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Abstract

We propose a reduced form model for default that allows us to derive closed-form
solutions to all the key ingredients in credit risk modeling: risk-free bond prices, default-
able bond prices (with and without stochastic recovery) and probabilities of survival.
We show that all these quantities can be represented in general exponential quadratic
forms, despite the fact that the intensity is allowed to jump producing shot-noise ef-
fects. In addition, we show how to price defaultable digital puts, CDSs and options on
defaultable bonds.

Further on, we study a model for portfolio credit risk where we consider both firm
specific and systematic risks. The model generalizes the attempt from Duffie and
Gârleanu (2001). We find that the model produces realistic default correlation and
clustering of defaults. Then, we show how to price first-to-default swaps, CDOs, and
draw the link to currently proposed credit indices.
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1 Introduction

Most of the quadratic term structure (QTS) literature has focused on analyzing risk-free
bond prices and considering only Gaussian-quadratic models. Exceptions are Gaspar (2004)
and Chen, Filipović, and Poor (2004). Gaspar (2004) introduces the so-called General
Quadratic term structure (GQTS) models, which through an a-priori classification of factors
include both the affine term structure (ATS) models and the Gaussian-QTS models as special
cases. Instead, Chen, Filipović, and Poor (2004) study the traditional Gaussian-QTS, also
in for both risk-free and defaultable bonds.

In this paper we use the concept of GQTS and augment it with a special type of jump-process,
called shot-noise processes. By this, we do not only include the above mentioned models as
a special case but also jump-diffusion models, like for example Duffie and Gârleanu (2001).
While quadratic models naturally arise in intensity-based models, as the default intensity
needs to be a positive process, the shot-noise component allows to obtain a suitable dynamic
dependence structure for a market with a large number of defaultable entities. Needless to
say, capturing dynamic dependencies is one of the most important points for modeling CDOs.
Using the shot-noise process solves a basic problem in Duffie and Gârleanu (2001), namely
that the mean-reversion speed of the diffusion part is the same as for the jump part. Besides
this, shot-noise processes induce an interesting behavior to the process, which will result
in clustering for defaults. It is this feature which seems very promising for capturing the
complex dependencies which constitute the peculiarities embedded in a CDO.

As already mentioned, we consider an intensity-based approach to modeling default. This
approach has always been very popular and has recently been justified by strong fundamental
motivations. Indeed, Duffie and Lando (2001) show that the difference between the reduced-
form approach and the economically more intuitive structural approach becomes irrelevant
when one includes frictions in the structural model, such as imperfect information about the
asset or the liability structure. Moreover, Collin-Dufrense, Goldstein, and Hugonnier (2004)
proved that the price of a defaultable security is always the expectation of future discounted
cash-flows, even when the so called “no-jump condition” is violated1. So, there are good
reasons for expecting closed-form solutions for key ingredients of credit risk.

For a survey study on reduced form credit risk model we refer to Schmidt and Stute (2004).

The main goals of this paper are:

• To adapt the GQTS setup to model default risk using an intensity-based credit risk
modeling approach a la Jarrow, Lando, and Turnbull (1997), Lando (1998) and Duffie
and Singleton (1999) and to get closed-form solutions for all key ingredients in credit

1When the no-jump condition holds, the traditional risk-neutral measure can be used, basically adding
to the discount rate some term which reflects the default risk. If the no-jump condition does not hold, using
a new measure (the so-called survival measure) allows roughly the same to be done. The survival measure,
also used in Schönbucher (2000) and Eberlein, Kluge, and Schönbucher (2005), is the measure that puts
zero probability on those paths for which default occurs prior to maturity. As such this measure is only
absolutely continuous with respect to the risk neutral probability and not equivalent to it.
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risk modeling: risk-free bonds, defaultable bonds, probabilities of default, etc. This
way we extend the Gaussian-QTS of defaultable bonds considered by Chen, Filipović,
and Poor (2004).

• Use shot-noise processes to give a dynamic description of default dependence which is
able to produce a high default correlation and contagion effects.

• Under some simplifying assumptions the model gives closed-form solution for the pric-
ing of CDOs and other portfolio credit risk derivatives.

The paper is organized as follows. In Section 2 we review the basic setup of GQTS and
present the main result on risk-free bond prices. In Section 3 we present the model for the
defaultable bond market. Considering uncertainty effects, we find a motivation for shot-
noise effects in the credit spreads. Then, the theoretical framework is given and we derive
survival probabilities, defaultable bond prices, defaultable digital payoffs and show how to
use these building blocks to price less trivial credit derivatives. We conclude the section by
considering various recovery assumptions. In Section 4 we deal with portfolio credit risk
issues. Special emphasis is put on default correlations and clustering effects implied by the
considered framework. The subsection 4.3.2 is devoted to pricing CDOs, while the rest of
the section deals with other portfolio credit derivatives, such as first-to-default swaps and
options on credit indices. Section 5 illustrates the theoretical results by considering an easy
three-factor model. Section 6 concludes the paper and discusses future research.

2 Risk-free Bond Market

For the risk-free bond market we use the general quadratic term structures setup studied
in Gaspar (2004). Consider a finite set of time-dependent factors described by a Rm-valued
stochastic process (Zt)t≥0. The zero-coupon bond prices are assumed to depend on these
factors by

p(t, T ) = H(t, T, Zt), (1)

where H is a smooth function with the boundary condition H(T, T, z) = 1. In a general
quadratic setting, H will turn out to have a quadratic form.

We propose the following dynamics for Z:

dZt = α(t, Zt)dt + σ(t, Zt)dWt, (2)

where W is a m-dimensional Wiener Process, and it generates the filtration
(
FW

t

)
t≥0

.

The drift and volatility terms, α, σ, shall have the following form:

α(t, z) = d(t) + E(t)z (3)

σ(t, z)σ>(t, z) = k0(t) +
m∑

i=1

ki(t)zi +
m∑

i,j=1

zi gij(t)zj . (4)

Here, zi is the i-th component of z. The deterministic and smooth functions d, k0, ki, gij

for i, j = 1, · · · , m take values in Rm while E takes values in Rm×m and ·> denotes the
transpose.

Also for the short rate we assume a quadratic form.
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Assumption 2.1. Assume that the risk-free short rate (rt)t≥0 is given by

r(t, Zt) = Z>
t Q(t)Zt + g>(t)Zt + f(t). (5)

Here, Q, g and f are deterministic and smooth functions with values in Rm×m, Rm and R,
respectively. Moreover, Q(t) is assumed to be symmetric2 for all t.

Gaspar (2004) has shown how to identify these factors a priori from their impact on the drift
α, volatility σ or the functional form of the short rate. We, thus, classify the components
of Z in the following two groups.

Definition 2.2. (Classification of risk-free factors)

• Zi is a risk-free quadratic-factor if it satisfies at least one of the following requirements:

(i) it has a quadratic impact on the short rate of interest r(t), i.e., there exists t such
that Qi(t) 6= 0;

(ii) it has a quadratic impact on the functional form of the matrix σ(t, z)σ>(t, z),
i.e., there exist k and t such that gik(t) 6= 0;

(iii) it affects the drift term of the factors satisfying (i) or (ii), i.e., for Zj satisfying
(i) or (ii) we have Eji(t) 6= 0, at least for some t.

• Zi is a risk-free linear-factor, if it does not satisfy any of (i)-(iii).

We write i ∈ Z(q), if Zi is a risk-free quadratic factor and i ∈ Z(l) if it is a risk-free linear
factor.

The above classification immediately yields that Q, E and G have a certain form. To access
this easily we introduce the following notation. We say a function Q has only quadratic
factors, if its symbolic representation is of the form

Q(t) =



Q(qq)(t) 0

0 0


 , for all t. (6)

With this notation we have that Q and G have only quadratic factors, while for E

E(t) =




E(qq)(t) 0

E(lq)(t) E(ll)(t)


 .

From Gaspar (2004) it is known that, provided the factors have been reordered as Z =[
Z(q), Z(l)

]>
, the following conditions are sufficient for existence of a GQTS for risk-free

bond prices. In this paper we assume that these conditions hold.

Assumption 2.3. Assume that for ki and gij in (4) the following holds:

ki =




0 0

0 k
(ll)
i


 ∀ i and gij =




0 0

0 g
(ll)
ij


∀ i, j s.t. Zi, Zj ∈ Z(q).

2The symmetry assumption is not restrictive. Any non-symmetric quadratic form can be rewritten in an
equivalent symmetric way with the advantage that the symmetric representation is unique.
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The value of the bond-price can be determined by use of the Feynman-Kac formula in terms
of certain ODEs. In our quadratic approach this will always lead to the following system of
Riccati ODEs.

Definition 2.4 (Basic ODE System). Denote T := {(t, T ) ∈ R2 : 0 ≤ t ≤ T} and
consider functions A, B and C on T with values in R, Rm and Rm×m, respectively. For
functions φ1 and φ2, φ3 on R+ with values in R, Rm and Rm×m, respectively, we say that
(A, B, C, φ1, φ2, φ3) solves the basic ODE system if

∂A

∂t
+ d>(t)B +

1
2
B>k0(t)B + tr {Ck0(t)} = φ1(t)

∂B

∂t
+ E>(t)B + 2Cd(t) +

1
2
B̃>K(t)B + 2Ck0(t)B = φ2(t)

∂C

∂t
+ CE(t) + E>(t)C + 2Ck0(t)C +

1
2
B̃>G(t)B̃ = φ3(t)

subject to the boundary conditions A(T, T ) = 0, B(T, T ) = 0, C(T, T ) = 0. A, B and C
should always be evaluated at (t, T ). E, d, k0, are the functions from the above definitions
(recall (3)-(4)) while

B̃ :=




B 0 · · · 0
0 B · · · 0
...

. . .
0 · · · 0 B


 , K(t) =




k1(t)
...

km(t)


 , G(t) =




g11(t) · · · g1m(t)
...

. . .
...

gm1(t) · · · gmm(t)


 , (7)

where we have B̃, K ∈ Rm2×m and G ∈ Rm2×m2
.

We recall that the risk-free zero-coupon bond prices are given by

p(t, T ) = EQ
[
e−

∫
T
t

r(u)du
∣∣∣FW

t

]
,

and that only in special cases can we obtain the bond prices in closed-form.

As proven in Gaspar (2004) the general quadratic case is one of those special cases and the
zero-coupon bond prices can be easily obtained from solving the basic ODE system.

Result 2.5. Suppose that Assumptions 2.1 holds. Furthermore assume Assumption 2.3 is
verified when the factors Z are reordered as Z =

[
Z(q), Z(l)

]>
. Then, the term structure

of risk-free zero-coupon bond prices is given by

p(t, T ) = exp
[
A(t, T ) + B>(t, T )Zt + Z>

t C(t, T )Zt

]

where (A, B, C, f, g, Q) solves the basic ODE from Definition 2.4. Recall that f , g and Q
were given in Equation (5). Furthermore, C has only quadratic factors in the sense of (6).

3 Defaultable bond market

In this section we present the defaultable bond market. Before we present the actual model,
we revise some general results needed for the valuation of defaultable bonds and related
derivatives.
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3.1 Doubly Stochastic Random Times

The results summarized in this section are all well-known, and may be found in any of the
following books: McNeil, Frey, and Embrechts (2005), Lando (2004), Bielecki and Rutkowski
(2002) or Schönbucher (2003).

We take the approach of explicitly constructing the doubly-stochastic random time τ , which
will represent a single default, while the obtained results also hold in more general cases.

Definition 3.1 (Setup). Consider a probability space (Ω,G, Q). On this probability space
there exists:

• a filtration (Ft)t≥0,

• a strictly nonnegative process (µt)t≥0 adapted to (Ft)t≥0,

• a random variable E1 which is exponentially distributed with parameter 1 which is
independent of F∞.

Then,
∫ t

0
µu du is an increasing, continuous process. We define the default time τ as

τ := inf{t ≥ 0 :
∫ t

0

µu du = E1}. (8)

The information on the default state is denoted Ht := σ(1{τ>s} : 0 ≤ s ≤ t) and the total
information by Gt := Ft ∨ Ht.

From the independence of µ and E1 and under the assumption that E1 is exponentially
distributed, we directly obtain

Lemma 3.2. For the random time τ , constructed in (8), it holds that

1{τ>t}Q
(
τ > T |FT ∨ Ht

)
= 1{τ>t} exp

(
−
∫ T

t

µu du
)
.

Proof. The essence of the proof is to use independency of E1 and FT . First, observe that
{τ > T} = {

∫ T

0
µu du < E1}. So we have that on {τ > t}

Q(τ > T |FT ∨Ht) =
Q
(∫ T

0
µu du < E1,

∫ t

0
µu du < E1|FT

)

Q
( ∫ t

0 µu du < E1|FT

) .

As E1 is exponentially distributed and independent from FT we obtain

Q
(
E1 >

∫ t

0

µu du|FT

)
= exp

(
−
∫ t

0

µu du
)
,

and a similar result for the nominator. Observing, that the probability is zero on {τ ≤ t},
the conclusion follows. �

The valuation of defaultable claims will base on the following two results
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Theorem 3.3. For a F-adapted process (Xt)t≥0 and the random time τ , constructed in
(8), it holds that

(i) 1{τ>t}EQ
(
XT 1{τ>T}

∣∣Gt

)
= 1{τ>t}EQ

(
XT e−

∫
T
t

µu du
∣∣Ft

)
,

(ii) 1{τ>t}EQ
(
Xτ1{t<τ≤T}

∣∣Gt

)
= 1{τ>t}EQ

(∫ T

t

[
Xsµse

−
∫

s
t

µu du
]
ds
∣∣Ft

)
.

Proof. We first prove (i). Using the definition of τ ,

EQ(XT 1{τ>T}|Gt) = 1{τ>t}EQ[XT EQ(1{τ>T}|FT ∨ Ht)|Gt

]
.

Now, Lemma 3.2 can be applied to obtain the inner probability. Finally, we use that
XT e−

∫
T
t

µu du is FT -measurable and hence independent of E1. In Gt = Ft∨Ht the σ-algebra
Ht contains additional information on E1, but using independency this can be dropped, such
that Gt can be replaced by Ft.

For (ii), we give an intuitive argument3 . Assume that h : R → R is a Borel-measurable
function. Let F̃T = FT ∨Ht, then,

1{τ>t}EQ(h(τ)1{τ≤T}|F̃T

)
=
∫ T

t

h(s)fF̃T
(s) ds, (9)

where fF̃t
(s) is the conditional density of τ given Gt. f is derived with Lemma 3.2,

fF̃T
(s) = λ(s) exp

(
−
∫ s

t

µu du
)
, for s ∈ (t, T ].

Finally, on {τ > t},

EQ
(
Xτ1{t<τ≤T}

∣∣Gt

)
= EQ

[
EQ
(
Xτ1{t<τ≤T}

∣∣F̃T

)∣∣Gt

]
.

In the inner expectation X is measurable, such that we can apply (9) with X replacing h
and obtain

EQ
[ ∫ T

t

XsfF̃T
(s) ds

∣∣Gt

]
.

As previously, by independence we can replace Gt by Ft. �

3.2 Incomplete Information results in Shot-Noise Effects

Besides the already given motivation, in this section we look at a certain scenario which
gives rise to shot-noise effects in intensities.

We consider the situation arising after the Enron accounting debacle4 in 2001. As became
clear to the investors that accounting manipulations hit the disastrous financial situation of
Enron, a big trouble in credit markets arouse. Of course, investors were questioning how
serious was the impact on other companies and if there had been other manipulations.

3A formal proof can be found in Bielecki and Rutkowski (2002, Prop. 8.2.1).
4See, e.g. http://en.wikipedia.org/wiki/Enron for a short starter.
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Seen from a mathematical viewpoint, investors who want to estimate the default intensity of
a company, say A, who might also be in difficulties face the following situation. Assume it is
reasonable to consider two cases only, the more general case can be treated similarly: First,
the case where the company A is also in difficulties, represented by a high default intensity
µH and second, the case where it is not, represented by a much smaller µL. Denote the
probability for the first case by p.

For a certain time, there is no new information to the investors except that the company did
not default. If it defaults, there is no need anymore to worry about default intensity. Behav-
ing rational, the investors would seek to determine the true default intensity by conditional
expectation,

E
(
µ
∣∣τ > t

)
. (10)

The default intensity µ is the random variable which takes the values µH , µL with probability
p and 1 − p, respectively.

In a first step we compute

P
(
µ = µH |τ > t

)
=

P(µ = µH , τ > t)
P(τ > t)

=
pe−µHt

pe−µHt + (1 − p)e−µLt
.

This yields, that the conditional expectation equals

(10) =
µHpe−µHt + µL(1 − p)e−µLt

pe−µHt + (1 − p)e−µLt
.

We plot the expectation in Figure 1. The result is quite intuitive.

First, it is clear that the expectation is between µH and µL and starts at µ̄ := pµH+(1−p)µL,
i.e. the average if p = 0.5. Second, if p is big enough the graph is not descending rapidly at
the beginning, because of the high probability that the riskier case is true. Otherwise the
function declines rapidly and converges to µL for larger t.

A word of caution is now due. The above considerations refer to P expectations, while
the whole setup of this paper is under some equivalent martingale measure Q. Following
the argumentation in Elliott and Madan (1998) we argue, that it is reasonable to assume
that shot-noise processes under P should also be shot-noise processes under Q, just with
different parameters. However, this is certainly not true for all martingale measures, but at
least for some. Hence, the intensity under Q will also be a process with shot-noise effects.
This assumption necessarily corresponds to an assumption on the market prices of risk. A
thorough study of this would be far beyond the scope of this paper and will be treated
elsewhere.

Remark 3.4. In order to use the incomplete information argument as motivation for in-
troducing shot-noise effects we implicitly assume that the market price of jump risk is such
that the shot-noise behavior of the intensity holds both under the measures P and Q.

We now propose a quadratic model for the default events that includes shot-noise effects.
We mainly seek for explicit expressions to all key elements. We start by presenting the setup
for default. Then we compute explicitly all key building block as well as the price of some
credit derivatives.

9
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Figure 1: The Graph shows the conditional expectation (10) for several choices of p. On
the x-axis we plot time in years. The values of µH and µL are 2.5 and 0.5, respectively.

3.3 Default events

In this section we will propose the model which will drive the default process. As already
mentioned, we will combine a quadratic model with a shot-noise process. The shot-noise
process will allow the default intensity to depend on past events, especially on its severity.
Moreover, recent events will influence the intensity more than the distant past.

Assumption 3.5. Consider as given a Wiener process W , a standard Poisson process Ñ
with intensity l, both with respect to a common filtration5 and an independent exponentially
distributed variable with parameter 1, E1. Denote the jumping times of Ñ by τ̃i, i = 1, 2, . . . .

The state-variable Z is driven by W with quadratic dynamics as in (2)-(4).6

Define the strictly positive processes (η), (J) and (µ) as follows

η(t, Zt) = Z>
t Q(t)Zt + g>(t)Zt + f(t) (11)

Jt =
∑

τ̃i≤t

Yih(t − τ̃i) (12)

µt = ηt + Jt (13)

where, Q, g and f are deterministic and smooth functions with values in Rm×m, Rm and R,
respectively. Moreover, Q(t) is assumed to be symmetric for all t. J is called a shot-noise

5If W and Ñ are a Wiener and a Poisson process w.r.t. a common filtration, they are independent. This
is because W + Ñ then is a process with independent increments, hence a Lévy process. It is well known
that continuous and jump part of a Lévy process are independent, compare, e.g. Sato (1999, Theorem... ).

6Taking the same factors Z as for the risk-free process is no loss of generality.
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Figure 2: Possible realization of the process J with h(x) = e−0.5x and χ2
2-distributed Yi.

process, Yi, i = 1, 2, . . . are i.i.d. with distribution function FY and h is a differentiable
function on R+.

Furthermore, we assume that the default time τ is given as in (8) with the intensity of the
form (13).

The filtrations dealt with in Section 3.1 were rather general. In the following definition we
specify precisely their meaning in the considered setup. 7

Definition 3.6 (Filtrations). The filtration (F) describes the accumulated information
from market factors Z and J , defined by Ft := FW

t ∨ FJ
t = σ (Zs, Js : 0 ≤ s ≤ t). On the

other side, (H) represents the information on the default state, Ht := σ
(
1{τ>s} : 0 ≤ s ≤ t

)
.

The total information to market participants is Gt := Ft ∨ Ht.

Recall the incomplete information argument described in Section 3.2. The shot-noise effect
in the argument is very well captured8 by the process (J) proposed in Assumption 3.5.The
function h describes the declining, more precisely the declining from µ̄−µL to 0. The jump
height represents the market view on µ̄, while in our considerations the function h is very
general.9 Figure 2 show us a possible realization of the process (J).

The reason to include a quadratic component in the intensity has to do with the intuition
that the intensity should be driven by a predictable component (the quadratic part) as well
as by an unpredictable component (the jump part).

7The intensity µ is adapted to the filtration F . Given the independence between W and Ñ we have FW

and FJ independent on one another. So, for any process independent of J , conditioning on F is the same
as conditioning on FW

t . Likewise, for any process independent of r and η (and so of W ), conditioning on F
is the same as conditioning on FJ .

8Up to a market price of jump risk consideration. See Remark 3.4.
9As will be shown, to impose Markovianity, h needs to be of the form ae−bt (see Proposition 3.10 below).
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The following lemma will be essential to guarantee non-negativity of the default intensity.

Lemma 3.7. Consider an arbitrary vector Z ∈ Rm, a symmetric, nonnegative definite
matrix Q ∈ Rm×m and g ∈ Rm such that g lies in the subspace spanned by the columns of
Q and f ∈ R. Let Z∗ be the solution of QZ = − 1

2g. Then the polynomial of degree two

Z>QZ + g>Z + f (14)

is nonnegative, if and only if Z∗ + f ≥ 0.

Proof. According to Harville (1997, Section 19.1) and letting f = 0, Z∗ is the minimum of
the polynomial in Equation (14). Then Z∗ + f ≥ 0 implies nonnegativity of (14). �

If we have a linear factor, say Zi, positivity follows if Zi ≥ 0 and gi ≥ 0; or, alternatively
from Zi ≤ 0 and gi ≤ 0. After this, we can concentrate on the factors which have quadratic
impact, which were denoted by Z(q). The respective part of Q and g were Q(qq) and g(q).
With the aid of Lemma 3.7 we obtain the following.

Proposition 3.8. Assume that Q(qq)(t) is symmetric and nonnegative definite and g(q)(t)
lies in the subspace spanned by the columns of Q(qq)(t), both for all t ≥ 0. Denote by Z∗(t)
the solution of Q(qq)(t)Z = − 1

2g(q)(t). Then η(t, Zt) defined in (11) is positive, if

1. If Zi is a linear factor then either Zi ≥ 0 and gi ≥ 0 or Zi ≤ 0 and gi ≤ 0

2. For all t ≥ 0 it holds that Z∗(t) + f(t) ≥ 0.

Using their impact on the drift α, on the volatility σ or on the funtional form of the intensity,
we can provide an intensity classification of factors.

Definition 3.9. (Classification of intensity factors)

• Zi is a intensity quadratic-factor if it satisfies at least one of the following requirements:

(i) it has a quadratic impact on (η), i.e. there exists some t such that Qi(t) 6= 0;

(ii) it has a quadratic impact on the functional form of the matrix σ(t, z)σ>(t, z),
i.e., there exist k and t such that gik(t) 6= 0;

(iii) it affects the drift term of the factors satisfying (i) or (ii), i.e., for Zj satisfying
(i) or (ii) we have Eji(t) 6= 0 for some t.

• Zi is a intensity linear-factor if it does not satisfy any of (i)-(iii).

As previously, we write in symbolic form Zi ∈ Z
(q)
η , Z

(l)
η for the quadratic intensity and

linear intensity factors,respectively.

We use the symbolic notation Z̄(q) = Z(q)∪Z
(q)
η and Z̄(l) = Z(l)∩Z

(l)
η , whenever the factors

must be ordered according to both their impact on the risk-free short rate, r and on the
quadratic part of the intensity, η.

In general, the considered shot-noise processes need not be Markovian. Anyway, from a com-
putational point of view Markovianity is very important. There exists a clear classification,
when the considered shot-noise process is Markovian or not.

12



Proposition 3.10. Assume that for all x ∈ [0,∞) h(x) 6= 0. Then the process (µt)t≥0 is
Markovian, if and only if h is of the form h(t) = ae−bt.

Proof. It is clear that for b = 0 the process is Markovian, so we need to consider the case
where h is not constant.

Assume w.l.o.g. that h(0) = 1. As η is a Markovian process, we just have to look at J . To
show that J is a Markov-process we calculate the conditional expectation. Consider s < t
and recall FJ

t := σ{Js : s ≤ t}. Then

EQ [Jt|FJ
s

]
=

Ñs∑

i=1

Yih(t − τ̃i) + EQ




Ñt∑

i=Ñs+1

Yih(t − τ̃i)
∣∣∣FJ

s




=
Ñs∑

i=1

Yih(t − τ̃i) + EQ




Ñt−Ñs+Ñs∑

i=Ñs+1

Yih(t − τ̃i)
∣∣∣FJ

s


 . (15)

In the last expectation, all terms are either measurable w.r.t. FJ
s or independent of FJ

s . As
the Yi are identically distributed, we can shift the sum and obtain for the expectation

EQ




Ñt−Ñs+j∑

i=j+1

Yih
(
t − τ̃i)

∣∣∣ Ñs = j


 = EQ




Ñt−s∑

i=1

Yih
(
t − τ̃i

)

 =: f(s, t),

Hence Equation (15) equals

Ñs∑

i=1

Yih(t − τ̃i) + f(s, t). (16)

As f(s, t) is deterministic, necessary for Markovianity is that there exists a function F (t, s, x),
such that

Ñs∑

i=1

Yih(t − τ̃i) = F (t, s, Js) = F

(
t, s,

Ñs∑

i=1

Yih(s − τ̃i)

)
, (17)

so the first term in (16) can be represented as (measurable) function of Js. We note that
each Yi is independent of all the other appearing terms. We will exploit this property to
analyze the behavior of F .

Fix j and consider (17) on the set {Ñt > j}. Taking the conditional expectation of (17)
w.r.t. Yj = y, we obtain

EQ
(
yh(t − τ̃j) +

Ñs∑

i=1,i6=j

Yih(t − τ̃i)
)

= EQ
(
F
(
t, s, yh(s − τ̃j) +

Ñs∑

i=1,i6=j

Yih(s − τ̃i)
))

.

Deriving w.r.t. y shows that

EQ(h(t − τ̃j)
)

= EQ
[
Fx

(
t, s, yh(s − τ̃j) +

Ñs∑

i=1,i6=j

Yih(s − τ̃i)
)
h(s − τ̃j)

]
,

13



where we denoted the partial derivative of F w.r.t. x by Fx. As the l.h.s. does not depend
on y, Fx(t, s, x) must be constant in x, and we obtain that F must be of the form α(t, s) +
β(t, s)x.

Examining F on the set {Ñt = 0}, we see that α(t, s) must necessarily be 0. In the next
step we determine β. From Equation (17) we obtain for any i

h(t − τ̃i) = β(s, t)h(s − τ̃i).

Hence, β(s, t) = h(t − y)/h(s − y) for any y ≥ 0, and so b(s, t) = h(t)/h(s). From this

h(t − y)
h(s − y)

=
h(t)
h(s)

, for all t, s, y ≥ 0.

By letting s = y we obtain that h(t − y) = h(0)h(t)/h(y) and so h(t + y) = h(t)h(y)/h(0).
We conclude h′(y) = h′(0)h(y)/h(0). Therefore h is of the form ae−by.

For the converse, note that for h(y) = e−by

Ñt∑

i=1

Yih(t − τ̃i) = h(t)
Ñt∑

i=1

Yih(−τ̃i),

and hence J is Markovian. �

3.4 Building Blocks

In this section we give closed-form analytical expressions to what is known as building blocks
in credit risk models. We make extensive use of Theorem 3.3, and thus we ask the reader
to recall the various filtrations mentioned.

3.4.1 Implied Survival Probabilities

The survival probabilities under Q can explicitly be computed and are given in general
quadratic form, which we will show in this section. First, observe that the survival proba-
bility will be denoted by QS and equals

QS(t, T ) = Q [τ > T |Gt] = EQ [1{τ>T}|Gt

]
(18)

= EQ
[
e−

∫
T
t

µudu
∣∣∣Ft

]
(19)

= EQ
[
exp(−

∫ T

t

ηu + Ju du)
∣∣∣Ft

]

= EQ
[
exp(−

∫ T

t

ηu du)
∣∣∣FW

t

]
EQ
[
exp(−

∫ T

t

Ju du)
∣∣∣FJ

t

]
. (20)

The first term can be computed using Result 2.5. We note that in the result (r) has to be
replaced by (η). Therefore we have to assume a different reordering of factors.

Lemma 3.11. Suppose Assumption 3.5 hold. Furthermore, assume Assumption 2.3 is

verified when the factors Z are reordered as Z =
[
Z

(q)
η , Z

(l)
η

]>
. Then,

EQ
[
exp

(
−
∫ T

t

ηu du
)∣∣∣FW

t

]
= exp

[
A(t, T ) + B>(t, T )Zt + Z>

t C(t, T )Zt

]
. (21)
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where (A,B, C, f, g, Q) solve the basic ODE system in Definition 2.4. Recall that f, g and Q
are given in Equation (11). Furthermore, C has only quadratic factors.

Next, we consider the second term in (20):

EQ
[

exp(−
∫ T

t

Ju du)
∣∣∣FJ

t

]

= exp
(
−
∫ T

t

∑

τ̃i≤t

Yih(u − τ̃i) du

)
EQ
[

exp
(
−
∫ T

t

∑

τ̃i∈(t,u]

Yih(u − τ̃i) du
)∣∣∣FJ

t

]
.

(22)

The first term on the l.h.s. denotes the measurable part. It depends on the history of J and
it equals

exp
(
−
∫ T

t

∑

τ̃i≤t

Yih(u − τ̃i) du

)
= exp

(
−
∑

τ̃i≤t

Yi

[
H(T − τ̃i) − H(t − τ̃i)

])

= exp
{
J̃t − J̃(t, T )

}

where we have following notations:

H(x) =
∫ x

0

h(u) du . (23)

and
J̃(t, T ) =

∑

τ̃i≤t

YiH(T − τ̃i) J̃(t, t) = J̃t. (24)

Remark 3.12. Luckily, in the Markovian case the above term simplifies considerably. By
Proposition 3.10 we necessarily have that h(x) = ae−bx and w.l.o.g. we can assume that
a = 1. Then,

H(x) =
∫ x

0

h(u) du =
1
b

(
1 − e−bx

)
.

Therefore,

H(T − τ̃i) − H(t − τ̃i) =
1
b

[
e−b(t−τ̃i) − e−b(T−τ̃i)

]

=
1
b

[
e−b(t−τ̃i) − e−b(t−τ̃i)−b(T−t)

]

= h(t − τ̃i) · H(T − t).

which implies

J̃t − J̃(t, T ) = −
∑

τ̃i≤t

Yi

[
H(T − τ̃i) − H(t − τ̃i)

]]

= −H(T − t)
∑

τ̃i≤t

Yih(t − τi) = −H(T − t) Jt. (25)
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Let us consider the remaining expectation (second term in (22)). First, recall that jumps
occur with intensity l. We will use that a Poisson process has independent increments. Note
that the number of jumps in (t, u] is given by Ñu − Ñt, such that this term is independent
of Nt. Then

EQ
[

exp
(
−
∫ T

t

∑

τ̃i∈(t,u]

Yih(u − τ̃i) du
)∣∣∣FJ

t

]

=
∞∑

k=0

EQ
[
1{ÑT−Ñt=k} exp

(
−

∑

τ̃i∈(t,T ]

Yi

∫ T

t

1{τ̃i≤u}h(u − τ̃i) du
)∣∣∣FJ

t

]
(26)

It is well-known, that conditional on k jumps the jump times are distributed like the order
statistics of uniform random variables over the interval, see for example Rolski, Schmidli,
Schmidt, and Teugels (1999, p. 502). More precisely, denote by ηi, i = 1, . . . , k independent
U [0, 1] random variables. Define and set x = T − t. Then, the expectation in (26) equals
e−lx for k = 0 and for k ≥ 1,

e−lx (lx)k

k!
EQ

[
exp

(
−

k∑

i=1

Yi

∫ T

τ̃i

h(u − τ̃i) du

)]

= EQ

[
exp

(
−

k∑

i=1

YiH(T − t − (T − t)ηi:k)

)]
.

As the Yi are i.i.d. we can interchange the order of the sum. Denote by ϕY (·) the Laplace
transform of Y . Then

EQ

[
exp

(
−

k∑

i=1

YiH
(
x(1 − ηi)

)
)]

=
[ ∫ 1

0

ϕY

(
H
(
xu
))

du

]k

=: D(x)k. (27)

The previous computations give the following lemma.

Lemma 3.13. If D(T − t) exists, then with J̃ as defined in (24) we have that

EQ
[

exp
(
−
∫ T

t

Ju du
)∣∣FJ

t

]
= exp

[
J̃t − J̃(t, T ) + (T − t)l

(
D(T − t) − 1

)]
. (28)

Summing up, we obtain the survival probabilities in the following form.

Proposition 3.14. Denote by x := T − t and consider A,B, C from Lemma 3.11 and J̃ as
in (24). Then the survival probability on the interval (t, T ), is given by

QS(t, T ) = exp
[
J̃t − J̃(t, T ) + A(t, T ) + xl

(
D(x) − 1

)
+ B>(t, T )Zt + Z>

t C(t, T )Zt

]
.

Note that the exponent splits up into a deterministic part A(t, T ) + x(lD(x) − l), a linear
part B>(t, T )Zt and a quadratic part Z>

t C(t, T )Zt and the term J̃t − J̃(t, T ), which is is
affine in J in the Markovian case (recall (25)).
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3.4.2 Defaultable bond prices with zero recovery

The price of a defaultable zero coupon bond under zero recovery, given by the risk-neutral
expectation of its discounted payoff equals, on {τ > t},

p̄0(t, T ) = EQ
[
exp

(
−
∫ T

t

rudu
)
1{τ>T}

∣∣∣Gt

]

= EQ
[
exp

(
−
∫ T

t

ru + µudu
)∣∣∣Ft

]
= EQ

[
exp

(
−
∫ T

t

ru + ηu + Judu
)∣∣∣Ft

]

= EQ
[
exp

(
−
∫ T

t

Ju

)
|FJ

t

]
· EQ

[
exp

(
−
∫ T

t

ru + ηudu
)∣∣∣FW

t

]

The first expectation has been computed in (28). It remains to compute the second expec-
tation. Once again we will use Result 2.5. To this, we need to replace r by r + η. Also, we
have to consider the proper ordering.

Lemma 3.15. Suppose Assumption 2.3 holds for Z, reordered as Z =
[
Z̄(q), Z̄(l)

]
. Under

Assumption 3.5 and , we have that

EQ
[
exp

(
−
∫ T

t

ru + ηudu
)∣∣∣Ft

]
= exp

[
Ā(t, T ) + B̄>(t, T )Zt + Z>

t C̄(t, T )Zt

]
. (29)

Here (Ā, B̄, C̄, f + f, g + g, Q + Q) solve the basic ODE in Definition 2.4. Furthermore, C̄
has only quadratic factors.

Using the above computations we obtain the following formula in general quadratic form.

Proposition 3.16. Denote by x := T − t, consider Ā, B̄, C̄ from Lemma 3.15, J̃ from (24)
and D from (27). Then, the price of a defaultable zero-coupon bond under zero recovery is

p̄0(t, T ) = exp
[
J̃t − J̃(t, T ) + Ā(t, T ) + xl

(
D(x) − 1

)
+ B̄>(t, T )Zt + Z>

t C̄(t, T )Zt

]
. (30)

In particular we note that

p̄0(t, T ) 6= p(t, T )EQ
[
e−

∫
T
t

µudu
∣∣∣Ft

]
.

The reason why this equation does not hold is the dependence of r and η on the same state
variable Z. It is not caused by J , because J is independent of X and, thus, of these two
processes.

3.4.3 Default digital payoffs

It is well known, that evaluating a payment at default time, typically involves computing
the following expectation

e(t, T ) = EQ
[
µT e−

∫
T
t

ru+µudu|Ft

]

which can be interpreted as the price of a security which pays 1 under the assumption that
default happens at time T .10

10Formally, if we denote the price of security that pays 1 unit of currency if default happens between
[T, T + δ] by e∗(t, T, T + δ). Then, e(t, T ) = limδ→0

1
δ
e∗(t, T, T + δ).
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Luckily, we will be able to use already computed expectations for this. It may be recalled
that by ϕY we denote the Laplace transform of Y and the functions D, H were defined in
(27) and (23), respectively.

Before we actually compute e(t, T ) we introduce the notion of interlinked ODE system.

Definition 3.17 (Interlinked ODE system). Denote T : = {(t, T ) ∈ R2 : 0 ≤ t ≤ T}
and consider functions a, b, c, B and C on T with values in R, Rm,Rm×m, Rm and Rm×m,
respectively. For functions φ1 and φ2, φ3 with values in R, Rm and Rm×m, respectively, we
say that (a, b, c, B, C, φ1, φ2, φ3) solves the interlinked ODE system if it solves

∂a

∂t
+ d>(t)b + B>k0(t)b + tr {ck0(t)} = 0 (31)

∂b

∂t
+ E>(t)b + 2cd(t) +

1
2
B̃>k0(t)b + 2ck0(t)B + 2Ck0(t)b = 0 (32)

∂c

∂t
+ cE(t) + E>(t)c + 4Ck0(t)c +

1
2
B̃>G(t)b̃ = 0 (33)

subject to the boundary conditions a(T, T ) = φ1(T ), b(T, T ) = φ2(T ), c(T, T ) = φ3(T ).
a, b, c and B, C should always be evaluated at (t, T ). E, d, k0, are the functions from (4)
while B̃, K ∈ Rm2×m and G ∈ Rm2×m2

are as in (7).

Proposition 3.18. Let x:=T-t. The term e(t, T ) computes to

e(t, T ) = p̄o(t, T ) ·
{

ā(t, T ) + b̄>(t, T )Zt + Z>
t c̄(t, T )Zt

+ J(t, T ) − l ·
[
D(x)(1 − x) − 1 + xϕY

(
H(x)

)]}
, (34)

where 11

J(t, T ) :=
∑

τ̃i≤t

Yih(T − τ̃i), (35)

and (ā, b̄, c̄, B̄, C̄, f, g, Q) solve the interlinked ODE system of Definition 3.17 with B̄,C̄ are
as in Lemma 3.15.

Proof. We start by noting that

e(t, T ) = EQ
[
µ(T )e−

∫
T
t

r(u)+µ(u)du|Gt

]

= EQ
[
(η(T ) + J(T )) e−

∫ T
t

r(u)+η(u)+J(u)du|Gt

]

= EQ
[
η(T )e−

∫ T
t

r(u)+η(u)du|FW
t

]
EQ
[
e−

∫ T
t

J(u)du|FJ
t

]

︸ ︷︷ ︸
II

+EQ
[
J(T )e−

∫ T
t

J(u)du|FJ
t

]
EQ
[
e−

∫ T
t

r(u)+η(u)du|FW
t

]

︸ ︷︷ ︸
III

The expectations II and III have already been computed in Lemmas 3.13 and 3.15, respec-
tively.

11This J notation is consistent with the use of J in (12), since we have J(t, t) = Jt.
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It remains to compute the expectations

IV = EQ
[
η(T )e−

∫
T
t

r(u)+η(u)du|FW
t

]
and V = EQ

[
J(T )e−

∫
T
t

J(u)du|FJ
t

]
.

From Lemma A.2 in the appendix we know that

IV = III ·
(
ā(t, T ) + b̄(t, T )>(t)Zt + Z>

t c̄(t, T )(t)Zt

)

V = II ·
{∑

τ̃i≤t

Yih(T − τ̃i) − l ·
[
D(x)(1 − x) − 1 + xϕY

(
H(x)

)]}

To achieve the result, recall that p̄o(t, T ) = II × II and observe that

e(t, T ) = IV · II + III · V

= p̄o(t, T ) ·
{

ā(t, T ) + b̄>(t, T )Zt + Z>
t c̄(t, T )Zt

+
∑

τ̃i≤t

Yih(T − τ̃i) − l ·
[
D(x)(1 − x) − 1 + xϕY

(
H(x)

)]}
. �

Remark 3.19. In the Markovian case, h(x) = ae−bx and the above formula may be simpli-
fied to

∑

τ̃i≤t

Yih(T − τ̃i) =
h(T )
h(t)

∑

τ̃i≤t

Yih(t − τ̃i) =
h(T )
h(t)

Jt.

We note that

e(t, T ) = EQ
[
µ(T )e−

∫
T
t

r(u)+µ(u)du|Gt

]
= p̄o(t, T )ĒT [µ(T )|Gt]

thus using (34) we obtain the following.

Corollary 3.20. By ĒT we denote the expectation under the T -survival measure. Then

ĒT
(
µ(T )|Ft

)
= ā(t, T ) + b̄>(t, T )Zt + Z>

t c̄(t, T )Zt

+ J(t, T ) − l ·
[
D(x)(1 − x) − 1 + xϕY

(
H(x)

)]
.

with J(t, T ) as in (35).

3.5 Incorporating positive Recovery

The expressions computed in the previous section mainly rely on the zero-recovery assump-
tion. Of course, quantities like defaultable bonds typically have a positive recovery. In this
section we will show how to extend the previous results to incorporate different recovery
schemes.

We will consider two cases, recovery of treasury (RT) and recovery of market value (RMV).
They differ in the interpretation of what is known as loss quota q. The exact meaning of
q will be made clear in the descriptions below. Here we just point out that q is allowed
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to be some arbitrary random variable with values in [0, 1], as long as it is independent of
everything else. 12

Recall the definition of filtration F from Definition 3.6.

Definition 3.21. A T -defaultable asset is given by an FT -measurable random variable X .
At maturity T , the amount X is paid if no default happened until then. If a default happened
before T , some recovery is paid.

Assumption 3.22. The recovery of a T -defaultable asset X depends on the loss quota q,
which is given by a random variable in the unit interval [0, 1] with distribution Fq. We
assume that the loss quota q is independent of G∞.

Denote the expected value of q by q̄ = EQ [q].

3.5.1 Recovery of Treasury

In the recovery of treasury (RT) setup, the recovery of defaultable claims is expressed in
terms of the market value of equivalent default-free assets. If a default happened before
maturity, the final payoff is reduced to a proportion, (1 − q) times the promised payoff. q
is revealed at default, and the reduced payment, the recovery, is paid at maturity. It is
assumed to be no more subject to default risk.

Under RT it is straightforward to price any defaultable assets based on prices of equivalent
risk-free and defaultable zero-recovery assets. The equivalent risk-free asset has the same
payoff as the defaultable asset, but it is not subject to default risk. The next proposition
states the general pricing rule under recovery of treasury.

Proposition 3.23. Consider a T -defaultable asset. Let π̄o(t) be the price of this defaultable
asset under zero recovery and π(t) be the price of the equivalent risk-free asset. Assume,
that the recovery is of type RT and Assumption 3.22 holds. Then, on {t < τ}, the price of
the defaultable asset at time t is given by

π̄RT (t) = q̄π̄o(t) + (1 − q̄)π(t).

Proof. We are working on {τ > t}. Then, by definition, RT yields

π̄RT (t) = EQ
[
e−

∫
T
t

r(u)du
(
X1{τ>T} + (1 − q)X1{τ≤T}

)∣∣Gt

]
.

If we condition on q we have by independence

EQ
[
e−

∫
T
t

r(u)du
(
(1 − q)X + qX1{τ>T}

)∣∣Gt ∨ q
]

= (1 − q)EQ
[
e−

∫ T
t

r(u)duX
∣∣Ft

]
+ qEQ

t

[
e−

∫ T
t

r(u)duX1{τ>T}
∣∣Gt

]

= (1 − q)π(t) + qπ̄o(t).

12The assumption of independence between default events and recovery has been standard in the literature.
In Gaspar and Slinko (2005) this assumption is relaxed to include realistic credit spreads features, at the
cost of tractability. There it is shown that one must rely on numerical simulations to price any defaultable
asset. In this paper we stick to the “traditional” assumption.
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Besides q the above term is Gt measurable. As q is independent of G∞, and π(t), π̄o(t) do
not depend on q, we get

π̄RT (t) = EQ[(1 − q)]π(t) + EQ[q]π̄o(t) ,

and the result follows. �

With this result we easily obtain zero-coupon defaultable bond prices under recovery of
treasury.

Corollary 3.24. Let x := T − t. Under RT, the price at time t of a zero-coupon bond
maturing at T is

p̄RT (t, T ) = q̄ exp
[
J̃t − J̃(t, T ) + xl

(
D(x) − 1

)
+ Ā(t, T ) + B̄>(t, T )Zt + Z>

t C̄(t, T )Zt

]

+ (1 − q̄) exp
[
A(t, T ) + B>(t, T )Zt + Z>

t C(t, T )Zt

]
.

where A, B, C are as in Result 2.5, Ā, B̄, C̄ as in Lemma 3.15 and J̃ as defined in (24).

3.5.2 Recovery of market value

When we consider recovery of market value (RMV) we assume that if a default happens,
then the recovery of the defaultable asset is (1 − q) times its pre-default value,13

(1 − q)π̄RMV (τ−). (36)

The following result is a straightforward adaption to our setup of a well know result.14

Result 3.25. Consider a T -defaultable asset X and assume that Assumption 3.22 is in
force. Then the price of the defaultable asset under RMV equals

π̄RMV (t) = 1{τ>t}EQ
[
e−

∫
T
t

rs+q̄µsdsX|Ft

]
+ 1{τ≤t}e

∫
t
τ

rs ds (1 − q) π̄RMV (τ−).

For a general payoff X there is not much more to say, but given a concrete situation more
explicit formulas can be obtained. The next proposition gives the price of a defaultable
zero-coupon bond under RMV in closed-form.

Proposition 3.26. The price at time t of a zero-coupon bond maturing at T under RMV
equals

p̄RMV (t, T ) = 1{τ≤t}e
∫

t
τ

rs ds(1 − q) p̄RMV (τ−, T )

+ 1{τ>t}e
{J̃t−J̃(t,T )+(T−t)l(D(q̄,T−t)−1)+Ā(q̄,t,T )+B̄>(q̄,t,T )Zt+Z>

t C̄(q̄,t,T )Zt}

where (Ā, B̄, C̄, f + q̄ f, g + q̄ g, Q + q̄Q) solves the basic ODE in 2.4 and we denote, with H
from (23), and

D(q̄, x) :=
∫ 1

0

ϕY (q̄H(x(1 − u)))du =
∫ 1

0

ϕY (q̄H(xu))du. (37)

13The RMV model is inspired by the recovery rules of OTC derivatives.
14Note that it is a consequence of Definition 3.6 that the process EQ

[
e−

∫ T
t rs+q̄µsdsX|Ft

]
does not jump

at τ . For the original results, compare Lando (2004) or Schönbucher (2003) to find an intuitive discretization
of the result when q is assumed constant. The generalization to random q under Assumption 3.22 follows
easily.
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Proof. For a zero coupon bond price the payoff at maturity is X = 1. We apply Result 3.25
and we need to compute

EQ
[
e−

∫ T
t

rs+q̄µsds|Ft

]
= EQ

[
e−

∫ T
t

rs+q̄ηsds|FW
t

]
EQ
[
e−

∫ T
t

q·Jsds|FJ
t

]
.

Note the similarities to the expectations computed in Lemmas 3.13 and 3.15. Following
exactly the steps from the proofs while keeping track of the “q̄” gives the result. Details
may be found in the appendix. �

3.6 Pricing Credit Derivatives

In this section we price credit derivatives using the prices and key ingredients previously
derived. Among others, we show how prices for credit default swaps (CDS) can be obtained.
The CDS is the most liquid credit risky product, so pricing formulas are necessary for
calibration to real data.

3.6.1 Default Digital put

We start by pricing what is known as a default digital put (DDP) with maturity T . A DDP
pays off 1 exactly at default if default happens before or at T . Its value at time t (given no
previous default) is

EQ
[
e−

∫ τ
t

ru du1{τ<T}

∣∣∣∣Gt

]

= EQ
[∫ T

t

e−
∫

s
t

ru+µu duµs ds

∣∣∣∣Ft

]

=
∫ T

t

EQ
[
e−

∫ s
t

ru+µu duµs

∣∣∣∣Ft

]
ds =

∫ T

t

e(t, s)ds

=
∫ T

t

p̄o(t, s)
{

ā(t, s) + b̄>(t, s)Zt + Z>
t c̄(t, s)Zt

+ J(t, s) − l ·
[
D(s − t)(1 − s + t) − 1 + (s − t)ϕY

(
H(s − t)

)]}
ds,

where ϕY is the Laplace transform of Y while a, b and c are solutions of (31)-(33), and J(t, ·),
D are defined in (35) and (27), respectively. The above integrals can easily be evaluated
using the already obtained expressions of all ingredients.

3.6.2 Credit Default Swap

Definition 3.27. A credit default swap (CDS) consists of two legs, the fixed and the floating
leg15. The fixed leg involves a regular fee payment and the floating leg offers a protection
payment at default.

The CDS starts at some point T0 and payments are done at the dates T1 < T2 < · · · < TN∗ .
At each Tn the following payments occur:

15The floating leg is also called the default insurance.
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T

1 − R

t τ
s̄

Figure 3: Cash flows for a CDS. Default occurs at τ before the option expires. The payoff
is the difference of the par value of the bond to the bond’s price at default, the recovery
R. The default swap spread, s̄, is paid regularly at times T1, . . . until default.

• Fixed leg: pays a fixed amount called the spread, s̄, times the length of the interval,
s̄ · (Tn − Tn−1) if there was no default in (Tn−1 − Tn]

• Floating leg: pays the difference between the nominal value and the recovery value if
default occured in (Tn−1, Tn]. Typically the nominal value is normalized to 1 u.c. and
the payment is equal to the loss quota q. Of course the loss quota is related to the
recovery R by q = (1 − R),

Initially, the spread s̄ of the CDS is determined in such a way that the initial value of the
CDS is zero. The spread remains fixed such that as time passes by the value of the CDS
can become quite different from zero.

Typically t = T0. Otherwise the CDS is called a forward-start-CDS, and the spread can be
computed using similar methods. The value at time t of the fixed leg is

s̄

N∗∑

n=1

(Tn − Tn−1)p̄o(t, Tn) .

To compute the floating leg, we need the value of 1 unit of money payed at Tn if default
happens in (Tn−1, Tn]. This value is denoted by e∗(t, Tn−1, Tn). Observe that e∗ was not
computed in the previous section, but is closely related to e as

e(t, Tn) = lim
Tn−1→Tn

1
Tn − Tn−1

e∗(t, Tn−1, Tn).

A basic difference to a risk-free swap appears in the above formulation: not all terms needed
to compute the credit spread are liquidly traded in the market: The p̄o(t, Tn) in this case.
Of course, under the assumption of fixed recovery one could compute these from ordinary
bond prices, but nevertheless it is not a priori clear what the right recovery assumption is.

The following proposition gives an expression in closed form.

Proposition 3.28. We have the following

e∗(t, Tn−1, Tn) = p̄o(t, Tn−1)eα(t,Tn−1,Tn)+β>(t,Tn−1,Tn)Zt+Z>
t γ(t,Tn−1,Tn)Zt − p̄o(t, Tn), (38)
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where α, β and γ are deterministic functions and solve the follwoing system of ODE




∂α

∂t
+ d>(t)β +

1
2
β>k0(t)β + tr γk0(t) + β>k0(t)B̄ = 0

α(Tn−1, Tn−1, Tn) = A(Tn−1, Tn)
(39)





∂β

∂t
+ E>(t)β + 2γd(t) +

1
2
β̃>K(t)β + 2γk0(t)β

+2C̄k0(t)β + 2γk0(t)B̄ + β̃>K(t)B̄ = 0

β(Tn−1, Tn−1, Tn) = B(Tn−1, Tn)

(40)





∂γ

∂t
+ γE(t) + E>(t)γ + 2γk0(t)γ +

1
2
β̃>G(t)β̃

+4C̄k0(t)γ + ˜̄B>G(t)β̃ = 0

γ(Tn−1, Tn−1, Tn) = C(Tn−1, Tn)

(41)

A, B and C are from Result 2.5, while B̄ and C̄ from Proposition 3.16. α, β, γ should be
evaluated at (t, Tn−1, Tn) and B̄, C̄ at (t, T − n − 1).

Proof. We first note that, the expected discounted value of 1 payed at Tn if default happens
in (Tn−1, Tn] is given by

e∗(t, Tn−1, Tn) = EQ
[
e−

∫
Tn
t

rsds
(
1{τ>Tn−1} − 1{τ>Tn}

)∣∣∣Gt

]

= EQ
[
e−

∫
Tn
t

rsds
(
e−

∫ Tn−1
t µsds − e−

∫
Tn
t

µsds
) ∣∣∣Ft

]
,

= EQ
[
e−

∫ Tn
t

rsdse−
∫ Tn−1

t µsds
∣∣∣Ft

]
− p̄o(t, Tn).

It remains to compute the expectation. Note that

EQ
[
e−

∫ Tn
t

rsdse−
∫ Tn−1

t µsds
∣∣∣Ft

]

= EQ
[
e−

∫ Tn−1
t rs+µsdsp(Tn−1, Tn)

∣∣Ft

]

= EQ
[
e−

∫ Tn−1
t rs+ηsdsp(Tn−1, Tn)

∣∣FW
t

]
EQ
[
e−

∫ Tn−1
t Jsds

∣∣FJ
t

]
.

The last step is due to the independence between (J) and the other terms. The second
expectation was computed in Lemma 3.13. Observe that p(Tn−1, Tn) has the well-known
form given in Result 2.5. Then, Lemma A.1 allows us to derive the above expectation. We
give the full details in the appendix, which show (38). �

For Tn−1 → Tn we recover many well-known functions out of α, β and γ as shown in the
following lemma.

Lemma 3.29. For the triple (α, Ā, a) we have the following relation:

lim
δ→0

∂α

∂δ
(t, T, T + δ) − ∂Ā

∂δ
(t, T + δ) = a(t, T ). (42)

Here, α is as in Proposition 3.28, Ā as in Lemma 3.15 and a as in Result 2.5. The result
also holds for (β, B̄, b) and (γ, C̄, c).
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Proof. First, note that

e(t, T ) = lim
δ→0

1
δ
e∗(t, T, T + δ)

= lim
δ→0

p̄o(t, T )

(
∂α

∂δ
(t, T, T + δ) +

∂β

∂δ

>
(t, T, T + δ)Zt + Z>

t

∂γ

∂δ
(t, T, T + δ)Zt

)

− lim
δ→0

∂p̄o

∂δ
(t, T + δ) (43)

We use the representation of p̄o(t, T + δ) derived in Proposition 3.16 and obtain

∂

∂δ
p̄o(t, T, T + δ) =

{
∂

∂δ
Ā(t, T + δ) + lD(T + δ − t) + l(T + δ − t)

∂D

∂δ
(T + δ − t) − l

+
∂

∂δ
B̄(t, T + δ)Zt − Jt + Z>

t

∂

∂δ
C̄(t, T + δ)Zt

}
p̄(t, T + δ)

Thus,

(43) = p̄o(t, T )
{(

lim
δ→0

∂α

∂δ
(t, T, T + δ)

)
+
(

lim
δ→0

∂β

∂δ
(t, T, T + δ)

)>

Zt

+ Z>
t

(
lim
δ→0

∂γ

∂δ
(t, T, T + δ)

)
Zt −

(
lim
δ→0

∂Ā

∂δ
(t, T, T + δ)

)
− lD(T − t)

− l(T − t)
∂D

∂T
(T − t) + l −

(
lim
δ→0

∂B̄

∂δ
(t, T + δ)

)>

Zt + Jt − Z>
t

(
lim
δ→0

∂C̄

∂δ
(t, T + δ)

)
Zt

}
.

and the result follows from ∂D
∂T (T − t) = [1 − ϕY (H(T − t))] comparing the above expression

with (43). �

With the above results the value of the floating leg can be obtained in closed form:

q

N∗∑

n=1

e∗(t, Tn−1, Tn).

Finally, the spread s̄ that leads to equal value of both legs at time t is

s̄ = q

N∗∑

i=1

e∗(t, Tn−1, Tn)

N∗∑

i=1

(Tn − Tn−1)p̄o(t, Tn)

. (44)

It is straightforward to generalize to random recovery, which is independent of all the other
factors which . Then R simply has to be replaced by R̄ = EQ(R) in the above formulas.

3.6.3 Options on defaultable bonds

In this section we consider a put option on a zero-recovery defaultable bond. The payoff
at maturity of a put option with maturity T written on a bond with maturity T ∗ > T

25



and with strike X is given by max(X − p̄o(T, T ∗), 0). Here p̄o(T, T ∗) denotes the price of a
zero-recovery bond, compare Proposition 3.16.

In the Markovian case we are able to deduce a quite concrete formula for European option
prices. We define

∆Z(ZT , T, T ∗) = Ā(T, T ∗) + (T ∗ − T )l[D(T ∗ − T ) − l] + B̄>(T, T ∗)ZT + Z>
T C̄(T, T ∗)ZT

For motivation, take a put on a zero-recovery defaultable bond. The price of the put equals

put(t, T ) = EQ
[
e−

∫ T
t

rsds[X − p̄0(T, T ∗)]1{p̄0(T,T∗)<X}

∣∣∣Gt

]

= EQ
[
e−

∫
T
t

rsdsX1{p̄0(T,T∗)<X}

∣∣∣Gt

]
− EQ

[
e−

∫
T
t

rsdsp̄0(T, T ∗)1{p̄0(T,T∗)<X}

∣∣∣Gt

]
.

We look carefully at the second expectation above. To this, we use the explicit form of p̄0

from Proposition 3.16,

p̄o(T, T ∗) = exp
(
J̃T − J̃(T, T ∗)∆Z(ZT , T, T ∗)

)
,

where ∆Z is defined above and we note that it is of quadratic form. It is clear that if J is
not Markovian, one has to look more closely at J̃ terms. For the Markovian case, however,
we recall (25) and obtain that

p̄o(T, T ∗) = exp
(
− H(T ∗ − T ) JT + ∆Z(ZT , T, T ∗)

)
.

In Appendix B we show how to determine the conditional distribution of JT given FJ
t , if not

explicitly then by inverting the Laplace-transform. At this point of generality one can not
get much further, but in concrete examples (i.e. for specific distributions of Y ) it is possible
to derive more detailed formulas.

For now, we denote the conditional density of JT given FJ
t by FJT |Jt

and for every European
claim with the payoff X(ZT , JT ) at T we can use independence of Z and J . Define

X̃(z, Jt) :=
∫

X(z, j)FJT |Jt
(dj).

The first step in evaluating a derivative is to compute X̃ on basis of Jt. With this, one can
use in a second step the structure of the quadratic setup to derive the price of the derivative:

E
(
e−

∫
T
t

rs dsX(ZT , JT )
∣∣Ft

)
= E

(
e−

∫
T
t

rs dsX̃(ZT , Jt)
∣∣∣Zt, Jt

)
.

The remaining expectations can be computed numerically or using inverse Fourier/Laplace
transform.16

We now go on with the analysis and consider several firms issuing default securities. This
will allow us to address issues of portfolio credit risk.

16This technique was originally proposed by Duffie, Pan, and Singleton (2000), generalized by Heston
(1993) and Leippold and Wu (2002). A clever step used in Eberlein and Raible (1999) improves the compu-
tational speed.
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4 Portfolio Credit Risk

4.1 Setup

To study portfolio credit risk we need to consider defaultable securities, from several firms
k = 1, · · · , K̄ also called names. We denote the notional associated with each firm by Mk.

Each firm may default only once and its default time is denoted by T k. The counting process
counting all defaults is denoted by Nt :=

∑
1{T k≤t}. If a default of name k happens, we

denote the loss quota by qk.

We order the default times T 1, . . . , T K̄ and denote the outcome by τ1 ≤ τ2 ≤ · · · ≤ τK̄ .

Furthermore, we need to know which company defaulted at τk , and we therefore define the
identity of the j-th default by

aj = k if τj = T k.

At time t we therefore know a1, · · · , aNt .

For modeling individual defaults we take a setup similar to the previous section, except that
each firm’s default intensity is now driven by firm specific as well as systematic risks, which
are common to all firms. Assumption 4.1 formally states the new intensity form.

Assumption 4.1. Set k =
{
1, · · · , K̄

}
. Consider independent processes µi of the form

quadratic 17 plus jump and identical in distribution, for i ∈ k ∪ {c}, i.e.,

µi
t = ηi

t + J i
t and J i

t =
∑

τ̃ i
j≤t

Y i
j hi(t − τ̃ i

j ), ηi
t = Z>

t Qi(t)Zt + gi(t)>Zt + fi(t)

The default intensity of each defaultable firm k ∈ k is modeled as18

λk
t = µk

t + εkµc
t . (45)

Furthermore, we assume that the risk-free short rate r is independent of the firm specific
intensity µk but not necessarily of the common intensity µc.

The higher εi the bigger is the dependence of the common default risk driven by µc.

For intuition take εi ≡ ε. Then, if µc jumps then suddenly the default risk of all the assets
increase a lot and we will see numerous defaults. This can also be caused by a rise in the
quadratic part to a high level, but then it is more or less predictable. The first effect causes
some clustering similar to contagion effects, which means if one company defaults and others
are closely related to this company, they are very likely to default also. The latter effect is
more like a business cycle effect, so on bad days more companies default than on good days.

The formulas listed in the following remark are fundamental building blocks for the portfolio
setup. They are more ore less straightforward generalizations of the results given in the

17We note that to get indepence of µi we also need, in particular, independence of ηi. Given that we are
dealing with the same Z state variables independence is achieved imposing, for a given i, that if we have
(Qi)j 6= 0 or (gi)j 6= 0, then (Qi)j = 0, (gk)j = 0 for all k 6= i. In words, any element in Z can only appear
in one ηi.

18When dealing with only one firm, as in Section 3, the distinction between firm specific and systematic
risks becomes irrelevant. This distinction only makes sense in a portfolio context.
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previous sections. We give full details in Lemma A.2 in the appendix. We also introduce
a concise short hand notation for the different expressions which will be helpful in the
computations to come.

Remark 4.2. Set x = T − t and k =
{
1, · · · , K̄

}
. We take θ ∈ R and i = k ∪ {c}.

Furthermore, we introduce the short hand notation on the l.h.s:

Si
η(θ, t, T ) = EQ

[
e−

∫ T
t

θηi
sds|FW

t

]
= eA

i(θ,t,T )+Bi>(θ,t,T )Zt+Z>
t Ci(θ,t,T )Zt

Si
J(θ, t, T ) = EQ

[
e−

∫
T
t

θJi
sds|FJ

t

]
= eθ(J̃t−J̃(t,T ))+lix[Di(θ,x)−1]

S̄c
η(θ, t, T ) = EQ

[
e−

∫
T
t

rs+θηc
sds|FW

t

]
= eĀc(θ,t,T )+B̄c>(θ,t,T )Zt+Z>C̄c(θ,t,T )Zt

where (Ai,Bi, Ci, θQi, θgi, θfi), (Āc, B̄c, C̄c, Q + θQc, g + θgc, f + θfc) solve the basic ODE
system of Definition 2.4, Di(θ, x) =

∫ 1

0
ϕ[θH i(x(1 − u))]du, H i(x) =

∫ x

0
hi(u)du, and J̃ i is

defined similarly to (24) (using H i and Y i).

Γi
η(θ, t, T ) = EQ

[
θηi

T e−
∫ T

t
θηi

sds|FW
t

]

= Si
η(θ, t, T ) ·

(
ai(θ, t, T ) + bi>(θ, t, T )Zt + Z>

t ci(θ, t, T )Zt

)

Γi
J (θ, t, T ) = EQ

[
θJ i

T e−
∫ T

t
θJi

sds|FJ
t

]

= Si
J(θ, t, T ) ·

[
θJ i(t, T ) − li ·

(
Di(θ, x)(1 − x) − 1 + xϕi

(
θH i(x)

))]

Γ̄c(θ, t, T ) = EQ
[
θηc

T e−
∫ T

t
rs+θηc

sds|FW
t

]

= S̄c
η(θ, t, T ) ·

(
āc(θ, t, T ) + b̄c>(θ, t, T )Zt + Z>

t c̄c(θ, t, T )Zt

)

where (ai, bi, ci, Bi, Ci, θfi, θgi, θQi), (āc, b̄c, c̄c, B̄c, C̄c, θfc, θgc, θQc) solve the
interlinked system of Definition 3.17 and J i(t, T ) is defined similarly to (35) (using hi and
Y i).

Furthermore, we have

Si(θ, t, T ) = EQ
[
e−

∫ T
t

θµi
sds|FW

t

]
= Si

η(θ, t, T ) · Si
J(θ, t, T )

S̄c(θ, t, T ) = EQ
[
e−

∫ T
t

rs+θµc
sds|FW

t

]
= S̄c

η(θ, t, T ) · Sc
J(θ, t, T )

Γi(θ, t, T ) = EQ
[
θµie−

∫
T
t

θµi
sds|FW

t

]
= Γi

η(θ, t, T )Si
J(θ, t, T ) + Γi

J (θ, t, T )Si
η(θ, t, T )

Γ̄c(θ, t, T ) = EQ
[
θµce−

∫ T
t

rs+θµc
sds|FW

t

]
= Γ̄c

η(θ, t, T )Sc
J(θ, t, T ) + Γc

J(θ, t, T )S̄c
η(θ, t, T ).

Finally, for θ = 1 we use (t, T ) instead of (1, t, T ) on the l.h.s. notation.

We keep all the notation from the previous section but we have to add a superscript “·k” to
be able to distinguish across firms. This way, Qk

S , denotes the survival probability of firm
k, p̄k(t, T ) is the price of a T -defaultable bond issued by firm k, ek(t, T ) can be interpreted
as the price of a payoff of 1 u.c if the firm k defaults at T , while e∗k(e, Tn−1, Tn) is the price
if you get 1 u.c. paid if the firm k defaults in (Tn−1, Tn].

In the next Lemma we derive the key building blocks using the new intensity (45).
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Lemma 4.3. Given Assumption 4.1 we have the following closed form solutions:

Qk
S(t, T ) = Sk(t, T ) · Sc(εk, t, T )

p̄k
o(t, T ) = Sk(t, T ) · S̄c(εk, t, T )

ek(t, T ) = Γk(t, T ) · S̄c(εk, t, T ) + Γ̄c(εk, t, T ) · Sk(t, T )

e∗k(t, Tn−1, Tn) = eαk(t,Tn−1,Tn)+βk>(t,Tn−1,Tn)Zt+Z>
t γk(t,Tn−1,Tn)Zt · p̄k

o(t, Tn−1) − p̄k
o(t, Tn)

where all the S· and Γ· are as in Remark 4.2 and α, β, γ are as in Proposition 3.28.

Proof. All results follow from the independence of µk and µc. Concretely, for Qk
S(t, T ) and

ek(t, T ) we have,

Qk
S(t, T ) = EQ

[
e−

∫
T
t

λk
s ds
∣∣∣Ft

]

= EQ
[
e−

∫
T
t

µk
s ds · e−

∫
T
t

εkµc
sds
∣∣∣Ft

]
.

As µk and µc are independent we immediately obtain Qk
S(t, T ) = Sk(t, T ) · Sc(εk, t, T ).

Similarly,

ek(t, T ) = EQ
[
λk

T e−
∫ T

t
rs+λk

s ds
∣∣∣Ft

]

= EQ
[
µk

T e−
∫

T
t

µk
sds · e−

∫
T
t

(rs+εkµc
s)ds
∣∣∣Ft

]
+ EQ

[
e−

∫
T
t

µk
s ds · εkµc

T e−
∫

T
t

(rs+εkµc
s)ds
∣∣∣Ft

]

= Γk(t, T ) · S̄c(εk, t, T ) + Sk(t, T ) · Γ̄c(εk, t, T ).

The same type of argument can be used to compute pk
o(t, T ) and e∗k(t, Tn−1, Tn). �

4.2 Default correlation and Clustering

It is often argued that in the framework used here, where the default times are conditionally
independent, the resulting default correlation is not high enough. However, already Duffie
and Gârleanu (2001) showed that this is not the case. Especially through jumps or, more
precisely, high peaks in the intensity a high default correlation is induced.

A problem showing up in the jump-diffusion setting of Duffie and Gârleanu (2001) is the
right choice of the mean reversion speed which affects both the diffusion and the jump part.19

In their model, big jumps are necessary to induce high default correlation. To avoid that
the intensity stays on a very high level for a long time, the mean reversion speed must be
quite high. On the other hand, such a high mean reversion speed gives unrealistic behavior
for the diffusive part. In the framework presented here, this problem is solved, as the mean
reversion speeds can be different.

The so-called default correlation is basically the correlation between the default indicators
of two companies. Denote by Qi

D the probability of company i defaulting in (t, T ] and by

19In their work the intensity is of the form

dµt = κ
(
θ − µt

)
dt + σ

√
µtdWt + dJt,

where (W ) is a Brownian motion and (J) is a pure jump process and thus a special case of a shot-noise
process. With this formulation the authors obtain bond prices in an affine form. A problem of this approach
is to adjust κ in the right way. This is because κ controls the mean reversion speed of the diffusive as well
as of the jump part.
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Qi,j
D (t, T ) the probability that companies i and j default in (t, T ]. The default correlation is

defined as

ρi,j(t, T ) =
Qi,j

D (t, T ) − Qi
D(t, T )Qj

D(t, T )√
Qi

D(t, T )[1 − Qi
D(t, T )]Qj

D(t, T )[1 − Qj
D(t, T )]

.

The default probabilities relate to the survival probabilities by Qk
D(t, T ) = 1 − Qk

S(t, T )
where QS is given in Lemma 4.3.

Proposition 4.4. Suppose Assumption 4.1 holds. Then, the default correlation of two
different companies i and j is given by

ρi,j(t, T ) =
Si(t, T )Sj(t, T )

[
Sc(εi + εj , t, T ) − Sc(εi, t, T )Sc(εj , t, T )

]
√

Qi
D(t, T )[1 − Qi

D(t, T )]Qj
D(t, T )[1 − Qj

D(t, T )]
.

where S· are as in Remark 4.2 and we recall Q·
D = 1 − Q·

S .

Proof. The probability of joint default of the firms i, j until time T given that none has
defaulted until t is given by

Qi,j
D (t, T ) = EQ [1{T i<T}1{T j<T}

∣∣Gt

]

= EQ
[(

1 − e−
∫ T

t
λi

sds
)(

1 − e−
∫ T

t
λj

sds
)∣∣∣Ft

]

= EQ
[(

1 − e−
∫

T
t

µi
s+εiµc

sds
)(

1 − e−
∫

T
t

µj
s+εjµc

sds
)∣∣∣Ft

]

= EQ
[
1 − e−

∫
T
t

µi
s+εiµc

sds − e−
∫

T
t

µj
s+εjµc

sds + e−
∫

T
t

µi
s+µj

s+(εi+εj)µc
sds
∣∣∣Ft

]

= 1 − Qi
S(t, T ) − Qj

S(t, T ) + EQ
[
e−

∫ T
t

µi
s+µj

s+(εi+εj)µc
sds
∣∣∣Ft

]
.

Again using independence of µi, µj and µc we obtain

Qi,j
D (t, T ) = 1 − Qi

S(t, T ) − Qj
S(t, T ) + Si(t, T )Sj(t, T )Sc(εi + εj , t, T ).

By the definition of ρi,j the result follows from

Qi
D(t, T )Qj

D(t, T ) = (1 − Qi
S(t, T ))(1 − Qj

S(t, T ))

= 1 − Qi
S(t, T ) − Qj

S(t, T ) + Qi
S(t, T )Qj

S(t, T )

= 1 − Qi
S(t, T ) − Qj

S(t, T ) + Si(t, T )Sc(εi, t, T )Sj(t, T )Sc(εj , t, T ). �

4.3 Portfolio Credit Derivatives

To obtain concrete formulas, we will make a simplifying assumption about homogeneity of
the portfolio. Assumptions like this are quite usual in the literature on CDOs. However, it
should be pointed out that the following calculations go through in a similar fashion without
these assumptions, but the expressions will get more involved. Nonetheless, typically, port-
folio credit derivatives base on a portfolio of homogeneous credits, therefore the following
assumption is quite plausible for practical purposes.
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Assumption 4.5. We consider a portfolio of homogeneous credits, i.e. the notionals are
equal, M i = M , the recoveries are assumed to be time-independent and i.i.d. qaj (τj) = qj

and the correlation factors are the same, εi = ε. Moreover, we assume that Assumption 4.1
holds, and that the processes Jk for all k = 1 · · · K̄ therein are equivalent, i.e. they are based
on the same set of parameters FY , h, l. On the other hand, Jc has the parameters F c

Y , hc, lc.

4.3.1 First-to-Default Swaps

A first-to-default swap (FtDS) is a contract which offers protection on the first default of a
portfolio only. The two counterparties which exchange payments are named protection seller
and protection buyer. Payments are due at fixed payment dates, say t1, · · · , tN∗ . Moreover,
there is an initiation date t0 < t1. If t0 is in the future, the FtDS is called forward-start
FtDS. The FtDS is characterized by the so-called first-to-default spread sFtD which is fixed
at initiation of the contract.

• The protection seller pays at tn, if the first default occurred in (tn−1, tn] the default
payment. Assume that name k is the one which defaulted first. Then the default
payment equals Mk · qk. If no default happens until tN∗ the protection seller pays
nothing.

• The protection buyer pays the spread sFtD, until the maturity of the FtDS, tN∗ , or
until the first default (whichever comes first).

As the protection buyer has only fixed payments, the payments due to him are also called
fixed leg, while the payments of the protection seller are called floating leg.

The spread s̄FtD is chosen in such a way that at initiation of the FtDS its value at t0 equals
zero. Note that there are no payments until t1. If a default happens before t0, the contract
is worthless. To emphasize the dependence of the spread on the current time write s̄FtD(t).

The following results rely on the distribution of the first default time, which is the minimum
of all default times. The main result is Theorem 4.7

We will make use of Assumption 4.5 to ease exposition. Denote the probability that the
first default, τ1, occurs in (t, T ] by QFtD

S (t, T ). The next lemma deals with properties of the
first default time. Recall from Assumption 4.5 that ε the sensitivity of each intensity λi to
the common part µc.

Lemma 4.6. Suppose that Assumption 4.5 is in force. Consider a portfolio of K̄ names
and assume no default has occurred up to time t. Then, the survival probability of the first
default is given by

QFtD

S (t, T ) = 1{τ1>t} Sc(εK̄, t, T ) ·
K̄∏

k=1

Sk(t, T ).

Furthermore, the value of one unit of currency paid at T only if τ1 > T is given by

p̄FtD(t, T ) = 1{τ1>t} S̄c(εK̄, t, T ) ·
K̄∏

k=1

Sk(t, T ). (46)
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Proof. The result is trivial on {τ1 ≤ t}, so we consider {τ1 > t} from now on. Then, by
definition QFtD

S (t, T ) = Q(τ1 > T |Gt). We start by conditioning on µc
[t,T ] ∨ Gt. Recall that

the default time of name k is denoted by Tk. Then,

Q
(
τ1 > T

∣∣µc
[t,T ] ∨ Gt

)
= Q

(
min(T1, T2, · · · , TK̄) > T

∣∣µc
[t,T ] ∨ Gt

)

= EQ
[
1{T1>T,T2>T,··· ,TK̄>T}

∣∣µc
[t,T ] ∨ Gt)

]
. (47)

As T1, . . . , TK̄ are independent, conditionally on µc
[t,T ], we obtain

(47) = EQ
(

exp
[
−

K̄∑

k=1

∫ T

t

λk
sds
] ∣∣∣µc

[t,T ] ∨ Ft

)

= e−K̄ε
∫ T

t
µc

sds · EQ
(

exp
[
−

K̄∑

k=1

∫ T

t

(Jk
s + ηk

s )ds
]∣∣∣µc

[t,T ] ∨ Ft

)

As η1, . . . , ηK̄ , J1, . . . , JK̄ are mutually independent we obtain using the expressions given
in Remark 4.2

(47) = e−εK̄
∫ T

t
µc

sds ·
K̄∏

k=1

Sk(t, T ).

It may be recalled that Sk = Sk
ηSk

J . Thus,

Q(τ1 > T |Gt) = EQ
(

e−εK̄
∫ T

t
µc

sds ·
K̄∏

k=1

Sk(t, T )
∣∣∣Ft

)

= Sc(εK̄, t, T ) ·
K̄∏

k=1

Sk(t, T ).

Using the same methodology with the fact that r is independent of µk for all k ∈ k but not
of µc determines p̄FtD(t, T ). �

The spread of the FtDS is given by the following result. Recall that p̄FtD(t, T ) was computed
in (46).

Theorem 4.7. Suppose Assumption 4.5 is in force. Consider a portfolio of K̄ names and
assume no default has occurred up to time t. Then, the spread of the FtDS is given by

s̄FtD(t) = q̄

∑N∗

n=1 eFtD∗(t, tn−1, tn)
∑N∗

n=1(tn − tn−1)p̄FtD(t, tn)

where

eFtD∗(t, tn−1, tn) = eαc(t,tn−1,tn)+βc >(t,tn−1,tn)Zt+Z>
t γc(t,tn−1,tn)Zt · p̄FtD(t, tn−1) − p̄FtD(t, tn).

(48)

Here α, β, γ solve the system in (39)-(41). Furthermore, there α, β, γ must be evaluated at
(t, Tn−1, Tn) while B̄, C̄ must be evaluated at (εK̄, t, tn−1).
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Proof. For ease of notation we write sFtD instead of sFtD(t). The value at time t of the fixed
leg of the FtDS follows from the results in the previous lemma:

EQ
[ N∗∑

n=1

e−
∫ tn

t
rs ds sFtD 1{τ>tn}

∣∣Gt

]
= sFtD

N∗∑

n=1

(tn − tn−1) · p̄FtD(t, Tn).

For the pricing of the floating leg we need to compute

eFtD∗(t, Tn−1, Tn) := EQ
[
e−

∫
tn
t

rsds1{τ1∈(tn,tn−1]}

∣∣∣Gt

]

= EQ
[
e−

∫ tn
t

rsds1{τ1>tn−1}

∣∣∣Gt

]
− EQ

[
e−

∫ tn
t

rsds1{τ1>tn}

∣∣∣Gt

]
,

where the second expectation equals p̄FtD(t, tn). Furthermore,

EQ
[
e−

∫
tn
t

rsds1{τ1>tn−1}

∣∣∣Gt

]
= EQ

[
p(tn−1, tn) · e−

∫ tn−1
t rsds1{τ1>tn−1}

∣∣∣Ft

]
. (49)

Following the steps from the previous lemma we can deduce the following. Alternatively, in
the conditionally independent approach the default intensity of the minimum of the default
times is simply the sum over all intensities. However, we get the following

(49) = EQ
[
p(tn−1, tn) · e−

∫ tn−1
t

[
rs+εK̄µc

s+
∑K̄

k=1 µk
s

]
ds
∣∣∣Ft

]

We write short F̃t,tN∗ for Ft ∨ σ(µc
s, rs : t ≤ s ≤ tN∗). Conditioning on F̃ we obtain

(49) = EQ
[
EQ
(
e−

∑K̄
k=1

∫ tn−1
t µk

s ds
∣∣F̃t,tN∗

)
· p(tn−1, tn)e−

∫ tn−1
t

(
rs+εK̄µc

s

)
ds
∣∣∣Ft

]
.

Let us consider the inner expectation more closely. By Assumption 3.22 we have that
η1, . . . , ηK̄ are independent of µc and r, so that

EQ
(
e−

∑K̄
k=1

∫ tn−1
t µk

s ds
∣∣F̃t,tN∗

)
= EQ

(
e−

∑K̄
k=1

∫ tn−1
t ηk

s ds
∣∣Ft

)
· EQ

(
e−

∫ tn−1
t

∑K̄
k=1 Jk

s ds
∣∣Ft

)

=
K̄∏

k=1

Sk(t, tn−1).

It may be recalled that Sk = Sk
η · Sk

J . To evaluate (49) we can proceed exactly as in
Proposition 3.28. In analogy to Proposition 3.28 we obtain that

EQ
[
p(tn−1, tn)e−

∫ tn−1
t

(
rs+εK̄ηc

s

)
ds
∣∣∣Ft

]
= S̄c

η(εK̄, t, tn−1)·

· exp
(
αc(t, tn−1, tn) + βc>(t, tn−1, tn)Zt + Z>

t γc(t, tn−1, tn)Zt

)
.

The remaining part with Jc is given by Sc
J such that by S̄c = S̄c

η ·Sc
J expression (49) equals

eαc(t,tn,tn−1)+βc >(t,tn,tn−1)Zt+Z>
t γc(t,tn,tn−1)Zt · S̄c(εK̄, t, tn−1) ·

K̄∏

k=1

Sk(t, tn−1)

︸ ︷︷ ︸
p̄FtD(t,tn−1)

,

where α, β, γ are as stated in the theorem. �
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4.3.2 CDOs

We introduce the concept of Collateralized Debt Obligations (CDOs) as in Duffie and
Gârleanu (2001). The aim of this section is to price the so-called synthetic CDOs.

A synthetic CDO is an asset-backed security whose underlying collateral is a portfolio of
CDSs. A CDO allocates interest income and principal repayments from a collateral pool of
CDSs to a prioritized collection of CDO securities, called tranches.

While there are many variations, a standard prioritization scheme is simple subordination:
senior CDO notes are paid before mezzanine and equity pice is paid with the any residual
cash-flow.

The following picture clarifies the structure of a CDO. In addition to the general portfolio

Assets SPV

Senior

Mezzanine

Equity
{

Underlying
Securities

Initial Investment

AAA,AA

BBB,BB

Issued
Securities

Initial Investment

setup introduced in Section 4.1 we need to introduce some additional notation to describe
the cash-flow of CDOs.

We consider a CDO with several tranches i = 1, · · · , Ī . In the case were we have senior,
mezzanine and equity tranches only we would simply take Ī = 3. The tranches are separated
according to fixed barriers bi. That is, b1 separates tranche 1 from tranche 2, b2 separated
the tranche 2 from tranche 3, and so on - compare figure 4.

The loss at each default time τj is generally given by Maj qaj (τj).20 However, under the
homogeneity Assumption 4.5, it simplifies to ξj := Mqj .

The loss process of the CDO is given by

L(t) :=
Nt∑

j=1

ξj .

It describes the reduction in face value of the whole underlying portfolio due to according
defaults. The loss of tranche i is given by

Li(t) =





0 if L(t) < bi−1

L(t) − bi−1 if bi−1 ≤ L(t) < bi

bi − bi−1 if L(t) ≥ bi

(50)

Figure 4 illustrates the CDO setup with a possible loss path affecting various tranches.

We start by computing the distribution of portfolios losses under both the martingale mea-
sure and the T - forward measure. This will serve as building block for the pricing of CDOs.

20We note that the loss at each default time would depend on the notional amount of the defaulted firm
and on the recovery process of that firm evaluated at the default time.
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Equity

Mezzanine

Senior

Loss

t
Defaults

Loss path

Figure 4: Tranches’ losses in CDOs.

In the following we will need the distribution of sums of losses, for which we define

F̄q,k(y) := Q
( k∑

j=1

qj > y

)
. (51)

Depending on the distribution of the losses, this could be in more ore less closed form. At
this point we stick with this abbreviation.

Remark 4.8. It is somehow a natural choice to model q with a beta-distribution. The
beta-distribution is a flexible class of distributions which have support [0, 1]. Unfortunately,
the convolution is not given in closed form. However, Fq,k can be obtained via inverting
the Fourier-transform. There exists numerical algorithms to do this quite efficiently. Note
also, that this has to be computed once and therefore does not effect speed of the valuation
algorithm.

Alternatively, one could use the uniform distribution, and obtain a closed form solution.

Given our setup we can always conclude for the unconditional distribution of the loss function
L. However, for pricing and risk management it is necessary to consider L after some time
passed by, and we therefore will be interested in the conditional distribution of the loss
function. To this it will be convenient to require the processes (λk

t )t≥0, k = 1, . . . , K̄ to be
Markovian. We recall that this is equivalent to h(t) = a exp(−bt) by Proposition 3.10.

Can use Markovianity to conclude for the conditional distribution of L? Lemma 4.9 gives
the answer. Before, however, to handle defaulted and non-defaulted companies in a concise
way, we need to introduce some more notation.

Denote by St the set which contains the indices of assets not defaulted until t, the “survivors”:

St := {1 ≤ k ≤ K̄ : T k > t}.
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In the following Lemma we will fix the number of defaults in the interval (t, T ] and then
sum over all possible combinations defaults.

We write
∑

kn∈St
for the sum over all sets kn = {k1, . . . , kn} of size n with pairwise different

elements and k1, . . . , kn ∈ St. kn represents the n companies which default in (t, T ].

Given kn, the companies not defaulting are denoted by

St\kn := {1 ≤ l ≤ n : l ∈ St, l 6∈ kn}.

Furthermore, we write short {T kn ∈ (t, T ]} for {T k1 ∈ (t, T ], . . . , T kn ∈ (t, T ]}.

Lemma 4.9. Suppose the function h(x) and hc(x) in Assumption 4.5 are of the form ae−bx.
Then the conditional distribution of the portfolio losses, L, is given by

Q(LT ≤ x|Gt) = 1{TSt>t}

K̄−Nt∑

n=0

·Fq,n

(x − Lt

M

)

·
∑

kn∈St

{
Sc(ε(K̄ − Nt − n), t, T )

( ∏

k∈St\kn

Sk(t, T )
)
− Sc(ε(K̄ − Nt), t, T )

( ∏

k∈St

Sk(t, T )
)}

where Fq,n(·) is defined in (51) and Sk and Sc are of exponential quadratic form as defined
in Remark 4.2.

Furthermore, if t = 0, the above expression gives the unconditional expectation and the
functions h(x), hc(x) need not have any special form.

Proof. The conditional distribution of L is given by

Q(LT ≤ x|Gt) = Q
(
LT − Lt ≤ x − Lt|Gt

)
= Q

(NT−Nt∑

j=1

ξj ≤ x − Lt

∣∣Gt

)

= Q
(NT −Nt∑

j=1

qj ≤
x − Lt

M

∣∣Gt

)
= Fq,NT −Nt

(x − Lt

M

)
.

Recall that (N) is the counting process of all defaults. For the following, we first condi-
tion on µc. Then all individual defaults τ i are independent and stem from independent
Cox-processes with (also independent) intensities (λk(t))t≥0, k = 1, . . . , K̄. Observe that
NT − Nt is not independent from Nt

21. But, it is not difficult to compute the conditional
distribution. However, in contrast to the unconditional distribution, we need to distinguish
which company defaults.

Using the Markovianity of the processes µk we need to determine

Q
(
NT − Nt = k|St, Nt, µ

c
[t,T ],Ft

)
. (52)

We write F̃t := σ(St, Nt, µ
c
[t,T ],Ft). In the above probability we will have k companies

defaulting in (t, T ]. Summing over all possible indices was denoted by
∑

kn∈St
. Then,

(52) =
∑

kn∈St

Q
(
T kn ∈ (t, T ]|F̃t

)
Q
(
TSt\kn > T |F̃t

)
.

21For example, if all companies default before t, hence Nt = K̄ it follows that NT − Nt = 0.
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Note that the survival probability of asset k is given by

Q
(
T k > T |F̃t

)
= Q

(
T k > T |1{T k>t}, µ

c
[t,T ],Ft

)

= 1{T k>t} exp
(
− ε

∫ T

t

µc
s ds

)
EQ
[

exp
(
−
∫ T

t

µk
s ds

)∣∣Ft

]

︸ ︷︷ ︸
=Sk(t,T )

.

The expectation on the r.h.s. is of the exponential quadratic from as given by Remark 4.2.
In the Markovian case, (25) can be used to simplify this even further. Furthermore, since,
conditionally on µc the defaults occur independently, we have

Q
(
T kn > T |F̃t

)
= 1{Tkn>t} exp

(
− nε

∫ T

t

µc
s ds
) ∏

k∈kn

Sk(t, T ).

Note that Sk takes the form given in Remark 4.2 and can moreover be simplified according
to Equation (25).

On {T k > t} we also have that Q
(
T k ∈ (t, T ]|F̃t

)
= 1 − Q

(
T k > T |F̃t

)
. Hence,

Q
(
NT − Nt = n|F̃t) =

=
∑

kn∈St

{
1 − e−nε

∫
T
t

µc
s ds

∏

k∈kn

Sk(t, T )
}
· e−(K̄−Nt−n)ε

∫
T
t

µc
s ds

∏

k∈St\kn

Sk(t, T )

=
∑

kn∈St

[
e−(K̄−Nt−n)

∫ T
t

µc
s ds

∏

k∈St\kn

Sk(t, T ) − e−ε(K̄−Nt)
∫ T

t
µc

s ds
∏

k∈St

Sk(t, T )
]

(53)

After we have done all calculation conditioned on µc we finally have to consider the uncon-
ditional expectation. This is, on {TSt > t},

Q
(
NT − Nt = n|St, Nt,Ft

)

=
∑

kn∈St

[
Sc(ε(K̄ − Nt − n), t, T )

∏

k∈St\kn

Sk(t, T ) − Sc(ε(K̄ − Nt), t, T )
∏

k∈St

Sk(t, T )
]
.

�

Proposition 4.10. Denote by QT the T -forward measure. With the above notation we have

QT
(
LT ≤ x

∣∣Gt

)
= 1{TSt >t}

1
p(t, T )

K̄−Nt∑

n=0

Fq,n

(x − Lt

M

)

·
∑

kn∈St

{
S̄c(ε(K̄ − Nt − n), t, T )

( ∏

k∈St\kn

Sk(t, T )
)
− S̄c(ε(K̄ − Nt), t, T )

( ∏

k∈St

Sk(t, T )
)}

S̄c and Sk are of exponential quadratic form as in Remark 4.2 and A, B, C are given in
Result 2.5.

Note that p(t, T ) = exp
(
A(t, T ) + B>(t, T )Zt + Z>

t C(t, T )Zt

)
by Result 2.5.

37



Proof. First, observe that

p(t, T )QT
(
LT ≤ x

∣∣Gt

)
= EQ

(
e−

∫ T
t

rsds1{LT ≤x}
∣∣Gt

)
.

We therefore just need to compute EQ
(
e−

∫
T
t

rsds1{LT≤x}
∣∣Gt

)
.

To this, let G̃t := σ(St, Nt, µ
c
[t,T ],Gt) and recall r has common factors, i.e., conditional on µc

it is known. We thus have

EQ
[
e−

∫ T
t

rsds1{LT≤x}

∣∣∣Gt

]
= EQ

[
e−

∫ T
t

rsdsEQ
[
1{LT≤x}

∣∣ G̃t

]∣∣∣Gt

]

= EQ
[
e−

∫ T
t

rsdsQ
(
LT ≤ x|G̃t

)∣∣∣Gt

]

For the inner expectation we may use Equation (53) to obtain that the above equals

EQ

{
e−

∫
T
t

rsds
K̄−Nt∑

n=0

Fq,n

(x − Lt

M

)

·
∑

kn∈St

[
e−ε(K̄−Nt−n)

∫ T
t

µc
sds

( ∏

k∈St\kn

Sk(t, T )

)
− e−ε(K̄−Nt)

∫ T
t

µc
sds

(∏

k∈St

Sk(t, T )

)]∣∣∣Gt

}
.

Recalling the notation defined in Remark 4.2 we have that

EQ
(

e−
∫ T

t
rsdse−ε(K̄−Nt−n)

∫ T
t

µc
sds
∣∣∣Gt

)
= S̄c(ε(K̄ − Nt − n), t, T )

such that we obtain the given expression immediately. �

We can now focus on the pricing of tranches of synthetic CDOs. We make the following
normalizations:

• The CDO offers notes on each tranche with par value 1.

• Interest is paid at times t1, · · · , tN∗

• The value of the entire tranche at the time the CDO is issued (time zero) is

V i(0) = bi − bi−1

• At each intermediate time tj < tN∗ we receive the coupon ci (the coupon is, obviously,
tranche dependent). The payment is on the remaining principal in the trance, so that
the payments due at tj are

(
1 −

Li(tj)
bi − bi−1

)
ci(tj − tj−1)

• At maturity tN∗ the coupon plus the remain value of the tranche is paid:
(

1 − Li(tN∗)
bi − bi−1

)(
ci(tN∗ − tN∗−1) + 1

)
.
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The critical point here is the reinvestment of the recovery payment. Note that in reality, the
default of an entity from the underlying pool leads to a non-payment of the future coupons.
The recovery has to be re-invested at the current market level and possibly gets a lower
coupon. In this section, we assume that these missing future coupons are included in the
recovery. This means, that the recovery after default is the actual recovery minus financing
cost of the future coupons (which also could be a gain if the market offers better conditions
at default).

Define ci
j := ci(tj − tj−1) for i < N∗ and ci

N∗ := ci(tN∗ − tN∗−1) + 1 and denote the value
of the tranche i at time t by V i(t). Then V i(t) is given by

V i(t) = EQ




N∗∑

j=1

e−
∫ tj

t r(u)du

(
1 −

Li(tj)
bi − bi−1

)
ci
j

∣∣∣∣∣∣
Gt




=
N∗∑

j=1

p(t, tj)

(
1 −

Etj
[
Li(tj)

∣∣Gt

]

bi − bi−1

)
ci
j ,

where Etj [ ·| Gt] denotes conditional expectation under the tj-forward measure.

The price of risk-free bonds have been computed in Result 2.5 and the only difficulty is
in computing Etj

[
Li(tj)

∣∣Gt

]
. In literature on CDOs it is quite common to assume inde-

pendence of interest rates and all processes related to the loss process. As we saw when
computing the distribution of the portfolio losses, in our framework dealing with the T -
forward measure requires only little additional effort, and so here we relax this assumption.

The next theorem gives ET
[
Li(T )

∣∣Gt

]
for all T > t in closed form and concludes the CDO

analysis. It uses the notation introduced on page 35. We denote the density of the sum of
k losses, similar to the distribution function defined in (51), by fq,k(·).

Theorem 4.11. Consider t < T . The conditional distribution function of Ltj is defined by
F LT

Gt
(x) := QT (Ltj ≤ x|Gt). We have that its density is given by

fLT

Gt
(x) = 1{TSt>t}

1
p(t, T )

K̄−Nt∑

n=0

·fq,n

(x − Lt

M

)

·
∑

kn∈St

{
S̄c(ε(K̄ − Nt − n), t, T )

( ∏

k∈St\kn

Sk(t, T )

)
− S̄c(ε(K̄ − Nt), t, T )

(∏

k∈St

Sk(t, T )

)}

and the conditional expected value of tranche i equals

ET (Li
T |Gt) = (bi − bi−1)

[
1 − F LT

Gt
(bi)
]
− bi−1

[
F LT

Gt
(bi) − F LT

Gt
(bi−1)

]
+
∫ bi

bi−1
xfLT

Gt
(x) dx.

Proof. By the definition of the tranche loss in (50) we have that

ET (Li
T |Gt) = ET

(
LT 1{LT∈(bi−1,bi]}|Gt

)
− bi−1QT

(
LT ∈ (bi−1, bi]|Gt

)

+ (bi − bi−1)QT
(
LT > bi|Gt

)
.

Hence,

QT
(
LT ∈ (bi−1, bi]|Gt

)
= QT

(
LT ≤ bi|Gt

)
− QT

(
LT ≤ bi−1|Gt

)

ET
(
LT 1{LT∈(bi−1,bi]}|Gt

)
=

∫ bi

bi−1
xfT

Gt
(x) dx.
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The result follows from the closed form for QT (Ltj ≤ x|Gt) computed in Proposition 4.10. �

4.3.3 Link to Credit Indices

In this section we draw the link to currently traded credit indices and discuss the pricing of
options written on those indices.

Quite recently, there evolved a liquid market for credit indeces, the so-called CDX or i-Traxx.
There is not much literature available, but in Pedersen (2003) and Felsenheimer, Gisdakis,
and Zaiser (2004) some informations may be found. The Dow Jones iTraxx emerged from
two other indices, the iBoxx and the iTraxx, on 21st of June 2004.

The iTraxx is effectively a portfolio of 125 single CDS. To guarantee liquidity, the portfolio
is reorganized on quarterly time points by a certain voting scheme and defaulted entities are
removed. The aim of this procedure is to guarantee that the underlying portfolio stays in a
certain class of credit worthiness (or rating, respectively).

Especially for the fast growing and very liquid market of credit indices, there is an increasing
demand on options raising naturally the question on how to price them.

The mathematical setting for an credit index is as follows. W.l.o.g. we assume that the
notional is 1. The credit index is on K̄ names, each represented by a CDS with spread si(t).
Each names are in the same credit class, so that the homogeneous pool Assumption 4.1 will
hold. Especially, the single names have equal weight 1

K̄
.

The payment stream of the credit index is as follows. Recall that K̄ − Nt is the number of
CDS alive at time t

• Fixed leg: The spread is paid on the remaining notional, i.e. at each time tn of the
tenor t1, . . . , tN∗ the payoff is

S̄(tn − tn−1)
K̄ − Ntn

K̄
.

• Defaulting leg: We assume the payments of default protection occur at the end of the
defaulting period, i.e. the payments of the floating or protection leg in the interval
(tn−1, tn] due at tn are ∑

T k∈(tn−1,tn]

(1 − Rk(tn)).

Here, Rk(tn) is the value of the recovery22 of the underlying k at time tn.

Before any default happens and if the recovery is paid as in the underlying CDS, it is clear
that the payment streams of the index are equivalent to the payment streams of the portfolio
of the equally weighted underlying CDS (with spread denoted by s̄i) and so the spread of
the index is simply

S̄t =
1
K̄

K̄∑

k=1

s̄k(t).

22For completeness it should be mentioned, that a recovery payment Rk due directly at default time can
be incorporated in this setting by setting the recovery to Rk(tn) = Rk exp

( ∫ tn
Tk

ru du
)
. This is equivalent

to the payment Rk(T k) at T k directly.
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Now, if a default happens, the situation gets more complicated. One entity is removed and
the index still pays the spread S̄. However, the spread of the portfolio with equally weighted
CDS, where now the defaulting entity is removed has a possibly different spread:

1
K̄

K̄∑

k=1

s̄k(t)1{T k>t}.

For example, if K̄ = 2 and s1 equals 100 and s2 equals 200, both constant, we obtain for
the index spread 150, but after default of name 1 the portfolio with equal weights pays the
spread 100 while the index pays the spread 75. This may show that for pricing some more
effort has to be done.

We start by determining the value of the index spread at a certain time t. The spread offered
by the index is chosen, such that fixed and defaulting leg equal in value. We denote this
spread by S̄t.

Using the above formulation, the value of the fixed leg at time t is

S̄t

∑

tn≥t

(tn − tn−1)
1
K̄

K̄∑

k=1

EQ
(

e−
∫

tn
t

ru du1{T k>tn}
∣∣Gt

)
,

where
∑

tn≥t is, more precisely, the sum over all tn ∈ {t1, . . . , tN∗} with tn ≥ t. The last
expectation is equal to p̄k

0(t, tn), the appropriate zero-recovery bond for the kth underlying.
The value of the floating leg equals

N∗∑

tn≥t

EQ
( ∑

T j∈(tn−1,tn]

e−
∫

tn
t

ru du(1 − Rk(tn))
∣∣Gt

)
.

Under the assumption of homogeneity of the recovery as well as time-independent recovery,
which is also independent of the other factors, we can replace 1 − Rk(tn) = qk simply by
q̄, where q̄ is the expectation of the loss quota, qk. The remaining term has already been
calculated in Lemma 4.3. Form there it may be recalled that the value of one unit of
currency, paid at tn, when name k defaults in (tn−1, tn] was named e∗k(t, tn−1, tn) and can
be calculated closed form. With this, the value of the floating leg is

∑

tn≥t

EQ
( ∑

T j∈(tn−1,tn]

e−
∫ tn

t
ru du(1 − Rk(tn))

∣∣Gt

)

= q̄
∑

tn≥t

K̄∑

k=1

EQ
(

e−
∫

tn
t

ru du1{T k∈(tn−1,tn]}
∣∣Gt

)

= q̄
∑

tn≥t

K̄∑

k=1

e∗k(t, tn−1, tn).

We obtain the following formula for the spread of the credit index:

S̄t = q̄K̄

∑
tn≥t

∑K̄
k=1 e∗k(t, tn−1, tn)

∑
tn≥t(tn − tn−1)

∑K̄
k=1 p̄k

o(t, tn)
.

Typically, it is the case that tn − tn−1 = ∆ and the above formula simplifies a bit more.
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5 Illustration

In this section we illustrate the results derived in the previous sections with a concrete
three-factor model.

5.1 The model

We take

Z =




Z1

Z2

r




as the state variable, and assume its Q-dynamics given by

dZ1
t =

[
β1(t) − α1Z

1
t

]
dt + σ1dW 1

t (54)

dZ2
t =

[
β2(t) − α2Z

2
t

]
dt + σ2dW 2

t (55)
drt = αr [βr − rt] dt + σr

√
rtdW r

t (56)

where αi, σi, for i = 1, 2, r and βr are constants, while β1(·), β2(·) are deterministic functions
of t and W 1, W 2 and W r are independent Q-Wiener processes.

We will analyze two firms, denoted 1 and 2. Each firm’s intensity is driven by firms specific
as well as common factors in accordance with Assumption 4.1.

For each firm the intensity is given by

λk
t = µk

t + εkµc
t , µk

t = ηk
t =

(
Zk

t

)2
, k = 1, 2 ε1, ε2 ∈ R (57)

µc = Jc + δr, Jc
t =

∑

τ̃i<t

Yih
c(t − τ̃i), Yi ∼ χ2(2) hc(x) = e−bx, b ∈ R+ . (58)

and the τ̃i are the jumps of a Poisson process with intensity lc.

We note that the firms specific terms do not have jumps and are purely quadratic terms,
while the common factors depend linearly on the short rate and allow for jumps. The
common jumps follow the shot-noise formulation in Assumption 4.1, the τ̃i’s stem from a
standard Poisson distribution with constant parameter lc and the Yi’s have a χ2 distribution
with two degrees of freedom.

Figure 5 shows simulated default times for different choices of εi. The left plot has εi = 0.1
while the right plot has εi = 0.5. Especially the plot on the right hand side shows a strong
dependence of the two default times.

This kind of strong dependence illustrates why the shot-noise feature enables us to reproduce
contagion effects. Typically, contagion refers to the following effect: default of company A
leads to serious problems in related companies, such that at least some of them default
close in time. The shot-noise model is not able to directly produce such an effect, because
in the presented model the default of a pre-specified company does not have any effect on
the default intensity of other companies. However, as the simulations show, the jumps in
intensities induces quite a big number of defaults close in time, which mimics the contagion
effect. Ongoing research incorporates a self-exciting feature, which in turn will enable the
model to directly induce contagion.
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Figure 5: Simulated defaults of two companies according to the model in Section 5.1.
Parameters are for i = 1, 2: βi = 1, αi = 0.5, σi = 0.2, lc = 2, b = 0.5. The jumps are
χ2

2-distributed. The left picture has εi = 0.1, the right εi = 0.5.

Using the notation previously described we identify all the needed matrices:

drift as in (3): d(t) =




β1

β2

αrβr


 E(t) =



−α1 0 0

0 −α2 0
0 0 −αr




variance as in (4): k0(t) =




σ2
1 0 0
0 σ2

2 0
0 0 0


 kr(t) =




0 0 0
0 0 0
0 0 σ2

r




ki(t) = guj(t) =



0 0 0
0 0 0
0 0 0


 i = 1, 2; uj = 1, 2, r .

Furthermore we also have

ηk = (Zk)2 ⇒ (Qk)ij(t) =

{
1 ij = kk

0 otherwise
, gk(t) = 0, fk(t) = 0; k = 1, 2

r =



0
0
1


 ⇒ Q(t) = 0, g(t) =



0
0
1


 , f(t) = 0 .

5.2 Risk-free term structure

From (56) we recognize the CIR model for the short rate, and thus the risk-free bond prices
have an ATS.

Result 2.5 yields
p(t, T ) = eA(t,T )+B>(t,T )Zt+Z>

t C(t,T )Zt
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and solving the basic system of ODEs we get with notation x = T − t, γr =
√

α2
r + 2σ2

r

A(t, T ) =
2αrβr

σ2
r

ln
(

2γre
(αr+γr) x

2

(γr + αr)(eγrx − 1) + 2γr

)
, B(t, T ) =




0
0

2(eγrx − 1)
(γr + αr)(eγrx − 1) + 2γr


 ,

and C(t, T ) = 0.

Result 5.1. The closed-formula solution for the risk-free bond prices is

p(t, t + x) =
(

2γre
(αr+γr) x

2

(γr + αr)(eγrx − 1) + 2γr

)2αrβr

σ2
r × exp

{(
2(1− eγx)

(γ + αr)(eγx − 1) + 2γ

)
rt

}
,

where γr =
√

α2
r + 2σ2

r .

5.3 Key building blocks for credit risk

We will now compute the basic quantities from Remark 4.2. In the following we always set
x := T − t.

• Sk(θ, t, T ) :

We start by noting that the firm specific components have no jumps, so we have

Sk(θ, t, T ) = Sk
η (θ, t, T ) = exp

(
Ak(θ, t, T ) + Bk>(θ, t, T )Zt + Z>

t Ck(θ, t, T )Zt

)

where (Ak ,Bk, Ck, θQk, 0, 0) solve the basic ODE system of Definition 2.4.

We also note that, due to independence of the three factors in Z, we immediately obtain

(
Bk
)
ij

(θ, t, T ) =

{
Bk(θ, t, T ) i = k

0 otherwise
,
(
Ck
)
ij

(θ, t, T ) =

{
Ck(θ, t, T ) i = j = k

0 otherwise
.

(59)
Bk and Ck on the r.h.s. are now scalar functions 23 that solve the scalar ODE system





∂Bk

∂t
− αkBk + 2Ckβk + 2σ2

kCkBk = 0

Bk(θ, T, T ) = 0




∂Ck

∂t
− 2αkCk + 2σ2

k

(
Ck
)2

= θ

Ck(θ, T, T ) = 0

23Even though we acknowledge that using the same notation on both the vector/matrix on the l.h.s and
the scalar functions on the r.h.s of (59) may be misleading, we believe it is better than introducing more
notation. Moreover, given the independence between our three factors, it should be clear at each point which
entrance in a vector/matrix entrance is not zero and we will always be refering to that one.
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whose solution is, with γk =
√

α2
k + 2σ2

kθ, given by:

Ck(θ, t, T ) =
θ
[
1 − e2γkx

]

(γk + αk) [e2γkx − 1] + 2γk
, (60)

Bk(t, T ) =
∫ T

t

βk(s)e
∫ s

t
αk−2C(θ,u,T )du2C(θ, s, T )ds

=
[
2(αk + γk)(e2γkx − 1) + 4γk

]−1/σ2
k × (61)

×
∫ T

t


βk(s)

4θe

(
αk+ 4θ

γk−αk

)
(s−t)(1 − e2γk(T−s))

[
2(αk + γk)(e2γk(T−s) − 1) + 4γk

]1− 1
σ2

k


 ds.

Finally, the ODE for Ak reduces to




∂Ak

∂t
+ βk(t)Bk +

1
2
σ2

k

(
Bk
)2

+ σ2
kCk = 0

A(θ, T, T ) = 0

and integrating we get

Ak(θ, t, T ) = −
∫ T

t

βk(s)Bk(θ, s, T ) +
1
2
σ2

k

(
Bk(θ, s, T )

)2
+ σ2

kCk(θ, s, T )ds

=
1
2

ln
(

2γke(γk+αk)x

(γk + αk)(e2γkx − 1) + 2γk

)
−
∫ T

t

βk(s)Bk(θ, s, T ) +
1
2
σ2

k

(
Bk(θ, s, T )

)2
ds.

for Bk as in (61).

Result 5.2. So, for k=1,2, we have Sk(θ, t, T ) = Sk
η (θ, t, T ) and

Sk(θ, t, T ) =

√
2γke(γk+αk)x

(γk + αk)(e2γkx − 1) + 2γk
× exp

{
θ
[
1 − e2γkx

]

(γk + αk) [e2γkx − 1] + 2γk

(
Zk

t

)2
}
×

× exp

{
−
∫ T

t

(
βk(s)Bk(θ, s, T ) +

1
2
σ2

k

(
Bk(θ, s, T )

)2)
ds + Bk(θ, t, T )Zk

t

}
, (62)

where Bk is as in (61).

For arbitrary βk the above expressions involving Bk must be evaluated numerically.

• Sc
η(θ, t, T ), S̄c

η(θ, t, T ):

We note that ηc
t = δrt. So,

Sc
η(θ, t, T ) = EQ

[
e−

∫
T
t

θηc
sds
∣∣∣Ft

]
= EQ

[
e−

∫
T
t

θδrsds
∣∣∣Ft

]

= exp
{
Ac(θ, t, T ) + Bc>(θ, t, T )Zt + Z>

t Cc(θ, t, T )Zt

}

S̄c
η(θ, t, T ) = EQ

[
e−

∫ T
t

rs+θηsds
∣∣∣Ft

]
= EQ

[
e−

∫ T
t

(1+θδ)rsds
∣∣∣Ft

]

= exp
{
Āc(θ, t, T ) + B̄c>(θ, t, T )Zt + Z>

t C̄c(θ, t, T )Zt

}
.
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Note that the above expectations are very similar to the expectation needed to compute for
the risk-free bond prices.

Indeed, it is easy to show that both quantities can be obtained from EQ
[
e−

∫
T
t

∆rsds
∣∣∣Ft

]

and we have

EQ
[
e−

∫
T
t

∆rsds
∣∣∣Ft

]
= exp

{
A(∆, t, T ) + B>(∆, t, T )Zt + Z>

t C(∆, t, T )Zt

}
(63)

where, setting γ̂r =
√

α2
r + 2σ2

r∆,

A(∆, t, T ) =
2αrβr

σ2
r

ln

[
2γ̂re

(γ̂r+αr) T−t
2

(αr + γ̂r)[eγ̂r(T−t) − 1] + 2γ̂r

]
(64)

B(∆, t, T ) =




0
0

2∆
[
eγ̂r(T−t) − 1

]

(γ̂r + αr)
[
eγ̂r(T−t) − 1

]
+ 2γ̂r


 , (65)

C(∆, t, T ) = 0. (66)

We finally obtain Āc, B̄c, C̄c and Ac, Bc, Cc as follows:24

Āc(θ, t, T ) = A((1 + θδ), t, T ) B̄c(θ, t, T ) = B((1 + θδ), t, T ) C̄c(θ, t, T ) = 0
Ac(θ, t, T ) = A(θδ, t, T ) Bc(θ, t, T ) = B(θδ, t, T ) Cc(θ, t, T ) = 0

where A, B, C are as in (64)-(66).

Summarizing we obtain:

Result 5.3. With γc
η =

√
α2

r + 2σ2
rθδ and γ̄c

η =
√

α2
r + 2σ2

r(1 + θδ) we have the following
expressions:

Sc
η(θ, t, T ) =

(
2γc

ηe(γc
η+αr) x

2

(αr + γc
η)[eγc

ηx − 1] + 2γc
η

)2αrβr

σ2
r ×

× exp








2θδ
[
1 − eγc

ηx
]

(γc
η + αr)

[
eγc

ηx − 1
]
+ 2γc

η


 rt



 (67)

S̄c
η(θ, t, T ) =

(
2γ̄c

ηe(γ̄c
η+αr) x

2

(αr + γ̄c
η)[eγ̄c

ηx − 1] + 2γ̄c
η

)2αrβr

σ2
r ×

× exp








2(1 + θδ)
[
1 − eγ̄c

ηx)
]

(γ̄c
η + αr)

[
eγ̄c

ηx − 1
]
+ 2γ̄c

η


 rt



 (68)

•Sc
J(θ, t, T ) :

24The alternative to these computations is to solve the basic ODE system of Definition 2.4 for
(Āc, B̄c, C̄c, 0, (1 + δ)g, 0) and (Ac,Bc,Cc, 0, δθ, 0). Given the specificities of our model the above is faster.
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Recalling, that we consider the Markovian case of our model, we get from Remark 4.2 that

Sc
J(θ, t, T ) = e−Hc(T−t)Jt+lcx[Dc(θ,x)−1].

The functions Hc and Dc can be obtained directly from hc(x) = e−bx and the fact that Y c
i s

are χ2(2) distributed (recall equations (23) and (27)).

We start by computing

Hc(x) =
∫ x

0

e−bs = −1
b

[
e−bx − 1

]
=

1
b

[
1 − e−bx

]
. (69)

To compute Dc we will make use of the Laplace transform of the χ2(ν) distribution.25 For
ν = 2,

ϕc(u) =
1

1 + 2u
, (70)

and Dc will have a simple formula. However, for any choice of ν there is an explicit expres-
sion, just the formulas will get lengthier.

With ν = 2 we find

D(θ, s) =
∫ 1

0

ϕc(θH(s − su)) du

=
∫ 1

0

(
1 + 2θH

(
s(1 − u)

))−1

du

=
∫ 1

0

[
1 +

2θ

b

(
1 − e−bs(1−u)

)]−1

du.

Integrating gives27

Dc(θ, s) =
1

b + 2θ

[
b +

1
s

ln
(
1 +

2θ

b
(1 − e−bs)

)]
. (71)

Putting all the information together, we conclude the following.

Result 5.4.

Sc
J(θ, t, T ) =

[
1 +

2θ

b

(
1 − e−b(T−t)

)] lc

b + 2θ

× exp
{

1
b

[
e−bx − 1

]
Jt + lc(T − t)

[ b

b + 2θ
− 1
]}

. (72)

25Recall that for u ≥ 0 the Laplace transform of random variable which has χ2 distribution with ν degrees
of freedom, equals 26,

ϕχ2
ν
(u) = E(e−uχ2

ν ) = (1 + 2u)−ν/2.

27Note that the primitive of (a + becu)−1 is

u

a
−

1

ac
ln
(
a + becu

)
.
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Furthermore, from Remark 4.2, we know

Sc(θ, t, T ) = Sc
η(θ, t, T )Sc

J(θ, t, T ) (73)

S̄c(θ, t, T ) = S̄c
η(θ, t, T )Sc

J(θ, t, T ) (74)

with Sc
η as in (67), S̄c

η as in (68) and Sc
J as in (72).

• Γk(θ, t, T ) :

Γk(θ, t, T ) = Γk
η(θ, t, T ) = Sk

η (θ, t, T ) exp
(
ak(θ, t, T ) + bk>(θ, t, T )Zt + Z>

t ck(θ, t, T )Zt

)

where ak, bk and ck solve the interlinked system of Definition 3.17. In our case, and for each
fixed k, the system can be simplified since

(bk)i(θ, t, T ) =

{
bk(θ, t, T ) i = k

0 otherwise
(ck)ij(θ, t, T ) =

{
ck(θ, t, T ) i = j = k

0 otherwise
. (75)

For ak and bk, ck (on the l.h.s above) we get the scalar system of ODE




∂ak

∂t
+ βkbk + σ2

kBkbk + σ2
kc = 0

ak(θ, T, T ) = 0




∂bk

∂t
− αkbk + 2βkc + 2σ2

kCkbk + 2σ2
kBkck = 0

bk(θ, T, T ) = 0




∂ck

∂t
− 2αkck + 4σ2

kCkck = 0

ck(θ, T, T ) = θ

where Bk and Ck are as in (60)-(61).

Solving first for ck we get

ck(θ, t, T ) = θ exp

{
−2
∫ T

t

αk − 2σ2
kCk(s, T )ds

}

=
θ [(γk + αk)(eγkx − 1) + 2γk]

γke(γk+3αk)x
(76)

where γk =
√

α2
k + 2σ2

kθ.

Then bk equals

bk(θ, t, T ) = −2
∫ T

t

e
∫ s

t
αk−2σ2

kC
k(u,T )du

(
βk(s) − σ2Bk(s, T )

)
ck(s, T )ds (77)

where Bk and Ck are as in (60)-(61) and ck as in (76). Finally,

ak(θ, t, T ) = −
∫ T

t

βk(s) + σ2
kBk(s, T )b + σ2

kck(s, T )ds. (78)

with B as in (61) and ck as in (76). Summarizing, we get the following result.
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Result 5.5. With ck as in (76) and bk and ak numerically evaluated using (77)-(78), we
have that

Γk(θ, t, T ) = Γk
η(θ, t, T ) = Sk

η (θ, t, T ) exp
(
ak(θ, t, T ) + bk(θ, t, T )Zk

t + ck(θ, t, T )
(
Zk

t

)2)

(79)

• Γc
η(θ, t, T ), Γ̄c

η(θ, t, T ):

Once again, we note that in our special case, to obtain Γc
η(θ, t, T ) and Γ̄c

η(θ, t, T ) we need to

solve expressions of the type EQ
[
θrT e−

∫
T
t

∆rsds
∣∣∣Ft

]
, which can be easily proven to be of

the form

EQ
[
θrT e−

∫
T
t

∆rsds
∣∣∣Ft

]
= EQ

[
e−

∫
T
t

∆rsds
∣∣∣Ft

]
ea(∆,t,T )+b(∆,t,T )rt.

The expectation on the r.h.s. has been previously computed (compare with equation (63))
and a, b solve a simplified scalar version of the interlinked ODE system in Definition 3.17





∂a

∂t
+ αrβrb = 0

a(∆, T, T ) = 0




∂b

∂t
− αrb +

1
2
σ2

kBb = 0

b(∆, T, T ) = θ

where B can be obtained from (65).

The solution to the above system is given by

a(∆, t, T ) =
∫ T

t

αrβrb(∆, s, T )ds (80)

b(∆, t, T ) = θe−
∫ T

t
αr− 1

2 σ2
rB(s,T )ds

=
θ
[
(αr + γ̂r)(eγ̂rx − 1) + 2γ̂r

]

2γ̂re(3αr+γ̂r) x
2

(81)

where a must be evaluated numerically using b in (81) and γ̂r =
√

αr + 2σ2
r∆

Using the above derived equations (80)-(81) we can finally obtain and

Γc
η(θ, t, T ) = Sc

η(θ, t, T ) exp {a(θδ, t, T ) + b(θδ, t, T )rt}
Γ̄c

η(θ, t, T ) = S̄c
η(θ, t, T ) exp {a((1 + θδ), t, T ) + b((1 + θδ), t, T )rt}

Result 5.6. With γc
η =

√
α2

r + 2σ2
rθδ and γc

η =
√

α2
r + 2σ2

r(1 + θδ),

Γc
η(θ, t, T ) = Sc

η(θ, t, T ) exp



a(θδ, t, T ) +




θ
[
(αr + γc

η)(eγc
ηx − 1) + 2γc

η

]

2γc
ηe(3αr+γc

η) x
2


 rt



 (82)

Γ̄c
η(θ, t, T ) = S̄c

η(θ, t, T ) exp



a((1 + θδ), t, T ) +




θ
[
(αr + γ̄c

η)(eγ̄c
ηx − 1) + 2γ̄c

η

]

2γ̄c
ηe(3αr+γ̄c

η) x
2


 rt



 .

(83)
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Sc
η(θ, t, T ) and S̄c

η(θ, t, T ) can be obtained from (67), (68) and a must be evaluated numeri-
cally using (80)-(81).

• Γc
J (θ, t, T ):

Γc
J(θ, t, T ) = Sc

J(θ, t, T )
[
θJk(t, T ) − lc[Dc(θ, x)(1 − x) − 1] + xϕc(θHc(x))

]

Hc(x) and Dc(θ, x) are as in (69), (71). While from the Laplace transform of the χ2(2) in
(70) we immediately obtain

ϕc(θHc(x)) =
1

1 + 2θ
b (1 − e−bx)

Result 5.7. With Jc(t, T ) =
∑

τ̃i≤t Yie
−b(T−τ̃i), thus known at time t, and Sc

J(θ, t, T ) as in
(72) we have that

Γc
J(θ, t, T ) = Sc

J (θ, t, T )

{
θJc(t, T ) − lc

[
1

2 + bθ

(
b +

1
x

ln
(

1 +
2θ

c
(1 − e−bx

))
(1 − x) − 1

]

+x
1

1 + 2θ
b (1 − e−bx)

}
(84)

Furthermore, using Remark 4.2,

Γc(θ, t, T ) = Γc
η(θ, t, T )Sc

J(θ, t, T ) + Γc
J(θ, t, T )Sc

η(θ, t, T ) (85)

Γ̄c(θ, t, T ) = Γ̄c
η(θ, t, T )Sc

J(θ, t, T ) + Γ̄c
J(θ, t, T )S̄c

η(θ, t, T ) (86)

In Results 5.1 to 5.7, we have computed in closed-form (up to the numerical integration
of some integrals), all the needed ingredients to derive explicit expressions of, e.g. , credit
derivatives, CDOs and FtDs.

For instance,

• Firm k’s survival probability is given by

Qk
S(t, T ) = Sk(t, T )× Sc(εk, t, T ) (87)

with Sk(t, T ) = Sk(1, t, T ) from (62), Sc from (73).

• Firm k’s zero-recovery defaultable bond has the price

p̄k
o(t, T ) = Sk(t, T )× S̄c(εk, t, T ) (88)

with Sk(t, T ) = Sk(1, t, T ) from (62), S̄c from (74).

• The price of 1 unit of currency if firm k defaults in (t, T ] is given by

ek(t, T ) = Γk(t, T ) × S̄c(εk, t, T ) + Γ̄c(εk, t, T )× Sk(t, T )

with Sk(t, T ) = Sk(1, t, T ) from (62), Γk(t, T ) = Γk(1, t, T ) from (79), S̄c from (74)
and Γ̄c from (86).
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• The default correlation between firm 1 and 2 is given by

ρ1,2(t, T ) =
S1(t, T )S2(t, T )

[
Sc(ε1 + ε2, t, T ) − Sc(ε1, t, T )Sc(ε2, t, T )

]
√

Q1
D(t, T )[1− Q1

D(t, T )]Q2
D(t, T )[1 − Q2

D(t, T )]

where for k = 1, 2 we have Sk(t, T ) = Sk(1, t, T ) from (62) and Qk
D(t, T ) = 1 − Qk

S(t, T ).
Qk

S is given in (87) and Sc in (73).

6 Conclusion

We have presented a class of reduced-form models for credit risk for which it is possible to
compute, in closed form, all relevant quantities in credit risk modeling both at firm level
and at portfolio level. In addition we computed explicit formulas to price several credit
derivatives like CDSs, CDOs and FtDS.

In the presented class of models intensities were used which have both a predictable com-
ponent and an unpredictable one. The predictable component is of the general quadratic
type as introduced in Gaspar (2004), while the unpredictable component is modeled as a
shot-noise process. Quadratic models are particularly useful for modeling intensities since
they naturally lead to strictly positive processes. Furthermore, it is well-known that it
is the largest polynomial order one can deal with without introducing arbitrage (see Fil-
ipović (2002) or the discussion in Gaspar (2004)). The shot-noise component is essential in
producing realistic default correlation levels across firms.

In Section 5 we presented an easy example illustrating and clarifying the use of the derived
results.

In our opinion, the class of models proposed in this paper is particularly suited to fit real
data and handle portfolio issues in closed-form. A natural step of future research would be
the calibration of a concrete model to market data. Ongoing research extends the shot-noise
component of the model to self-exciting processes, which will directly lead to contagious
effects. In terms of prices, it would be interesting to formalize and handle cash-flow CDOs
which are much less studied in the literature than synthetic CDOs and possess interesting
embedded options.

A Appendix: Technical details and Proofs

Some of the proofs make use of the following Lemmas.

Lemma A.1. For any deterministic function G of the state variable Z, and any function
F , quadratic in the state variable Z, s.t.

F (t, z) = φ1(t) + φ>
2 (t)z + z>φ3(t)z

the following property holds

EQ
[
G(ZT , T )e−

∫
T
t

Fsds|Ft

]
= g(t, Zt, T )eA(t,T )+B>(t,T )Zt+Z>

t C(t,T )Zt (89)
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where (A, B, C, φ1, φ2, φ3) solve the basic ODE system of Definition 2.4 and g solves the
following PDE





∂g

∂t
+
∑

i

∂g

∂zi
αi +

1
2

∑

ij

(
∂2g

∂zi∂zj
+

∂g

∂zi

∂h

∂zj
+

∂g

∂zj

∂h

∂zi

)
σiσj = 0

g(T, z, T ) = G(z, T )

Proof. Let y(t, Zt, T ) = EQ
[
G(T, ZT , T )e−

∫
T
t

Fsds|Ft

]
. Then it must solve the PDE





∂y

∂t
+
∑

i

∂y

∂z
αi +

1
2

∑

ij

∂2y

∂zi∂zj
σiσj = Fy

y(T, z, T ) = G(z, T )

(90)

where all partial derivatives should be evaluated at (t, T ) and α and σ are the drift and
diffusion of the state variable Z as defined in (4).

We start by doing some computations that turn out to be useful later on. If above expecta-
tion would be the form

y(t, z, T ) = g(t, z, T )eA(t,T )+B>(t,T )z+z>C(t,T )z = g(t, z, T )eh(t,z,T )

where z is allowed to be multi-dimensional, we have the following partial derivatives

∂y

∂t
=

∂g

∂t
· eh +

∂h

∂t
· g · eh =

∂g

∂t
· eh +

∂h

∂t
· y

∂y

∂zi
=

∂g

∂zi
eh + g · ∂h

∂zi
· eh =

∂g

∂zi
eh +

∂h

∂zi
· y

∂2y

∂zi∂zj
=

[
∂2g

∂zi∂zj
· eh +

∂g

∂zi

∂h

∂zj
· eh +

∂g

∂zj

∂h

∂zi
eh + g

(
∂2h

∂zi∂zj
· eh +

∂h

∂zi

∂h

∂zj
· eh

)]

=
∂2g

∂zi∂zj
· eh +

∂g

∂zi

∂h

∂zj
· eh +

∂g

∂zj

∂h

∂zi
· eh +

∂2h

∂zi∂zj
· y +

∂h

∂zi

∂h

∂zj
· y

And if that is so the PDE (90) becomes




∂g

∂t
· eh +

∂h

∂t
· y +

∑

i

(
∂g

∂zi
eh +

∂h

∂zi
· y
)

αi+

+
1
2

∑

ij

(
∂2g

∂zi∂zj
· eh +

∂g

∂zi

∂h

∂zj
· eh +

∂g

∂zj

∂h

∂zi
· eh

)
σiσj

+
1
2

∑

ij

(
∂2h

∂zi∂zj
· y +

∂h

∂zi

∂h

∂zj
· y
)

σiσj = Fy

y(T, z, T ) = G(z, T )

which using separation of variables in y and eh can be splitted into two PDEs, one for g and
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one for h.



∂h

∂t
+
∑

i

∂h

∂zi
αi +

1
2

∑

ij

(
∂2h

∂zi∂zj
+

∂h

∂zi

∂h

∂zj

)
σiσj = F

h(T, z, T ) = 0

(91)





∂g

∂t
+
∑

i

∂g

∂zi
αi +

1
2

∑

ij

(
∂2g

∂zi∂zj
+

∂g

∂zi

∂h

∂zj
+

∂g

∂zj

∂h

∂zi

)
σiσj = 0

g(T, z, T ) = G(z, T )

(92)

To prove the result it remains to show that h(t, z, T ) = A(t, T )+B>(t, T )z + z>(t, T )z with
A, B and C from the basic ODE system of Definition 2.4 solves the PDE (91). The result
follows from

∂h

∂t
=

∂Ā

∂t
+

∂B̄

∂t

>

z + z>
∂C̄

∂t
z

∂h

∂zi
=
(
B̄i + 2C̄iz

) ∂2h

∂zi∂zj
= 2C̄ij

and the fact that the PDE (91) becomes a separable equation equivalent to the basic ODE
system. �

With the notation J̃ from Equation (24), J(t, T ) in (35) and D(θ, ·) from Remark 4.2 we
have the following lemma.

Lemma A.2. Let x = T − t and consider r as in (5), J as in (12) and η as in (11) and
some constant θ ∈ R. For (ii) we require existence of D(θ, x) and for (v) also in some
surrounding of x. Then,

(i) Sη(θ, t, T ) = EQ
[
e−

∫ T
t

θηsds|FW
t

]

= exp
(
A(θ, t, T ) + B>(θ, t, T )Zt + Z>

t C(θ, t, T )Zt

)

(ii) SJ (θ, t, T ) = EQ
[
e−

∫
T
t

θJsds|FJ
t

]

= exp
(
θ(J̃t − J̃(t, T )) + lx[D(θ, x) − 1]

)

(iii) S̄(θ, t, T ) = EQ
[
e−

∫ T
t

rs+θηsds|FW
t

]

= exp
(
Ā(θ, t, T ) + B̄>(θ, t, T )Zt + Z>(t)C̄(θ, t, T )Zt

)

(iv) Γη(θ, t, T ) = EQ
[
θηT e−

∫ T
t

θηsds|FW
t

]

=
(
a(θ, t, T ) + b>(θ, t, T )Zt + Z>

t c(θ, t, T )Zt

)
· Sη(θ, t, T )

(v) ΓJ(θ, t, T ) = EQ
[
θJT e−

∫ T
t

θJsds|FJ
t

]

= SJ (θ, t, T ) ·
{

θJ(t, T ) − l ·
[
D(θ, x)(1 − x) − 1 + xϕY

(
θH(x)

)]}

(vi) Γ̄(θ, t, T ) = EQ
[
θηT e−

∫
T
t

rs+θηsds|FW
t

]

=
(
ā(θ, t, T ) + b̄>(θ, t, T )Zt + Z>

t c̄(θ, t, T )Zt

)
· S̄η(θ, t, T )
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where (A, B, C, θf, θg, θQ) and (Ā, B̄, C̄, f + θf, g + θg, Q + θQ) solve the basic ODE
system of Definition 2.4, while (a, b, c, B, C, θf, θg, θQ) and (ā, b̄, c̄, B̄, C̄, θf, θg, θQ)
solve the interlinked system of Definition (3.17).
Furthermore,

(vii) S(θ, t, T ) = EQ
[
e−

∫ T
t

θµsds|Ft

]
= Sη(θ, t, T ) · SJ(θ, t, T )

(viii) S̄(θ, t, T ) = EQ
[
e−

∫
T
t

rs+θµsds|Ft

]
= S̄η(θ, t, T ) · SJ(θ, t, T )

(ix) Γ(θ, t, T ) = EQ
[
θµT e−

∫
T
t

θµsds|Ft

]

= Γη(θ, t, T ) · SJ(θ, t, T ) + ΓJ(θ, t, T ) · Sη(θ, t, T )

(x) Γ̄(θ, t, T ) = EQ
[
θµT e−

∫ T
t

rs+θµsds|Ft

]

= Γ̄η(θ, t, T ) · SJ(θ, t, T ) + ΓJ(θ, t, T ) · S̄η(θ, t, T )

Proof. Properties (vii)−(ix) follow from those in (i)−(vi) by independence between FW and
FJ and the fact that µ = η+J . Note also that (i) follows from (iii) as well as (iv) from (vi)
when we take f(t) = 0, g(t) = 0, Q(t) = 0 ⇒ rt = 0, ∀t. Thus, it remains to prove (ii), (iii),
(v), (vi). These four expectations, however, are quite similar to some expectation computed
in the main text. They can be computed using the more ore less the same methodology as
already laid out, being cautious with the constant “θ”.

Proof of (ii). We basically mimic the proof of Lemma 3.13. Recall the notation of J̃ from
(24) and set x = T − t. Then,

SJ (θ, t, T ) = EQ
[
e−

∫ T
t

θJu du|FJ
t

]

= exp
{
θ(J̃t − J̃(t, T ))

}
EQ


exp

(
−

∑

τ̃i∈(t,T ]

θYi

∫ T

t

1{τ̃i≤u}h(u − τ̃i) du
)
|FJ

t


 .

The expectation equals

e−lx +
∞∑

k=1

e−lx (lx)k

k!
EQ

[
exp

(
−

k∑

i=1

YiθH
(
x(1 − ηi)

)
)]

= elx(D(θ,x)−1), (93)

as

EQ [exp
(
−Y1θH

(
x(1 − η1)

))]
=
∫ 1

0

ϕY

(
θH(xu)

)
du = D(θ, x).

Proof of (iii)

S̄(θ, t, T ) = EQ
[
e−

∫
T
t

rs+θηsds|FW
t

]

= EQ
[
e−

∫
T
t (Z>

s (Q+θQc(s))Zs+(g+θgc(s))>Zs+(f+θfc(s)) ds)|FW
t

]

= exp
{
Ā(θ, t, T ) + B̄>(θ, t, T )Zt + Z>

t C̄(θ, t, T )Zt

}
.

Comparing with (29) and as (Ā, B̄, C̄, f +θf, g +θg, Q+θQ) solve the basic system of ODEs
from Definition 2.4 the result follows.
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Proof of (v) Recall the notations for J̃(t, T ) and J(t, T ) introduced in (24) and (35), respec-
tively. Proceeding similar to the proof of (ii) we split in a measurable and future part.

ΓJ(θ, t, T ) = EQ
[
θ
(∑

τ̃i≤t

Yih(T − τ̃i) +
∑

τ̃i∈(t,T ]

Yih(T − τ̃i)
)
e−

∫ T
t

θJs ds
∣∣∣FJ

t

]

= θJ(t, T ) · SJ (θ, t, T ) + eθ(J̃t−J̃(t,T ))EQ
[
θ
∑

τ̃i∈(t,T ]

Yih(T − τ̃i)e
−θ

∫ T
t

∑
τ̃i∈(t,s] YiH(s−τ̃i) ds

∣∣∣FJ
t

]
.

Next, we consider the expectation more closely. The idea is to consider D̃ and derive w.r.t.
T . We define

J̃ t(s) :=
∑

τ̃i∈(t,s]

Yih(s − τ̃i).

Then, the above expectation can be stated in a form suitable for our derivation:

EQ
[ ∑

τ̃i∈(t,T ]

Yih(T − τ̃i)e
−θ

∫ T
t

∑
τ̃i∈(t,s] YiH(s−τ̃i) ds

∣∣∣FJ
t

]
= EQ

[
J̃ t(T )e−θ

∫
T
t

J̃t(s) ds
∣∣∣FJ

t

]
(94)

Note that H is continuous and recall (93). So, if D(θ, x) exists in a neighborhood of x, we
can derive the following expression w.r.t. x and obtain

∂

∂x
elx
(
D̃(θ,x)−1

)
=

∂

∂x
EQ
(
e−

∫
T
t

θJ̃t(s) ds
∣∣FJ

t

)

= −EQ
(
θJ̃ t

T · e−
∫

T
t

θJ̃t(s) ds
∣∣FJ

t

)
.

The last equation follows if D is bounded in a neighbourhood of x. This follows if the
Laplace transform is continuous around x. So we found a nice expression of (94). With

∂

∂x
D(θ, x) =

∫ 1

0

ϕ′
Y

(
θH(xu)

)
· θh(xu) · u du

= ϕY

(
θH(xu)

)
u
∣∣∣
1

0
−
∫ 1

0

ϕY

(
θH(xu)

)
du

= ϕY

(
θH(x)

)
− D(θ, x).

we obtain

∂

∂x
elx
(
D(θ,x)−1

)
= elx

(
D(θ,x)−1

)
· l ·
[
D(θ, x)(1 − x) − 1 + xϕY

(
θH(x)

)]
(95)

Noticing that e{θ(J̃t−J̃(t,T )}e{lx(D̃(θ,x)−1)} = SJ(θ, t, T ), we conclude.

Proof of (vi)

Let us denote
y(t, T ) = EQ

[
θηT e−

∫
T
t

ru+θηudu|FW
t

]

since both r and η are quadratic functions of our factors Z and setting G(T, z) = θη(T, z)
we are exactly under the conditions of Lemma A.1. Thus we know

EQ
[
G(ZT , T )e−

∫ T
t

rs+µsds|Gt

]
= g(t, Zt, T ) eĀ(t,T )+B̄>(t,T )Zt+Z>

t C̄(t,T )Zt︸ ︷︷ ︸
S̄η(θ,t,T )

(96)
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and g solves the following PDE




∂g

∂t
+
∑

i

∂g

∂zi
αi +

1
2

∑

ij

(
∂2g

∂zi∂zj
+

∂g

∂zi

∂h

∂zj
+

∂g

∂zj

∂h

∂zi

)
σiσj = 0

g(T, z, T ) = η(T, z)

(97)

and it remains to show that

g(t, z, T ) = ā(θ, t, T ) + b̄>(θ, t, T )z + z>c̄(θ, t, T )z (98)

with (ā, b̄, c̄, B̄, C̄, f + θf, f + θf, f + θf) solving the interlinked ODE system of Definition
3.17. We now compute

∂g

∂t
=

∂ā

∂t
+

∂b̄

∂t
z + z>

∂c̄

∂t
z ,

∂g

∂zi
= b̄i + 2c̄iz ,

∂2g

∂zi∂zj
= 2c̄ij .

Replacing in the PDE (97), all these partial derivatives and η, α and σσ> using equations
(11) and (4), we get an equivalent PDE, which in vector notation becomes28





∂ā

∂t
+

∂b̄

∂t
z + z>

∂c̄

∂t
z + d>b̄ +

(
E∗b̄

)
z + (2c̄d) z + z> (c̄E) z

+z> (E∗c̄) z +
1
2

[
B̄>k0b + 2 tr {c̄K0} +

(
˜̄B>Kb̄

)
z
]

+
1
2

[(
2C̄k0b̄ + 2c̄k0B̄

)
z + z>

(
4C̄k0c̄

)
z + z>

(
˜̄BG˜̄b

)
z
]

= 0

g(T, z, T ) = θη(T, z)

(99)

From the analysis of the PDE equation one soon realizes it is separable, in terms independent
of z, linear in z and quadratic in z equivalent to the interlinked ODE system of Definition
3.17. To check the boundary conditions, note

g(T, z, T ) = θη(T, z)
⇔

ā(θ, T, T ) + b̄>(θ, T, T )z + z>c̄(θ, T, T )z = z>Q(T )z + g>(T )z + f(T )
⇓

ā(θ, T, T ) = θf(T ) b̄(θ, T, T ) = θg(T ) c̄(θ, T, T ) = θQ(t).

Finally, this implies

Γ̄(θ, t, T ) =
(
ā(θ, t, T ) + b̄>(θ, t, T )z + z>c̄(θ, t, T )z

)
· S̄η(θ, t, T ) .

�

Proof of Proposition 3.28
28Terms of order higher than two are omitted from the equation since the final solution must set those

terms equal to zero and they are hard to write in vector notation.
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Proof. (missing details)

It remains to show that

EQ
[
e−

∫ T1
t rs+ηsdsp(T1, T2)|FW

t

]
= eα(t,T1,T2)+β>(t,T1,T2)Zt+Z>

t γ(t,T1,T2)Zt

· eĀ(t,T1)+B̄>(t,T1)Zt+Z>
t C̄(t,T1)Zt

where α, β and γ are deterministic and solve the system stated in the Proposition.

This is the case because the expectation is under the conditions of Lemma A.1 where the
risk-free bond price p(T1, T2) works like any other function known at time T1 and concretely
we know from Result 2.5 that

p(T1, T2) = exp
(
A(T1, T2) + B>(T1, T2)ZT1 + Z>

T1
C(T1, T2)

)

thus,
G(T1, ZT1) = exp

(
A(T1, T2) + B>(T1, T2)ZT1 + Z>

T1
C(T1, T2)

)
.

and y(t, z, T1) = g(t, z, T1)eh(t,z,T1).

As we see T2 is just a parameter. To be easier to identify the role of T2 we write G(T1, ZT1 , T2),
g(t, Zt, T1, T2) instead of just G(T1, ZT1), g(t, Zt, T1) but we should not forget that T2 is just
a parameter and will play no important role in the PDE we have to solve (note the boundary
at T1). Finally we know that g solves




∂g

∂t
+
∑

i

∂g

∂zi
αi +

1
2

∑

ij

(
∂2g

∂zi∂zj
+

∂g

∂zi

∂h

∂zj
+

∂g

∂zj

∂h

∂zi

)
σiσj = 0

g(T1, z, T1, T2) = G(T1, ZT1 , T2)

Finally we note that for g(T1, z, T2) = exp
(
α(T1, T2) + β>(T1, T2)Zt + Z>

t γ(T1, T2)Zt

)
,

∂g

∂t
=

(
∂α

∂t
+

∂β

∂t
z + z>

∂γ

∂t
z

)
g

∂g

∂zi
= (βi + 2γiz) g

∂2g

∂zi∂zj
= [2γij + (βi + 2γix) (βj + 2γjx)] g

Replacing these in the above PDE, as well as αi and σiσ
>
j from (4), leaves us with a PDE

which is separable and solves the required ODEs given in the proposition. �

B Laplace Transform for Shot-Noise Processes

In this section we compute the conditional Laplace-transform for shot-noise processes. The
conditional Fourier-transform follows similarly. We also comment on the conditional distri-
bution function.

Recall x = T − t and that ϕY denoted the Laplace transform of the jump heights Y1, Y2, . . . .
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Proposition B.1. If

D(θ, x) :=
∫ 1

0

ϕY

(
θ · h(xu)

)
du

exists for all v ≥ 0, then the conditional Laplace transform of J equals

ϕJt+x|FJ
t

= EQ
(
e−θJt+x |FJ

t

)

= exp
[
lx
(
D(θ, x) − 1

)
− θ

∑

τ̃i≤t

Yih(t + x − τ̃i)
]
.

Proof. First, we distinguish the measurable part from the future part:

EQ
(
e−θJt+x |FJ

t

)
= e−θ

∑
τ̃i≤t Yih(t+x−τ̃i) · EQ

[
e−θ

∑
τ̃i∈(t,t+x] Yih(T−τ̃i)

∣∣∣FJ
t

]
.

Second, we compute the expectation proceeding similarly as in the proof or Lemma 3.13.
To this, denote by η1, η2, . . . i.i.d. U [0, 1] variables. Then

EQ
[
e−θ

∑
τ̃i∈(t,t+x] Yih(T−τ̃i)

∣∣∣FJ
t

]

= e−lx +
∞∑

k=1

e−lx (lx)k

k!
EQ
(
e−θ

∑k
i=1 Yih

(
x(1−ηi)

))
.

The expectation can be computed using the Laplace transform of the Yi, as

EQ
(
e−θ

∑k
i=1 Yih

(
x(1−ηi)

))
=
[
EQ
(
e−θY1h

(
x(1−η1)

))]k

=
[ ∫ 1

0

ϕY

(
θh
(
xu
))

du
]k

= D(θ, x)k .

Hence,

EQ
[
e−θ

∑
τ̃i∈(t,t+x] Yih(T−τ̃i)

∣∣∣FJ
t

]
= exp

[
− lx + lx D(θ, x)

]

and the conclusion follows. �

With the conditional Laplace transform at hand, one can use Raible’s method to numerically
derive prices for any European contingent claim, cf. Eberlein and Raible (1999).

Sometimes, it can be possible to obtain the distribution function quite explicitly. This is, for
example, the case when the Yi are normally distributed. Of course, in our framework, this
is not suitable. But in the case of χ2-distributions one can proceed similarly. Proceeding as
above,

Q
(
JT ≤ c|FJ

t

)
= Q

( ∑

τ̃i∈(t,T ]

Yih(T − τ̃i) ≤ c −
∑

τ̃i≤t

Yih(T − τ̃i)
∣∣FJ

t

)

and it becomes clear that for computing the conditional distribution one needs a nice ex-
pression for

Q
( k∑

i=1

Yih
(
x(1 − ηi)

)
≤ c
)
.
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Mathematical Finance 9 (1), 31–53.

Elliott, R. J. and D. B. Madan (1998). A discrete time extended girsanov prinicple. Math-
ematical Finance 8, 127–152.

Felsenheimer, J., P. Gisdakis, and M. Zaiser (2004). Credit derivatives special - dj itraxx:
Credit at its best! HVB Corporates and Markets, Global Markets Research.
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