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Abstract

We consider HJM type models for the term structure of futures prices,
where the volatility is allowed to be an arbitrary smooth functional of the
present futures privce curve. Using a Lie algebraic approach we investigate
when the infinite dimensional futures price process can be realized by
a finite dimensional Markovian state space model, and we give general
necessary and sufficient conditions, in terms of the volatility structure, for
the existence of a finite dimensional realization. We study a number of
concrefe applications including a recently developed model for gas futures.
In particular we provide necessary and sufficient conditions for when the
induced spot price is a Markov process. In particular we can prove that the
only HJM type futures price models with spot price dependent volatility
structures which generically possess a spot price realization are the affine
ones. These models are thus the only generic spot price models from a
futures price term structure point of view.
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1 Introduction

When studying the term structure of futures prices, there has traditionally been
two main approaches in the literature; the state space approach and Heath-
Jarrow-Morton type approach. They can roughly be described as follows.

1. In the state space approach we start by modeling the dynamics of a finite
dimensional Markovian state vector process Z. This is typically done in
the form of a system of stochastic differential equations (hencforth SDEs)
under a risk neutral martingale measure Q. The underlying asset price S
is then specified as St = h(Zt) for some deterministic function h, and very
often S is one of the components of Z in which case h is just a coordinate
function. The futures price at t for delivery at T is then given by standard
theory as

F (t, T ) = EQ [ST | Ft] . (1)

From the Markovian structure it follows that we can write F (t, T ) =
H(t, Zt, T ) for some deterministic function H , and H can finally be deter-
mined as the solution of a parabolic partial differential equation. Examples
of this approach can be found in [1], [5], [16], and [24].

2. In the HJM type approach we do not have an exogenously given finite
dimensional state vector process Z. Instead we view the entire term struc-
ture of futures prices (or equivalently the entire futures price cruve) as the
primitive object and model all futures prices simulataneously. Observing
that, because of (1), all futures prices are Q martingales and restricting
ourselves to nonnegative underlying claims, we can model futures prices
as

dF (t, T ) = F (t, T )σF (t, T )dWt, (2)

where, for each fixed maturity T , the volatility σF (t, T ) is some exoge-
nously given vector valued adapted process, W is Q-Wiener and we use
the observed term structure of today as the initial condition. This ap-
proach was introduced in [11] (referring to the unpublished paper [23])
and has also been used (with some variations) in [5] and in [21].

These approaches have obvious counterparts in interest rate theory, the first
corresponding to multifactor models (including short rate models), whereas the
second corresponds to the HJM framework for modelling forward rates.

As is the case in interest rate theory, a multifactor state space model will
in a trivial way generate a HJM type model. In the other direction, however,
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there is in general no implication. The reason for this is that a HJM model of
the form (2) is an infinite dimensional system of SDEs (one equation for each
T ), and it is obviously only for very particular choices of the volatility structure
σF (t, T ) that such an infinite system can be represented by a state space model.

The purpose of the present paper is precisely to investigate under what
conditions on the volatility structure σF (t, T ) the inherently infinite dimensional
model (2) can be represented in terms of a finite dimensional state space model.
In such a case we say that the model (2) admits a Finite Dimensional Realization
(henceforth FDR).

The corresponding FDR problem for interest rate models was more or less
completely solved by geometric arguments in a series of papers [4], [6], [7], [14],
and the main technical tool is the Lie algebra theory developed in [6]. For an
overview of the theory see [3]. In the present paper we adapt the geometric
theory developed in the papers above to solve the FDR problem for futures
prices.

The structure and results of the paper is as follows.

• In Section 2 we present the probabilistic setup and formulate the precise
problem under study.

• In Section 3 we give a very general necessary and sufficient condition for
the existence of an FDR. By specializing to the cases of deterministic
volatility structures and “deterministic direction” volatility structures we
obtain more concrete results.

• Section 4 is devoted to a brief discussion on so called invariant manifolds,
which provide a detailed description of the possible shapes of the futures
price curve, which can be produced by a given model.

• In Section 5 we provide an algorithm which, given the existence of an
FDR, will actually construct a concrete state space realization.

• Time varying models (which thus allow for seasonality effects) are treated
in Section 6. As an illustration of the theory we study, in some detail, a
concrete model for gas futures.

• We finish the main part of the paper in Section 7 by clarifying exactly
under what conditions a given HJM-type model admits a realization where
the spot price acts as the single underlying factor.

• In Appendix A we have, for the convenience of the reader, collected the
basic definitions and results from differential geometry that are needed for
the present paper.

2 Basics

We consider a financial market living on a given filtered probability space
{Ω,F , Q, {Ft}t≥0} carrying an m-dimensional Wiener process W . The main
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assets to be considered are futures contracts written on a given underlying as-
set. Let F (t, T ) denote the futures price at time t of a futures contract with
delivery date T . A simple arbitrage argument then yields the following relation-
ship between the futures prices and the induced spot price S

S(t) = F (t, t). (3)

We assume that the market is arbitrage free in the sense that the probability
measure Q is a risk-neutral martingale measure. From standard theory (see e.g.
[2]) we have the following well-known result

F (t, T ) = EQ[S(T )|Ft]. (4)

From equation (4) it is clear that for every fixed T the futures price process is a
Q-martingale. Thus, considering only nonnegative claims, we may assume that
the futures prices to have dynamics of the following form under Q

dF (t, T ) = F (t, T )σF (t, T )dWt, (5)

where for each T , the volatily σF (t, T ) is an exogenously given adapted m-
dimensional row vector process.

The main problem to be considered in this paper is to characterize the
volatilities σF for which the solution of the infinite dimensional SDE (5), i.e.
the SDE for the futures prices, possesses a finite dimensional realization (FDR).

However, before giving the precise definition of an FDR of the futures prices
model (5), it is necessary to rewrite (5) on a form which is more convenient for
our purposes, and we start by reparameterizing it. We thus choose to parame-
terize the futures prices in terms of t and x, where x denotes time to maturity
in contrast to T , which denotes time of maturity (compare with the Musiela
parameterization of the forward rates, [9] and [22]). Therefore, let F0(t, x) be
defined by

F0(t, x) = F (t, t + x). (6)

It is then relatively easy to see that the process F0 will have the following
induced dynamics

dF0(t, x) =
∂

∂x
F0(t, x)dt + F0(t, x)σ0(t, x)dWt, (7)

where
σ0(t, x) = σF (t, t + x). (8)

It turns out that the analysis is considerably simplified if, instead of working
with the process F0 defined in (6), we work with the process q where q is defined
by

q(t, x) = ln F0(t, x). (9)

Using the Itô formula on (5) or (7), we obtain the SDE for q as

dq(t, x) =
{

∂

∂x
q(t, x) − 1

2
‖σ0(t, x)‖2

}
dt + σ0(t, x)dWt. (10)

There are two ways in which we can view the system 10:
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• We can view (10) as a coupled system of infinitely many scalar SDEs (one
for each fixed x).

• Alternatively we can view (10) as a single SDE, descirbing the dynamics
of an infinite dimensional object. The infinite dimensional object is of
course the futures price curve x 7−→ qt(x).

The second interpretation turns out to much more fruitful for our purposes,
so from now on we will denote the entire futures price curve at time t, i.e. the
curve x 7−→ qt(x), by the synbol qt, and we can thus view qt as a point or
vector in an infinite dimensional function space H. It then remains to specify
a suitable function space H, and it turns out that it can in fact be chosen as a
Hilbert space. See [6] or [14] for details.

In order to have a Markovian structure (albeit infinite dimensional) we make
the following assumption.

Assumption 2.1 We assume that the futures price volatilty process is of the
form

σ0(t, x) = σ(qt, x), (11)

where σ : H× R+ → Rm is an exogensously given mapping.

Under this assumption, each component σi (for i = 1, . . . , m) is a mapping
σi : H× R+ → R, i.e. a point q ∈ H and a nonegative real number x ∈ R+

will be mapped into the real number σi(q, x). We may however also, and more
profitably, view σi as a mapping between function spaces. More precisely: a
point q ∈ H is mapped to the function x 7−→ σi(q, x). We will in fact assume
that this function is a member of H.

Assumption 2.2 We assume that the futures price volatilty mapping is of the
form σ : H → Hm, where each component σi is a smooth vector field on H.

We can now write the futures price equation (10) more compactly as

dqt =
{
Aqt −

1
2
D(qt)

}
dt + σ(qt)dWt (12)

where the vector fields A and d are given by

A =
∂

∂x
, (13)

D(q) = ‖σ(q)‖2
Rm =

m∑

i=1

σ2
i (q). (14)

Finally, because of the geometrical ideas behind the results we will use, we
need the Stratonovich form of the SDE (12). This is given by

dqt =
{
Aqt −

1
2
D(qt) −

1
2
σ′

q(q)σ(q)
}

dt + σ(qt) ◦ dWt (15)

5



where σ′
q(q)σ(q) denotes the Frechet derivative σ′

q(q) operating on σ(q).
We can now specify exactly what we mean by a finite dimensional realization

of (the logarithm of) the futures prices generated by a volatility σ. To this end
fix a volatility σ : H× R+ → Rm. We then have the following definition.

Definition 2.1 We say that the SDE (15) has a generic (local) d-dimensional
realization at a given point q0 ∈ H if, for each initial point q0 near q0, there
exists a point z0 ∈ Rd, smooth vector fields a, b1, . . . , bm on some open subset Z
of Rd and a smooth (submanifold) map G : Z → H, such that q has the local
representation

qt = G(Zt), a.s. (16)

where Z is the strong solution of the d-dimensional Stratonovich SDE
{

dZt = a(Zt)dt + b(Zt) ◦ dWt,
Z0 = z0.

(17)

adn where the driving Wiener process W in (17) is the same as in (15). The
term “local” above means that the representation is assumed to hold for all t
with 0 ≤ t ≤ τ(q0), a.s. where, for each q0 ∈ H, τ(q0) is a strictly positive
stopping time.

In slightly more pedestrian terms we can view the “output map” G above
as a mapping G : H× R+ → R, so (16) can also be written as

qt(x) = G(Zt, x).

Our main problems are now as follows.

• What are the necessary and sufficient conditions on the volatility structure
σ for the existence of a generic finite dimensional realizations?

• Suppose you know, from abstract theoy, that an FDR exists, how do you
construct a concrete realization?

These problems will be solved in the next sections.

Remark 2.1 We have, for convenience, chosen to model the futures prices in
terms of the log price q and the corresppnding volatility σ(q, x). We could
of course also have chosen to model F0(t, x) and a corresponding volatility
σ0(F0, x). The volatilities correspond as follows

σ0(F0, x) = σ(eq , x), (18)

It is important to note that it may well happen that the SDE generated by
{µ, σ} has a finite dimensional realization for a particular choice of initial point
q0, whereas no finite dimensional realization exists for points close to q0. We
say that such a system has a non-generic or “accidental” finite dimensional
realization at q0. If, on the other hand, the system has a finite dimensional
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realization for all points in a neighborhood of q0 we say that the system has
a generic finite dimensional realization at ro. The existence of a non-generic
realization is of course of very limited value, since the situation is structurally
unstable. We note that our Lie algebraic result above guarantees the existence
of a generic finite dimensional realization. In the sequel we will thus suppress
the adjective “generic”.

Remark 2.2

3 Conditions for the existence of a finite dimen-
sional realization

In this section we give necessary and sufficient conditions for the term structure
of futures prices to possess a finite dimensional realization. As it turns out, our
present problem falls prefectly within the abstract framework developed in [6].
We need a simple nondegeneracy condition.

Assumption 3.1 Define the futures price drift vector field µ by

µ(q) = Aqt −
1
2
D(qt) −

1
2
σ′

q(q)σ(q), (19)

with A and D as above. We assume that the dimension of the Lie algebra
{µ, σ1, . . . , σm}LA is constant near the initial curve q0.

We now have the following fundamental result.

Theorem 3.1 Take as given the volatility mapping σ = (σ1, . . . , σm) as well as
an initial curve q0 ∈ H. Then the futures price model generated by σ generically
admits a finite dimensional realization at q0, if and only if

dim{µ, σ1, . . . , σm}LA < ∞

in a neighbourhood of q0, where µ is given by equation (19).

Proof. Follows directly from Theorem 3.2. in [6].

This result solves completely, but in very abstract terms, the existence prob-
lem for finite dimensional erealisations. It is, however, not at all clear what the
Lie algebra conditions means in concrete terms for the structure of σ. To ob-
tain more concrete results we will therefore, in the next two sections, apply the
abstract theorem to the special cases when the volatility is deterministic and
when it has a constant direction. The arguments and results in these sections
are very similar to those in [6].
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3.1 Deterministic volatility

We start by considering the simplest case possible, i.e. when the volatility σ is
deterministic and we can write

σ(q, x) = σ(x). (20)

In geometric terms this means that each vector field σi is a constant vector field.
As mentioned above, the realization problems that we study for futures

price models have earlier been studied for forward interest rate models in [6].
In the present paper, the basic equation under study is the forward price equa-
tion (15) study, whereas the focus in [6] is on the HJM forward rate equation
(with Musiela parameterization and on Stratonovich form). The main differ-
ence bewtween the two settings lies in the drift µ. In the HJM forward rate
framework the drift is given by

µ(r) =
∂

∂x
r + σ(r)Hσ(r)∗ − 1

2
σ′

r(r)[σ(r)].

Here r denotes a generic forward rate curve x 7−→ r(x), σ(r, x) denotes the
forward rate volatility, ∗ denotes transpose, and Hσ is defined by

Hσ(r, x) =
∫ x

0

σ(r, s)ds.

Thus the main difference between the forward rate equation and the forward
price equation is that the drift term σ(r)Hσ(r)∗, which is reklated to the HJM
drift condition for forward rates, is replaced by the term D(q) in the futures
price equation. As a consequence of this, the arguments in the present paper are
often more or less parallell to the corresponding arguments in [6]. In order to
make the present paper self contained, we will however often give full arguments
rather than referring the reader to parallell arguments in [6].

We may now state the main result for deterministic futures price volatilities.

Proposition 3.1 Assume that the volatility structure is of the form (20). Then
the model possesses a finite dimensional realization if and only if the function
space

span{
∂kσi

∂xk
; i = 1, . . . , m; k = 0, 1, . . .}

is finite dimensional.

Proof. For simplicity of notation we start by considering only the case with a
scalar Wiener process so, referring to Theorem 3.1, we compute the Lie algebra
L(µ, σ). Since the vector field σ is constant we have σ′ = 0. Thus there is now
Stratonovich correction term so from from (15) we have

µ(r) = Fq − 1
2
D,
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where as before A = ∂
∂x and the vector field D defined by D(q, x) = σ2(x) is a

constant vector field. The Frechet derivatives are trivial in this case. Since F is
linear and D is constant, we obtain

µ′ = F,

σ′ = 0.

Thus the Lie bracket [µ, σ] is given by

[µ, σ] = Fσ,

and in the same way we have

[µ, [µ, σ]] = F2σ.

Continuing in the same way it is easily seen that the relevant Lie algebra L is
given by

L = {µ, σ}LA = span
{
µ, σ,Fσ,F2σ, . . .

}
.

It is thus clear that L is finite dimensional (at each point q) if and only if the
function space

span {Fnσ ; n = 0, 1, 2, . . .}

is finite dimensional. Recalling that F = ∂/∂x finishes the proof, and the
argument easily carries over to the case of several driving Wiener processes.

This result is stated in somewhat abstract terms, but we can easily obtain
a much more concrete formulation. To do this we need the concept of a quasi
exponential function.

Definition 3.1 A scalar real valued function of a real variable x is called quasi
exponential if it has the form

f(x) =
∑

i

eλix +
∑

j

eαjx [pj(x) cos(ωjx) + qj(x) sin(ωjx)] , (21)

where λi, αj , ωj are real numbers, whereas pj and qj are real polynomials.

We recall the following well known facts about quasi exponential functions.

Lemma 3.1 The following hold for the quasi-exponential functions.

• A function is QE if and only if it is a component of the solution of a
vector valued linear ODE (ordinary differential equation) with constant
coefficients.

• A function is QE if and only if it can be written as f(x) = ceAxb.

• If f is QE, then f ′ is QE.

• If f is QE, then its primitive function is QE.
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• If f and g are QE, then fg is QE. In particular, if f is QE, then so is f2.

We now have the following very explicit formulation of Proposition 3.1.

Corollary 3.1 In the case of deterministic volatilities, the futures price eaqution
possesses an FDR if and only if each component σi(x) for i = 1, . . . , m is a quasi
exponential function.

Proof. From Proposition3.1 we know that the existence of an FDR is equivalent
to the condition that

span{
∂kσi

∂xk
; i = 1, . . . , m; k = 0, 1, . . .}

is finite dimensional. This condition, on the other hand, is equivalent to to
existence of linear relations between the various components of σ and their
derivatives. This, in turn, is equivalent to saying that each σi is a component of
the solution of a vector valued linear ODE with constant coefficients, and thus
σi is quasi exponential.

Remark 3.1 Since the volatility σ(q, x) does not depend upon q, we have from
remark 2.1 that σ(x) = σ0(x), and thus the conditons on σ in Proposition 3.1
apply also to σ0.

3.2 Constant direction volatility

The next simplest volatility structure you can consider is a volatility, where each
component is of the form of the form

σi(q, x) = ϕi(q)λi(x). (22)

Here λi is a constant vector field (it does not depned on q) whereas ϕi is a
smooth scalar field, i.e. a mapping ϕ : H → R. As a vector field we thus see
that σi has “constant direction” (namely the direction of λi) but that the length
of σi is modulated by the scalar field ϕi.

For the case when there is only a scalar driving Wiener process we obtain
the following proposition, where we use the notation

Φ(q) = ϕ2(q), (23)

and where Φ′′(q)[λ; λ] denotes the second order Frechet derivative of Φ evlauated
at the point q, operating on the pair (λ, λ) ∈ H. Notice the difference between
the pair [λ; λ] with a semi colon), and the Lie bracket [λ, λ] with a comma.

Proposition 3.2 Assume that the Wiener process is scalar, that ϕ(q) 6= 0 for
all q ∈ H, and that Φ′′(q)[λ; λ] 6= 0 for all q ∈ H. Then the futures price
model has a finite dimensional realization if and only if λ is a quasi-exponential
function, whereas ϕ is allowed to be any smooth field.

10



Proof. In this case the drift vector field µ is given by

µ(q) = Fr − 1
2
ϕ2(q)L − 1

2
ϕ′(q)[λ]ϕ(q)λ, (24)

where ϕ′(q)[λ] denotes the Frechet derivative of ϕ evaluated at q and acting on
the vector λ. The constant vector field L ∈ H is given by

L(x) = λ2(x).

We now want to prove that the Lie algebra generated by

µ(q) = Fq − 1
2
ϕ2(q)L − 1

2
ϕ′(q)[λ]ϕ(q)λ,

σ(q) = ϕ(q)λ,

is finite dimensional. Under the assumption that ϕ(q) 6= 0 for all q, we can
use Lemma A.1, to see that the Lie algebra is in fact generated by the simpler
system of vector fields

f0(q) = Fq − 1
2
Φ(q)L,

f1(q) = λ,

where we have used the notation

Φ(q) = ϕ2(q).

Since the field f1 is constant, it has zero Frechet derivative, so the first Lie
bracket is easily computed as

[f0, f1] (q) = Fλ + Φ′(q)[λ]L.

The bracket [[f0, f1] , f1] is easily obtained as

[[f0, f1] , f1] (q) = Φ′′(q)[λ; λ]L.

We may again use Lemma A.1 to see that the Lie algebra is generated by the
following vector fields

f0(q) = Fq,

f1(q) = λ,

f3(q) = Fλ,

f4(q) = L.

Of these vector fields, all but f0 are constant, so all brackets are easy. After
elementary calculations we see that in fact

{µ, σ}LA = span {F,Fnλ, FnD; n = 0, 1, . . .} .

11



From this expression it follows immediately that a necessary condition for the Lie
algebra to be finite dimensional is that the vector space spanned by {Fnλ; n ≥ 0}
is finite dimensional. This occurs if and only if λ is quasi-exponential If, on the
other hand, λ is quasi-exponential, then we know from Lemma 3.1, that also
L = λ2 is quasi-exponential. Thus the space {FnL; n = 0, 1, . . .} is also finite
dimensional, and we are finished.

We may also restate this result in terms of F0(t, x) and a volatility structure
of the form σ0(F0, x) = ϕ0(F0)λ(x) where λ is the same constant field as in
(22), and

ϕ0(F0) = ϕ(ln F0).

Proposition 3.2 can now be rewritten in these new terms. If we let

Φ0(F0) = ϕ2
0(F0),

we have the following proposition.

Proposition 3.3 Assume that ϕ0(F0) 6= 0 for all F0 ∈ H, and that the con-
dition Φ0

′′(F0)[λ; λ] 6= 0 is satisfied for all F0 ∈ H. Then the futures price
model has a finite dimensional realization if and only if λ is a quasi-exponential
function, whereas ϕ0 is allowed to be any smooth field.

All this was done for the special case of of a scalar Wiener process. For the
general case when there are m driving Wiener process, and each volatility is a
constant direction volatility, i.e.

σi(q, x) = ϕi(q)λi(x), 1, . . . , m, (25)

we are unable to obtain necessary and sufficient conditions (apart, of course,
from the abstract one in Theorem 3.1. We can however easily obtain the fol-
lowing sufficient conditions for the existence of a finite dimensional realization.

Proposition 3.4 Under the assumption that ϕi(q) 6= 0 for all q ∈ H and
i = 1, . . . , m, a sufficient condition for the volatility structure (25) to have a
finite dimensional realization is that all the functions λi i = 1, . . . , m are quasi-
exponential functions. The vector fields ϕ1, . . . , ϕm are allowed to be any smooth
fields.

Proof. In this case the driftr vector field is given by

µ(q) = Fr − 1
2

m∑

i=1

ϕ2
i (q)Li −

1
2

m∑

i=1

ϕ′
i(q)[λi]ϕi(q)λi, (26)

where
Li(x) = λ2

i (x), i = 1, . . . , m.
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We thus have to study the Lie algebra generated by the vector fields

µ(r) = Fr −
1
2

m∑

i=1

ϕ2
i (r)Li −

1
2

m∑

i=1

ϕ′
i(r)[λi ]ϕi(r)λi,

σ1(r) = ϕ1(r)λ1,

...
σm(r) = ϕm(r)λm.

Under the assumptions of the proposition, we can perform Gaussian elimination
to see that the Lie algebra is in fact generated by the much simpler system of
vector fields

f0(q) = Fq − 1
2

m∑

i=1

Φi(q)Li,

f1(q) = λ1,

...
fm(q) = λm,

where we have used the notation

Φi(q) = ϕ2
i (q).

From this it is obvious that the Lie algebra {µ, σ}LA is in fact included in the
algebra {Fq, L1, . . . , Lm, λ1, . . . , λm}LA. For this Lie algebra we have (see the
proof of Propostion 3.1) the trivial relation

{Fq, L1, . . . , Lm, λ1, . . . , λm}LA

= span {Fq,FnLi,Fnλi; i = 1, . . . , m; n ≥ 0} .

Finally we may argue as in the proof of Proposition 3.2 to see that

span {Fq,FnLi,Fnλi; i = 1, . . . , m; n ≥ 0}

is finite dimensional if λ1, . . . , λm are quasi exponential.

Remark 3.2 In terms of modelling F0 and σ0 this means that if we consider a
volatility structure of the form

σ0i(F0, x) = ϕ0i(F0)λi(x), 1, . . . , m,

Then, under the nondegeneracy condition Φ′′
0(F0)[λ; λ] 6= 0, we see that a suffi-

cient condition for the existence of an FDR is that λ1, . . . , λM are quasi expo-
nential.
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4 Invariant manifolds

Consider a general SDE
{

dqt = µ(qt)dt + σ(qt) ◦ dWt,

q0 = q0.
(27)

on the space H.
A key concept when dealing with FDRs is the idea of an invariant manifold.

Definition 4.1 A submanifold G in H is said to be (locally) invariant under
the action of the SDE (27), if for every choice of q0 ∈ G we have qt ∈ G for
0 ≤ t ≤ τ(q0), where τ is a strictly positive stopping time.

To understand this concept, suppose for example that the SDE under study
is the futures price equation (15) with an initial point q0, and suppose for
simplicity that we can (which is often the case) disregard the prefix “local”
in the definition. Then, in more pedestrian terms, the invariant manifold G
is a finite dimensional family of (potential) futures price curves, and in fact all
futures price curves that will ever be produced by your model will in fact belong
to G.

From a more theoretical perspective, the importance of the ivariant mani-
folds stems from the following central result which was proved in [4].

Theorem 4.1 (Björk and Christensen) Consider the SDE (27). There will
exist an FDR for this equation if and only if, for each fixed initial point q0,
there exists a finite dimensional invariant manifold (typically depending upon
the choice of q0) which contains the point q0.

For any given model admitting an FDR, and for a given initial point q0, it
is of great importance to understand what the invariant manifold looks like.

In [6] a very concrete parameterization of the invariant manifold of an SDE
is given, and we need the following definition to describe the parameterization.

Definition 4.2 Let f be a smooth vector field on H, and let y be a fixed point
in H. Consider the ODE

{
dyt

dt
= f(yt),

y0 = y.

We denote the solution yt as yt = efty.

The invariant manifold can now be computed using the following construction
from [6].

14



Theorem 4.2 (Björk and Svensson) Assume that the Lie algebra {µ, σ}LA

is spanned by the smooth vector fields f1, . . . , fd. Then, for the initial point q0,
all curves produced by the model will belong to the induced tangential manifold
G, which can be parameterized as G = Im[G], where

G(z1, . . . , zd) = efdzd . . . ef1z1q0,

and where the operator efizi is given in Definition 4.2

4.1 An example

As a simple example of an invariant manifold let us find the invariant manifold
of the SDE (15) with deterministic volatility given by

σ(x) = σ0e
−cx, (28)

where c and σ0 are scalar constants There is thus only one driving Wiener
process. This volatility is obviously quasi exponential so the condition in Corol-
lary 3.1 is therefore satisfied. Thus there exists an FDR and from Theorem 4.1
we see that there exists an invariant manifold. We now go on to compute the
invariant manifold, and to this end we note that if we let λ denote the constant
vector field defined by λ(x) = e−cx, we easily obtain

{µ, σ}LA = span{µ, λ}.

Next we have to compute the operators exp{µt} and exp{λt}. Since for this
model the Frechet derivative with respect to q of the volatility is zero, i.e.
σ′

q(q, x) = 0, we obtain the following expression for µ from (19)

µ(q, x) =
∂q

∂x
(x) − 1

2
σ2(x).

Define the constant field h by h(x) = σ2(x). Then exp{µt} is obtained as the
solution to

dq

dt
= Aq − 1

2
h,

where A = ∂
∂x . The solution to this linear equation is

qt = eAtq0 −
1
2

∫ t

0

eA(t−s)hds,

where the operator eAt is left translation (see e.g. [3]), i.e. for any continuous
real valued function f we have

eAtf(x) = f(x + t).

Thus we have that

(eµtq0)(x) = q0(x + t) − 1
2
H(t, x),
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where

H(t, x) =
∫ t

0

eA(t−s)h(x)ds = σ2
0

∫ t

0

λ(x + t − s)ds

= σ2
0

∫ t

0

e−2c(x+t−s)ds =
σ2

0e−2cx

2c
(1 − e−2ct).

Since the vector field λ is constant, the corresponding ODE is trivial, and we
have

(eλtq0) = q0 + λt.

The parameterization of the invariant manifold generated by the initial curve
q0 is therefore given as

G(z0, z1)(x) = q0(x + z0) −
σ2

0e−2cx

4c
(1 − e−2cz0) + e−cxz1. (29)

5 Construction of finite dimensional realizations

In this section we describe a method for how to construct a concrete finite
dimensional realization of the futures prices, when such a realization exists. As
before we will actually be looking at the logarithm of the futures prices, but the
results can of course be translated to the futures prices themselves. We basically
follow the methodology in [7].

5.1 The construction algorithm

Consider a volatility σ : H × R+ → Rm for which {µ, σ}LA < ∞, that is
consider a volatility such that the futures prices generated by this volatility
can generically be realized by means of a finite dimensional SDE. Then a finite
dimensional realization can be constructed in the following way:

• Choose a finite number of vector fields f1, . . . , fd which span {µ, σ}LA.

• Compute the invariant manifold G(z1, . . . , zd) using Theorem 4.2.

• We now have that q = G(Z). Make the following Ansatz for the dynamics
of the state space variables Z

dZ = a(Z)dt + b(Z) ◦ dWt.

It must then (see Appendix A) hold that

G?a = µ, G?b = σ. (30)

Use the equations in (30) to solve for the vector fields a and b.
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5.2 An example

As a simple example of how to construct a realization consider again the deter-
ministic volatility given by

σ(x) = σ0e
−cx, (31)

where σ0 and c are scalar constants. In Section 4.1 we showed that the Lie
algebra is spanned by µ and λ where λ(x) = exp(−cx), and we also computed
invariant manifold. The first two steps in the algorithm given in the previous
section have thus been completed. To obtain a finite dimensional realization it
remains to find the dynamics of the state space variables. This means solving
the equations (30) and since, in this case the Lie algebra is two dimensional, we
look for a two dimensional realization of the form

dz0 = a0(z)dt + b0(z) ◦ dWt

dz1 = a1(z)dt + b1(z) ◦ dWt,

where z = (z0, z1). We therefore need the Frechet derivative G′ of G. Since G is
just a function of the two real variables z0 and z1, the Frechet derivative G′(z)
is in this case given by the standard Jacobian

G′(z0, z1) =
[
∂G(z0, z1)

∂z0
,
∂G(z0, z1)

∂z1

]

Thus, using the expression (29) for G, we see that for any (α0, α1) ∈ R2 we have

G′(z0, z1)
(

α0

α1

)
(x) =

∂

∂x
q0(x + z0)α0 −

1
2
h(x + z0)α0 + λi(x)α1,

where h is the constant field given by

h(x) = σ2(x).

Recall that for this model µ is given by

µ(q) = Aq − 1
2
h.

If we use that q = G(z) we can obtain an expression for Aq, and the equation
G?a = µ then reads

Aq0(x + z0)a0 −
1
2
h(x + z0)a0 + λ(x)a1

= Aq0(x + z0) −
1
2
h(x + z0) + Aλ(x)z1.

Since this equality is to hold for all x, and a is not allowed to depend on x it is
possible to identify a. Using that Aλ = −cλ we obtain

a0 = 1,

a1 = −cz1,
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From G?b(z)(x) = σ(x) we obtain the equation

Aq0(x + z0)b0 −
1
2
h(x + z0)b0 + λ(x)b1

= σ0λ(x),

Therefore we have that
b0 = 0,
b1 = σ0.

The dynamics of the state variables are thus given by
{

dZ0(t) = dt,

dZ1(t) = −cZ1(t)dt + σ0 ◦ dWt.

Since σ0 is a constant, the Itô-dynamics will look the same, and we have thus
proved the following proposition.

Proposition 5.1 Given the initial forward rate curve q0 the system generated
by the volatility of equation (31) has a finite dimensional realization given by

qt = G(Zt),

where G is given by

G(z0, z1)(x) = q0(x + z0) −
σ0

2e−2cx

4c
(1 − e−2cz0) + e−cxz1.

and the dynamics of the state space variables Z are given by
{

dZ0(t) = dt,

dZ1(t) = −cZ1(t)dt + σdWt.

The interpretation of the state variable Z1 in the parameterization in Propo-
sition 5.1 is not clear. There is however considerable freedom in choosing the
state variables. Suppose we would like the spot price log return R = q(0) to be
the state variable instead. We have that

R = q(0) = G(Z0, Z1)(0) = q0(Z0) −
σ0

2

4c
(1 − e−2cZ0) + Z1,

and thus

Z1 = R − q0(Z0) +
σ0

2

4c
(1 − e−2cZ0).

The parameterization of the invariant manifold in terms of R is then given by

q(x) = G̃(Z0, R)(x)

= q0(x + Z0) − e−cxq0(Z0) +
σ0

2e−2cx

4c
(1 − e−2cZ0)(1 − e−cx) + e−cxR.
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Using Itô’s formula the dynamics of R can be found to be

dR(t) = {α[Z0(t)] − cR(t)} dt + σ0dWt,

where

α(z) = q′0(z) + cq0(z) − σ0
2

4
(1 + e−2cz).

We may now want to change state variabels to the spot price S. This is easily
done since the parameterization of the invariant manifold with the spot price as
state variabel is

q(x) = Ḡ(Z0, S)(x) = G̃(Z0, ln S)(x).

The dynamics of the spot price are given by

dS(t) =
(

α[Z0(t)] +
σ0

2

2
− c ln S(t)

)
S(t)dt + σ0S(t)dWt.

We thus see that we have obtained a well known model for the spot price. It is
basically a standard Black-Scholes model with two modifications.

• Instead of having a Wiener process with constant drift as the log return,
we now have a mean reverting log reeturn.

• The drift term α[Z0(t)] allows us to fit the model to the given initial term
structure of futures prices.

As far as the log return dynamics are concerned, we thus have a close resem-
blance to the Hull-White extension of the Vasicek short rate model.

6 Time varying systems

So far we have only considered homogeneous systems. In this section we intro-
duce the adjustments needed for the theory to be applicable to time varying
systems. Consider the following system of equations for the logarithm of the
futures prices

{
dqt = µ(qt, t)dt + σ(qt, t) ◦ dWt,
qs = q0.

(32)

The volatility is now of the form σ : H × R × R+ → Rm. The drift µ is
still given by the expression in (19), except that there is now an explicit time
dependence. The definition of a realization for this SDE is given below.

Definition 6.1 We say that the SDE (32) has a (local) d-dimensional realiza-
tion at (s, q0), if there exists a point zs ∈ Rd, smooth vector fields a, b1, . . . , bm

on some open subset Z of Rd, and a smooth (submanifold) map G : Z → H,
such that q has the local representation

qt = G(Zt), t ≥ s,
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where Z is the solution of the d-dimensional Stratonovich SDE
{

dZt = a(Zt)dt + b(Zt) ◦ dWt,
Zs = zs.

The way to handle the explicit time dependence is to enlarge the state space
to include running time as a state variable.

Definition 6.2 Define the following extended objects.

Ĥ = H× R,

q̂ =
[

q
t

]
,

µ̂(q̂) =
[

µ(q, t)
1

]
,

σ̂(q̂) =
[

σ(q, t)
0

]
.

We have the following theorem from [6].

Theorem 6.1 (Björk and Svensson) The time varying system (32) has a
finite dimensional realization if and only if

dim{µ̂, σ̂}LA < ∞.

6.1 An example

In this section we study a real life model for gas futures from the point of view
of existence and construction of a finite dimensional realization. The model,
introduced in [8] and used on the London market, is defined as

dF (t, T )
F (t, T )

= α1e
−β1(T−t)dW1(t)

+
[
α2e

−β2(T−t) sin(φ + 2πT ) + α3e
−β3(T−t) sin(φ + 2πt) + γ

]
dW2(t).

(33)

For ease of exposition, we carry out the calculations for a slightly more
general model, after which we apply the results to our particular case. Therefore,
consider the model

dF (t, T )
F (t, T )

=
n∑

i=1

σF
i (t, T )dWi(t) (34)

or, using the Musiela parameterization

F0(t, x) = F (t, t + x)
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the model can be written as

dF0(t, x) =
∂

∂x
F0(t, x)dt + F0(t, x)

n∑

i=1

σi(t, x)dWi(t), (35)

where σi(t, x) = σF
i (t, t + x). As before, we consider log prices, i.e.

qt(x) = ln F0(t, x).

The dynamics of this process are

dqt(x) =

(
∂

∂x
qt(x) − 1

2

n∑

i=1

σ2
i (t, x)

)
dt +

n∑

i=1

σi(t, x)dWi(t). (36)

Since the volatility structure is deterministic the Itô and Stratonovich dynamics
will look the same, i.e. we have

dqt(x) =

(
∂

∂x
qt(x) −

1
2

n∑

i=1

σ2
i (t, x)

)
dt +

n∑

i=1

σi(t, x) ◦ dWi(t). (37)

We use the operators

A =
∂

∂x
and H =

∂

∂t

and the notation

q̂ =
[

q
t

]
, µ̂ =




Aq − 1
2

n∑

i=1

σ2
i (t)

1


 , σ̂i =

[
σi(t)

0

]

and
σ̂(t) = [σ̂1(t), . . . , σ̂n(t)] .

By Theorem 6.1, (34) admits a finite dimensional realization, if and only if

dim {µ̂, σ̂}LA < ∞.

To see when this condition holds, we compute the Lie-brackets

[µ̂, σ̂i] =
[

(A −H)σi(t)
0

]
, i = 1, ..., n

[σ̂i, σ̂j ] =
[

0
0

]
, i, j = 1, ...n

[µ̂, [µ̂, σ̂i]] =
[

(A −H)2σi(t)
0

]
, i = 1, ...n

From the above calculations, the following proposition follows.
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Proposition 6.1 The Lie-algebra generated by µ̂ and σ̂ is given by

{µ̂, σ̂}LA = span








∂
∂xqt(x) − 1

2

n∑

i=1

σ2
i (t, x)

1


 ,



(

∂
∂x − ∂

∂t

)k
σi(t, x)

0


 ; i = 1, ..., n; k = 0, 1, ...





.

To see if the model (33) admits a finite dimensional realization, we should
therefore calculate (

∂

∂x
− ∂

∂t

)k

σi(t, x)

for the two components (now written on Musiela form)

σ1(t, x) = α1e
−β1x, (38)

σ2(t, x) = α2e
−β2x sin(φ + 2π(t + x)) + α3e

−β3x sin(φ + 2πt) + γ, (39)

and see if there is a k < ∞ (hopefully not too large), such that the vectors
{(

∂

∂x
− ∂

∂t

)k

σi(t, x), i = 1, 2; k = 1, 2...

}

are linearly dependent. Starting with the first component

σ1(t, x) = α1e
−β1x

and introducing the notation

B =
(

∂

∂x
− ∂

∂t

)

we see that
Bα1e

−β1x = −β1α1e
−β1x = −β1σ1(t, x),

so it is clear that with k = 1, we already get linearly dependent terms. Contin-
uing with the second volatility factor we get

B0σ2(t, x) = α2e
−β2x sin(φ + 2π(t + x)) + α3e

−β3x sin(φ + 2πt) + γ,

B1σ2(t, x) = −α2β2e
−β2x sin(φ + 2π(t + x)) − α3β3e

−β3x sin(φ + 2πt)

− 2πα3e
−β3x cos(φ + 2πt),

B2σ2(t, x) = α2β
2
2e−β2x sin(φ + 2π(t + x)) + (β2

3 − 4π2)α3e
−β3x sin(φ + 2πt)

+ 4πα3β3e
−β3x cos(φ + 2πt).

Letting higher powers of B operate on σ2 will only result in linear combinations
of the terms represented in the three equations above. We conclude that the
four terms needed to generate Bkσ2 for all k are

γ, e−β2x sin(φ + 2π(t + x)), e−β3x sin(φ + 2πt), and e−β3x cos(φ + 2πt).
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By Lemma 3.1 in [6], we can choose the vector fields generating the Lie algebra
{µ̂, σ̂}LA as

f̂0 =

[
Aqt(x) − 1

2

(
σ2

1(t, x) + σ2
2(t, x)

)

1

]
, f̂3 =

[
e−β2x sin(φ + 2π(t + x)

0

]
,

f̂1 =

[
γ

0

]
, f̂4 =

[
e−β3x sin(φ + 2πt)

0

]
,

f̂2 =

[
e−β1x

0

]
, f̂5 =

[
e−β3x cos(φ + 2πt)

0

]
.

To obtain a finite dimensional realization we need to solve a number of
differential equations, the first one being

dq

dτ
= Aq − 1

2
h

dt

dτ
= 1

where h is defined by

h(t, x) = α2
1e

−2β1x +
[
α2e

−β2x sin(φ + 2π(t + x)) + α3e
−β3x sin(φ + 2πt) + γ

]2

and the initial values are q(0) = q∗ and t(0) = t∗. If we define H by

H(t, x) = −1
2

∫ t

0

h(t∗ + s, x + t − s)ds,

then the solution to the first differential equation can be written as

q(τ, x) = q∗(τ + x) + H(τ, x),
t(τ) = t∗ + τ.

The other differential equations we need to solve are

d

dτ

[
q
t

]
= f̂i =

[
fi

0

]
, for i = 1, . . . , 5,

with initial values q(0) = q∗ and t(0) = t∗. Since the right hand side does not
depend on q̂, these equations are easy to solve, and the solutions are

[
q
t

]
=
[

q∗ + fiτ
t∗

]
, i = 1, . . . , 5.

Now, [
qt

t

]
= Ĝ(Zt) =

[
G0(Zt)
G1(Zt)

]
,
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where the interesting part, G0, can be written as

G0(zi; i = 0, . . . , 5)(x) = q∗(z0 + x) + H(z0, x) + γz1 + e−β1xz2

+ e−β2x sin(φ + 2π(t∗ + z0 + x))z3

+ e−β3x sin(φ + 2π(t∗ + z0))z4

+ e−β3x cos(φ + 2π(t∗ + z0))z5.

We need the dynamics of Z. If

dZi(t) = ai(z)dt + bi(z) ◦ dW1(t) + ci(z) ◦ dW2(t), i = 0, ..., 5

where

Z =




Z0

Z1

Z2

Z3

Z4

Z5




then by the Itô-Stratonovich formula

dq =
5∑

i=0

∂G

∂zi
dZi.

Thus, we need the partial derivatives of G0 with respect to zi for i = 0, ..., 5.
These are given by

∂G0

∂z0
= Aq∗(z0 + x) +

∂

∂z0
H(z0, x) + 2πe−β2x cos(φ + 2π(t∗ + z0 + x))z3

+2πe−β3x cos(φ + 2π(t∗ + z0))z4 − 2πe−β3x sin(φ + 2π(t∗ + z0))z5,

∂G0

∂z1
= γ,

∂G0

∂z2
= e−β1x,

∂G0

∂z3
= e−β2x sin(φ + 2π(t∗ + x + z0)),

∂G0

∂z4
= e−β3x sin(φ + 2π(t∗ + z0)),

∂G0

∂z5
= e−β3x cos(φ + 2π(t∗ + z0)).
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After some reshuffling, the dynamics of q takes the form:

dq =





a0




Aq∗(Z0 + x) + ∂
∂z0

H(Z0, x) + 2πe−β2x cos(φ + 2π(t∗ + Z0 + x))Z3

+2πe−β3x cos(φ + 2π(t∗ + Z0))Z4 − 2πe−β3x sin(φ + 2π(t∗ + Z0))Z5




+a1γ + a2e
−β1x + a3e

−β2x sin(φ + 2π(t∗ + x + Z0))

+a4e
−β3x sin(φ + 2π(t∗ + Z0)) + a5e

−β3x cos(φ + 2π(t∗ + Z0))





dt

+





b0




Aq∗(Z0 + x) + ∂
∂z0

H(Z0, x) + 2πe−β2x cos(φ + 2π(t∗ + Z0 + x))Z3

+2πe−β3x cos(φ + 2π(t∗ + Z0))Z4 − 2πe−β3x sin(φ + 2π(t∗ + Z0))Z5




+b1γ + b2e
−β1x + b3e

−β2x sin(φ + 2π(t∗ + x + Z0))

+b4e
−β3x sin(φ + 2π(t∗ + Z0)) + b5e

−β3x cos(φ + 2π(t∗ + Z0))





◦ dW1

+





c0




Aq∗(Z0 + x) + ∂
∂z0

H(Z0, x) + 2πe−β2x cos(φ + 2π(t∗ + Z0 + x))Z3

+2πe−β3x cos(φ + 2π(t∗ + Z0))Z4 − 2πe−β3x sin(φ + 2π(t∗ + Z0))Z5




+c1γ + c2e
−β1x + c3e

−β2x sin(φ + 2π(t∗ + x + Z0))

+c4e
−β3x sin(φ + 2π(t∗ + Z0)) + c5e

−β3x cos(φ + 2π(t∗ + Z0))





◦ dW2

This must be equal to the dynamics we started out with, namely




Aq∗(Z0 + x) + ∂
∂xH(Z0, x) − β1e

−β1xZ2 − β2e
−β2x sin(φ + 2π(t∗ + x + Z0))Z3

+2πe−β2x cos(φ + 2π(t∗ + x + Z0))Z3

−β3e
−β3x sin(φ + 2π(t∗ + Z0))Z4 − β3e

−β3x cos(φ + 2π(t∗ + Z0))Z5

− 1
2h(t∗ + Z0, x)





dt

+ α1e
−β1x ◦ dW1

+
(
α2e

−β2x sin(φ + 2π(t∗ + Z0 + x) + α3e
−β3x sin (φ + 2π(t∗ + Z0)) + γ

)
◦ dW2

We want to find coefficients ai(z), bi(z), ci(z); i = 0, ...5 that solves this equa-
tion. We know that there exists at least one solution, and that any solution will
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do. By mere inspection, it is clear that the following is a solution:

a =




1
0

−β1z2

−β2z3

2πz5 − β3z4

−β3z5 − 2πz4




, b =




0
0
α1

0
0
0




, c =




0
1
0
α2

α3

0




The dynamics of the state space process Z therefore become

dZ0 = dt,

dZ1 = dW2,

dZ2 = −β1Z2dt + α1 ◦ dW1,

dZ3 = −β2Z3dt + α2 ◦ dW2,

dZ4 = (2πZ5 − β3Z4)dt + α3 ◦ dW2,

dZ5 = −(β3Z5 + 2πZ4)dt.

Again, the Itô and Stratonovich dynamics will look the same, since there is no
randomness in the volatilities.

7 Spot price realizations

In factor models of the term structure of futures prices a considerable amount of
attention has been given to models where, apart from running time t, the spot
price S(t) = F (t, t) = eqt(0) is the only state variable. See [5] for references.
In the framework of the HJM type futures price models that we are studying,
this raises an interesting inverse question, namely what the volatility structure
σ(q, x) must look like in order to guarantee the existence of a realization with
the spot price as the only nontrivial factor or, equivalently, to guarantee that
the induced spot price is Markovian. In interest rate theory this problem corre-
sponds to the question about which HJM models can be realized as short rate
models, and the problem was solved in [19]. See also [6] and [10]. In the present
study we follow the ideas in [6].

As before it is easier to work in terms of q defined in (9) than with the
futures prices themselves. The problem is thus to determine when the SDE (15)
has a two-dimensional realization in terms of time and qt(0). To simplify the
notation we define R as

R(t) = qt(0). (40)

In order to avoid degenerate cases we need a basic assumption.

Assumption 7.1 We assume that we have only one scalar driving Wiener
process, i.e. that m = 1.

We now have the following fundamental result, which has a parallell in [6].
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Theorem 7.1 Assume that the model is not deterministic, and consider a given
time invariant volatility σ(q, x). Then there exists a realization of (15) with time
and q as state variables if and only if the Lie bracket vector field [µ, σ] is parallell
to the vector field σ, i.e. if and only if there exists a scalar field α(q) such that
the following relation holds (locally) for all q.

[µ, σ](q) = α(q)σ(q). (41)

where µ is the drift of q, i.e.

µ(t, x) =
∂

∂x
q(t, x) − 1

2
σ2(q, x) − 1

2
σ′

q(q, x)[σ(q)]. (42)

If the volatility is time varying of the form σ(q, t, x), then (41) is replaced with

µ′
q(q, t)[σ(q, t)] − σ′

q(q, t)[µ(q, t)] − σ′
t(q, t)α(q, t)σ(q, t).

Proof. The proof is identical to the corresponding proof in [6]. To give the
reader an idea of the technique, we provide the necessity part of the proof.
Assume thus that there exists a two dimensional realization where running time
is one of the state variables. Then it must have the following form (where z1 is
time and z2 = q)

dz1 = 1 · dt + 0 ◦ dW,

dz2 = a(z)dt + b(z) ◦ dW,

qt = G(zt).

In vector notation this reads

dz = A(z)dt + B(z) ◦ dW,

where the vector fields A and B are given by

A(z) =
[

1
a(z)

]
, B(z) =

[
0

b(z)

]
.

The Frechet derivatives (Jacobians) are easily obtained as follows, where sub-
script denotes partial derivatives.

A′(z) =
[

0 0
a1(z) a2(z)

]
, B′(z) =

[
0 0

b1(z) b2(z)

]
.

Thus the Lie bracket is given by

[A, B] = A′B − B′A =
[

0
a2b − b2a − b1

]
.

It is now clear by inspection that we have [A, B]//B, where // denotes parallel.
On the other hand, because of the relation q = G(z), we also have µ = G?A and
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σ = G?B. Using the fact that the bracket is preserved under smooth mappings
(see Appendix A) we obtain

[µ, σ] = [G?A, G?B] = G? [A, B] .

Since [A, B] //B we thus have G? [A, B] //G?B, but G?B = σ and we are fin-
ished. The sufficiency part is slightly trickier, but can be done. See [6].

Remark 7.1 We will write the condition (41) as

[µ, σ] ‖ σ,

i.e. we will use ‖ to denote that two fields are parallel.

Remark 7.2 Note that our aim is to have a spot price realization of the futures
price model, i.e. a realization in terms of time and St. However if the SDE for
q can be realized in terms of time and R we will indeed also have a spot price
realization, since the futures prices are given by

F (t, T ) = F0(t, T − t) = eq(t,T−t),

and the spot price is related to R in the following way

S(t) = eqt(0) = eRt .

Also note that all results concerning the log futures price volatility σ(q, x) can
easily be transformed into a corresponding futures price volatility σ0(F0, x) by
using the relation in Remark 2.1.

In the following two sections we apply Theorem 7.1 to the special cases
studied previously: deterministic and constant direction volatility.

7.1 Deterministic volatility

In this section we consider a deterministic, but time varying volatility

σ(q, t, x) = σ(t, x). (43)

Using (19) we obtain

µ(q, t, x) =
∂

∂x
q(t, x) −

1
2
σ2(t, x).

From the above we see that µ′
q = ∂/∂x and σ′

q = 0. The condition for time
varying volatilities in Theorem 7.1 now reads

σ′
x(t, x) − σ′

t(t, x) = α(q, t)σ(t, x).
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Therefore we must have that α(q, t) = α(t). Let g(t, x) = ln σ(t, x). The
equation can then be written as

g′x(t, x) − g′t(t, x) = α(t).

Finally, letting h(t, x) = g′x(t, x) and taking derivatives with respect to x we can
write

h′
x(t, x) − h′

t(t, x) = 0.

The solution to this equation is h(t, x) = λ(t + x), where λ is an arbitrary
function. Going back to σ we have

σ(t, x) = c(t)e
∫ t+x

t
λ(u)du,

where λ and c are functions, with c > 0.

Proposition 7.1 Assume that the volatility is deterministic. i.e. σ = σ(t, x).
Then there exists a realization in terms of R if and only if σ is of the form

σ(t, x) = c(t)e
∫ t+x

t
λ(u)du,

where λ and c are some functions, with c > 0.

Again we have that σ = σ0 when they are deterministic and the above
proposition can be rewritten as

Proposition 7.2 Assume that the futures price volatilities are deterministic.
i.e. σ0 = σ0(t, x). Then there exists a spot price realization if and only if σ0 is
of the form

σ0(t, x) = c(t)e
∫

t+x
t

λ(u)du,

where λ and c are some functions, with c > 0.

Remark 7.3 The reader will recognize this result from the corresponding result
for short rate realizations in [10] (where completely different rechniques were
used).

7.2 Constant direction volatility

Now we go on to consider a time invariant constant direction volatility, i.e. a
volatility of the form

σ(q, x) = ϕ(q)λ(x).

For this model we obtain from equation (19)

µ(q, x) =
∂

∂x
q(x) − 1

2
{
ϕ2(q)λ2(x) + ϕ′

q(q)[λ]ϕ(q)λ(x)
}

.
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Assume that ϕ(q) 6= 0 for all q ∈ H. Then [µ, σ] ‖ σ if and only if [f0, f1] ‖ λ
where 




f0(q, x) =
∂q

∂x
(x) − 1

2
ϕ2(q)λ2(x)

f1(q, x) = λ(x),

We have that
[f0, f1](q) =

∂λ

∂x
− ϕ′

q(q)[λ]ϕ(q)λ2 ,

and therefore there exists a realization in terms of R if and only if there exists
a scalar field c(q) such that

∂λ

∂x
(x) − ϕ′

q(q)[λ]ϕ(q)λ2(x) + c(q)λ(x) = 0, (44)

for all q. Now specialize to the case that ϕ only depends on qt(0) = Rt, i.e.

σ(q, x) = ϕ(R)λ(x). (45)

Equation (44) then becomes

∂λ

∂x
(x) − ϕ′

R(R)λ(0)ϕ(R)λ2(x) + γ(R)λ(x) = 0.

Assume that λ(0) = 1 and set x = 0 to obtain that

γ(R) = ϕ′
R(R)ϕ(R) − ∂λ

∂x
(0).

Insert this to obtain the equation

ϕ′
R(R)ϕ(R) =

λ′(0)λ(x) − λ′(x)
λ(x) − λ2(x)

.

Since the left hand side only depends on R and the right hand side only depends
on x both sides must equal a constant. If we denote the constant by a/2 we
have the following proposition.

Proposition 7.3 Assume that the volatility is of the form σ(q, x) = ϕ(R)λ(x),
and that λ(0) = 1. Then there exists a realization in terms of R if and only if
ϕ2 is affine in R i.e. of the form

ϕ2(R) = aR + b,

where a and b are constants, and λ is the solution to the Riccati equation

a

2
λ2 +

(
λ′(0) −

a

2

)
λ − λ′ = 0.
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Since for this case we have that

σ0(S, x) = ϕ0(S)λ(x),

where λ is the same constant field as in (45), and

ϕ0(S) = ϕ(ln S).

we can rewrite Proposition 7.3 as follows.

Proposition 7.4 Assume that the volatility is of the form σ(q, x) = ϕ(R)λ(x),
and that λ(0) = 1. Then there exists a realization in terms of R if and only if
ϕ2 is affine in R i.e. of the form

ϕ̄2(S) = a ln S + b,

where a and b are constants, and λ is the solution to the Riccati equation

a

2
λ2 +

(
λ′(0) − a

2

)
λ − λ′ = 0.

7.3 Generic spot price models

We will now consider the case when the volatility σ(q) only depends on R, i.e.
when we with a slight abuse of notation can write

σ(q, x) = σ(R, x), (46)

where σ on the right hand side is a smooth function of the two real variables R
and x.

It turns out that the condition [µ, σ] ‖ σ is rather restrictive for this case,
and we have the following result.

Proposition 7.5 Assume that the volatility only depends on R as in (46), then
there exists a realization in terms of R (and time) if and only if σ factors as

σ(R, x) = ϕ(R)λ(x). (47)

Proof. For this model we can compute the drift to be

µ(q, x) =
∂

∂x
q(x) − 1

2
σ2(R, x) − 1

2
σ′

R(R, x)g(R),

where g(R) = σ(R, 0) and σ′
R = ∂σ/∂R. We now compute the Lie bracket

[µ, σ] = µ′
q [σ(q)] − σ′

q [µ(q)]. We have

µ′
q[σ(q)](x) = σ′

x(R, x) − σ(R, x)σ′
R(R, x)g(R)

−
1
2
{σ′′

R(R, x)g(R) + σ′
R(R, x)g′(R)} g(R),
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and

σ′
q [µ(q)](x) = σ′

R(R, x)
∂

∂x
q(0) − 1

2
σ′

R(R, x)g2(R) − 1
2
σ′

R(R, x)g′(R)g(R),

and thus

[µ, σ](x) = σ′
x(R, x) − σ(R, x)σ′

R(R, x)g(R)

−1
2
{σ′′

R(R, x) − σ′
R(R, x)} g2(R) − σ′

R(R, x)
∂

∂x
q(0).

Applying Theorem 7.1 we know that a necessary and sufficient condition for
a realization in terms of R (and time) to exist is that [µ, σ] ‖ σ. If we let
z = ∂q(0)/∂x we find that there must exist a function α(z, R) such that

σ′
x(R, x) − σ(R, x)σ′

R(R, x)g(R)

−1
2
{σ′′

R(R, x) − σ′
R(R, x)} g2(R) − σ′

R(R, x)z = α(z, R)σ(R, x)

is satisfied for all z and R. Take the derivative with respect to z to obtain

−σ′
R(R, x) = α′

z(z, R)σ(R, x).

From this it follows that α′
z(z, R) = f(R), and thus we have

σ′
R(R, x) + f(R)σ(R, x) = 0.

This is an ODE for σ(R, x) with the solution

σ(R, x) = exp

{∫ R

0

f(u)du

}
σ(0, x),

and we see that the volatility factorizes as in (47).

Since we for this case have that σ0(S, x) = σ(ln S, x) we can rewrite the
proposition in the following way.

Proposition 7.6 Assume that the futures price volatility only depends on S,
i.e. σ0(F0, x) = σ0(S, x), then there exists a spot price realization if and only if
σ0 factors as

σ0(S, x) = ϕ(S)λ(x). (48)

7.4 All generic spot price models are affine

The following three spot price models are well known from the literature.

dSt = α(t)Stdt + σStdWt, (49)
dSt = (α(t) − ln St)Stdt + σStdWt, (50)

dSt = [a1(t) + a2(t) ln St]Stdt + St

√
k0 + k1 ln St dWt. (51)
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Since all these models (and in fact only these, see [5]) will generate expo-
nentially affine futures prices, the models will be refered as the affine spot
price models. In interest rate theory they correspond to the Ho-Lee model,
the Hull-White extension of the Vasicek model, and the Hull-White extension
of the CIR model respectively. Cecause of the affine structure one can easily
(by solving a simple system of ODEs, see [5]) compute the induced futures price
volatilities. The structural result is as follows.

Lemma 7.1 The futures price volatilities generated by the affine models (49)-
(51) all have the structure

ϕ2
0(S) = a ln S + b,

where a and b are constants, and λ is the solution to the Riccati equation

a

2
λ2 +

(
λ′(0) − a

2

)
λ − λ′ = 0.

More precisely, the folowing hold.

• For the model (49) it holds that a = 0 and thus λ(x) = λ(0) for all x, i.e.
λ is constant.

• For the model (50) it holds that a/2 = λ(0) so λ is an exponential function.

• For the model (51) it holds that a/2 6= λ(0), so λ solves a Riccati equation.

We recognize the structure above from Proposition 7.4, and we are now ready
to state and prove the main theorem of this section.

Theorem 7.2 Assume that the futures price volatilities are of the form

σ0(F0, x) = σ0(S, x).

Then the model has a generic spot price realization if and only if it is affine.

Proof. This follows from Proposition 7.4, Proposition 7.6 and Lemma 7.1.

The word “generic” is very important in the statement above (see Remark
2.2 for more details). To understand the geometric picture one can think of the
following program.

1. Choose an arbitrary spot price model, say of the form

dSt = a(t, St)dt + b(St)dWt

with a fixed initial point S0.

2. Solve the associated PDE in order to compute futures prices. This will
also produce:
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• An initial futures price curve q̂o(x).

• Time invariant futures price volatilities of the form σ0(S, x).

3. Now forget about the underlying spot price model, and take the futures
price volatility structure σ0(S, x) as exogenously given in the futures price
equation (7).

4. Initiate the furtures price equation (7) with an arbitrary initial forward
rate curve qo(x)

The question is now whether the thus constructed futures price model will
have a spot price realization. Obviously, if you choose the initial futures price
curve qo as qo = q̂o, then you are back where you started, and everything is
OK. If, however, you choose another initial forward rate curve qo, then it is
no longer clear that the price will be Markovian (or rather, satisfy a scalar
SDE). What the theorem above says, is that only the models listed above will
be generated by a spot price model for all initial points in a neighborhood of
qo. If you take another model then a generic choice of the initial futures price
curve will produce a futures price process which is not generated by a scalar
(time dependent) SDE for the spot price.

A Some Facts from Differential Geometry

In this Appendix we recall soem basic concepts and results from diferential
geometry. For more details see [6].

Consider a real Hilbert space H. By an n-dimensional distribution we
mean a mapping F which, to every r in an open subset V of H, associates an
n-dimensional subspace F (r) ⊆ H. A collection f1, . . . , fn of vector fields on H
generates (or spans) F if it holds that span{f1(r), . . . , fn(r)} = F (r) for every
r, where span denotes the linear hull over the real field. The distribution is
smooth if there exists smooth (i.e. C∞) vector fields f1, . . . , fn spanning F . If
F and G are distributions and G(r) ⊆ F (r) for all r we say that F contains G,
and we write G ⊆ F . The dimension of a distribution F is defined pointwise
as dimF (r).

Let f and g be smooth vector fields on U . Their Lie bracket is the vector
field

[f, g](r) = f ′(r)g(r) − g′(r)f(r),

where f ′(r) denotes the Frechet derivative of f at r, and correspondingly for g.
We will sometimes write f ′(r)[g(r)] instead of f ′(r)g(r) to emphasize that the
Frechet derivative is operating on g. A distribution F is called involutive if for
all smooth vector fields f and g in F , their lie bracket also lies in F , i.e.

[f, g](r) ∈ F (r) ∀r.

We are now ready to define the concept of a Lie algebra which will play a central
role in what follows.
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Definition A.1 Let F be a smooth distribution on H. The Lie algebra gen-
erated by F , denoted by {F}LA, is defined as the minimal (under inclusion)
involutive distribution containing F .

When trying to determine a concrete Lie algebra the following observations
often come in handy.

Lemma A.1 Consider the vector fields f1, . . . , fk as given. Then the Lie alge-
bra {f1, . . . , fk}LA remains unchanged under the following operations.

• The vector field fi may be replaced by αfi, where α is any smooth nonzero
scalar field.

• The vector field fi may be replaced by

fi +
∑

j 6=i

αjfj ,

where α1, . . . , αk are any smooth scalar fields.

Let F be a distribution on H and let ϕ : H → K be a diffeomorphism between
the two Hilbert spaces H and K. Then we can define a new distribution ϕ?F
on K by

(ϕ?F )(ϕ(r)) = ϕ′(r)F (r).

Similarly, for any smooth vector field f ∈ C∞ (U, X), we define the field ϕ?f by
ϕ?f =

(
ϕ′ ◦ ϕ−1

) (
f ◦ ϕ−1

)
. By a straightforward calculation one verifies easily

that
ϕ? [f, g] = [ϕ?f, ϕ?g] .
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