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Abstract. Several attempts have been made to reduce the impact of estimation errors on the optimal 
portfolio composition. On the one hand, improved estimators of the necessary moments have been 
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more, the estimation strategy of Frost/Savarino (1988) proves to work excellent in all analyzed situa-
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1. INTRODUCTION 
Portfolio selection according to Markowitz (1952) is based on the assumption that in-

vestment decisions only depend on the expectation value Pμ  and the variance 2
Pσ  of the 

total portfolio return. Against this background, the portfolio optimization procedure 

requires the knowledge of the following input parameters: iμ  as the expected return of 

asset i, iσ  as the standard deviation of the return of asset i, and ijρ  as the correlation 

between the returns of the assets i and j (i, j = 1, …, N). These parameters are assumed 

to be known within the procedure although the investors have to estimate them. 

Naturally, estimation strategies entail estimation errors which in turn affect the so-

lution of the portfolio selection problem often resulting in extreme portfolio weights, an 

unbalanced asset allocation, and a lack of diversification. Moreover, the composition of 

optimal portfolios is very sensitive to changes in expected returns, variances and cova-

riances. Especially estimation errors in expected returns have a strong impact on portfo-

lio allocation (Chopra and Ziemba, 1993). Against this background, a practically rea-

sonable approach is to determine the sensitivity of the results to the different input pa-

rameters (Best and Grauer, 1991) and to focus estimation efforts for the parameters with 

greatest sensitivity. Beyond that, several attempts have been made to reduce the impact 

of estimation errors and to improve portfolio performance. On the one hand, advance-

ments in estimation or portfolio optimization techniques have been built up, e.g. Baye-

sian approaches or the Black-Litterman model (e.g. Jorion, 1985; Garlappi et al., 2007; 

Black and Litterman, 1992; Da Silva et al., 2009), that should lead to reasonable portfo-

lio compositions. On the other hand, heuristic methods have been developed to achieve 

this aim, for instance upper-bound constraints on portfolio weights (Frost and Savarino, 

1988; Eichhorn et al., 1998) or the concept of Michaud (1998) as well as Michaud and 

Michaud (2008a). Michaud’s “resampled efficiency” is based on a resampling of portfo-
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lio returns to reflect the uncertainty in the return process and has been widely discussed 

in the literature (e.g. see Scherer, 2002, and the literature introduced in the following 

paragraph).  

In order to analyze the performance of the approach of Michaud, some studies deal 

with the comparison between traditional mean-variance (MV) optimization by Marko-

witz and the resampled efficiency by Michaud. The results are ambiguous: in a capital 

market study by Fletcher and Hillier (2001), Michaud’s procedure outperforms the ap-

proach of Markowitz, but the improvements are not statistically significant. In a simula-

tion study of Michaud and Michaud (2008b), resampled efficiency leads to the best out-

comes. Markowitz and Usmen (2003) also find strong evidence for a better performance 

of the resampled efficiency compared to a Bayesian estimator using a diffused prior 

within a simulation study. However, the results of Harvey et al. (2008) and Scherer 

(2006) are completely different. First, Harvey et al. did a rematch of the simulation 

game of Markowitz and Usmen (2003) with a more sophisticated prior distribution and 

a more appropriate algorithm. In this setting, they obtain rather balanced results between 

the resampled efficiency and the optimization of Markowitz using their Bayesian esti-

mator. Moreover, in a second competition, Markowitz always wins against Michaud. 

Scherer (2006) uses a James-Stein prior instead of a diffuse prior since evidence has 

shown the usefulness of this prior. In this simulation study, the Bayesian player almost 

always shows a significantly better performance compared to the resampled efficiency. 

However, comparing resampled efficiency and Markowitz optimization using classical 

historical estimators, Michaud’s procedure performs slightly better but the difference is 

frequently not significant. 

Furthermore, there are several studies that concentrate on the impact of different es-

timation techniques on portfolio optimization with Markowitz. In a study of Kempf and 

Memmel (2003), several estimation strategies are tested. They detect the approach of 
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Ledoit and Wolf (2003) to be the approach with the best results. Duchin and Levy 

(2009) find that the naïve 1/N-rule outperforms the classical Markowitz optimization for 

small portfolios but for large portfolios the Markowitz’s strategy is superior. In a capital 

market study, DeMiguel et al. (2009) analyze several optimization strategies and con-

clude that no considered strategy beats the 1/N-rule persistently. 

However, even if there are some studies comparing the performance of Markowitz 

and Michaud, each of these studies concentrates on a specific setting, which hardly 

leads to general recommendations. First, some studies analyze the performance with an 

out-of-sample capital market study (cf. Fletcher and Hillier, 2001), which has the ad-

vantage of realistic characteristics of stock returns, but the results highly depend on the 

development of the stock market in the certain time period. As noted by Michaud 

(2003), for a specific time series a good strategy can perform badly and a bad strategy 

can deliver a good performance. For this reason, some authors apply a simulation study 

instead of a capital market study (e.g. Markowitz and Usmen, 2003; Scherer, 2006; 

Harvey et al., 2008; Michaud and Michaud, 2008b). Since such studies, however, are 

based on a very small set of “true” input parameters, e.g. Michaud and Michaud (2008b) 

based their findings on only one true parameter set, the same aspect ought to be criti-

cized. Therefore, we perform a simulation study with 100 true parameter sets, which are 

generated to have similar characteristics as capital market data. 

Second, none of the simulation studies mentioned above allows for riskless borrow-

ing and lending. Even though this opportunity does not have to be implemented, in real-

world applications it is mostly possible to combine risk-free and risky investments, 

which generally lead to different compositions of the risky part of the portfolio. Against 

this background, we additionally consider the possibility of riskless borrowing and lend-

ing. 
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Third, only Fletcher and Hillier (2001) test the Markowitz and Michaud optimiza-

tion with different estimators while all other examinations are confined to the compari-

son of the classical MV-approach, Michaud’s resampled efficiency, and the MV-

approach with a Bayesian estimator. Since different estimators can be applied to both 

optimization approaches, we provide an extensive comparison of a number of relevant 

estimators appearing in the literature for Markowitz and Michaud. Furthermore, we es-

timate both the expected returns and the variance-covariance matrix since both variables 

are unknown in practical implementations, which is in contrast to Scherer (2006), who 

assumes the variance-covariance matrix to be known. 

Fourth, most studies rely on a time series of 216 months (Markowitz and Usmen, 

2003; Harvey et al., 2008; Scherer, 2006), although a shorter estimation period is used 

frequently in financial research and practical applications.1 Thus, we consider seven 

estimation periods ranging from a short period of 24 months to a long horizon of 216 

months to account for the effects of different period lengths. 

Fifth, almost all studies compare Markowitz and Michaud in the long-only con-

strained case (Markowitz and Usmen, 2003; Harvey et al., 2008; Michaud and Michaud, 

2008b). We also allow for unconstrained optimizations as Michaud’s resampled effi-

ciency intends to reduce the impact of estimation errors, which should have the greatest 

effect in the unconstrained case. Furthermore, this case is of practical interest since e.g. 

hedge funds are usually not restricted to long-only positions. 

The main findings of our simulation study concerning the optimization approach 

are as follows: In the case with long-only constraints in the absence of riskless borrow-

ing and lending opportunities, the results of Markowitz versus Michaud are rather ba-

lanced, which, in essence, confirms the results in the literature. However, under consid-

                                                 

1 See Chopra et al. (1993), Scherer (2002), or DeMiguel et al. (2009). 
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eration of riskless lending and borrowing, the optimization procedure of Markowitz 

performs significantly better than Michaud in all relevant situations regardless of 

whether or not long-only constraints are taken into account. Furthermore, we find that 

the results are very sensitive to the length of the estimation horizon and can give advice 

for different initial situations of investors. Moreover, we show in which situations a 

constraint leads to improved results. Finally, we find that the estimation strategy of 

Frost/Savarino works excellent in all analyzed situations. This largely confirms Harvey 

et al. (2008) and Scherer (2006), and extends the results for unconstrained optimization 

problems as well as for varying lengths of observation periods.  

The remainder of the article is organized as follows: We start with a short descrip-

tion of the Markowitz MV-approach and Michaud’s resampled efficiency. Before ex-

plaining the database and the methodology of our simulation study, the underlying esti-

mators are specified. Afterwards, the results are presented and finally our findings are 

summarized. 

 

2. MARKOWITZ MV OPTIMIZATION 
We consider the portfolio selection problem of an investor who can allocate his or her 

wealth to N risky assets and one riskless asset. In the framework of Markowitz under 

the hypothesis of multivariate normal distributed returns, the investor maximizes the 

following preference function in X: 

 ( )X ' / 2 X ' Xφ = μ − λ ⋅ Σ , (1) 

where ( )1 NX x , , x '= …  represents the vector of portfolio shares of the N risky assets, μ  

is the vector of expected excess returns, Σ  the variance-covariance matrix and λ  the 

risk aversion coefficient.2 Consequently, the difference 1 N1 x x− − −…  is invested in the 

                                                 

2 Assuming multivariate normal distributed returns, the preference function results as the certainty 

equivalent return from a utility function with constant absolute risk aversion. 
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riskless asset. Since the investor does not know the true parameters μ  and Σ  of the re-

turn distribution, he or she has to estimate them. The estimators μ̂  and Σ̂  are inserted in 

(1) for μ  and Σ  and the optimization procedure is accomplished. 

 

3. MICHAUD’S RESAMPLED EFFICIENCY 
The basic concept of Michaud’s resampled efficiency comprises (a) a generation of a 

sequence of returns, which are statistically equivalent to the actual time series of re-

turns, through a Monte Carlo simulation, (b) the subsequent determination of portfolio 

weights for every resample, and finally (c) the averaging over the obtained portfolio 

weights to obtain the optimal portfolio weights according to Michaud. The aim of re-

sampled efficiency is to minimize the impact of estimation risk on the portfolio compo-

sition, to get a more balanced asset allocation, and to improve the portfolio performance 

compared to Markowitz.  

The specific steps of the procedure are listed below:3 

1) Estimate the input parameters μ̂  and Σ̂ .  

2) Resample from the inputs of 1) by taking T draws from a multivariate normal distri-

bution ˆˆN( , )μ Σ  and estimate new input parameters ˆ̂μ  and ˆ̂Σ . 

3) Identify the optimal portfolio composition ˆ̂X  by maximizing equation (1) with the 

new estimators ˆ̂μ  and ˆ̂Σ . 

4) Repeat steps 2) and 3) 500 times.  

5) Calculate the average portfolio weight vector X̂  from the 500 different optimal 

weight vectors and chose X̂  as the optimum.  

                                                 

3 The procedure of Michaud is modified slightly to take into account the insertion of the riskless asset and 

omitted long-only constraints. 
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Notice that the optimization in step 3) is not only conducted with long-only constraints 

but also for the unconstrained case although Michaud emphasizes the restriction of port-

folio weights between 0 and 1. We advance the view that one has to compare the two 

procedures of Markowitz and Michaud with the same constraints. Otherwise the com-

parison is not admissible as the potential reduction of estimation risk could be driven by 

the constraints instead of the procedure itself. 

 

4. ESTIMATION STRATEGIES 
We apply six widespread estimation strategies for the determination of μ  and Σ , which 

are composed of the different estimators we present in the following.4 The standard es-

timators for μ  and Σ  are the maximum likelihood estimators histμ̂  and histΣ̂ , which are 

computed on the basis of an excess return series of length T: 

 ( )
T

t
hist

t 1

1ˆ r
T =

μ = ⋅∑ , (2) 

 ( )( ) ( )( )
T

t t
hist hist hist

t 1

1ˆ ˆ ˆr r '
T =

Σ = ⋅ −μ ⋅ −μ∑ , (3) 

where ( )tr  is the N-vector of excess returns in t. According to Turner and Hensel (1993), 

mean stock returns in the 1980s were statistically indistinguishable. If we, moreover, 

consider the strong sensitivity of changes in expected returns to portfolio weights, it 

might be consequent to set all expected excess returns equal to the average excess return 

of the considered stocks.5 The so called grand mean 0μ̂  can be determined in the fol-

lowing way: 

 ( )
T N

t
0 j N

t 1 j 1

1ˆ r 1
T = =

μ = ⋅ ⋅∑∑ , (4) 

                                                 

4 We adhere to the estimation strategies presented in Kempf and Memmel (2003). 
5 This procedure could be problematic if the data contain assets from different asset classes. However, our 

simulation study comprehends only stock market equivalent data. 



 8

where N1  represents a N-vector with ones: ( )N1 1, ,1 '.= …  If this concept is carried for-

ward to presumed equal values of correlations and variances of stock returns, variance-

covariance matrix 0Σ̂  results.  

As mentioned before, Bayesian and James/Stein (JS) estimators have been devel-

oped to mitigate the estimation risk for better portfolio performance.6 James and Stein 

(1961) show that the historical mean histμ̂  for N greater than two is inadmissible for a 

quadratic loss function and suggest the following estimator: 

 ( )
JS hist 0ˆ ˆ ˆa 1 aμ = ⋅μ + − ⋅μ , (5) 

where a is a parameter which must be specified from the time series: 

 
( ) ( )1

hist 0 hist hist 0

N 2 1a 1 ˆT N 2 ˆ ˆ ˆ ˆ' −

−
= − ⋅

− + μ −μ Σ μ −μ
. (6) 

The closer the single historical expected returns are located around the grand mean, the 

more JSμ̂  is shrunken towards the grand mean. Ledoit and Wolf (2003) construct a 

shrinkage estimator of the variance-covariance matrix: 

 ( )
LW hist 0

ˆ ˆ ˆb 1 bΣ = ⋅Σ + − ⋅Σ , (7) 

where b  can be calculated in the following way: 

 
( )( )

( )( )

2

0 hist
N N2 2 2 2

0 hist hist ,ij hist ,i hist, j
i 1 j 1

ˆtr
b

ˆ ˆ ˆ ˆtr (1/ T) ( )
= =

Σ −Σ
=

Σ −Σ + ⋅ σ +σ ⋅σ∑∑
, (8) 

with ( )tr A  representing the trace of matrix A. 

Table 1 illustrates the combinations of these six introduced estimators. Application 

of the maximum-likelihood estimators histμ̂  and histΣ̂  leads to the widely used classical 

historical estimation strategy, denoted with (C). If we replace histμ̂  by the grand mean 

                                                 

6 James/Stein estimators can be seen as empirical Bayes estimators where the input parameters are taken 

from the time series of returns; see Gruber (1995). 
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0μ̂  for all stocks, the solution of the classical approach complies with the minimum va-

riance portfolio (MV). In contrast, substitution of histμ̂  by the James/Stein estimator JSμ̂  

results in a composition which was presented by Jorion (1985) (J). The equally 

weighted portfolio (EW) evolves from imposing the same distribution parameters for all 

stocks, thereby no stock is preferred. This corresponds to the naïve 1/N-rule for the 

risky assets. Ledoit and Wolf (2003) (LW) assume equal expectation values for all 

stocks and analyze their shrinkage estimator LWΣ̂  for the variance-covariance matrix. 

Both shrinkage estimators JSμ̂  and LWΣ̂  are implemented in the approach of Frost and 

Savarino (1986) (FS).7 

 

Table 1 about here 
 

5. SIMULATION STUDY 

5.1 Setting 

In order to test the performance of the portfolio optimization techniques of Markowitz 

and Michaud with different estimation strategies, we perform a two-step simulation 

study. In the first step, “true” parameters µ and Σ are generated. In the second step, we 

draw realizations of excess returns for a fixed observation period from a multivariate 

normal distribution with parameters µ and Σ. On the basis of these drawn excess returns, 

we estimate the parameters µ and Σ using the above introduced estimation strategies and 

apply the optimization techniques under consideration. Thus, the second step corres-

ponds to real-life application, where the input parameters µ and Σ have to be estimated. 

Solely a “referee” knows the true parameters due to simulation step 1. Hence, we are 

                                                 

7 The variance-covariance estimator of Frost and Savarino (1986) is not exactly the same as of Ledoit and 

Wolf (2003) since a third summand is added in the denominator of b̂ . Nevertheless, we implemented the 

estimator of Ledoit and Wolf (2003) in both cases, which is in line with Kempf and Memmel (2003). 
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able to evaluate the performance of different approaches with respect to the true result-

ing preference values. The explained procedure is outlined in Figure 1. 

 

Figure 1 about here 
 
1) The choice of the true parameters µ and Σ is based on 216 monthly returns of 24 

Euro Stoxx 50 stocks between May 1991 and April 2009.8 The grand mean of the 

excess returns is 0 0.64%μ =  per month, the averaged standard deviation of these stocks 

is 0 9.43%σ =  per month, and the averaged correlation is 0 36.41%ρ = . Using the latter 

values, we construct a variance-covariance matrix Σ0 with the elements 2
0σ  on the di-

agonal and 2
0 0σ ⋅ρ  for the off-diagonal entries. In order to achieve results that do not 

rely on one specific parameter setting, we use these values as a basis to generate 100 

true variance-covariance matrices Σ1, …, Σ100 for 10 stocks from a Wishart distribution 

with 26ν =  degrees of freedom: 

 0
s 10W , , with s 1,...,100Σ⎛ ⎞Σ ν =⎜ ⎟

ν⎝ ⎠
∼ . (9) 

The corresponding expected returns µ1, …, µ100 are drawn from a multivariate normal 

distribution 

 s s 10 0 s
1| N , , with s 1,...,100⎛ ⎞μ Σ μ Σ =⎜ ⎟
τ⎝ ⎠

∼  (10) 

with homogeneity parameter 13τ = . The choice of ν and τ leads to a good match be-

tween simulated and real capital market data.9 

2) For each of these true parameter settings, we generate 100 “observable” time se-

ries, each consisting of T monthly returns. In order to test the influence of different ob-
                                                 

8 We used all stocks that are listed in the Euro Stoxx 50 at May 22th 2009 for which historical stock pric-

es are available for the complete observation period. 
9 We minimize the squared difference between the variance of drawn parameters and the parameter va-

riance computed from subsamples of the empirical data and obtain optimal parameter realizations of ν = 

26.3895 and τ = 13.2790. 
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servation periods on the results, we choose T = 24, 36, 60, 84, 120, 168, 216 months (2–

18 years). These returns are drawn from a multivariate normal distribution: 

 ( )s,i,t 10 s sr N , , with i 1,...,100 and t 1,...,Tμ Σ = =∼  (11) 

with s,i indicating the observable time series i of the true parameter combination s.10 

Thus, for 100 true parameter settings we have in total 10,000 observable time series. 

The assumption of normally distributed returns could be problematic, especially in the 

aftermath of the subprime crisis. Therefore, we tested the return history (216 months) of 

the above-mentioned Euro Stoxx 50 stocks for the multivariate normal distribution. On-

ly for three stocks the normality hypothesis had to be rejected at the 5 percent level us-

ing the KS-Test.11 Furthermore, to account for the financial crisis, we split the sample 

period into two subsamples: One sample ends at June 14th 2007 and the other one starts 

at this time, where June 14th designates the starting point of the subprime crisis.120 For 

none of the 24 stocks the hypothesis of normality can be rejected at the 5 percent level 

for the two subsamples. Hence, based on monthly data, the assumption of normally dis-

tributed returns proves to be rather unproblematic. 

3) As a next step, we estimate the expected return vector s,iμ̂  and the variance-

covariance matrix s,iΣ̂  for each of these 10,000 time series. For this purpose, we imple-

ment the six estimation strategies of the previous section: the classical historical estima-

tion, application of the grand mean for all stocks (resulting in the minimum variance 

portfolio), imposing the same distribution parameters for all stocks (resulting in the 

                                                 

10 The generation of our simulation data is similar to Simaan (1997) and Frost and Savarino (1986), who 

also generate multivariate normally distributed stock returns in their examinations of estimation risk.  
11 These stocks are Fortis (Belgium), Ing Groep (Netherlands), and Unicredit (Italy). 
12 The Bank of International Settlements used this date as the starting point of the subprime crisis; cf. 

Bank of International Settlements (2008). 
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equally weighted portfolio), and the estimation strategies of Ledoit/Wolf, Jorion, and 

Frost/Savarino.  

4) Subsequently, the Markowitz portfolio optimization as well as Michaud’s re-

sampled efficiency are applied for each estimated parameter combination s,i s,i
ˆˆ ,μ Σ . 

These optimization strategies are realized under consideration of riskless borrowing and 

lending without long-only constraints (“no constraints” case) or with long-only con-

straints (i.e. 0≤X≤1, so called “long-only constraints” case). These both cases are com-

pared with the case with present long-only constraints in the absence of riskless borrow-

ing opportunities (i.e. 0≤X≤1 and x1+…+xN=1, so-called “no borrowing and lending” 

case), which is usually analyzed in the literature. As a result, we get “optimal” portfolio 

weights s,iX̂  for each approach and estimated parameter combination. To have a 

benchmark, we also compute the true optimal portfolio weights *
sX , which would result 

if the true parameters were applied.  

5) In order to assess and to compare the performance of all approaches, we measure 

the corresponding preference values s,iφ . As we also know the true parameters µs and 

Σs, we are able to determine the out-of-sample or rather the true preference values that 

result by application of the different approaches (Markowitz vs. Michaud in combina-

tion with the different estimation strategies): 

 s,i s,i s s,i s s,i
ˆ ˆ ˆX ' X ' X

2
λ

φ = ⋅μ − ⋅ ⋅Σ ⋅ . (12) 

The better the portfolio optimization strategy in combination with the estimation of the 

input parameters, the closer the resulting preference level is to the true optimum, calcu-

lated as 

 * * *
s s s s s sX ' X ' X

2
λ

φ = ⋅μ − ⋅ ⋅Σ ⋅ . (13) 
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A comparison of the preference levels of all 10,000 parameter combinations indicates 

which approach performs best. For this reason the following measure 

 
( )

100 100
(Approach A) (Approach B)
s,i s,i

(A,B) s 1 i 1
1

I

10,000
= =

φ > φ
Φ =

∑∑
 (14) 

serves as a performance index with I( )⋅  defining the indicator function, which equals 

one if the event is true and otherwise equals zero. Thus, (A,B)
1Φ  indicates the percentage 

of simulations where approach A performs better than approach B. Furthermore, a com-

parison of the accumulated preference levels for all 100 true parameters s leads to a cor-

responding index 

 

100 100 100
(Approach A) (Approach B)
s,i s,i

s 1 i 1 i 1(A,B)
2

I
.

100
= = =

⎛ ⎞φ > φ⎜ ⎟
⎝ ⎠Φ =

∑ ∑ ∑
 (15) 

In addition, we introduce  

 

100 100
(Approach A)
s,i

(A) s 1 i 1

10,000
= =

φ
ϕ =

∑∑
 (16) 

as the overall average of the preference values for approach A. The latter measure can 

be used to rank all approaches. 

 

5.2 Results 

First, we present the results of Markowitz’ and Michaud’s optimization for an observa-

tion period of 60 months, since this estimation period is of widespread use in practice.13 

We start with the “no constraints” case and the entries of Table 2 characterize the pro-

portion of the 10,000 trials the row-strategy wins against the column-strategy (index 

(row,column)
1Φ  according to (14)). Table 3 contains the corresponding comparison of the 

                                                 

13 Cf. DeMiguel et al. (2009). 
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accumulated preference levels regarding the 100 true parameters (index (row,column)
2Φ  ac-

cording to (15)).14 

 

Table 2 about here 
Table 3 about here 

 
Within the Markowitz optimization, we find that the estimation strategy of 

Frost/Savarino outperforms the other strategies with higher preference values in 

(Frost/Savarino,other )
1 67%Φ ≥  of 10,000 scenarios. In addition, the outperformance (

(Frost/Savarino) (other)
s,i s,iφ > φ ) is statistically significant at the 1 percent level.15 After aggregating 

the results for each of the 100 true parameters, the result is even more evident with 

(Frost/Savarino,other )
2 96%Φ ≥  wins. The second best performing approach is Jorion, the clas-

sical historical estimator is on rank 3. The other approaches show a rather poor perfor-

mance. Thus, the loss of information resulting from using the grand mean instead of the 

individual means outweighs the benefit from pooling the data, which reduces the esti-

mation error. 

The results within Michaud’s resampling technique are similar, as the estimation 

strategy of Frost/Savarino followed by the approach of Jorion outperforms the other 

strategies. Only for the classical historical approach the results vary considerably as it 

does not show a convincing performance. The grey areas of the tables compare the op-

timizations of Markowitz and Michaud. Dark-grey areas compare one strategy com-

bined with the optimization of Markowitz and the same strategy combined with the op-

timization of Michaud. Having a look at these results, we detect that the standard opti-

mization procedure of Markowitz does a better job than Michaud for each pair of iden-

tical estimation techniques, which is in each case significant at the 1 percent level. 

                                                 

14 A risk aversion coefficient of 2λ =  was used to generate the results in the tables and charts. 
15 Significance is tested with the Wilcoxon signed-rank test. 
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If the same analyses are carried out for the optimizations with long-only con-

straints, most results remain equal (see Table 4 and 5), e.g. the estimation approaches of 

Frost/Savarino and Jorion outperform the other approaches and the standard optimiza-

tion of Markowitz dominates the procedure of Michaud. Interestingly, the classical his-

torical estimator seems to benefit most from the long-only constraints and evidently 

outperforms the remaining estimators within the approaches of Markowitz and Mi-

chaud. It appears as if this is a consequence of eliminated outliers, which only occur if 

short sales are allowed. 

 

Table 4 about here 
Table 5 about here 

 
The results for the “no borrowing and lending” case with 0≤X≤1, which is also the 

original implementation of Michaud, are shown in Table 6 and 7. Within the optimiza-

tion of Markowitz, the estimation approaches of Frost/Savarino and Jorion still lead to 

the best results. However, the classical historical estimator performs almost as good as 

these estimators. In this setting, the comparison of Markowitz and Michaud leads to 

ambiguous outcomes. The equally weighted as well as the minimum variance portfolio 

perform slightly better in the optimization procedure of Michaud, but the optimization 

of Markowitz wins for the other estimators, including the classical historical estimator, 

which leads to the best results within Michaud’s procedure. 

 

Table 6 about here 
Table 7 about here 

 
After dealing with an observation period of 60 months, we demonstrate the impact of a 

varying time horizon. In Figure 2 and 3 the respective results in the “no constraints” 

case are visualized. The exhibited average preference values are the overall averages 

resulting from the 10,000 optimizations (measure (A)ϕ  according to (16)). In addition to 

the considered strategies, the figures contain a strategy “Max”, which stands for the 
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knowledge of the true parameters and consequently characterizes the average of the 

maximum achievable preference values. As expected, it can be found that the average 

preference values are strictly increasing with longer observation periods as the estima-

tion error for both parameters is decreasing.16 However, the degree of this behavior is 

very different for the approaches: For very short observation periods, the equally 

weighted and Ledoit/Wolf estimation strategy lead to relatively high preference values. 

By contrast, if the observation period becomes longer, at the latest for the case of 84 

months, the approaches where the return of every stock is estimated individually per-

form better. Although the approach of Frost/Savarino performs slightly poorer than the 

classical historical estimator and the approach of Jorion for very long observation pe-

riods, it is the approach with the best overall performance as it works very well for short 

observation periods, too. This is true for both the optimization procedure of Markowitz 

and the procedure of Michaud. 

 

Figure 2 about here 
Figure 3 about here 

 
Figure 4 and 5 show the corresponding results in the “long-only constraints” case. As 

expected, the maximum achievable average preference value “Max” is significantly 

lower but the constraint leads to a cut-off of very low preference levels since extreme 

weights are avoided. This results in better outcomes for short observation periods to a 

large extent. Estimators which rely on individual parameters for expected returns in-

stead of grand means benefit most from this characteristic as the usage of grand means 

results in more balanced weights whether or not constraints are present. In comparison, 

the approach of Michaud cannot benefit from these constraints to the same degree but 

the overall performance is very similar to Markowitz. 

                                                 

16 Since we assume stationary returns, the estimation error converges to zero if the observation period 

goes to infinity. 
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Figure 4 about here 
Figure 5 about here 

 
In Figure 6 and 7 the “no borrowing and lending” case is presented. The stronger con-

straints lead to an additional reduction of the maximum preference level but also to a 

cut-off of low preference levels. In this setting, the length of the observation period has 

a rather low impact on the preference value. This shows that estimation errors play a 

minor role if this constraint is implemented. A comparison of Figure 6 and 7 confirms 

our finding that both optimization procedures lead to similar results when the portfolio 

weights are constrained to 0≤X≤1. 

 

Figure 6 about here 
Figure 7 about here 

 
Next, we compare the performance of the Markowitz and Michaud optimization in our 3 

settings (1: no constraints, 2: long-only constraints, 3: no borrowing and lending) for the 

classical historical estimator. As can be seen in Figure 8, it is advisable to implement a 

long-only constraint or even the 0≤X≤1 constraint for both the Markowitz and Mi-

chaud optimization if the chosen observation period is rather short, e.g. smaller than 60 

months. However, if the observation period is longer, the average preference value is 

considerably higher in the unconstrained case. Furthermore, in setting 1 and 2 the aver-

age preference loss of Michaud in comparison to Markowitz is quite high for small ob-

servation samples, whereas the preference values are similar for long estimation pe-

riods. In the third setting, the results of Markowitz and Michaud are almost identically 

for all presented estimation periods. This supports previous studies which show that for 

an observation period of 216 months both procedures lead to almost identical results if 

setting 2 or 3 is implemented. However, our analyzes show that in all situations where 

estimation errors are most relevant, that is for the unconstrained setting and the long-
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only constraints in combination with short observation periods, Markowitz clearly out-

performs Michaud. 

 

Figure 8 about here 
 

Finally, we analyze the best performing approach, the estimation strategy of 

Frost/Savarino. This strategy not only performs very good for long observation periods 

but also outperforms all other approaches for short observation periods, regardless of 

whether constraints are considered or not. Again, we find an advantage of the standard 

Markowitz optimization (see Figure 9). In contrast to the classical historical estimator, 

the curves “no constraints”, “long-only constraints”, and “no borrowing and lending” do 

not intersect. The preference level for the unconstrained case is higher for all considered 

observation periods, even if the difference is lower for small samples. Thus, in most 

situations it seems advisable to implement the Frost/Savarino estimation strategy with-

out constraints using the Markowitz optimization. 

 

Figure 9 about here 
 

We conducted several robustness checks to ascertain meaningful results. First, we tested 

several common risk aversion coefficients (λ = 1, 1.5, 2, 2.5, 3), and 150 instead of 100 

observable time series per true parameter. All results presented here were robust to these 

modifications. Second, we applied all analyses to a larger data set consisting of 20 in-

stead of 10 stocks, which mainly influences the complexity of the variance-covariance 

matrix. In the unconstrained case, we detect the maximum average preference value to 

be significantly higher compared to the universe of 10 stocks, which is a consequence of 

the improved diversification possibilities. Consequently, the average preference values 

for estimation strategies which apply individual means are higher for long observation 

periods. For short observation periods the opposite is true as the negative impact of the 

more complex variance-covariance matrix – a higher estimation error – becomes appar-
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ent. In this case, we find that it is recommendable to rely on strategies using the shrin-

kage estimator LWΣ̂  for the variance-covariance matrix. Again, the estimation strategy 

of Frost/Savarino shows a very stable performance and Markowitz outperforms Mi-

chaud. The results using long-only constraints correspond to the results for 10 stocks to 

a large extent except the fact that the higher estimation error leads to reduced average 

preference values for small observation periods.  

 

6. CONCLUSION 
In the following our findings are summarized:  

1. The optimization procedure of Markowitz possesses in nearly every case a supe-

rior performance compared to Michaud. This is especially true in situations where esti-

mation errors are most serious, notably the unconstrained and long-only constrained 

settings with short observation periods. 

2. For short observation periods strategies using the grand mean perform quite well. 

Moreover, the effect of implementing constraints is rather small for these estimators. 

However, for longer periods the estimation of individual expected returns pays off.  

3. Similarly, for strategies estimating individual expected returns, applying long-

only constraints or weights between 0 and 1 is reasonable when the estimation is based 

on short observation periods. However, for longer observation periods, the inclusion of 

constraints involves considerable reduced preference values. 

4. Altogether, the estimation strategy of Frost/Savarino has shown the best overall 

performance (no constraints/long-only constraints/no riskless borrowing and lending; 

Markowitz/Michaud; short/long observation period). For this strategy, it is profitable (if 

possible) not to insert long-only constraints irrespective of the estimation period, as the 

average preference value for the unconstrained case is larger than for the constrained 
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cases even for short observation periods. For longer time series of returns, the advantage 

of the unconstrained case increases. 
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Table 1 

Composition of the Implemented Estimation Strategies 

Estimator
Classic

(C )
Minimum Variance Portfolio

(MV)
Jorion

(J)
Equally Weighted Portfolio

(EW)
Ledoit/Wolf

(LW)
Frost/Savarino

(FS)

0μ̂histμ̂ JSμ̂

0Σ̂

histΣ̂

LWΣ̂
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Table 2 

Performance Index Φ1 to Compare Different Approaches (“no constraints” case with T=60) 

 
  

    w ins against C EW MV LW J FS C EW MV LW J FS
C - 63.9% *** 73.8% *** 63.5% *** 10.1% *** 20.8% *** 99.4% *** 64.1% *** 78.2% *** 63.9% *** 49.1% *** 31.0% ***
EW 36.1% *** - 70.9% *** 46.5% *** 23.0% *** 5.7% *** 64.3% *** 60.1% *** 76.0% *** 50.3% 35.7% *** 7.8% ***
MV 26.2% *** 29.1% *** - 26.5% *** 13.8% *** 2.6% *** 52.6% *** 29.2% *** 85.2% *** 28.6% *** 24.5% *** 3.6% ***
LW 36.5% *** 53.5% *** 73.5% *** - 23.6% *** 6.2% *** 64.4% *** 55.0% *** 78.0% *** 54.8% *** 36.1% *** 8.5% ***
J 89.9% *** 77.0% *** 86.2% *** 76.4% *** - 32.4% *** 97.4% *** 77.2% *** 88.7% *** 77.1% *** 89.1% *** 44.2% ***
FS 79.2% *** 94.3% *** 97.4% *** 93.8% *** 67.6% *** - 93.9% *** 94.5% *** 97.9% *** 94.3% *** 78.8% *** 80.8% ***
C 0.6% *** 35.7% *** 47.4% *** 35.6% *** 2.6% *** 6.1% *** - 35.7% *** 53.0% ** 35.6% *** 8.4% *** 11.7% ***
EW 35.9% *** 39.9% *** 70.8% *** 45.1% *** 22.8% *** 5.5% *** 64.3% *** - 76.1% *** 43.2% *** 35.6% *** 7.5% ***
MV 21.8% *** 24.0% *** 14.9% *** 22.0% *** 11.4% *** 2.1% *** 47.0% ** 23.9% *** - 23.6% *** 18.9% *** 2.8% ***
LW 36.2% *** 49.7% 71.4% *** 45.2% *** 22.9% *** 5.7% *** 64.4% *** 56.9% *** 76.4% *** - 35.7% *** 7.8% ***
J 50.9% *** 64.3% *** 75.5% *** 63.9% *** 10.9% *** 21.2% *** 91.6% *** 64.5% *** 81.1% *** 64.3% *** - 31.9% ***
FS 69.0% *** 92.2% *** 96.4% *** 91.6% *** 55.8% *** 19.2% *** 88.3% *** 92.5% *** 97.2% *** 92.2% *** 68.1% *** -

* Significant at the 10 percent level.
** Significant at the 5 percent level.
*** Significant at the 1 percent level.

Markowitz Michaud
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Table 3 

Performance Index Φ2 to Compare Different Approaches (“no constraints” case with T=60) 

 
 

  

    w ins against C EW MV LW J FS C EW MV LW J FS
C     ‐ 63% 89% 63% 0% 0% 100% 63% 94% 62% 59% 3%
EW 37%     ‐ 87% 42% 13% 2% 99% 100% 92% 64% 42% 3%
MV 11% 13%     ‐ 11% 1% 0% 84% 13% 100% 13% 8% 0%
LW 37% 58% 89%     ‐ 14% 4% 99% 63% 95% 64% 42% 3%
J 100% 87% 99% 86%     ‐ 3% 100% 87% 99% 87% 100% 11%
FS 100% 98% 100% 96% 97%     ‐ 100% 98% 100% 98% 100% 95%
C 0% 1% 16% 1% 0% 0%     ‐ 1% 33% 1% 0% 0%
EW 37% 0% 87% 37% 13% 2% 99%     ‐ 92% 38% 42% 2%
MV 6% 8% 0% 5% 1% 0% 67% 8%     ‐ 8% 2% 0%
LW 38% 36% 87% 36% 13% 2% 99% 62% 92%     ‐ 42% 2%
J 41% 58% 92% 58% 0% 0% 100% 58% 98% 58%     ‐ 3%
FS 97% 97% 100% 97% 89% 5% 100% 98% 100% 98% 97%     ‐

Markowitz Michaud
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Table 4 

Performance Index Φ1 to Compare Different Approaches (“long-only constraints” case with T=60) 

 
  

    w ins against C EW MV LW J FS C EW MV LW J FS
C     ‐ 80.5% *** 83.4% *** 79.7% *** 36.6% *** 43.4% *** 85.7% *** 82.6% *** 86.4% *** 82.3% *** 68.4% *** 60.7% ***
EW 19.5% ***     ‐ 39.0% *** 26.9% *** 11.1% *** 7.1% *** 27.6% *** 61.4% *** 64.6% *** 52.7% *** 20.4% *** 13.2% ***
MV 16.6% *** 61.0% ***     ‐ 22.2% *** 8.3% *** 6.1% *** 23.5% *** 48.6% *** 70.4% *** 47.8% *** 15.9% *** 12.1% ***
LW 20.3% *** 73.1% *** 77.8% ***     ‐ 11.8% *** 7.6% *** 28.4% *** 61.4% *** 67.4% *** 60.9% *** 21.1% *** 14.6% ***
J 63.4% *** 89.0% *** 91.7% *** 88.2% ***     ‐ 46.1% *** 77.9% *** 86.6% *** 90.1% *** 86.3% *** 81.8% *** 66.6% ***
FS 56.6% *** 92.9% *** 93.9% *** 92.4% *** 53.9% ***     ‐ 71.7% *** 90.5% *** 91.6% *** 90.2% *** 72.4% *** 80.2% ***
C 14.3% *** 72.4% *** 76.5% *** 71.6% *** 22.1% *** 28.4% ***     ‐ 73.2% *** 79.5% *** 72.8% *** 37.5% *** 40.6% ***
EW 17.4% *** 38.6% *** 51.5% *** 38.6% *** 13.4% *** 9.5% *** 26.8% ***     ‐ 58.5% *** 39.8% *** 19.4% *** 11.8% ***
MV 13.6% *** 35.4% *** 29.6% *** 32.6% *** 9.9% *** 8.4% *** 20.5% *** 41.5% ***     ‐ 34.6% *** 12.4% *** 10.4% ***
LW 17.7% *** 47.4% *** 52.2% *** 39.1% *** 13.7% *** 9.8% *** 27.2% *** 60.2% *** 65.4% ***     ‐ 19.6% *** 12.2% ***
J 31.6% *** 79.7% *** 84.1% *** 78.9% *** 18.2% *** 27.6% *** 62.5% *** 80.6% *** 87.6% *** 80.4% ***     ‐ 47.3% ***
FS 39.3% *** 86.8% *** 87.9% *** 85.5% *** 33.4% *** 19.8% *** 59.4% *** 88.2% *** 89.6% *** 87.8% *** 52.7% ***     ‐

* Significant at the 10 percent level.
** Significant at the 5 percent level.
*** Significant at the 1 percent level.

Markowitz Michaud
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Table 5 

Performance Index Φ2 to Compare Different Approaches (“long-only constraints” case with T=60) 

 
  

    w ins against C EW MV LW J FS C EW MV LW J FS
C     ‐ 82% 86% 83% 11% 15% 100% 83% 86% 82% 76% 41%
EW 18%     ‐ 62% 36% 15% 9% 29% 83% 90% 65% 20% 9%
MV 14% 38%     ‐ 14% 11% 9% 21% 51% 97% 48% 12% 10%
LW 17% 64% 86%     ‐ 15% 9% 30% 77% 93% 76% 20% 12%
J 89% 85% 89% 85%     ‐ 27% 100% 89% 92% 87% 97% 61%
FS 85% 91% 91% 91% 73%     ‐ 100% 94% 93% 94% 96% 96%
C 0% 71% 79% 70% 0% 0%     ‐ 72% 84% 72% 13% 14%
EW 17% 17% 49% 23% 11% 6% 28%     ‐ 80% 34% 18% 8%
MV 14% 10% 3% 7% 8% 7% 16% 20%     ‐ 16% 10% 8%
LW 18% 35% 52% 24% 13% 6% 28% 66% 84%     ‐ 18% 8%
J 24% 80% 88% 80% 3% 4% 87% 82% 90% 82%     ‐ 22%
FS 59% 91% 90% 88% 39% 4% 86% 92% 92% 92% 78%     ‐

Markowitz Michaud
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Table 6 

Performance Index Φ1 to Compare Different Approaches (“no borrowing and lending” case with T=60) 

 
  

     wins against C EW MV LW J FS C EW MV LW J FS
C     - 99.5% *** 98.0% *** 99.0% *** 40.2% *** 43.5% *** 72.0% *** 99.5% *** 98.2% *** 99.5% *** 78.1% *** 78.7% ***
EW 0.5% ***     - 51.3% * 47.2% *** 0.4% *** 0.6% *** 0.1% *** 47.3% * 51.0% 45.3% *** 0.3% *** 0.2% ***
MV 2.0% *** 48.7% *     - 45.8% *** 1.7% *** 1.9% *** 1.3% *** 48.7% * 44.8% *** 47.8% *** 1.3% *** 2.6% ***
LW 1.0% *** 52.8% *** 54.2% ***     - 0.8% *** 1.0% *** 0.4% *** 52.8% *** 53.9% *** 52.2% *** 0.3% *** 1.0% ***
J 59.8% *** 99.6% *** 98.3% *** 99.2% ***     - 43.2% *** 74.0% *** 99.6% *** 98.5% *** 99.6% *** 80.0% *** 80.0% ***
FS 56.5% *** 99.5% *** 98.1% *** 99.0% *** 56.8% ***     - 72.6% *** 99.5% *** 98.2% *** 99.4% *** 78.0% *** 80.8% ***
C 28.0% *** 99.9% *** 98.7% *** 99.6% *** 26.0% *** 27.4% ***     - 99.9% *** 98.9% *** 99.9% *** 83.9% *** 80.7% ***
EW 0.5% *** 52.7% * 51.3% * 47.2% *** 0.4% *** 0.6% *** 0.1% ***     - 51.0% *** 45.3% *** 0.3% *** 0.2% ***
MV 1.8% *** 49.0% 55.2% *** 46.1% *** 1.5% *** 1.9% *** 1.2% *** 49.0%     - 48.3% *** 1.2% *** 2.4% ***
LW 0.5% *** 54.7% *** 52.2% *** 47.8% *** 0.4% *** 0.6% *** 0.1% *** 54.7% *** 51.7% **     - 0.3% *** 0.3% ***
J 21.9% *** 99.7% *** 98.7% *** 99.7% *** 20.0% *** 22.0% *** 16.2% *** 99.7% *** 98.8% *** 99.7% ***     - 58.9% ***
FS 21.3% *** 99.8% *** 97.4% *** 99.0% *** 20.0% *** 19.2% *** 19.3% *** 99.8% *** 97.7% *** 99.7% *** 41.2% ***     -

* Significant at the 10 percent level.
** Significant at the 5 percent level.
** Significant at the 1 percent level.

Markowitz Michaud
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Table 7 

Performance Index Φ2 to Compare Different Approaches (“no borrowing and lending” case with T=60) 

 
 

    wins against C EW MV LW J FS C EW MV LW J FS
C  - 100% 98% 100% 53% 49% 86% 100% 99% 100% 92% 95%
EW 0%  - 49% 48% 0% 0% 0% 46% 48% 47% 0% 0%
MV 2% 51%  - 46% 2% 2% 2% 51% 39% 49% 1% 2%
LW 0% 52% 54%  - 0% 0% 0% 52% 55% 52% 0% 1%
J 47% 100% 98% 100%  - 51% 89% 100% 99% 100% 94% 95%
FS 51% 100% 98% 100% 49%  - 80% 100% 98% 100% 92% 96%
C 14% 100% 98% 100% 11% 20%  - 100% 99% 100% 98% 92%
EW 0% 54% 49% 48% 0% 0% 0%  - 48% 47% 0% 0%
MV 1% 52% 61% 45% 1% 2% 1% 52%  - 51% 1% 2%
LW 0% 53% 51% 48% 0% 0% 0% 53% 49%  - 0% 0%
J 8% 100% 99% 100% 6% 8% 2% 100% 99% 100%  - 60%
FS 5% 100% 98% 99% 5% 4% 8% 100% 98% 100% 40%  - 

Markowitz Michaud
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Figure 1 

Procedure of the Simulation Study 
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Figure 2 

Average Preference Values φ for Markowitz (“no constraints” case) 
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Figure 3 

Average Preference Values φ for Michaud (“no constraints” case) 
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Figure 4 

Average Preference Values φ for Markowitz (“long-only constraints” case) 
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Figure 5 

Average Preference Values φ for Michaud (“long-only constraints” case) 
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Figure 6 

Average Preference Values φ for Markowitz (“no borrowing and lending” case) 

 
 

  

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 50 100 150 200 250

Av
er
ag
e 
Pr
ef
er
en

ce
 V
al
ue

Length of Observation Period in Months

C

EW

MV

LW

J

FS

Max



 35

Figure 7 

Average Preference Values φ for Michaud (“no borrowing and lending” case) 
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Figure 8 

Average Preference Values φ (Classical Historical Estimation Strategy) 
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Figure 9 

Average Preference Values φ (Estimation Strategy of Frost/Savarino) 
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