .1—1999 .9 596 480
13 - DJIA Dow Jones Industria l Average month ly c lose fi rst d iff . of log 1950 .1—1999 .9 596 480
14 - DVI Volcan ic dust veil index, northern hem isphere loga(obs. + 1) 1500—1969 470 300
15 - ASKEW1 M .ly riverflow : Sacram ento R . at Kesw ick, CA 12th d iff . of the log 1939.10—1960.7 252 170
16 - ASKEW2 M .ly r.flow : Madison R . near Yellow stone, MT 12th d iff . of the log 1923 .1—1960 .1 444 300
17 - FISHER Mean daily flow , cms, F isher R iver , Dallas logarithm 01.01 1988 — 31.12 .1991 1461 1000
18 - OLDMAN Mean daily flow , cms, O ldman R iver, Bro cket logarithm 01.01 . 1988 — 31.121991 1461 1000

19 - SUNSP Annual sunspot 2
hp

(1 + obse . − 1
i

1700—1998 299 200

20 - DEATHBF Deaths in adult population o f sheep blow-fl ies logarithm — 318 200
21 - TOTALBF Tota l population o f sheep blow-fl ies logarithm — 319 200
22 - AZUSA Ozone concentration , AZUSA logarithm 1956 .1 — 1970.12 180 100
23 - OZONELA Ozone concentra ion , downtown L.A . logarithm 1955 .1 — 1972.12 216 100
24 - TPMON Month ly temp eratures in England 12th d iff erence 1723.1-1970 .12 2964 2000
25 - SUMMER Mean summer temp erature in Munich logarithm 1781 — 1988 208 100
26 - GLOBTP Changes in g loba l temperature (annua l) fi rst diff erence 1880 — 1985 105 70
27 - LYNX Annual n . of Lynx trapped, M acKenzie R iver logarithm base 10 1821 — 1934 114 70
28 - CHICKNY Rept. n . o f cases of Chickenpox, m .th ly, NYC 12th d iff . of the log 1931 .1 — 1972.12 486 300
29 - MEASL Rept. n . o f cases of M easles , m onth ly, NYC 12th d iff . of the log 1928 .1 — 1972.12 522 300
30 - MUMPS Rept. n . o f cases of M umps, monthly, NYC 12th d iff . of the log 1928 .1 — 1972.12 522 300

Table 1: Data sets.
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ICP CVP BRP SA AR

Series Lags q Lags q Lags q Lags q AR Lags

1 1,3,9,12 1 1—3,6—12 1 1—12 4 1,6 1 1,3,5
2 1—3,9,10 1 1—3,5,7—10 1 1—12 4 1—3,9 0 1—3
3 1,3 1 1,2,4,5,7,9—12 1 1—12 4 1,6 1 1—4
4 1—6,8,10,12 1 1,2,4—6,8,9,11,12 1 1—12 4 1,4,12 1 2—4,12
5 1,5—7,9,11,12 1 2-12 1 1—12 4 1,2,5,12 2 1
6 1,8,9 1 1—12 1 1—12 4 1,10 0 1,5,9
7 2—4,7,11,12 1 1—9,11,12 1 1—12 4 2,4,12 1 1—3,5,6
8 7,9—12 1 2—7,9—11 1 1—12 4 1 0 1,6,12,24
9 1,3,8—10 1 1—8,10-12 1 1—12 4 1 0 1—3,8,10,13
10 1,4,6—11 1 1—9,11,12 1 1—12 4 1 0 1
11 1—4 1 1—4,6,8—11 1 1—12 4 1 0 1—3
12 1—3,5—12 1 1—12 1 1—12 4 1,9,12 1 1,5,14
13 1,3,5—10 1 2,4—10,12 1 1—12 4 1,8 1 1,5,14
14 1,2,5,6 1 1—8,10—12 1 1—12 4 1,4,5 0 1,4,5
15 1,12 1 1—12 1 1—12 4 1,12 0 1—3,11-13
16 1,12 1 1—12 1 1—12 4 1,5,12 0 1,12,13
17 1,2,3 1 1—8,10—12 1 1—12 4 1,2,4 2 1—3
18 1,2,3 1 1—3,5—12 2 1—12 4 1,2 1 1—3
19 1,2,9 1 1—5,7—9,11 1 1—12 4 1,2,11 1 1,2,9
20 1,4,11 1 1,5,6,8,10,11 1 1—12 4 1,9,12 1 1,2,8,11
21 1,2,8 1 1,3—5,7,10—12 1 1—12 4 1,3,4,12 1 1,2,8
22 1,4,9,10,12 1 1—5,7—12 1 1—12 4 1,4,6,12 0 1,4,12
23 1,4,5,10,11 1 1,4—9,12 1 1—12 4 1,10,12 0 1,10,12
24 1,2,4 1 1—5,7—12 1 1—12 4 1,2,12 0 1,2,4,6,8,12,13,15,24,25
25 1—7,10—12 1 1—4,6,8—12 1 1—12 4 1,6 0 1
26 1—6,8—11 2 1—3,7—9,11,12 1 1—12 4 2 0 1—4
27 1—12 4 1,4,5,10,12 1 1—12 4 1,3 1 1,2,4,7
28 1,9 1 1—9,11,12 1 1—12 4 1,7,12 0 1,4,9,12,13,20,23—25
29 1,2,11 1 1—7,9,11 1 1—12 4 1,2,9,12 0 1,2,4,11—13,21,24,25
30 1,11 1 1,2,4—12 1 1—12 4 1,12 0 1,11—13,24,25

Table 2: Specification results.
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Series ICP CVP BRP SA AR

1 0.859 0.849 0.855 0.883 0.871
2 0.682 0.679 0.681 0.693 0.698
3 0.695 0.702 0.609 0.693 0.692
4 0.908 0.918 0.911 0.917 0.923
5 0.874 0.936 0.904 0.912 0.919
6 0.589 0.582 0.415 0.714 0.587
7 0.795 0.801 0.809 0.854 0.835
8 0.951 0.946 0.747 0.990 0.940
9 0.924 0.912 0.931 0.985 0.931
10 0.879 0.922 0.944 0.954 0.954
11 0.906 0.896 0.918 0.938 0.924
12 0.975 0.970 0.988 0.986 0.988
13 0.982 0.979 0.997 0.995 0.986
14 0.663 0.651 0.591 0.656 0.607
15 0.723 0.701 0.700 0.721 0.642
16 0.684 0.676 0.678 0.686 0.663
17 0.124 0.124 0.118 0.141 0.124
18 0.106 0.105 0.098 0.100 0.106
19 0.367 0.363 0.321 0.424 0.377
20 0.419 0.399 0.301 0.400 0.423
21 0.362 0.337 0.154 0.374 0.389
22 0.532 0.524 0.489 0.539 0.538
23 0.575 0.570 0.469 0.593 0.593
24 0.962 0.840 0.821 0.843 0.791
25 0.874 0.882 0.998 0.959 0.972
26 0.745 0.832 0.995 0.964 0.873
27 0.050 0.326 0.180 0.332 0.351
28 0.678 0.590 0.573 0.600 0.537
29 0.250 0.248 0.215 0.245 0.207
30 0.333 0.329 0.322 0.332 0.286

Table 3: nRMSE of estimated models.

Horizon ICP CVP BRP SA AR

1
2 4 7 6 11
4 6 5 4 11

6
4 5 4 7 10
5 4 6 5 10

12
5 3 5 8 9
4 3 8 4 11

Table 4: Forecasting results: number of series where each model is the best model according
to the nRMSE (first line) and MAE (second line).
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Horizon ICP CVP BRP SA AR

1
5 8 5 7 5
9 7 9 5 5

6
6 7 6 3 8
4 11 10 7 7

12
6 4 6 9 5
6 6 10 11 10

Table 5: Forecasting results: number of series where each model is the best model according
to the MAD (first line) and CR (second line).

ICP CVP BRP SA AR sum of losses sum of wins - sum of losses
ICP — 6 11 8 11 36 -22
CVP 2 — 8 7 8 25 -4
BRP 4 6 — 5 8 23 1
SA 4 5 3 — 7 19 2
AR 2 4 2 2 — 10 24

sum of wins 12 21 24 22 34 — —

Table 6: Forecasting results: number of series where model A (column) is better than model
B (line) according to the modified Diebold-Mariano statistic at a 0.10 level for 1-step-ahead
(nRMSE test).

ICP CVP BRP SA AR sum of losses sum of wins - sum of losses
ICP — 7 10 8 9 34 -20
CVP 4 — 8 6 7 25 -1
BRP 2 6 — 3 5 16 16
SA 7 7 8 — 8 30 -10
AR 1 4 6 3 — 14 15

sum of wins 14 24 32 20 29 — —

Table 7: Forecasting results: number of series where model A (column) is better than model
B (line) according to the modified Diebold-Mariano statistic at a 0.10 level for 6-steps-ahead
(nRMSE test).
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ICP CVP BRP SA AR sum of losses sum of wins - sum of losses
ICP — 6 8 6 9 29 -2
CVP 8 — 10 8 9 35 -14
BRP 7 5 — 6 10 28 -1
SA 9 7 6 — 10 32 -5
AR 3 3 3 4 — 13 15

sum of wins 27 21 27 24 38 — —

Table 8: Forecasting results: number of series where model A (column) is better than model
B (line) according to the modified Diebold-Mariano statistic at a 0.10 level for 12-steps-ahead
(nRMSE test).

ICP CVP BRP SA AR sum of losses sum of wins - sum of losses
ICP — 6 9 7 10 32 -18
CVP 2 — 7 5 8 20 1
BRP 4 7 — 7 10 28 -7
SA 4 3 2 — 7 16 6
AR 4 5 3 3 — 15 20

sum of wins 14 21 21 22 35 — —

Table 9: Forecasting results: number of series where model A (column) is better than model
B (line) according to the modified Diebold-Mariano statistic at a 0.10 level for 1-step-ahead
(MAE test).

ICP CVP BRP SA AR sum of losses sum of wins - sum of losses
ICP — 6 9 9 10 34 -16
CVP 3 — 8 7 7 25 -4
BRP 6 7 — 4 7 24 5
SA 7 5 8 — 8 28 -6
AR 2 3 5 2 — 12 20

sum of wins 18 21 29 22 32 — —

Table 10: Forecasting results: number of series where model A (column) is better than model
B (line) according to the modified Diebold-Mariano statistic at a 0.10 level for 6-steps-ahead
(MAE test).

ICP CVP BRP SA AR sum of losses sum of wins - sum of losses
ICP — 6 8 6 10 30 -7
CVP 8 — 8 7 7 30 -14
BRP 7 4 — 6 8 25 1
SA 6 4 6 — 7 23 1
AR 2 2 4 5 — 13 19

sum of wins 23 16 26 24 32 — —

Table 11: Forecasting results: number of series where model A (column) is better than model
B (line) according to the modified Diebold-Mariano statistic at a 0.10 level for 12-steps-ahead
(MAE test).
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Table 12: Forecasting results (nRMSE and MAE): 1 (first line), 6 (second
line) and 12 (third line) steps ahead.

ICP CVP BRP SA AR

Series nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE

1
0.919 0.003 0.893 0.003 0.848 0.003 0.878 0.003 0.834 0.003
1.161 0.004 1.119 0.004 1.027 0.004 1.124 0.004 1.057 0.004
1.374 0.005 1.397 0.005 1.277 0.005 1.290 0.005 1.226 0.005

2
0.686 0.002 0.686 0.002 0.676 0.002 0.640 0.002 0.666 0.002
1.254 0.004 1.274 0.004 1.137 0.003 0.973 0.003 1.136 0.003
1.531 0.004 1.589 0.005 1.397 0.004 1.124 0.003 1.281 0.004

3
0.726 0.002 0.750 0.002 1.337 0.003 0.722 0.002 0.711 0.002
1.212 0.003 1.265 0.003 1.516 0.004 1.108 0.003 1.061 0.003
1.448 0.004 1.554 0.004 1.824 0.005 1.311 0.003 1.330 0.003

4
0.792 0.020 0.797 0.019 0.777 0.019 0.789 0.019 0.775 0.019
0.799 0.020 0.779 0.019 0.788 0.019 0.774 0.019 0.776 0.019
0.813 0.020 0.797 0.020 0.799 0.020 0.791 0.020 0.795 0.020

5
0.583 0.004 0.602 0.004 0.559 0.004 0.513 0.004 0.513 0.004
0.552 0.004 0.567 0.004 0.563 0.004 0.515 0.004 0.505 0.004
0.551 0.004 0.563 0.004 0.549 0.004 0.522 0.004 0.494 0.004

6
0.780 0.153 0.755 0.144 1.056 0.187 0.863 0.171 0.781 0.153
0.755 0.147 0.747 0.141 0.841 0.164 1.012 0.197 0.754 0.144
0.849 0.166 0.854 0.166 1.102 0.199 1.154 0.228 0.851 0.166

7
0.788 0.003 0.710 0.003 0.709 0.003 1.065 0.005 0.748 0.003
0.745 0.003 0.715 0.003 0.723 0.003 0.758 0.003 0.749 0.003
0.798 0.003 0.804 0.003 0.761 0.003 0.735 0.003 0.707 0.003

8
0.583 0.006 0.674 0.007 0.627 0.007 0.623 0.006 0.585 0.006
0.601 0.006 0.616 0.007 0.618 0.006 0.587 0.006 0.561 0.006
0.602 0.006 0.613 0.007 0.693 0.007 0.590 0.006 0.551 0.006

9
1.109 0.009 1.079 0.009 1.006 0.008 1.045 0.008 1.008 0.008
1.037 0.009 1.016 0.008 1.031 0.008 1.101 0.009 0.990 0.008
1.158 0.009 1.164 0.009 1.151 0.009 1.182 0.009 1.108 0.009

10
1.013 0.023 0.916 0.021 0.904 0.008 0.924 0.021 0.922 0.021
0.882 0.021 0.866 0.020 0.856 0.008 0.895 0.020 0.893 0.020
0.849 0.019 0.857 0.020 0.840 0.009 0.868 0.019 0.866 0.194

continued on next page
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ICP CVP BRP SA AR

Series nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE

11
1.040 0.022 1.040 0.023 0.929 0.020 0.957 0.020 0.938 0.021
1.021 0.022 0.998 0.022 0.958 0.021 0.990 0.021 0.987 0.021
1.030 0.023 1.034 0.023 1.013 0.022 1.021 0.022 1.022 0.022

12
0.953 0.030 0.969 0.031 0.939 0.030 0.927 0.029 0.939 0.030
0.934 0.030 0.945 0.031 0.936 0.030 0.928 0.029 0.932 0.030
0.887 0.028 0.917 0.030 0.897 0.029 0.893 0.029 0.905 0.030

13
0.987 0.031 0.981 0.032 0.964 0.030 0.974 0.030 0.978 0.031
0.979 0.031 0.968 0.031 0.952 0.030 0.966 0.030 0.965 0.031
0.982 0.032 0.935 0.030 0.936 0.030 0.946 0.030 0.962 0.031

14
0.655 0.974 0.647 1.000 0.668 0.975 0.671 0.987 0.659 0.971
1.020 2.094 0.980 2.066 0.981 1.960 0.989 2.010 0.990 2.098
1.031 2.170 0.988 2.100 0.996 1.922 1.017 2.192 1.019 2.193

15
0.969 0.373 1.042 0.395 1.005 0.390 0.971 0.371 0.943 0.356
1.102 0.444 1.162 0.476 1.121 0.455 1.056 0.435 1.099 0.427
1.113 0.446 1.182 0.460 1.133 0.447 1.071 0.446 1.111 0.436

16
0.553 0.081 0.551 0.081 0.544 0.081 0.549 0.082 0.507 0.073
0.690 0.116 0.688 0.117 0.699 0.119 0.683 0.116 0.651 0.107
0.704 0.121 0.719 0.125 0.742 0.129 0.709 0.124 0.661 0.111

17
0.135 0.082 0.135 0.082 0.132 0.084 0.138 0.084 0.137 0.083
0.490 0.352 0.493 0.345 0.539 0.376 0.576 0.526 0.507 0.356
0.606 0.487 0.610 0.474 1.060 1.078 0.744 0.752 0.619 0.478

18
0.099 0.050 0.099 0.050 0.097 0.053 0.101 0.050 0.099 0.052
0.328 0.227 0.324 0.228 0.338 0.270 0.334 0.242 0.328 0.238
0.450 0.361 0.462 0.386 0.449 0.359 0.448 0.421 0.444 0.361

19
0.423 1.856 0.417 1.766 0.492 2.028 0.479 2.009 0.407 1.755
0.775 3.215 0.739 3.029 0.980 3.746 1.162 4.209 0.690 2.803
0.890 3.817 0.846 3.627 1.148 4.780 1.147 4.893 0.834 3.560

20
0.525 0.639 0.537 0.669 0.458 0.536 0.411 0.452 0.599 0.761

continued on next page
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ICP CVP BRP SA AR

Series nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE

1.787 2.289 2.641 2.499 1.439 1.880 0.799 0.875 1.536 2.003
0.532 0.573 2.970 3.651 0.944 1.103 0.803 0.839 0.913 1.122

21
0.270 0.236 0.268 0.232 0.420 0.375 0.373 0.347 0.357 0.335
1.101 1.106 1.166 1.158 1.437 1.350 1.663 1.712 1.298 1.323
1.043 1.053 1.107 1.113 0.612 0.543 1.157 1.165 0.944 0.938

22
0.624 0.193 0.629 0.198 0.573 0.180 0.556 0.183 0.610 0.188
0.655 0.190 0.647 0.187 0.620 0.181 0.584 0.188 0.650 0.196
0.553 0.171 0.545 0.168 0.511 0.155 0.486 0.160 0.753 0.180

23
0.657 0.186 0.691 0.202 0.623 0.018 0.606 0.178 0.606 0.178
0.656 0.189 0.738 0.211 0.674 0.189 0.649 0.185 0.649 0.185
0.653 0.190 0.736 0.207 0.637 0.179 0.664 0.192 0.664 0.192

24
0.968 1.476 0.815 1.247 0.827 1.260 0.815 1.240 0.778 1.195
0.997 1.510 0.828 1.262 0.836 1.274 0.830 1.262 0.795 1.211
1.006 1.524 0.828 1.263 0.830 1.266 0.830 1.263 0.794 1.210

25
0.848 0.039 0.856 0.037 0.928 0.043 0.855 0.038 0.906 0.040
0.846 0.038 0.862 0.039 0.887 0.041 0.850 0.038 0.902 0.041
0.870 0.040 0.874 0.040 0.898 0.041 0.880 0.040 0.913 0.041

26
1.059 0.106 1.083 0.119 1.109 0.116 1.080 0.109 0.990 0.099
1.022 0.104 1.142 0.117 1.107 0.114 1.106 0.115 1.077 0.113
1.532 0.158 1.368 0.144 1.339 0.141 1.328 0.141 1.333 0.141

27
17.404 4.735 0.507 0.224 0.708 0.327 0.595 0.262 0.532 0.246
6.662 1.407 0.649 0.305 1.183 0.543 1.024 0.477 0.820 0.406
9.621 2.302 0.746 0.332 0.955 0.444 0.886 0.415 0.758 0.342

28
0.697 0.221 0.612 0.196 0.611 0.196 0.613 0.195 0.586 0.188
0.911 0.302 0.808 0.265 0.770 0.255 0.778 0.253 0.769 0.251
0.886 0.294 0.768 0.249 0.759 0.246 0.747 0.242 0.759 0.243

29
0.239 0.344 0.240 0.341 0.229 0.334 0.235 0.340 0.213 0.307
0.603 0.885 0.605 0.897 0.558 0.856 0.590 0.892 0.543 0.824
0.667 0.982 0.652 0.970 0.582 0.887 0.634 0.967 0.622 0.933

continued on next page
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ICP CVP BRP SA AR

Series nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE nRMSE MAE

30
0.331 0.162 0.323 0.160 0.321 0.160 0.296 0.158 0.308 0.155
0.508 0.285 0.617 0.314 0.588 0.298 0.560 0.303 0.569 0.290
0.638 0.331 0.716 0.371 0.700 0.364 0.637 0.350 0.673 0.347

Table 13: Forecasting results (MAD and CR): 1 (first line), 6 (second
line) and 12 (third line) steps ahead.

ICP CVP BRP SA AR

Series MAD CR MAD CR MAD CR MAD CR MAD CR

1
0.003 0.382 0.003 0.346 0.003 0.309 0.003 0.382 0.003 0.355
0.004 0.318 0.004 0.282 0.003 0.336 0.004 0.336 0.003 0.355
0.005 0.391 0.005 0.409 0.005 0.382 0.005 0.400 0.004 0.391

2
0.001 0.404 0.001 0.464 0.001 0.446 0.001 0.409 0.001 0.436
0.002 0.436 0.002 0.446 0.002 0.418 0.002 0.391 0.002 0.427
0.002 0.446 0.002 0.446 0.002 0.418 0.002 0.400 0.002 0.409

3
0.002 0.382 0.001 0.373 0.002 0.446 0.001 0.409 0.001 0.355
0.002 0.373 0.002 0.391 0.003 0.446 0.002 0.391 0.002 0.346
0.003 0.391 0.003 0.391 0.003 0.381 0.003 0.400 0.003 0.382

4
0.015 0.300 0.015 0.318 0.014 0.291 0.014 0.300 0.015 0.291
0.014 0.418 0.014 0.409 0.015 0.418 0.014 0.373 0.015 0.391
0.016 0.364 0.015 0.364 0.015 0.364 0.015 0.346 0.015 0.373

5
0.003 0.327 0.004 0.363 0.003 0.309 0.003 0.327 0.003 0.355
0.003 0.200 0.003 0.246 0.003 0.191 0.003 0.282 0.003 0.200
0.003 0.246 0.003 0.273 0.003 0.218 0.003 0.264 0.003 0.218

6
0.111 0.291 0.108 0.273 0.115 0.355 0.106 0.345 0.115 0.346
0.112 0.346 0.108 0.346 0.123 0.400 0.111 0.361 0.107 0.355
0.131 0.300 0.120 0.309 0.128 0.409 0.122 0.319 0.119 0.309

continued on next page
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ICP CVP BRP SA AR

Series MAD CR MAD CR MAD CR MAD CR MAD CR

7
0.002 0.336 0.002 0.309 0.002 0.327 0.002 0.455 0.002 0.373
0.002 0.300 0.002 0.263 0.002 0.309 0.002 0.300 0.002 0.318
0.002 0.364 0.002 0.382 0.002 0.355 0.002 0.364 0.002 0.336

8
0.006 0.192 0.006 0.256 0.006 0.308 0.005 0.218 0.006 0.218
0.006 0.333 0.006 0.321 0.006 0.269 0.006 0.282 0.006 0.295
0.006 0.284 0.005 0.333 0.006 0.372 0.006 0.321 0.005 0.282

9
0.008 0.250 0.007 0.225 0.007 0.200 0.006 0.213 0.007 0.263
0.008 0.263 0.008 0.250 0.007 0.263 0.007 0.275 0.008 0.238
0.007 0.213 0.008 0.213 0.008 0.225 0.008 0.225 0.008 0.213

10
0.019 0.400 0.018 0.325 0.016 0.375 0.006 0.350 0.017 0.350
0.016 0.200 0.016 0.188 0.018 0.175 0.007 0.188 0.018 0.188
0.015 0.200 0.016 0.213 0.016 0.225 0.008 0.250 0.016 0.250

11
0.018 0.363 0.018 0.325 0.017 0.300 0.016 0.350 0.016 0.363
0.017 0.250 0.017 0.238 0.015 0.275 0.016 0.238 0.016 0.250
0.016 0.313 0.018 0.300 0.016 0.300 0.017 0.263 0.017 0.288

12
0.022 0.229 0.025 0.267 0.022 0.286 0.023 0.257 0.023 0.276
0.023 0.210 0.022 0.229 0.021 0.238 0.020 0.248 0.021 0.248
0.022 0.295 0.022 0.295 0.022 0.295 0.021 0.286 0.023 0.295

13
0.017 0.238 0.022 0.219 0.023 0.210 0.023 0.210 0.023 0.219
0.023 0.295 0.022 0.276 0.022 0.276 0.022 0.286 0.021 0.295
0.022 0.267 0.022 0.248 0.022 0.248 0.022 0.248 0.023 0.267

14
0.458 0.503 0.318 0.554 0.448 0.547 0.412 0.506 0.416 0.509
1.839 0.509 1.852 0.491 1.603 0.503 1.918 0.488 1.844 0.503
2.391 0.516 2.283 0.503 1.794 0.516 2.077 0.494 2.605 0.503

15
0.205 0.254 0.214 0.324 0.223 0.282 0.219 0.282 0.196 0.268
0.282 0.225 0.292 0.282 0.257 0.254 0.294 0.197 0.216 0.211
0.260 0.183 0.219 0.197 0.250 0.169 0.304 0.183 0.229 0.225

16
0.048 0.301 0.044 0.308 0.045 0.293 0.047 0.293 0.042 0.256
0.090 0.203 0.093 0.196 0.096 0.195 0.090 0.173 0.076 0.158
0.090 0.203 0.092 0.218 0.094 0.248 0.092 0.196 0.084 0.165
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ICP CVP BRP SA AR

Series MAD CR MAD CR MAD CR MAD CR MAD CR

17
0.040 0.378 0.039 0.387 0.041 0.389 0.041 0.384 0.041 0.402
0.178 0.447 0.180 0.420 0.191 0.442 0.185 0.533 0.188 0.427
0.273 0.453 0.252 0.429 0.266 0.560 0.236 0.538 0.278 0.424

18
0.016 0.360 0.019 0.404 0.020 0.424 0.015 0.362 0.019 0.409
0.109 0.398 0.119 0.409 0.113 0.447 0.123 0.422 0.122 0.462
0.225 0.420 0.259 0.418 0.218 0.398 0.277 0.398 0.255 0.416

19
1.635 0.080 1.526 0.090 1.788 0.125 1.939 0.182 1.436 0.136
1.889 1.890 1.890 0.068 2.628 0.091 3.037 0.125 2.019 0.068
3.142 2.985 2.985 0.250 4.054 0.352 4.180 0.398 3.075 0.261

20
0.261 0.523 0.229 0.533 0.260 0.551 0.317 0.411 0.250 0.561
0.005 0.439 1.235 0.402 0.454 0.430 0.694 0.336 0.589 0.439
0.352 0.280 1.409 0.486 0.539 0.421 0.533 0.327 0.364 0.430

21
0.155 0.411 0.149 0.398 0.207 0.407 0.176 0.463 0.165 0.426
0.306 0.435 0.339 0.444 0.617 0.398 0.402 0.472 0.385 0.435
0.293 0.509 0.292 0.537 0.295 0.370 0.308 0.519 0.294 0.482

22
0.192 0.261 0.186 0.290 0.157 0.290 0.163 0.304 0.170 0.290
0.186 0.044 0.159 0.044 0.169 0.044 0.159 0.058 0.175 0.058
0.177 0.362 0.166 0.333 0.163 0.333 0.149 0.348 0.189 0.377

23
0.149 0.267 0.160 0.295 0.151 0.238 0.152 0.248 0.152 0.248
0.147 0.038 0.164 0.057 0.136 0.028 0.161 0.057 0.161 0.057
0.141 0.429 0.185 0.467 0.143 0.419 0.177 0.438 0.177 0.438

24
1.203 0.267 1.011 0.210 1.027 0.218 0.988 0.209 0.938 0.200
1.195 0.258 1.037 0.208 1.053 0.212 1.017 0.208 0.979 0.198
1.200 0.172 1.029 0.155 1.041 0.156 1.017 0.158 0.980 0.155

25
0.034 0.299 0.030 0.247 0.032 0.289 0.031 0.227 0.030 0.299
0.033 0.330 0.033 0.320 0.033 0.299 0.034 0.351 0.032 0.309
0.036 0.289 0.035 0.289 0.033 0.258 0.033 0.299 0.033 0.247

26
0.070 0.208 0.098 0.208 0.075 0.208 0.084 0.208 0.075 0.250
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ICP CVP BRP SA AR

Series MAD CR MAD CR MAD CR MAD CR MAD CR

0.099 0.333 0.072 0.375 0.080 0.292 0.083 0.292 0.073 0.292
0.137 0.417 0.117 0.250 0.165 0.208 0.105 0.208 0.107 0.208

27
0.367 0.242 0.231 0.091 0.288 0.182 0.216 0.242 0.251 0.152
0.579 0.273 0.249 0.121 0.470 0.242 0.291 0.152 0.346 0.152
0.618 0.424 0.296 0.091 0.245 0.091 0.304 0.061 0.258 0.121

28
0.169 0.354 0.143 0.274 0.146 0.286 0.138 0.286 0.139 0.286
0.240 0.229 0.220 0.189 0.213 0.183 0.206 0.189 0.195 0.200
0.229 0.131 0.196 0.109 0.195 0.103 0.189 0.097 0.190 0.126

29
0.302 0.228 0.292 0.228 0.280 0.213 0.308 0.218 0.257 0.232
0.725 0.071 0.722 0.062 0.786 0.076 0.798 0.062 0.765 0.114
0.847 0.119 0.821 0.109 0.807 0.085 0.863 0.114 0.840 0.095

30
0.132 0.308 0.135 0.313 0.125 0.303 0.123 0.322 0.136 0.294
0.224 0.147 0.225 0.147 0.234 0.161 0.222 0.151 0.199 0.119
0.273 0.128 0.263 0.147 0.294 0.147 0.260 0.142 0.265 0.137

Table 14: forecasting results (S∗ for the nRMSE test): 1 (first line), 6
(second line) and 12 (third line) steps ahead. Note: the apex 1 denotes
rejection of the null hypothesis of equal accuracy in forecast performance
at the 0.10 significance level, 2 at 0.05, 3 at 0.01. nc = not computed.

Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

1
-1.457 -0.384 1.8461 1.629 2.5722 3.0053 2.2532 2.1222 1.493 0.261
-1.316 0.390 2.3092 2.0702 1.9101 2.3692 1.8901 1.627 0.976 -1.7901

-1.417 -1.307 0.470 1.185 -0.699 1.076 1.333 1.020 1.265 1.596

2
-3.1003 -2.9723 -2.5422 -4.0863 -0.151 1.7941 1.442 2.0462 1.401 0.382
-4.2683 -4.3963 -3.6513 -3.9093 -6.6153 5.0793 4.8753 5.3073 5.0813 -3.2553

-3.3233 -3.4603 -2.9293 -2.5772 -4.5093 4.1833 3.8933 4.2813 4.0083 3.5223

3
-0.333 -0.727 -5.3253 0.654 -0.627 -5.3233 2.1552 -5.2863 1.9181 5.4103

-3.3573 -3.3153 -3.6453 3.3623 -2.2912 -3.4123 3.5393 -3.4993 3.5403 3.7733
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Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

-2.1042 -2.1792 -2.2212 -1.244 -2.3152 -2.2502 2.0642 -2.2242 2.1692 2.2082

4
0.291 0.108 0.943 1.151 -0.448 1.555 1.160 1.7031 1.543 0.183
-0.720 0.351 -0.187 0.531 3.8453 2.2482 2.0222 -1.8741 0.271 0.940
-0.323 0.157 0.105 0.596 2.5612 1.9652 0.666 -0.479 0.107 0.189

5
-0.708 -1.340 0.533 0.302 -0.491 0.819 0.704 1.9471 1.443 -0.456
0.602 0.006 0.132 0.647 -0.507 -1.093 -0.282 0.116 0.519 0.756
1.211 2.4002 0.568 0.998 -0.793 0.078 0.683 0.344 0.742 0.597

6
2.0172 2.4042 -1.348 1.8721 1.352 -1.8721 -0.121 -2.0362 -2.4482 1.8761

1.8701 1.8751 1.474 1.9602 0.437 nc 0.117 nc -0.639 nc
2.4452 2.4872 0.270 2.5472 -0.550 -1.209 -0.409 -1.221 0.423 1.216

7
4.8613 5.3633 5.9143 5.2463 1.275 1.507 0.673 0.067 -1.7991 -2.9053

0.744 3.1573 2.7993 0.358 1.596 1.222 -0.361 -0.873 -1.8461 -2.1382

-1.239 -3.6313 -1.140 1.7891 -0.194 1.084 2.1062 6.4943 5.1833 3.3403

8
1.213 -1.8822 -0.445 1.025 -2.2592 -1.263 -0.274 1.460 2.0462 1.058
-0.614 -2.1802 -1.020 0.535 -0.528 -0.416 0.678 -0.026 1.423 1.096
-1.250 -7.0423 -3.6883 1.7691 -1.072 -3.2063 5.3593 -3.0173 4.0623 5.4123

9
-1.539 -0.890 0.729 0.452 0.350 1.8381 1.7471 1.319 1.200 -0.170
1.8811 1.641 1.6761 1.581 1.132 0.366 1.204 -1.098 0.993 1.223
0.104 -0.011 1.7041 2.0192 -0.314 0.046 0.556 0.152 0.631 1.6751

10
-2.6533 -0.386 -0.053 -0.829 2.5833 2.7273 2.6523 0.430 0.385 0.051
-1.313 1.7101 1.6901 -1.213 2.0242 2.9903 1.305 2.7093 -1.7111 -1.6921

0.059 -0.572 1.149 -1.436 -4.6093 0.540 -0.063 1.253 0.567 -1.151

11
-2.0012 -2.1442 0.748 0.349 -0.400 2.8353 2.6203 3.0193 2.7653 -0.566
-1.8891 -1.229 1.470 -0.634 1.9531 2.9933 2.1502 2.8553 1.335 -2.3182

-0.600 -1.459 -0.660 -0.908 -0.585 0.450 0.460 2.7463 1.7291 0.272

12
-1.245 -1.7231 -1.186 -1.176 -0.527 0.857 0.589 1.379 1.097 -0.220
-0.527 -0.796 -0.786 -0.584 -0.897 -0.320 -0.014 0.704 0.663 0.252
0.792 -2.8023 -1.9772 -3.2323 -2.4902 -1.6751 -2.5482 3.2403 1.100 -1.7991

13
-0.980 -0.360 0.892 -0.695 0.192 1.464 0.381 0.595 0.053 -1.222
-8.7833 -0.276 2.6813 -0.399 0.462 6.9123 0.880 0.705 0.041 -1.199
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Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

-4.6203 3.6053 2.8403 -2.1692 5.0693 4.2593 1.033 -0.462 -4.3523 -3.1413

14
0.258 1.101 -0.477 -1.106 0.643 -0.529 -0.265 -0.946 -1.111 0.473
-0.770 0.512 0.238 -0.941 1.071 1.477 0.768 -0.019 -0.537 -0.249
-0.295 1.083 0.299 -0.528 1.487 0.548 0.292 -0.158 -1.105 -0.303

15
0.448 -0.856 -0.387 0.797 -1.6781 -0.878 0.468 1.181 1.7691 1.272
-2.7213 -0.999 -0.638 -0.713 -0.727 -0.284 -0.029 2.2102 0.672 0.252
-0.764 -0.564 -0.352 -0.370 -0.522 -0.228 -0.026 1.100 0.394 0.144

16
-0.307 -0.234 0.949 2.1732 0.292 0.770 1.9982 0.915 2.1342 1.9712

-0.763 -0.952 -0.871 1.7481 0.305 -0.400 1.597 -0.646 1.6951 1.6551

0.581 -0.656 -0.936 4.7333 -0.983 -1.099 2.6273 -1.119 2.6323 1.9351

17
1.091 0.784 0.942 -0.431 -1.473 0.597 -1.417 0.721 -1.212 -1.064
3.5693 2.6463 0.873 2.5252 -0.366 -1.493 -1.130 -1.327 -0.827 1.138
3.0583 2.3682 -5.4403 2.3252 -0.268 -5.6933 -0.791 -5.3933 -0.561 5.8213

18
0.608 0.789 1.6951 0.571 0.919 1.077 -0.231 0.857 -0.849 -1.073
0.559 1.036 -0.143 0.727 1.048 -0.571 0.032 -0.919 -0.883 0.592
2.2142 1.9251 2.1532 1.7391 -1.052 0.135 0.441 0.576 0.955 0.085

19
1.7561 1.9531 -0.307 2.3162 1.111 -2.0952 1.549 -2.3662 0.672 2.5112

2.9303 3.0313 1.617 3.1073 3.1023 -1.613 3.9273 -1.8891 2.9873 2.0572

2.7313 2.6523 0.150 2.7103 1.8741 -2.6343 2.2222 -2.5722 0.342 2.6023

20
-3.0893 -3.2643 -1.177 -5.0533 -0.908 3.7773 -5.4803 3.7983 -7.2113 -6.9253

-4.4753 -3.3663 -5.0933 -4.8693 -1.541 2.4162 3.5253 2.0122 2.2012 -1.186
2.2002 -2.9433 -5.5213 -1.506 -2.9393 -3.4833 -4.3733 2.8753 2.8133 0.612

21
7.5543 8.2683 -2.1102 1.7221 0.720 -5.6693 -8.9733 -5.5823 -7.9863 2.9563

5.7183 5.4823 3.2513 5.8183 -6.8043 -2.3962 -4.9743 -2.1612 -4.3073 1.238
22.223 nc 4.4033 6.7643 -10.2933 3.8323 5.1323 4.2923 7.2603 -3.5553

22
-1.084 -1.020 0.795 -1.283 -0.367 2.9393 0.605 3.7703 0.615 -1.139
-1.037 -0.743 0.301 -2.0512 0.620 1.8341 0.214 1.8631 -0.111 -1.050
-2.9023 -1.6651 0.589 -4.0453 0.935 3.1323 -2.9303 4.7243 -2.2232 -3.0053

23
0.186 -0.920 0.930 nc -0.921 1.093 1.402 2.0502 2.4892 0.661
1.8771 2.0362 2.0702 nc -1.633 -0.983 0.092 2.0272 1.8731 0.700
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Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

2.4562 2.6593 5.5733 nc -1.6751 0.347 -0.304 5.8863 1.141 -0.458

24
-8.7203 0.425 -2.2902 3.7483 8.8043 8.1463 9.6623 -2.8113 3.7903 4.6583

-8.2003 0.885 -1.462 4.1563 8.1573 7.9423 9.1963 -2.0132 4.0163 4.5213

-9.2873 0.672 -0.158 4.3973 8.8653 9.2213 9.2633 -0.683 4.3063 4.2453

25
0.312 0.139 -1.8161 -1.626 -0.203 -1.638 -1.108 -1.497 -0.956 1.003
0.491 -0.248 -0.822 -0.885 -1.100 -0.895 -0.950 -0.577 -0.644 -1.8091

1.7031 1.586 -0.597 -0.680 -0.313 -0.968 -1.016 -1.186 -1.226 -1.570

26
0.451 0.037 -0.417 1.418 -0.375 -0.761 0.570 -0.245 0.827 1.175
nc -0.283 1.325 1.524 -1.599 nc nc 0.362 0.665 1.647
nc nc -0.429 nc nc nc nc nc nc -0.216

27
-2.8933 1.6971 -1.420 0.879 2.8953 2.8923 2.8953 -3.2313 -1.264 2.1732

-1.092 1.6691 -0.872 1.316 1.107 1.078 1.102 -3.8303 -1.8541 2.0572

-1.116 0.785 -0.287 0.617 1.123 1.115 1.122 -1.7981 -0.719 3.5983

28
-3.3413 0.397 0.403 1.425 3.2633 3.4423 3.9413 0.139 1.245 1.150
-2.6173 -2.1772 0.708 0.497 1.9992 2.7213 2.6923 2.2792 1.405 0.021
-2.5022 -1.284 -0.601 -0.864 2.2012 2.5532 2.7733 1.8021 0.311 -0.034

29
-1.094 -1.073 0.885 2.7813 -0.241 1.206 2.9123 1.349 2.9653 1.8481

-0.715 -1.152 0.907 1.438 -0.315 0.986 1.391 1.040 1.519 0.315
-1.575 -1.129 1.9411 0.427 2.2132 1.8521 1.9692 1.7811 1.070 -0.630

30
-2.5883 -1.132 -0.565 1.253 2.5632 2.0862 2.3032 0.459 1.586 1.479
2.0262 -2.8993 0.609 1.121 -2.4052 -1.324 -0.074 1.114 1.628 0.596
1.8831 -2.3452 -0.936 0.528 -2.7613 -2.2702 -0.898 1.187 1.519 1.104
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Table 15: forecasting results (S∗ for the MAE): 1 (first line), 6 (second
line) and 12 (third line) steps ahead. Note: the apex 1 denotes rejection
of the null hypothesis of equal accuracy in forecast performance at the
0.10 significance level, 2 at 0.05, 3 at 0.01. nc = not computed.

Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

1
-0.924 -0.437 1.7781 1.416 1.289 2.7763 1.9581 2.6243 1.562 -0.390
-0.457 0.762 2.0972 1.7901 1.407 1.9802 1.332 1.117 0.414 -1.6891

-1.254 -1.184 0.465 1.121 -0.638 0.989 1.233 0.932 1.169 1.083

2
-4.2703 -4.0843 -3.2233 -3.6503 -0.513 1.8661 2.2972 2.4862 2.3212 1.050
-6.0033 -6.1213 -4.5693 -4.5873 -6.8543 8.2123 8.9433 8.3493 8.7483 -1.556
-5.6353 -6.0663 -4.7763 -3.8563 -12.463 7.5483 7.2173 8.4923 7.8213 6.6593

3
-0.452 -0.715 -6.5193 0.871 -0.318 -6.4153 2.8233 -6.4793 1.9221 6.7373

-3.3573 -3.5923 -5.0533 2.9723 -3.4663 -4.8133 3.6933 -4.6723 3.9473 5.1023

-1.9721 -2.0862 -2.5332 -0.574 -2.3122 -2.7213 2.2702 -2.7133 2.3302 2.5993

4
-0.190 -0.043 0.534 0.310 0.330 1.580 0.806 1.190 0.557 -0.551
-1.307 -0.044 -0.664 -0.094 3.6683 2.5302 2.0062 -2.8323 -0.051 0.895
-0.553 -0.077 -0.141 0.009 3.8493 3.2393 0.735 -0.769 0.111 0.203

5
0.217 -1.7121 -0.353 -0.917 -1.7081 -0.362 -0.380 1.9341 1.606 -0.051
1.330 0.280 0.931 1.252 -1.225 -0.503 -1.231 0.873 1.114 -0.249
1.6551 2.2152 0.918 1.270 -1.366 0.322 0.704 0.702 1.045 0.247

6
2.1162 3.1083 -0.832 2.0122 2.7523 -1.8611 -0.065 -2.4182 -3.2813 1.8741

1.9722 2.2732 1.601 2.3352 1.217 -1.9762 0.625 -2.5763 -0.892 2.6313

2.1822 2.3582 0.778 2.3762 0.144 -1.322 0.302 -1.395 0.331 1.363

7
7.0613 7.4223 7.5263 6.8153 0.949 0.690 -0.297 -0.920 -2.2162 -2.4953

1.390 3.3953 2.2302 0.947 0.750 0.118 -0.707 -1.510 -3.0033 -4.7213

-1.374 -4.8033 -1.483 4.417 -0.784 1.031 2.5633 34.013 7.3753 3.9273

8
0.535 -1.099 -0.235 0.518 -1.278 -0.607 -0.093 0.918 1.158 0.564
-0.720 -3.2083 -0.702 0.191 -0.661 -0.092 0.577 0.417 1.342 0.814
-0.526 -5.6813 -5.1683 2.3952 -1.150 -2.7233 2.0792 -2.2192 3.4173 nc

9
-1.227 -0.760 0.935 0.170 0.275 1.7321 1.194 1.364 0.860 -0.747
0.652 0.869 1.9231 1.133 1.078 1.467 1.064 0.163 0.425 0.206
0.224 -0.034 0.890 1.229 -1.502 -0.098 0.219 0.167 0.504 0.738

10
-1.6891 0.235 0.215 -0.711 2.1782 1.7371 1.6891 -0.177 -0.236 -0.217
-0.868 nc 0.564 -1.288 0.689 1.062 0.864 0.637 nc -0.571
0.978 -0.403 1.374 -1.535 -2.2242 -0.450 -0.982 1.161 0.395 -1.375
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Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

11
-2.1372 -2.3622 -0.377 -0.762 -0.300 2.0492 1.7861 2.2852 1.9381 -0.987
-2.0802 -1.397 0.385 -0.780 1.8441 3.0363 2.3042 2.1692 1.466 -0.915
-0.736 -0.947 -0.865 -1.201 -0.028 0.553 0.546 1.525 0.772 0.370

12
-1.267 -1.598 -1.260 -1.094 -0.547 0.760 0.605 1.183 0.983 -0.034
-1.215 -1.648 -1.235 -1.199 -1.588 0.288 0.251 1.5791 1.461 0.153
1.207 -3.2633 -3.4993 -7.4543 -2.9063 -2.6123 -4.9993 3.2073 1.211 -2.3332

13
-1.068 -1.472 0.699 -1.7181 -0.532 1.372 -0.156 1.8141 0.411 -2.1622

-12.463 -2.2852 2.7043 -1.356 0.268 9.6443 0.655 3.8153 0.376 -3.5673

-4.6883 1.452 3.2003 -3.3843 3.8923 4.4023 1.355 0.707 -4.1693 -4.9583

14
-0.100 -1.237 -0.096 1.7051 -0.990 -0.018 0.109 0.651 1.248 0.102
0.033 0.708 1.7731 -1.195 0.335 2.5222 -0.042 2.1862 -0.735 -1.7971

0.219 1.310 1.4531 -0.391 1.234 1.7391 -0.226 1.406 -1.332 -1.460

15
-0.158 -0.972 -0.789 0.645 -1.138 -0.646 0.745 0.824 1.75921 1.432
-1.6761 -0.840 -0.479 0.488 -0.668 -0.276 1.124 2.5943 0.988 0.637
-0.033 -0.155 -0.015 0.261 -0.176 -0.010 0.322 0.624 0.260 0.147

16
0.224 0.292 0.770 2.6463 0.056 0.242 2.2712 0.318 2.2562 2.3192

-0.416 -0.462 -0.591 1.7301 0.196 -0.305 1.7031 -0.547 1.6531 1.5751

3.2583 -0.108 -0.559 3.3853 -0.818 -0.910 2.5152 -0.942 2.3002 1.8111

17
1.9171 1.327 0.193 0.949 -1.257 -1.119 -1.8662 -0.791 -0.803 0.493
7.8163 7.3883 5.8153 6.5523 1.112 -1.8031 -0.431 -2.1052 -0.951 1.320
5.9853 5.8303 -10.023 5.3303 1.384 -8.0063 0.634 -7.8523 -0.400 7.7793

18
0.299 -0.256 -1.8781 -1.206 -1.588 -2.3652 -5.7733 -1.8301 -2.0752 0.940
1.7351 1.625 -1.9722 0.425 -0.438 -2.7493 -1.7381 -2.6703 -1.240 2.0552

2.3122 1.648 2.2322 1.566 -1.8971 0.102 0.012 0.937 1.013 -0.077

19
1.244 1.8331 -0.112 2.0472 2.2332 -1.240 1.560 -1.9291 0.143 1.7701

2.9413 3.5003 1.124 3.6663 5.2563 -1.092 6.4583 -1.545 3.0043 1.7931

3.2103 3.2553 0.521 3.2853 1.9161 -3.3333 2.1112 -3.2553 0.506 3.1043

20
-3.9373 -4.7453 -1.8751 -6.5333 -1.7721 4.8103 -6.5923 5.2223 -7.2713 -9.1783

-5.8663 -4.8153 -5.9893 -6.2553 -1.274 2.0372 3.4573 1.7751 2.1102 -0.970
1.589 -4.8753 -15.123 -2.6513 -4.2133 -3.1873 -5.1703 4.4483 3.8702 -0.213
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Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR

21
8.2683 8.5273 -1.555 1.344 0.501 -7.0573 -8.8693 -6.8293 -7.5603 2.5042

11.253 10.123 4.1383 10.783 -7.2633 -2.0642 -7.4933 -1.6741 -6.1763 0.287
nc nc 5.8413 nc -10.333 4.9973 23.613 5.7823 nc -4.2153

22
-1.250 -1.468 0.284 -1.547 -0.900 1.9982 0.652 3.1023 0.963 -0.770
-0.251 0.141 0.759 -1.022 0.656 1.420 -0.608 0.761 -0.752 -1.493
-2.9193 -1.397 0.893 -7.0303 0.916 3.3543 -1.588 3.4273 -1.456 -2.8013

23
0.568 -0.771 1.213 nc -1.386 0.815 0.764 2.3192 2.1852 0.036
1.633 1.332 2.4202 nc -1.393 0.033 0.300 4.0143 1.640 0.300
1.522 1.249 4.8873 nc -1.018 0.797 -0.077 5.9773 0.793 -0.559

24
-9.1713 -1.9421 -2.1482 2.7823 8.8543 8.1543 9.6913 -1.537 3.3363 3.6853

-8.5863 0.018 -1.353 3.2883 8.8253 8.6983 9.2493 -1.480 3.2283 3.5083

-9.3843 -0.137 -0.437 3.5913 9.1523 9.7353 9.1573 -0.354 3.6283 3.4793

25
-0.152 0.664 -2.0142 -1.407 0.801 -1.400 -0.603 -2.0172 -1.300 1.6531

-0.001 -0.634 -1.399 -1.473 -1.621 -1.127 -1.220 -0.825 -0.941 -2.0992

0.556 0.000 -0.582 -0.667 0.511 -0.570 -0.643 -0.864 -0.918 -1.347

26
0.157 -0.699 -1.104 1.382 -0.902 -0.787 0.594 0.218 1.517 1.7781

7.4483 -0.136 1.178 1.229 -1.203 -3.2671 nc 0.213 0.315 0.742
nc -0.689 0.711 0.145 nc nc nc 0.496 0.434 -0.767

27
-3.0103 1.536 -1.6571 0.570 3.0623 2.9603 3.0463 -2.9693 -1.201 1.9171

-1.7621 1.236 -0.586 0.771 1.8611 1.492 1.8201 -3.2643 -2.0512 1.7651

-1.552 0.746 -0.255 0.614 1.7661 1.536 1.7171 -1.532 -0.353 3.0353

28
-3.1723 -0.279 -0.148 1.009 2.8343 2.7473 3.3743 0.135 1.079 0.984
-2.8603 -2.6043 -0.299 0.219 1.9931 2.7713 2.7633 1.295 1.293 0.335
-3.3233 -1.412 -0.614 -0.300 2.9673 3.3893 3.9373 0.867 0.598 0.255

29
-0.769 -0.191 0.522 2.3242 0.724 0.912 2.5933 0.710 2.4402 1.8531

0.313 -0.366 0.802 1.135 -1.563 0.626 0.896 0.832 1.131 0.289
-0.577 -0.150 2.1382 0.505 1.250 1.632 0.961 1.7081 0.646 -0.461

30
-1.565 -0.786 -0.762 0.534 1.224 0.736 1.258 -0.184 0.829 0.917
1.8691 -3.0003 0.366 0.919 -2.4012 -1.502 -0.310 1.062 1.7261 0.557
1.036 -2.4822 -1.641 0.234 -2.1302 -1.9682 -0.670 1.312 1.6771 1.245

continued on next page
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continued from previous page

Ser. SA SA SA SA ICP ICP ICP CVP CVP BRP
vs vs vs vs vs vs vs vs vs vs
ICP CVP BRP AR CVP BRP AR BRP AR AR
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