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Abstract

This paper examines several US monthly financial time series data using fractional
integration and cointegration techniques. The univariate analysis based on fractional
integration aims to determine whether the series are I(1) (in which case markets might
be efficient) or alternatively I(d) with d < 1, which implies mean reversion. The
multivariate framework exploiting recent developments in fractional cointegration
allows to investigate in greater depth the relationships between financial series. We
show that there exist many (fractionally) cointegrated bivariate relationships among the
variables examined.
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1. Introduction

This paper re-examines the statistical properties of a number of US financial series
(such as stock market prices, dividends, earnings, consumer prices, long-term interest
rates) contained in the well-known dataset which can be downloaded from Robert
Shiller’s homepage, and which also are described in chapter 26 of Shiller’s (1989) book
on “Market Volatility”.

In the existing literature, the Efficient Markets Hypothesis (EMH) has recently
been tested using the present value (PV) model of stock prices, since, if stock market
returns are not predictable, as implied by the EMH, stock prices should equal the
present value of expected future dividends, and therefore stock prices and dividends
should be cointegrated, as pointed out by Campbell and Shiller (1987). In their seminal
paper, they tested the PV model of stock prices adopting Engle and Granger’s (1987)
cointegration procedure, an approach which is valid provided stock prices and dividends
are stationary in first differences rather than in levels." They used the Standard and
Poor’s (S&P’s) dividends and value-weighted and equally-weighted New York Stock
Exchange (NYSE) 1926-1986 datasets. In the case of the S&P series they rejected the
unit root hypothesis for dividends but not for stock prices, whilst they could not reject it
for either when using the NYSE data. As for cointegration, their results were also
mixed, some test statistics rejecting the null hypothesis of no-cointegration, other failing
to reject it. Han (1996) used Johansen’s (1991) maximum likelihood (ML) method, and
found that the deterministic cointegration restriction can be rejected on the basis of
Canonical Cointegrating Regression (CCR) tests, and that stochastic cointegration is

also rejected.’

" A constant discount rate is assumed in that study. In a subsequent paper (Campbell and Shiller, 1988)
this assumption is relaxed to allow for time-varying discount rates in the PV model.

% Other empirical papers analysing cointegration in stock markets are Hakkio and Rush (1987), Baillie
and Bollerslev (1989), Richards (1995), Crowder (1996), Rangvid (2001); other studies, such as Narayan



However, the discrete options I(1) and I(0) of classical cointegration analysis are
rather restrictive: the equilibrium errors might in fact be a fractionally integrated I(d)-
type process, with stock and dividends being fractionally cointegrated. This is stressed
by Caporale and Gil-Alana (2004), who propose a simple two-step residuals-based
strategy for fractional cointegration based on the approach of Robinson (1994a): first
the order of integration of the individual series is tested, and then the degree of
integration of the estimated residuals from the cointegrating regression. They find that
the cointegrating relationship between stock prices and dividends possesses long
memory, implying that the adjustment to equilibrium takes a long time and that PV
models of stock prices are valid only over a long horizon.

The present study makes the following twofold contribution. Firstly, it applies
univariate tests based on long memory techniques in order to establish the order of
integration of the individual series and whether or not they are mean-reverting (which
provides information about the empirical validity of the efficient market hypothesis).
Therefore, compared to earlier studies, it extends the univariate analysis from the
I(1)/I(0) cases to the more general case of fractional integration, which allows for a
greater degree of flexibility in the dynamic specification. Secondly, it examines
bivariate relationships among the variables using the most recent techniques in a
fractional cointegration framework, which also allows for slow adjustment to
equilibrium. To our knowledge, although numberless studies exist analysing such
relationships, ours is the first to do so within such a framework. The implications of the
findings are also discussed.

The layout of the paper is the following. Section 2 reviews the concepts of

fractional integration and cointegration and the methods applied in this study. Section 3

and Smyth (2005) and Subramanian (2008) use instead cointegration techniques to analyse linkages
between stock markets.



describes the data and reports the empirical results. Section 4 offers some concluding

remarks.

2. M ethodology
The methodology employed in this study is based on the concept of long memory or

long range dependence. Given a zero-mean covariance stationary process {X,
t=0,%1,...} with autocovariance function y, = E(X;, X¢+y), in the time domain, long

memory is defined such that:

§|7u| = .

U=—oc0
Now, assuming that X; has an absolutely continuous spectral distribution function, with a

spectral density function given by:

f(1) = i(% +2 E u cos(lU)}

u=I
according to the frequency domain definition of long memory the spectral density
function is unbounded at some frequency A in the interval [0, ). Most of the empirical
literature has focused on the case where the singularity or pole in the spectrum occurs at

the 0-frequency. This is the standard case of 1(d) models of the form:

1-L9%% =u, t=0zL., (1)
where L is the lag-operator (Lx; = x¢.;) and u; is 1(0).> However, fractional integration
may also occur at some other frequencies away from 0, as in the case of
seasonal/cyclical models.

In the multivariate case, the natural extension of fractional integration is the

concept of fractional cointegration. Though the original idea of cointegration, as in

3 Throughout the paper we assume that x, = 0 for t < 0. In other words, we adopt the Type I definition of
fractional integration.



Engle and Granger (1987), allows for fractional orders of integration, all the empirical
work carried out during the 1990s was restricted to the case of integer degrees of
differencing. Only in recent years have fractional values also been considered. In what
follows, we briefly describe the methodology used in this paper for testing fractional

integration and cointegration in the case of Shiller’s financial time series data.

2a.  Fractional integration

There exist several methods for estimating and testing the fractional differencing
parameter d. Some of them are parametric while others are semiparametric and can be
specified in the time or in the frequency domain. In this paper, we use first a parametric
approach developed by Robinson (1994a). This is a testing procedure based on the
Lagrange Multiplier (LM) principle that uses the Whittle function in the frequency
domain. It tests the null hypothesis:

Ho: d =dg, (2)

for any real value d,, in a model given by the equation (1), where x; can be the errors in

a regression model of the form:

y,=82z +x, t=12,.., 3)
where y; is the observed time series, B is a (kx1) vector of unknown coefficients and z; is
a set of deterministic terms that might include an intercept (i.e., z. = 1), an intercept with
a linear time trend (z, = (1, t)"), or any other type of deterministic processes. Robinson
(1994a) showed that, under certain very mild regularity conditions, the LM-based
statistic (f)

f —a N(O,1) as N — oo,
where “ —gp “ stands for convergence in distribution, and this limit behaviour holds

independently of the regressors used in (3) and the specific model for the I(0)



disturbances u; in (1). The functional form of this procedure can be found in any of the
numerous empirical applications based on his tests (see, e.g., Gil-Alana and Robinson,
1997; Gil-Alana and Henry, 2003; Cunado et al., 2005, etc.).

As in other standard large-sample testing situations, Wald and LR test statistics
against fractional alternatives have the same null and limit theory as the LM test of
Robinson (1994a). Lobato and Velasco (2007) essentially employed such a Wald testing
procedure, and, although this and other recent methods such as the one developed by
Demetrescu, Kuzin and Hassler (2008) have been shown to be robust with respect to
even unconditional heteroscedasticity (Kew and Harris, 2009), they require an efficient
estimate of d, and therefore the LM test of Robinson (1994a) seems computationally
more attractive.*

In addition, we employ a semiparametric method (Robinson, 1995a) which is
essentially a local ‘Whittle estimator’ in the frequency domain, using a band of

frequencies that degenerates to zero. The estimator is implicitly defined by:

d= arg min [log C(d) - 2d lZlog A ], 4)
mso
— I m 2d 2rs 1 m
Cd) = — [(As) AST, Ao =", —+ — =0,
(d) m (4s) As s N m+ N -

where I(As) is the periodogram of the raw time series, X, given by:

2

2

T .
¥ X, e Agt

1
[(Ag) = ——
(45) 27T o

and d € (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions,

Robinson (1995a) proved that:

Jmd - d*) sgp NO,1/4) asn— o,

* Other parametric estimation approaches (Sowell, 1992; Beran, 1995) were also employed for the
empirical analysis producing very similar results as those obtained using the method of Robinson (1994a).



where d is the true value of d. This estimator is robust to a certain degree of conditional
heteroscedasticity (Robinson and Henry, 1999) and is more efficient than other semi-
parametric competitors.”

Although there exist further refinements of this procedure (Velasco, 1999,
Velasco and Robinson, 2000; Phillips and Shimotsu, 2004; Shimotsu and Phillips, 2005;
Abadir et al., 2007), these methods require additional user-chosen parameters, and the
estimates of d may be very sensitive to the choice of these parameters. In this respect,
the method of Robinson (1995a) seems computationally simpler and therefore

preferable.

2b.  Fractional cointegration

Engle and Granger (1987) suggested that, if two processes x; and y; are both I(d), then it
is generally true that for a certain scalar a # 0, a linear combination w; = y; — ax,, will
also be I(d), although it is possible that w; be I(d - b) with b > 0. This is the concept of
cointegration, which they adapted from Granger (1981) and Granger and Weiss (1983).
Given two real numbers d, b, the components of the vector z are said to be cointegrated
of order d, b, denoted z ~ CI(d, b) if:

(1) all the components of z; are 1(d),

(i)  there exists a vector o # 0 such that s; = o’z ~ I(y) =I(d —b), b > 0.

Here, o and s; are called the cointegrating vector and error respectively.® This prompts
consideration of an extension of Phillips' (1991a) triangular system, which for a very

simple bivariate case is:

> Other semiparametric univariate methods (e.g. the log-periodogram estimator of Robinson, 1995b) will
be employed in the multivariate analysis based on fractional cointegration.

% Even considering only integer orders of integration, a more general definition of cointegration than the
one given by Engle and Granger (1987) is possible, allowing for a multivariate process with components
having different orders of integration. Nevertheless, in this paper we focus exclusively on bivariate cases
and a necessary condition is that the two series display the same integration order.



Ve =vX + U (=), ()

X = Up(=d), (6)
for t =0, £1, ..., where for any vector or scalar sequence wy, and any c, we introduce the
notation wy(c) = (1 — L) w. ue = (uyy, u2t)T is a bivariate zero mean covariance stationary
I(0) unobservable process and v # 0, y < d. Under (5) and (6), x; is I(d), as is y; by
construction, while the cointegrating error y; — vx; is I(y). Model (5) and (6) reduces to
the bivariate version of Phillips' (1991a) triangular form when y = 0 and d = 1, which is
one of the most popular models displaying CI(1, 1) cointegration considered in both the
empirical and theoretical literature. Moreover, this model allows greater flexibility in
representing equilibrium relationships between economic variables than the traditional

CI(1, 1) prescription.

Next, we focus on the estimation of the cointegrating relationship, and in
particular on the estimation of v in (5) and (6). The simplest approach is to estimate it

using the ordinary least squares (OLS) estimator

n

2 %Wt
t=

—_—

‘70I st 5 > (7
Xt

Ms>

t=I1

where the superscript “t* indicates time domain estimation. Here, in the standard

cointegrating setting, with y = 0 and d = 1, it has been shown (see, e.g., Phillips and
Durlauf, 1986) that in general 170|St is n-consistent with non-standard asymptotic

distribution. In fractional settings, the properties of OLS could be very different from

those within this standard framework. When the observables are purely nonstationary

(so that d > 0.5), consistency of 190|St is retained, but its rate of convergence and



asymptotic distribution depends crucially on y and d.” An alternative method of

estimating v is in the frequency domain. Consider the estimator
~ f_ ]
Vos =g o° (8)

where A; = 2mj/n, j = 1, ..., n, are the Fourier frequencies, and for arbitrary sequences

&, t» (possibly the same one as &), we define the discrete Fourier transform and

(cross) -periodogram
Wg(l):ﬁtheM: Igg(l)zwg(l)v\/;(_ ), |§(/1): Igg(/ﬂt)-

Here, the discrete Fourier transform at a given frequency captures the components of the
series related to this particular frequency. Thus, noting that cointegration is a long-run
phenomenon, when estimating v one could concentrate just on low frequencies, which
are precisely those representing the long-run components of the series, hence neglecting
information from the high frequencies, associated with the short run, which could have
a distorting effect on estimation. Robinson (1994b) proposed the narrow band least
squares (NBLS) estimator, which is related to the band estimator proposed by Hannan
(1963), and is given by

m

Y sjRel ()

VNBLS = ’ ©)
p3 Silx(ﬂj)
]=0

where 1 < m< n/2,s;=1 forj =0, n/2, 2, otherwise, and (1/m) + (m/n) — 0 as n — oo.
Robinson (1994b) showed the consistency of this estimator even under stationary

cointegration, using the fact that focusing on a degenerating band of low frequencies

7 Robinson (1994b) showed that under stationary cointegration (i.e. d < 0.5) the OLS estimator is
inconsistent.



reduces the bias due to the contemporaneous correlation between uj; and vy, which was
precisely the reason why OLS was inconsistent in some cases. As with OLS, in general
NBLS has a non-standard limiting distribution.

With the aim of obtaining estimates of v with improved asymptotic properties
(optimal rate of convergence, median unbiasedness, asymptotic mixed-normality
leading to standard inference procedures), more refined techniques to estimate v have
been proposed in a fractional setting. These are related to the work of Johansen (1988,
1991), Phillips and Hansen (1990), Phillips (1991a,b), Phillips and Loretan (1991),
Saikkonen (1991), Park (1992), and Stock and Watson (1993), who all proposed
estimators with optimal asymptotic properties (under Gaussianity) in the standard
cointegrating setting with y = 0 and d = 1. However, for all these estimators knowledge
of v and d was assumed (usually after pretesting), which in fractional circumstances
might be hard to justify.®

Assuming that the process u; in (5) and (6) has a parametric spectral density

f(1)= f(4;0), where 6 is an unknown vector of short-memory parameters, Robinson

and Hualde (2003), based on generalized least squares (GLS)-type corrections, propose
methods to estimate optimally (under Gaussianity) v when d — y > 0.5 (named strong

cointegration). Denoting

z(c,d)=(y,(0)x(d)), =10, p(h=F (47,
a(Ca d: h) = i p(/,lj 5 h)WX(c) (_/,Z’j )Wz(c,d) (/1] ) ’ q(ﬂ‘: h) = gf (/1: h)_l ; s

a(c,d,h)

b(c,d)=> a(4;; M)l (4;), and defining v(c,d,h)=="—">,
j=1 b(C, h)

they considered five different estimators given by:

¥ Dolado and Marmol (1996) proposed an extension to the fractional setting of the Fully Modified (FM)-
OLS estimator of Phillips and Hansen (1990), assuming knowledge of y and d.



Y(7,8.,0), ¥(7,6,0), ¥(7.6,0), V(7.,6,0), V(7,6,0), (10)

A A

where 7, 0, 8, are corresponding estimators of the nuisance parameters v, d and 6. The
estimators in (10) reflect different knowledge about the structure of the model, the first
being in general unfeasible, the second only assuming knowledge of the integration
orders (as was done previously in the standard cointegrating literature), whereas the last
estimator represents the most realistic case. Under regularity conditions, Robinson and
Hualde (2003) showed that any of the estimators in (10) is n*"-consistent with identical

mixed-Gaussian asymptotic distributions, leading to Wald tests on the parameter v,
W(7.6,6), W(y,6,6), W(7,8,6), W(7,6,8), W(7,6.0), (11)

where W(c,d, h) =b(c, h){¥(c,d,h)— 1}, with a chi-squared limit distribution.’

3. Data and Empirical results
The monthly series analysed have been collected by Robert Shiller and his associates,

and are available on http://www.econ.yale.edu/~shiller/. The sample period goes from

1871m1 to 2010m6. They are described in chapter 26 of Shiller’s (1989) book on
“Market Volatility”, where further details can be found, and are constantly updated and
revised. Specifically, they are the following series: stock market prices (monthly
averages of daily closing S&P prices, computed from the S&P four-quarter tools for the
quarter since 1926, with linear interpolation to monthly figures); dividends (an index),
earnings (also an index), a consumer price index (Consumer Price Index - All Urban

Consumers) used for computing real values of the previous variables, a long-term

? Hualde and Robinson (2007) propose an estimator of v in (5) and (6) in the case when d — y < 0.5
(named weak cointegration). As in Robinson and Hualde (2003), this method is based on a GLS-type
correction. Hualde and Robinson (2007) showed that the estimators are n"*-consistent and asymptotically
normally distributed.

10
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interest rate (GS10, which is the yield on the 10-year Treasury bonds), and also a

cyclically adjusted price earnings ratio.

3a. Univariateanalysis. fractional integration

We first employ the parametric approach of Robinson (1994a) described in Section 2,
assuming that the disturbances are white noise. Thus, time dependence is exclusively
modelled through the fractional differencing parameter d. In particular, we consider the
set-up in (3) and (1), with z' = (1,t)", testing H, (2) for dy-values equal to 0, (0.001), 2.

In other words, the model under the null becomes:

Ve =B + Bt + %; (l—L)doxt = U t =1,2,..,
and white noise u;.

Table 1 displays the estimates of d (obtained as the values of d, that produce the
lowest f —statistics in absolute value)'® along with the 95% confidence band of the
non-rejection values of d using Robinson’s (1994a) parametric approach. For each
series, we display the three cases commonly examined in the literature, i.e., the cases of
no regressors (i.e, fo = B = 0), an intercept (B; = 0), and an intercept with a linear time
trend.

[Insert Table 1 about here]

The first noticeable feature is that all the estimated values of d are above 1 and
the unit root null hypothesis (i.e., d = 1) is rejected in all cases at the 5% level. In
general the values are very similar for the three cases with deterministic terms, although
the results change substantially from one series to another. Specifically, values of d

above 1.5 are found in the case of dividends, earnings and real earnings. For the

' This is standard practice in the context of Robinson’s (1994a) tests, and produces estimates that are
very similar to the Whittle estimates in the frequency domain (Dahlhaus, 1989). Very similar values were
obtained with other methods (Sowell, 1992; Beran, 1995).

11



remaining series the values are slightly above 1, but still significantly different from 1.
However, these results might be biased due to the lack of (weak)-autocorrelation for the
error term. Therefore, in what follows we assume that the disturbances are weakly
autocorrelated and model them first using the exponential spectral model of Bloomfield
(1973). This is a non-parametric approach to modelling the 1(0) error term that produces
autocorrelations decaying exponentially as in the AR(MA) case.'' The results using this
approach are displayed in Table 2.
[Insert Tables 2 and 3 about her €]

It can be seen that the values are much smaller than in the previous case of white
noise disturbances. One series (long-term interest rates) has values which are strictly
below 1, implying mean-reverting behaviour; for dividends and real stock prices the
unit root null cannot be rejected. It is slightly rejected (at the 5% level but not at the
10% level) for stock prices, consumer price index and price/earning ratio, and it is
decisively rejected in favour of higher orders of integration for the remaining two series
(earnings and real earnings). As a final specification we assume that the error term
follows a seasonal AR(1) process. The results (displayed in Table 3) are very similar to
those based on white noise disturbances, with estimates of d which are all strictly above
1. Deeper inspection indicates that time trends are not required in any case, the intercept
being sufficient for the deterministic component. Moreover, LR tests and other
residuals-based tests suggest that the d-differenced series may all be weakly (non-
seasonally) autocorrelated, implying that the model with Bloomfield disturbances may
approximate accurately the order of integration of the series. Nevertheless, in view of

the sensitiveness of the results to the specification of the error term, we also apply a

"' This model is extremely well suited to Robinson’s (1994a) tests (see Gil-Alana, 2004).

12



semiparametric method that does not specify a functional form for the I(0) disturbance
term.
[Insert Figure 1 and Table 4 about here]

Figure 1 displays for each series the estimates of d based on the semiparametric

method of Robinson (1995a), i.e., d as given by (4). The estimates were obtained based
on the first differenced series, then adding 1 to get the proper estimates of d. The
estimates of d are shown for a whole range of values of the bandwidth parameter m = 1,
2, ..., n/2 (on the horizontal axis)'?; the 95% confidence bands corresponding to the I(1)
hypothesis are also displayed. It can be seen that, for small values of m, the unit root
null is rejected in favour of mean reversion (d < 1) in the case of earnings, real
dividends, real earning and price earning ratio. For the remaining series (still with a
small m) the estimated values of d are within the I(1) interval, except for the CPI series
for which d is found to be strictly above 1. However, when the bandwidth parameter is
large, the estimates are clearly above 1 in all cases, the only exception being long-term
interest rates, with many values in the I(1) interval. Table 4 reports the numerical values
for different bandwidth parameters, m = 25, 41 (= T°°), 100, 200, 300 and 500: at the

95% level, there are several cases where the unit root null cannot be rejected. '

3b.  Multivariate analysis. fractional cointegration
A number of cointegrating relationships might exist between the individual variables
examined in the previous subsection, in particular between:

a) Stock prices and dividends

"2 The choice of the bandwidth is crucial in view of the trade-off between bias and variance: the
asymptotic variance is decreasing with m while the bias is growing with m.

13 Specifically, in the case of m = (T)"3, which has been widely considered in the empirical literature, the
unit root null hypothesis cannot be rejected for stock prices, dividends, long-term interest rates, real stock
prices and real dividends, whilst it is rejected in favour of mean reversion (i.e., d < 1) for earnings and
real earnings, and in favour of d > 1 for the consumer price index.

13



b) Real stock prices and real dividends

C) Price/Earning ratio and long-term interest rates
and
d) Real stock prices and real earnings

Some of these relationships have been extensively analysed in the literature.
Campbell and Shiller (1987) and DeJong (1992) tested a present value model of the
stock market using time series data for real US annual prices and dividends from 1871
to 1986. In the first of these studies, they carried out ADF tests, with and without a time
trend, on both individual series, and their results suggested that both series were
integrated of order 1. When using the DF, ADF tests on the residuals from the
cointegrating regressions, their results were mixed: the former test rejected the null
hypothesis of no cointegration at the 5% level, while the latter narrowly failed to reject
it at the 10% level. DeJong (1992) used a Bayesian approach to model these two
variables and found evidence in favour of trend-stationary representations. Similarly,
Koop (1991), using a different dataset, came to the same conclusion that both variables
are stationary around a linear trend, and, even when assuming unit roots, he found little
evidence of cointegration.

Pereira-Garmendia (2010) finds that real stock price and real earnings are related
through inflation. The relationship between stock prices, earnings and bond yield is
analysed by Durre and Giot (2007). Papers examining long-run linkages between the
price/earnings ratio and interest rates include Phillips (1999), Campbell and Shiller
(1998, 2001), and Asness (2003) inter alia.

In all cases, we follow the same strategy. We first estimate individually the
orders of integration using now the log-periodogram-type estimator devised by

Robinson (1995b). This is defined as:

14



m
di) = % (aj-a)iogl(2))/8. (12)
where

o A _ 1 P m _ 27|
%:—b4%mﬁﬂiﬁaa=ﬁ;TZanrﬁb $=.Z(%—aﬁ @:-?i
J=1 j=l+1

and 0 < 1 < m < n. The results for the individual series possibly involved in
cointegration relationships are displayed in Table 5 (form =T and1=0, 1, ..., 5)."
Next we test the homogeneity of the orders of integration in the bivariate

systems (i.e., Hy: dx = dy), where dy and d, are the orders of integration of the two

individual series, by using an adaptation of Robinson and Yajima (2002) statistic -fxy to

log-periodogram estimation. The statistic is:

; (13)

where h(n) > 0 and éxy is the (xy)™ element of

1
m .z

m . . . LA 1 ixd g
S Re|AA(4) 1 (A)A )‘1*], AGy) = diag{e'”dx/zfdx,e'”dy/z,i dy}.
The results using this approach are displayed in Table 6. In general, we cannot

reject the null hypothesis of equal orders of integration."> In the following step, we

perform the Hausman test for no cointegration of Marinucci and Robinson (2001)
comparing the estimate dx of dx with the more efficient bivariate one of Robinson

(1995b), which uses the information that dy, = dy = d=. Marinucci and Robinson (2001)

show that

' We will examine later these tables in detail for each of the potential cointegrating relationships.
' As in the case of the previous table, the comments for the specific series will be presented later.
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His = 8S(d* - dl)z —dtb ,‘{12 as +§ — 0, (14)

1
S
with 1 = x, y, and where s < [n/2] is a bandwidth parameter, analogous to m introduced

A

earlier; dj are univariate estimates of the parent series, and O« is a restricted estimate

obtained in the bivariate context under the assumption that d, = dy. In particular,

S A
> 12Q YjVj
' A1 2
2129 12 jz_‘,le

. A - . .
with 'Y; = [log L«(A), log Iyy(Kj)]T, and vj = log]j —gjz_lllogj. The limiting

distribution above is presented heuristically, but the authors argue that it seems
sufficiently convincing for the test to warrant serious considerations. The results using
this approach are displayed in Table 7.

In the final part of the analysis, we apply the methods of Robinson and Hualde
(2003) and Hualde and Robinson (2007). We identify parametric models for f(A) with u;
in (5) and (6) having the form,

w = AL)e. (16)

where & is supposed to be an i.i.d. process, and A(L) is diagonal, treating thus u;; and uy

separately. We approximate the two series as

e = 1= L7 [y - Yo, (17)
and
Uy = (1-1)% %, (18)
to obtain estimates of y and d previously estimated using other methods, and follow

Box-Jenkins-type procedures to identify the models within the ARMA class. The results

based on this method are displayed in Tables 13a — 13d.
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[Insert Tables5, 6 and 7 about her €]

Next we examine the bivariate relationships.

3.2.a Stock market pricesand dividends

[Insert Figure 2a about her€]
Figure 2a displays the plots of the two series. Both of them are relatively stable until the
end of World War II, when they start increasing and also exhibit a higher degree of
volatility.

Focusing first on the univariate results using the Whittle semiparametric
estimator (Robinson, 1995a), it can be seen that for small values of m the unit root null
cannot be rejected (see Table 4). Specifically, for m = (T)*® = 41, the estimates are
0.953 and 1.105 respectively for stock prices and dividends. Similar evidence of unit
roots, though with slightly higher values, is obtained with the log-periodogram
estimator of Robinson (1995b) (see Table 5). For example, for1=0, 1,2, ..., 5, and m =
(T)*, the estimates of d for stock prices ranges between 1.041 and 1.080 and those for
dividends between 1.026 and 1.222. Testing now the homogeneity condition with
Robinson and Yajima’s (2002) procedure (see Table 6), it is found that the two orders
of integration are equal.'® The Hausmann test of no cointegration (Marinucci and

Robinson, 2001) (see Table 7) indicates that the estimates of d for the individual series

using the bivariate representation (d* in (15)) are very close to 1 and not significantly

different from 1 (using three different values for s), and evidence of cointegration is

only obtained in one case out of the six considered.

' Here h(n) is set equal to b, withi=1, 2, 3, 4 and 5 and b = (T)"°, which is the bandwidth used in the
estimation.
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3.2.b Real stock market pricesand real dividends
[Insert Figure 2b about here]

The same relationship as above but in real terms is examined in this subsection. A time
series plot of the two series is displayed in Figure 2b. They exhibit a similar pattern to
the previous case although with more volatility in the early part of the sample, and may
have a common stochastic trend. Starting again with the univariate tests (see Table 4), it
is found that, when applying the Whittle semiparametric method of Robinson (1995a),
for m = (T)** = 41, the estimates of d are 0.888 and 0.896 respectively for real stock
prices and real dividends, and the unit root null cannot be rejected for either series.
Similar evidence is obtained with the log-periodogram estimator (see Table 5), with
values of d ranging from 0.972 and 1.085 for real stock prices, and from 0.822 and
0.997 for real dividends. The test of homogeneity of the orders of integration (Table 6)
implies equality in the values of d, whilst testing the null of no cointegration with the
Hausman test of Robinson and Marinucci (2001) suggests that the two series might be

cointegrated.

3.2.c Price/earningratio and long-term interest rates

[Insert Figure 2c about here]
These two series are plotted in Figure 2c. Interest rates appear to be more stable than the
price/earning ratio during the first half of the sample; however, during the second half,
there is a sharp increase in interest rates but not in the price/earning ratio. As for the
Whittle estimates of d (see Table 4), it is found that for the price/earning ratio the values
of d are very sensitive to the bandwidth parameter: for small values (e.g., 25, 41 or 100)

the unit root is rejected in favour of values of d below 1; on the contrary, the unit root
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null cannot be rejected for m = 200, and it is rejected in favour of d > 1 for m = 300 and
500. For the long-term interest rates, the results are more stable and the unit root null
cannot be rejected for any bandwidth parameter. These results are corroborated by the
log-periodogram estimates, displayed in Table 5. Thus, for the price/earning ratio,
different results are obtained depending on whether or not the series is first-differenced,
while for long-term interest rates the evidence strongly support the I(1) case.
Interestingly, when performing the homogeneity tests of Robinson and Yajima (2002)
we cannot reject the null of equal orders of integration, and the Hausman test reject in

all cases the null hypothesis of no cointegration.

3.2.d Real stock market pricesand real earnings
[Insert Figure 2d about here]
Plots of the two series are displayed in Figure 2d. They both have a very similar upward
trend, which suggests that they may be cointegrated. The estimated values of d using the
Whittle method and for m = (T)* (see Table 4) are 1.071 for real stocks and 0.933 for
real earnings, and in both cases we cannot reject the null of I(1) series. The same
evidence in favour of unit roots is obtained with the log-periodogram estimates in Table
5, and the homogeneity restriction cannot be rejected (see Table 6). The Hausman tests
of Robinson and Marinucci (2001) also indicate that the two series might be
cointegrated.
[Insert Table 8 about here]

Table 8 displays different estimates of the cointegrating coefficients for each of

the four relations examined. These are found to be relatively stable across the different

procedures.
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Finally, on the basis of the coefficients displayed in Table 8, we estimated the
orders of integration in the residuals of the cointegrating regression. First, we used the
parametric approach of Robinson (1994a). However, the results vary considerably
depending on the specification of the error term. Due to this disparity, we estimate d
with semiparametric methods.

[Insert Tables9 - 12 about here]

Tables 9 and 10 display the estimates of d based on the log periodogram
regression estimator of Robinson (1995b) for u = T%° and 1 = 0 and 1 = 2 respectively.
In many cases the estimates are strictly smaller than 1, especially for the price/earning
ratio — long-term interest rates and real stock prices — real earning relationships.

Tables 11 and 12 report the results from the semiparametric Whittle method of
Robinson (1995a), again applied to the estimated residuals from the cointegrating
relationships. Two different bandwidth parameters, m = 25 (in Table 11) and m = T*° =
41, are considered in Table 12. Virtually all estimated values are strictly below 1. For
the first two relationships (stock prices and dividends and their real terms) the values for
the order of integration in the residuals range between 0.6 and 0.8. Smaller values are
obtained for the price/earning ratio — long-term interest rate relationship: if m = 41, the
estimated value of d is about 0.55, however using m = 25, the values are in all cases
0.50 suggesting that the series may be stationary.'” There is a wider range of values in
the case of the real stock prices — real earnings relationship, although most of them are
also in the interval (0.5, 1).

Finally, we identify parametric models for f(A) with u; in (5) and (6) on the basis
of equations (16) — (18), using wide-ranging values for the orders of integration from

the previous tables. Using a Box-Jenkins-type methodology we identified at most AR(1)

17 Note that these estimates are based on the first differenced data, and a value of 1 is then added to obtain
the proper estimates of d.
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structures in all cases. Therefore, we simply consider combinations of white noises and
AR(1) processes in each bivariate relation. For each model, we apply the univariate
Whittle procedure of Velasco and Robinson (2000), using untapered versions, and, as
usual, the first-differenced data, then adding 1 to the estimated value. The results for the
four bivariate relationships are summarised in Tables 13a — 13d and they are fairly
similar for the different types of 1(0) errors.

[Insert Table 13 about here]

Although we do not report it, we also estimated a multivariate version of the
Bloomfield (1973) model for I(0) autocorrelation, with fairly similar results to those
presented in Table 13. In general, there is a reduction in the order of integration of about
0.3/0.4 from the original series to the cointegrating relationship. The orders of
integration in the latter are about 0.7 for three of these relations: stock prices/dividends;
real prices/real dividends, and real prices/real earnings. For the price-earning
ratio/interest rates relationship, the reduction is slightly bigger, and the order of

integration of the cointegrating relationship seems to be slightly above 0.5.

4. Conclusions
In this paper we have examined bivariate relationships among various financial
variables using some recent techniques based on the concepts of fractional integration
and cointegration. In particular, we focus on the following bivariate relationships: stock
prices and dividends; real stock prices and real dividends; price/earning ratio and long
run interest rates, and real stock prices and real earnings, monthly, for the time period
1871m1 to 2010m6.

The univariate results strongly support the hypothesis that all individual series

are nonstationary with orders of integration equal to or higher than 1 in practically all
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cases. In fact, mean reversion is not found for any of the series examined.'® The
multivariate results indicate that the four bivariate relationships are fractionally
cointegrated with the orders of integration of the cointegrating regressions being in the
interval [0.5, 1) and therefore displaying mean reverting behaviour. The implication is
that there exist long-run equilibrium relationships consistent with economic theory and
that the effects of shocks are temporary, although the fact that fractional cointegration
(rather than standard cointegration) holds means that the adjustment process is much
slower, and that therefore the overall costs of deviations from equilibrium are bigger
than standard cointegration approaches would estimate. This is an important result that
should be taken into account when formulating policies and deciding on policy actions.
Admittedly, our analysis does not take into account other possible features of the
data, such as structural breaks, non-linearities and other issues. Of course, these are also
important issues whose relevance for fractional integration tests has already been
investigated (see, e.g., Diebold and Inoue, 2001; Granger and Hyung, 2004; Caporale
and Gil-Alana, 2008). Our future research will consider them in the context of fractional

cointegration.

'8 A small degree of mean reversion is found in the long-term interest rates when using the parametric
method of Robinson (1994a) with Bloomfield (1973)-type disturbances.
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Tablesand Figures

Table 1: Estimates of d in a model with white noise distur bances

No Regressors An intercept A linear time trend
1.169 1.169 1.170
STOCK PRICES
(1.134, 1.208) (1.135, 1.209) (1.135, 1.209)
1.906 1.951 1.951
DIVIDENDS
(1.874, 1.941) (1.916, 1.988) (1.916, 1.988)
1.855 1.856 1.856
EARNINGS
(1.806, 1.910) (1.806, 1.911) (1.806, 1.911)
CONSUMER 1.210 1.396 1.401
PRICE INDEX (1.185, 1.241) (1.350, 1.454) (1.354, 1.456)
LONG INTEREST 1.111 1.111 1.110
RATE (1.070, 1.157) (1.070, 1.157) (1.070, 1.156)
REAL STOCK 1.156 1.161 1.161
PRICES (1.121, 1.195) (1.126, 1.201) (1.126, 1.201)
REAL 1.311 1.505 1.505
DIVIDENDS (1.279, 1.346) (1.470, 1.544) (1.470, 1.544)
1.756 1.825 1.825
REAL EARNINGS
(1.713, 1.803) (1.779, 1.877) (1.779, 1.877)
PRICE /EARNING 1.237 1.494 1.494
RATIO (1.198, 1.282) (1.449, 1.542) (1.449, 1.542)

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using

Robinson’s (1994a) parametric tests.
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Table 2: Estimates of d in a model with Bloomfield-type disturbances

No Regressors An intercept A linear time trend
1.052 1.052 1.052

STOCK PRICES (1.000, 1.102) (1.001, 1.102) (1.001, 1.103)
1.033 1.037 1.037

DIVIDENDS (0.987, 1.083) (0.986, 1.087) (0.985, 1.088)
1.568 1.569 1.569

EARNINGS (1.499, 1.649) (1.492, 1.653) (1.492, 1.653)
CONSUMER 1.175 1.187 1.195

PRICE INDEX (1.148, 1.206) (1.160, 1.211) (1.173, 1.224)
LONG INTEREST 0.909 0.908 0.909

RATE (0.864, 0.964) (0.863, 0.964) (0.864, 0.964)
REAL STOCK 1.033 1.037 1.037

PRICES (0.981, 1.083) (0.991, 1.087) (0.991, 1.088)
REAL 1.339 1.448 1.448

DIVIDENDS (1.272, 1.419) (1.388, 1.521) (1.388, 1.521)
1.599 1.600 1.600

REAL EARNINGS (1.510, 1.671) (1.517, 1.681) (1.517, 1.681)
PRICE /EARNING 1.135 1.269 1.269

RATIO (1.060, 1.231) (1.171, 1.398) (1.171, 1.398)

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using

Robinson’s (1994a) parametric tests.
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Table 3: Estimates of d in a model with seasonal AR(1) disturbances

No Regressors An intercept A linear time trend
1.169 1.170 1.170
TOCK PRICE
STOC CES (1.135, 1.208) (1.135, 1.210) (1.135, 1.210)
1.902 1.953 1.953
DIVIDEND
v 5 (1.873, 1.935) (1.921, 1.988) (1.921, 1.988)
1.875 1.878 1.878
EARNI
NGS (1.830, 1.926) (1.832, 1.928) (1.833, 1.928)
CONSUMER 1.188 1.374 1.378
PRICE INDEX (1.161, 1.220) (1.326, 1.431) (1.332, 1.434)
LONG INTEREST 1.111 1.111 1.110
RATE (1.071, 1.157) (1.071, 1.157) (1.071, 1.157)
REAL STOCK 1.155 1.161 1.161
PRICES (1.119, 1.194) (1.125, 1.201) (1.125, 1.201)
REAL 1.311 1.505 1.505
DIVIDENDS (1.279, 1.346) (1.469, 1.544) (1.469, 1.544)
1.742 1.836 1.838
REAL EARNI
NGS (1.704, 1.787) (1.793, 1.883) (1.795, 1.885)
PRICE /EARNING 1.234 1.491 1.491
RATIO (1.194, 1.278) (1.447, 1.539) (1.447, 1.540)

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using

Robinson’s (1994a) parametric tests.
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Figure 1. Estimates of d based on the semiparametric estimate of Robison (1995)
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Figure 1. Estimates of d: semiparametric estimate of Robison (1995)-cont.
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Figure 1. Estimates of d: semiparametric estimate of Robison (1995)-cont.
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The horizontal axis refers to the bandwidth parameter while the vertical one corresponds to the estimated
values of d. We report the estimates of d along with the 95% confidence band of the I(1) hypothesis.
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Table 4: Estimates of d using Robinson’s (1995) semiparametric method for

different bandwidth numbers

25 41 100 200 300 500
STOCK PRICES 0.850° | 0.953° | 1.004° 1.121 1.158 1.092
DIVIDENDS 1.021° | 1.105" 1.500 1.500 1.500 1.500
EARNINGS 0.589 0.580 0.875 1.500 1.500 1.500
CONSUMER 1.500 1.500 1.417 1.228 1.235 1.278
PRICE INDEX
LONG INTEREST | 893" | 0.895" | 00983 | 0958 | 0.990° | 1.013"
RATE
REAL STOCK 0.768 | 0.888" | 1.071" | 1.107 1.099 1.086
PRICES
REAL 0.538 | 0.896" 1.326 1.455 1.438 1.464
DIVIDENDS
REAL EARNINGS | 0.500 0.500 | 0.933" | 1.500 1.500 1.500
PRICE /EARNING | ¢ 500 0.500 0.745 1.041° | 1377 1.431
RATIO

95% Confidence | (0.835, | (0.871, | (0.917, | (0.941, | (0.952, | (0.963,

Interval 1.164) | 1.128) | 1.082) | 1.058) | 1.047) | 1.036)

* indicates that the I(1) hypothesis cannot be rejected at the 5% level.
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Figure 2a: Stock market prices and dividends
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The thick line refers to the stock market prices and the thin one is for dividends.

Figure2b

: Real stock market pricesand real dividends
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The thick line refers to real stock market prices and the thin one to real dividends.

Figure 2c: Price Earningratio and long interest rate
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The thick line refers to the long-term interest rate and the thin one is for the price earning ratio.
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Figure 2d: Real stock market prices and real earnings
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The thick line refers to the real stock market prices and the thin one is for real earnings.
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Table 5: Estimates of d using Robinson’s (1995b) log-periodogram semiparametric
method for different values of | and fixed m = (T)%°

m = T7°5 1=0 1=1 1=2 1=3 1=4 1=5
STOCK PRICES 1.080 1.070 1.061 1.041 1.018 1.017
DIVIDENDS 1.095 1.048 1.026 1.037 1.134 1.222
LONG INTEREST | (956 1.010 0.972 0.914 0.832 0.803
RATE
REAL STOCK 0.972 1.000 1.085 1.077 1.018 1.016
PRICES
REAL 0.822 0.851 0.981 0.975 0.996 0.997
DIVIDENDS
REAL EARNINGS 0.970 1.009 1.073 1.099 1.129 1.162
REAL EARNINGS | 0.279 0.128 0.059 | -0.078 | -0.142 | -0.082
PRICE /EARNING | (913 0.931 0.945 0.920 1.010 1.127
RATIO (*)

PRICE /EARNING | () 484 0.606 0.576 0.589 0.637 0.645
RATIO (**)

(*) and (**) indicates that the results are based on the original and first differenced data respectively.

Table 6: Testing the homogeneity in the order of integration (Robinson and Yajima,

2002)
m=T% 1=0 | 1=1 | 1=2 1=4 | 1=5
Stock prices / Dividends -0.145 | 0.214 | 0340 | 0.038 | -1.125 | -1.970
Real stock prices / Real dividens | 1.471 1.455 1.009 | 0.990 | 0.215 | 0.185
P.E.R. / Long interest rates -0.425 | -0.776 | -0.813 | -1.617 | -1.527 | -0.675
Real stock prices / Real earnings | 0.580 0.676 1.356 1.520 | 0.078 | -1.077

In all cases we employ h(n) chosen as b, i=1,2,3,4 and 5.
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Table 7: Hausman test for no cointegration (Marinucci and Robinson, 2001)

m=T% H s=25 s=41 s=50

H,, 4.205" 0.239 0.102

Stock prices / Dividends Hys 2.420 1.260 1.040

4. 0916 | 1.088 | 1.077

Hy | 26.499° | 11.469° | 8.880°

Real stock prices / Real dividends Hps 13.520" 2.259 0.810

4. 0.721 | 0.898 | 0.936

H, | 24.780° | 16.457" | 13.209"

P.E.R. / Long interest rates Hys 28.728" | 20.664" | 32.262°

A« 0.593 0.721 0.688

H, | 71.520° | 68.502" | 74.649"

Real stock prices / Real earnings Hps 68.679" | 64.952° | 70.560

4. 0487 | 0.628 | 0.653

X,*(5%) = 3.84. * indicates rejection of the null hypothesis of no cointegration at the 5% level.
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Table 8: Coefficient estimatesin a fractional cointegration setting using different

methods
Stock prices / Real stock P.E.R./Long Real stock
Dividends prices / Real interest rates prices / Real
dividends earnings
v(OLS) 50.074 35.514 2.173 17.636
time domain
v (OLS) 69.214 46.539 1.707 32.267
freq. domain
v (NBLS) 40.920 31.347 1.507 7.532
(m = 25)
v (NBLS) 37.650 29.506 1.149 10.494
(m=41)
v (NBLS) 38.802 29.929 0.857 20.528
(m = 100)
v (NBLS) 43.209 32.361 1.241 20.577
(m = 200)
v (NBLS) 47.291 34.668 1.176 22777
(m = 300)
v (NBLS) 51.397 36.957 1.263 24.523
(m = 400)
v (NBLS) 55.518 39.188 1.382 26.319
(m =500)
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Table 9: Estimates of d on theresiduals using the log-periodogram estimate of

Robinson (1995b)

m = T% Stock prices / Real stock P.E.R./Long Real stock
1 =0 Dividends prices / Real interest rates prices / Real
- dividends earnings
v(OLS) 0.775 1.082 0.811 0.723
time domain
v (OLS). 0.633 0.976 0.828 0.526
freq. domain
v (NBLS) 1.012 1.112 0.837 1.129
(m = 25)
v (NBLS) 1.126 1.132 0.860 1.042
(m=41)
v (NBLS) 1.083 1.128 0.878 0.600
(m = 100)
v (NBLS) 0.942 1.103 0.855 0.598
(m = 200)
v (NBLS) 0.832 1.087 0.859 0.560
(m = 300)
v (NBLS) 0.754 1.077 0.853 0.551
(m = 400)
v (NBLS) 0.708 1.070 0.846 0.532
(m =500)

Table 10: Estimates of d on theresiduals using the log-periodogram estimate of

Robinson (1995b)

m = 7% Stock prices / Real stock P.E.R./Long Real stock
| =2 Dividends prices / Real interest rates prices / Real
- dividends earnings
v (OLS) 0.991 1.273 0.650 0.805
time domain
v (OLS) 0.617 1.127 0.697 0.430
freq. domain
v (NBLS) 1.260 1.304 0.725 1.283
(m = 25)
v (NBLS) 1.386 1.326 0.781 1.190
(m=41)
v (NBLS) 1.337 1.322 0.827 0.623
(m = 100)
v (NBLS) 1.186 1.294 0.766 0.620
(m = 200)
v (NBLS) 1.066 1.277 0.777 0.557
(m = 300)
v (NBLS) 0.956 1.269 0.763 0.535
(m = 400)
v (NBLS) 0.853 1.263 0.744 0.486
(m = 500)
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Table 11: Estimates of d on the residuals using the Whittle estimate of Robinson

(1995a)
B Stock prices / Real stock P.E.R./Long Real stock
m = 25 Dividends prices / Real interest rates prices / Real
dividends earnings
v(OLS) 0.606 0.733 0.500 0.610
time domain
v (OLS). 0.608 0.709 0.500 0.500
freq. domain
v (NBLS) 0.663 0.741 0.500 0.878
(m = 25)
v (NBLS) 0.683 0.744 0.500 0.843
(m=41)
v (NBLS) 0.676 0.743 0.500 0.515
(m = 100)
v (NBLS) 0.648 0.739 0.500 0.514
(m = 200)
v (NBLS) 0.622 0.735 0.500 0.500
(m = 300)
v (NBLS) 0.599 0.730 0.500 0.500
(m = 400)
v (NBLS) 0.582 0.726 0.500 0.500
(m =500)

Table 12: Estimates of d on theresiduals using the Whittle estimate of Robinson

(19953a)
05 Stock prices / Real stock P.E.R./Long Real stock
m = T =41 Dividends prices / Real interest rates prices / Real
dividends earnings
_v(OLs) 0.778 0.803 0.612 0.715
time domain
v (OLS) 0.781 0.777 0.581 0.500
freq. domain
v (NBLS) 0.827 0.814 0.567 1.047
(m = 25)
v (NBLS) 0.815 0.819 0.543 0.987
(m=41)
v (NBLS) 0.811 0.817 0.526 0.623
(m = 100)
v (NBLS) 0.796 0.811 0.549 0.621
(m = 200)
v (NBLS) 0.784 0.805 0.545 0.562
(m = 300)
v (NBLS) 0.775 0.800 0.551 0.521
(m = 400)
v (NBLS) 0.770 0.794 0.559 0.500
(m = 500)
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Table 13a: Stock prices and dividends

Model v d Y

uy¢ is white noise 52.754 1.161 0.773
u,T 1S wWhite noise

uicis AR(T) 48.829 1.166 0.795
U, is white noise
uy; is white noise 48.829 1.188 0.609

UoT 1S AR(l)

uy is AR(1) 48.792 1.151 0.631

Uot 1S AR(I)

Table 13b: Real stock prices and real dividends

Model v d i

u;; is white noise 57.435 1.047 0.780
u,T 1S wWhite noise

uicis AR(1) 52.251 1.036 0.763
u;t is white noise
uy; is white noise 52.249 0.996 0.526

UoT is AR(I)

uy is AR(1) 52.208 1.159 0.878

Uot 1S AR(I)

Table 13c. P.E.R. and long interest rates

Model v d i

uy; is white noise -1.566 1.165 0.779
U, 1S white noise

wis AR(1) 0.874 1.053 0.763
upt 1s white noise
uy; is white noise 0.876 1.115 0.527

UoT is AR(I)

i is AR(1) 0.874 1.153 0.877

Uot 1S AR(I)

Table 13d: Real stock prices and real earnings

Model M d i

uy; is white noise 20.253 1.081 0.780
Uyt is white noise

uy is AR(1) 13.376 1.150 0.764
upt 1s white noise
uy; is white noise 13.387 0.984 0.521

UoT is AR(I)

uy is AR(1) 13.390 1.152 0.890

Uot 1S AR(I)
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