

Local Entropy Based Image Reconstruction

Carsten Croonenbroeck

European University Viadrina Frankfurt (Oder)

Department of Business Administration and Economics

Discussion Paper No. 312

January 2012

ISSN 1860 0921

Local Entropy Based Image Reconstruction

Carsten Croonenbroeck, European University Viadrina Frankfurt (Oder)
Chair of Economics, in particular Macroeconomics

Postfach 1786
15207 Frankfurt (Oder)

GERMANY

January 29, 2012

Abstract

This article presents a local entropy based image reconstruction algo-
rithm that performs quite well in cases where there is distortion in an
image. If the "wanted" image information is still available but distributed
over two or more distinct images, the algorithm can collect the required
information from the set of the images given. Instead of inferring pixel
data information from the remainder of one single image, the algorithm
provides a decision rule on what information from which one of the set of
given images to actually use in order to create a new, (ideally) distortion-
free image.

1 Introduction

In real world applications there are several occasions in which there are two
or more versions of a specific image available, all of them very similar to each
other. For example, those pictures may be images taken from the same scene
using a tripod mounted camera. Willing to capture a landscape for exam-
ple, these images all show the same background (the landscape), but unwanted
distortion in the foreground (e.g. pedestrians passing by). The image artist
needs to digitally remove those pedestrians from the image by reconstructing
the background information from other images. This process can hardly be
automatized, the images need to be "montaged" manually.1

If the actual information is available but distributed throughout two or more
images, local entropy based image reconstruction algorithms have proven to be
capable to automatically resolve the image that contains the actually "wanted"
information. Those parts can then be combined into a new image that contains
all the wanted information. After all, that algorithm can do what the montager
does manually, but in an automatized way.
There are several areas of application for such an algorithm. Apart from the
scenario described above, one application comes up when there are (physical)
images that need to be digitized using a scanner. Typically, scanned images
exhibit distortion due to dust particles all over the image. As soon as the same
image is scanned twice (i.e. the second scan is applied after physically moving
the image to a degree, causing the dust particles to likely be redistributed) or
more times, the algorithm can gather a new, dust-free version of the wanted
image information.
That latter scenario has in fact been the motivation for developing an actual
1However, there are methods called "Content Aware Fill" available in modern image processing
software, but these methods do not reconstruct information. They just infer pixel colors from
the surrounding area and thus, are limited to low-entropy texture imagery like plain blue skies
or grassy floor for example.

1

local entropy based image reconstruction software. This article presents how
the algorithm works and what its advantages and limitations are. The remain-
der of the text is structured as follows: Section two presents an overview of
existing entropy based image processing algorithms as well as the basic idea of
entropy. Section three introduces the algorithm’s implementation, while section
four describes the software’s performance on several applications. Section five
concludes.

2 Local Entropy Processing

Using entropy based methods for image processing has been a well established
approach in computer science for quite some time. Skilling and Bryan (1984)
used an entropy based approach on astronomic data. In more recent research,
German et al. (2005) used entropy analysis for high dynamic range image
processing. Yan et al. (2003) used entropy calculations for grey-scale image
clarification required in the field of medical imagery.
Basic tools for entropy based image processing are implemented in a variety of
software applications. For example, Gonzalez et al. (2003) describe these tools’
implementation in MATLAB.

In dissociation from the term "Entropy" as it is used in physics (thermody-
namics), in the field of information science the term is sometimes entitled as
"Shannon-Entropy", because it was first introduced by Shannon (1948). En-
tropy, in that usage of the term, is defined as the expected information content
of an event. If the probability for an event xi is pi(xi), then the entropy can be
calculated as H = −

∑l
i=1 log(pi(xi)) or, in slightly different notation,

H =
l∑

i=1
log(pi(xi)−1). (1)

In usual applications, the logarithm is taken to the basis of two due to easy
handling of binary information content. For observed data, probabilities can
be interpreted as relative frequencies of an event. For example, the entropy of
two given vectors X = (A,B,C,D,E) and Y = (A,B,A,A,C) is calculated
as HX = log2(5) + log2(5) + log2(5) + log2(5) + log2(5) = 11.6096 and HY =
log2

(
5
3

)
+ log2 (5) + log2

(
5
3

)
+ log2

(
5
3

)
+ log2 (5) = 6.8548. Obviously the

information content of vector X is larger than that of vector Y .

2

3 Simple Entropy Comparison as a Decision Rule

When processing image data (pixels), local entropy of a single pixel can be
calculated in the way section 2 describes. This is the framework:
Given a pixel (its color, to be precise) at position x = i, y = j inside
the bitmap, a data vector needs to be defined. The vector contains the
color information of the nearby pixels. For example, to calculate the hori-
zontal local entropy of the pixel Pi,j , the data vector D will be defined as
D = (c (Pi−1,j) , c (Pi,j) , c (Pi+1,j)), where c (Px,y) is the color of the pixel at
position x, y. To calculate the vertical local entropy, D will be defined as
D = (c (Pi,j−1) , c (Pi,j) , c (Pi,j+1)). For the surrounding entropy, both ap-
proaches need to be combined. In addition, the positions (x = i − 1, y =
j − 1), (x = i + 1, y = j − 1), (x = i − 1, y = j + 1) and (x = i + 1, y = j + 1)
can be taken into account as well. Furthermore, an even wider measure can be
defined by not only taking one neighboring pixel, respectively, into account but
using two, three or more neighboring pixels in each direction.
For the above described approach of one pixel per direction, the pixel under
investigation is in the center of the surrounding eight pixels, so the data vector
has the length of nine. If the number of pixels taken into account per direction
is k, then the number of elements in the data vector D can be calculated using

l = (2k + 1)2, (2)

where l symbolizes the length of the vector D. If the number of pixels per
direction (k) is two, then l = 25 and in the case that k = 3 it follows that
l = 49.
Having defined the surrounding data vector of a pixel, the entropy of the vector
D can be calculated easily using equation (1). This concludes the framework
– It returns a scalar as a measure for the surrounding entropy of a pixel. The
process described can then be run for all pixels in the bitmap.2

The most simple case is that there are just two images. Unless explicitly noted,
in the following text it is assumed that there are just two images without loss
of generality. The images are denoted as I1 and I2, while the new image the
algorithm generates is denoted as Iz.
According to the framework introduced above, the algorithm needs to run
2The nonexisting surrounding pixels for pixels near the borders of the bitmap are adaptively
dismissed: The respective data vector’s length changes accordingly.

3

through all pixels of the bitmaps and for all given images in the set simultane-
ously. For each pixel in the bitmaps, as a first step the software checks if the
pixels currently investigated differ between both images (Px,y (I1) 6= Px,y (I2)).
If not, the algorithm does not need to compute the entropy and instantly writes
the pixel information into image Iz: Px,y (I1)→ Px,y (Iz).
If the pixels in fact differ, the algorithm generates the local data vectors
D for both images (D1 and D2) and calculates their entropies using equa-
tion (1): H1 and H2. Then, the decision rule is quite easy. Pick the pixel
that returned the larger local entropy and write it into the resulting image:
Px,y (Im|Hm ≥ Hn)→ Px,y (Iz), or, for a set of q images,

Px,y (Im|Hm = max{H1, . . . ,Hq})→ Px,y (Iz) . (3)

Using this algorithm the image Iz is being built up successively and should
contain the distortion-free version of the image in the end.

4 Real World Application

As a praxis test, several distortion filters have been applied to two versions of
the same image. In image 1 there are these filters:

1. Mosaic,

2. text,

3. solid color,

4. random shapes,

while in image 2 there are

5. solid border,

6. blur and

7. overbright blur.

[Insert Figure 1 about here]
[Insert Figure 2 about here]

4

Filters 1 to 5 are clearly low entropy filters and are expected to be handled quite
well. Filters 6 and 7 tend to increase local entropy to some degree at certain
locally bounded areas. These filters are expected to require comparably large
lengths of the data vectors, i.e. the number of neighboring pixels per direction
(k) needs to be large to capture the larger local entropy in a wider area around
the investigated pixel.
As a measure for quantitative performance evaluation, MSE (Mean Squared
Error) and, derived from that, PSNR (Peak Signal to Noise Ratio) have been
chosen. If M is the set of pixels that actually differ between the two problem
images I1 and I2 and m is the number of elements of M , then

MSE = 1
m

∑
Pµ∈M

(Pµ (Iz)− Pµ (IR))2 , (4)

where Pµ (Iz) is the µth problem pixel in the resulting (processed) image Iz and
Pµ (IR) is the corresponding pixel in the ex ante distortion free reference image.
Accordingly,

PSNR = 20 · log10

(
ι√

MSE

)
(5)

is the Peak Signal to Noise Ratio, where ι denotes the maximum signal
intensity: For RGB images (Red, Green, Blue), ι = 255 per color channel. The
unit, in which PSNR is measured, is Bel or Decibel, dB.
Figure 3 presents the result for k = 7. Filters 1 to 5 are entirely removed,
while there are still minor remains of the blur filter (6) and severe remains
of the overbright blur filter (7). For this result, MSE = 1, 036.9624 and
PSNR = 17.97 dB.
Increasing the number of neighboring pixels k to 25, the remains of the
overbright filter almost entirely disappear. Figure 4 shows the results. There
are still some remains of the blur filter (6). Also, parts of the random shapes
(filter 4) are not treated correctly using this comparably large k. MSE did
decrease to 80.4489 and PSNR increased to 29.08 dB.

[Insert Figure 3 about here]
[Insert Figure 4 about here]

Simulating the above mentioned real world application (dust particles over
scanned images), two more images have been prepared. Figure 5 shows dark
random dust particles while Figure 6 shows white particles. Figure 7 presents

5

the result after running the algorithm using k = 1. All particles have been
removed, the image is entirely reconstructed. As the dust particles are added
at random, the run has been repeated 20 times. Each run reconstructed the
image entirely, all 20 results were binary-identical. Therefore, for each run,
MSE = 0 and, by definition, PSNR =∞ dB.

[Insert Figure 5 about here]
[Insert Figure 6 about here]
[Insert Figure 7 about here]

5 Conclusion

Local entropy data as a basis for image reconstruction has proven to be a useful
tool for given real world applications. Using minor enhancements, the method
can be applied to even more applications, for example watermark removal (by
using a local minimum entropy criterion) or for the treatment of compression
artifacts.
It is crucial that the user is able to apply several runs using differently large lo-
cal entropy areas (k) in order to find the best trade-off of image reconstruction
performance for different kinds of distortion. One problem of this could be the
large computation time impact of large values of k: If, as for the example in
section 4, k = 25 it follows that l = 2, 601. Given an image of the dimension
1,600 x 1,200, this results in almost 5 billions of required computations. How-
ever, the algorithm is perfectly qualified for massive parallelization: Instead of
processing one pixel after the other, arbitrarily many pixels can be processed
simultaneously as there is no interdependence between local entropy of pixels,
even if pixels are close by. Hence, the algorithm can be run on multiple CPU
cores simultaneously or on the GPGPU chips of modern video cards.3

3GPGPU = General Purpose computation on Graphics Processing Unit.

6

References
A. German, M.R. Jenkin, and Y. Lesperance (2005), ‘Entropy-based Image
Merging’, Technical report, CRV ’05 Proceedings of the 2nd Canadian con-
ference on Computer and Robot Vision.

R.C. Gonzalez, R.E. Woods, and S.L. Eddins (2003), Digital Image Processing
Using MATLAB, Prentice Hall, New Jersey.

C.E. Shannon (1948), ‘A Mathematical Theory of Communication’, Bell System
Technical Journal 27, pp. 379–423.

J Skilling and R. K. Bryan (1984), ‘Maximum Entropy Image Reconstruction -
General Algorithm’, Monthly Notices of the Royal Astronomical Society 211,
no. 1, p. 111ff.

C. Yan, N. Sang, and T. Zhang (2003), ‘Local Entropy-Based Transition Region
Extraction and Thresholding’, Pattern Recognition Letters 24, p. 2935ff.

7

Figure 1: Example image A, I1.

Figure 2: Example image A, I2.

Figure 3: Example image A, Iz, k = 7.

Figure 4: Example image A, Iz, k = 25.

Figure 5: Example image B, I1.

Figure 6: Example image B, I2.

Figure 7: Example image B, Iz, k = 1.

	Deckblatt_Discussion paper_Vorlage.pdf
	Entropy article.pdf

