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1. Introduction 

During the recent ten years credit risk evaluation has been one of the most challenging topics 

in the field of banking and finance. Best effort has been put into the development of portfolio 

models that specify the distribution of a credit portfolio on a certain risk horizon. From this 

analysis arises the possibility to quantify the portfolio risk due to risk measures like Value at 

Risk (VaR) and Expected Loss (EL), or the so-called unexpected loss (UL=VaR−EL).1 In risk 

management these measures are used to identify provisions and economic capital that should 

be raised by a bank to protect itself against future losses from credit defaults.2 

 

Well known (commercial) models are CreditPortfolioViewTM, CreditRisk+TM, 

CreditPortfolioManagerTM, and CreditMetricsTM, that all have influenced academic research 

and credit risk applications in banks.3 After all, a one-factor version of CreditMetricsTM, that 

has its origin in the seminal model due to Merton (1974, 1977) and Black and Scholes (1973), 

builds the fundament of the capital adequacy formula for credit risk in the new capital 

standards (Basel II) finalized by the Basel Committee On Banking Supervision (2004).4 

 

All of these commercial and supervisory models are two state discrete-time portfolio models 

and they mainly differ in the assumptions of the distribution of the input factor5 and their 

attitude towards credit risk arising from changes in the portfolio value. CreditMetricsTM and 

CreditPortfolioManagerTM evaluate altering portfolio values due to changes in the credit 

spreads of loans, that are mainly caused by changes of the rating grade (rating migrations) and 

therefore of the debitor’s probability of default. These models make use of a mark-to-market 

(MTM) paradigm.6 Other models like CreditPortfolioViewTM or CreditRisk+TM only account 

for losses due to the defaults of loans. These models follow the so-called default mode (DM) 

paradigm. 

 

However, all considered models agree in the fact, that the value of the credit portfolio is only 

observed with respect to a predefined time horizon (typically one year) that is consequently 
                                                 
1 See Basel Committee On Banking Supervision (1999), p. 14. 
2 See e.g. Marisson (2002), pp. 19-23, and Chorafas (2005), pp. 32-35. 
3 See Crosbie and Bohn (2003), Credit Suisse Financial Products (1997), Wilson (1997a,b) and Gupton, Finger, 
and Bathia (1997) for details about this models. 
4 See Basel Committee On Banking Supervision (2005) as well as Finger (1999, 2001), Wilde (2001) and Gordy 
(2003). 
5 However, the results of the models are quite similar if parameterised from a single data source. See Koyluoglu, 
and Hickmann (1998a,b) or Hamerle and Rösch (2004). 
6 See Basel Committee On Banking Supervision (1999) p. 22. 
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equal to the time horizon in Basel II. Obviously, this time horizon generally does not 

correspond with the actual maturity of the loans in a credit portfolio.7 However, for such 

models, neither a well described theoretic approach nor an empirical implementation exists, 

that discusses a possible impact of the time horizon and maturity of loans on the risk measure 

of credit portfolios. Particularly, this is valid for DM-models like the one of Basel II - 

although the credit risk quantification in Basel II contains a maturity adjustment for long-term 

loans. 

 

Presently, few literature analyse the effect of the maturity of loans in the MTM paradigm. 

Kalkbrener and Overbeck (2001, 2002) estimate the distributions of the market values of 

credit portfolios with different maturities at the end of a one-year planning horizon. Their 

analysis is based on the one-year migration matrix and the maturity varying credit spreads.8 

They conclude, that the maturity adjustment of Basel II is conservative in comparison to their 

results. While Kalkbrener and Overbeck use Monte Carlo simulations, Barco (2004) analyses 

this maturity effect in a similar model analytically.9 He states, that the capital curves for the 

maturity adjustment are much flatter than the one of Basel II. A similar approach is 

introduced by Grundke (2003), who uses different spread curves that are generated from the 

Merton (1974) model. He concludes, that the Basel II adjustment is at least explainable for 

reasonable spread curves.10 However, all these approaches suffer from the problem, that they 

measure the effect of maturity of loans in the MTM-paradigm, whereas Basel II as well as 

most portfolio models in banks (like CreditPortfolioViewTM or CreditRisk+TM) are DM- 

models for which no analysis exists, that deals with the influence of longer maturities on 

credit risk.11 In addition, the concrete derivation of the Basel II maturity adjustment is not 

disclosed in detail so far.12 

 

In order to account for maturity effects when calculating economic capital in a DM-model the 

default probability is one of the most important parameter. Thus, in first step we have to 

                                                 
7 Especially capital investment loans of companies have longer maturities than one year. 
8 The authors use data series from Standard & Poor’s, KMV German Corporates for the migration matrices as 
well as CreditMetricsTM and Gordy and Heitfield (2001) for credit spreads. 
9 He uses data from Standard & Poor’s for the migration matrices and LI (1998) as well as Kiesel, Perraudin, and 
Taylor (2003) for the credit spreads. 
10 Especially, this is valid for a “CCC”-rated bond. For the two other rating classes investigated (“AAA” and 
“BBB”) his maturity adjustment still differs from the Basel II adjustment. 
11 Li, Song, and Ong (1999) discuss the effect of the maturity in a default mode model but with respect to shorter 
time horizons than one year. 
12 Some notes are made in Basel Committee On Banking Supervision (2005), pp. 9-10. Nevertheless, these 
explanations are far from being applicable in a straight forward manner. 
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concretize the term default especially with respect to the maturity of a loan. There are two 

possibilities to understand default until maturity of a loan in a discrete-time framework. 

 

Firstly, because the market value of a loan with respect to its current rating often is not 

observable and13 the loan possibly is intended to be held to maturity (buy and hold)14 the bank 

only perceives default if a loan is not repaid.15 Thus, in such a situation – considering the 

discrete nature of credit portfolio models - default occurs if and only if the value of the 

borrowers assets falls below a certain barrier at maturity. To calculate the economic capital on 

the basis of this type of default we develop a model approach which we call “Capital to 

Maturity”-approach. Secondly we take into account that banks should analyse (perhaps by the 

use of ratings) the loans of their credit portfolio continuously. A bank at least should rate a 

borrower at certain points in time, e.g. each year. In this context default occurs if the borrower 

is overindebted at one of the specified rating dates. Since economic capital has to be adjusted 

according to the corresponding default probabilities at each points in time the development of 

a model to determine the economic capital on the basis of such a meaning of default we 

denote the “Capital for One Period”-approach. To conclude, with our distinction between a 

“Capital to Maturity”-approach and a “Capital for One Period”-approach we are in line with 

the Committee On Banking Supervision that differentiates between a “liquidation period”-

approach and a “constant time horizon for all asset classes”-approach with basically the same 

meaning as the approaches mentioned above.16 

 

Thus, with this article we make a contribution to the ongoing scarce research on the influence 

of different maturities of loans on credit risk based on the framework of Merton (1974) and 

Vasicek (1987, 1991) which in turn is the bottom of the Basel II-model. We develop two 

possible solutions how the economic capital requirements of a individual loan (quantified by 

its UL contribution the portfolio UL) rises with its maturity. This theoretically derived 

maturity adjustments are implemented and analysed empirically based on the average default 

rates from four rating agencies. In addition, both adjustments are compared with the one’s of 

                                                 
13 See Basel Committee On Banking Supervision (1999), p. 17. 
14 Perhaps due to limited markets, the credit could not be traded before maturity. 
15 A similar proceeding is used in the IAS 39, where loans and receivables shall be “measured at amortised cost” 
if the fair value is not observable (IAS 39.46/47) and losses only occur, if there is “objective evidence that an 
impairment loss has been incurred” (IAS 39.63). This especially is valid for so called “held-to-maturity” 
investment (IAS 39.9). For details see European Union (2004). 
16 See Basel Committee On Banking Supervision (1999), p. 16. 
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Basel II since understanding differences between supervisory capital requirements and own, 

internal approaches may be one of the key Iss.s in bank’s credit risk management in future.17 

 

The rest of the paper is organized as follows: In section  2 we briefly review the one-factor 

credit portfolio model and derive the “Capital to Maturity”- and the “Capital for One Period”-

approach on the basis of Merton’s model. Section  3 describes the empirical implementation of 

the two paradigms and presents concrete parameters of a maturity adjustment formula. We 

finalize the paper with a conclusion in section  4. 

 

2. Modelling Maturity Effects in Ratings-Based Capital Rules 

In the following subsection  2.1 we highlight the main results of the model of Merton (1974) 

and Vasicek (1987, 1991, 2002).18 According to the framework, we derive the maturity effect 

on a single exposure, especially on the default probability, in subsection  2.2 and  2.3. We 

discuss the mentioned two different approaches. 

 

2.1 The Model Outline of Basel II and Vasicek 
We use a simple two state discrete-time portfolio model based on a DM paradigm with an 

ability-to-pay process.19 According to this approach, in t = 0 the possible loss of a credit 

portfolio at time horizon t = T is evaluated, and losses only result from defaulted loans. The 

state of default of a single credit is fixed if its asset return does not reach a given default point 

at t = T.20 A one-factor model for the asset returns of different credits considers default 

correlations within the portfolio. Concretely, with reference to Merton (1974) and Vasicek 

(1987), we assume that21 

(a) the observed bank holds loans of various borrowers i (i ∈ {1,…,n}) with respective 

exposure Li,  

(b) the logarithm iln(A )  of the value iA  of the firms assets of each borrower i follows a 

Wiener process with constant drift iµ  and volatility iσ , 
                                                 
17 See e.g. Chorafas (2005), pp. 32, 61-66. 
18 This model often called the one-factor-model of CreditMetrics, see Gupton, Finger, and Bhatia (1997) and 
Finger (1999). 
19 For definitions of a “two state discrete-time portfolio model” see Rösch (2004), p. 311, and Liebig, Hamerle, 
and Rösch (2003), p. 3, of the “DM paradigm” see Basel Committee On Banking Supervision (1999), pp. 17-18, 
and of the “ability-to-pay process” see Bluhm and Overbeck (2003), p. 35, and Crosbie (1999). 
20 In this paper T represents a standardised time horizon, e.g. T = 1 year. Modified time horizons are treated in 
the following sections and denoted with M. 
21 To keep track of the model, stochastic variables are marked with a tilde “~”. 
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(c) default of borrower i occurs at time t = T, if the value (T)
iA  of the firms assets falls below 

a barrier (T) (0)
i i iB B exp(r T)= ⋅ ⋅  in which ri stands for the (continuous) contractual interest 

rate. 

 

As a result of assumption (b) the value (T)
iA  of the firms assets at t = T can be written as 

(T) (0) (T) (T) (T)
i i i i iln(A ) ln(A ) a= + µ + σ ⋅  (1) 

with mean (T)
i i Tµ = µ ⋅  and standard deviation (T)

i i Tσ = σ ⋅ . The variable (T)
ia ~ N(0,1)  is 

standard normal distributed and can be interpreted as the normalized (continuous) return of 

iA  in the period from t = 0 to t = T. Due to assumption (c) the default probability of a single 

borrower i at t = 0 can be quantified as 

( )(0,T) (T) (T) (0,T)
i i i iPD P A B N(b )= < =  

with ( )(0,T) (0) (0) (T) (T)
i i i i,eff ib ln B A⎡ ⎤= − µ σ⎣ ⎦  and (T)

i,eff i i( r ) Tµ = µ − ⋅ . (2) 

In the literature (0,T)
ib  is denoted as the default point.22 Since the default probability (0,T)

iPD  is 

assumed to be exogenously given as a credit rating and not calculated on the basis of equation 

(2), these models are often called “ratings-based”.23 Precisely, borrowers are divided into 

different risk buckets (rating grades) and for each risk bucket the probability of default is 

determined empirically over a time period of length T.24 However, for a model based 

investigation of the maturity effect it seems to be a good choice to take equation (2) as a basis, 

since the variables addressed (financial leverage ( (0) (0)
i iB A ), expected return after cost of 

outside capital ( (T)
i,effµ ), and risk of return (T)

iσ ) mainly influence the credit rating.25 

 

The potential gross loss rate (0,T)
nΛ  of the credit portfolio (before recovery) is26 

                                                 
22 See Crosbie and Bohn (2003), p. 7, Crouhy, Galai, and Mark (2000), pp. 373-374, or Ong (1999), p. 85. 
23 See e.g. Gordy (2003). 
24 Due to Basel II, at least seven rating grades for non-defaulted loans are compulsory, and the probability of 
default is the long-run average of the one-year default rates. See Basel Committee On Banking Supervision 
(2004), paragraphs 404 and 447. Due to this approach, all loans in one risk bucket are treated equally. In the 
context under consideration, the index i can be used for a specific risk bucket as well as for an individual loan of 
this bucket. 
25 In practice, credit ratings and predictions of default probabilities are often done via discriminate analysis or 
binary regressions, see Altmann (2001) or Blochwitz, Liebig, and Nyberg (2000). Models based on the original 
Merton framework are implemented by Moody’s KMV (EDFTM RiskCalc™), see Dwyer, Kocagil, and Stein 
(2004), and by RiskMetrics Group (CreditGrades™), see Finger (2002). 
26 Like Vasicek (2002) we only consider the gross loss rate before recovery, i.e. the loss (rate) given default 
(LGD) is equal to one. This proceeding may be satisfied by the fact, that the IRB-model of Basel II only refers to 
the default rate of the portfolio rather than the loss rate. Precisely, the LGD is treated as a constant in the 
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( )
n n

(0, T)(T) (T)(0, T)
n i i i i i

i 1 i 1

I A B :
= =

Λ = ω ⋅ < = ω ⋅∑ ∑  with 
n

i i i
i 1

L L
=

ω = ∑ ,27 (3) 

where (0, T)
i  is the loss rate of each individual loan. In order to derive an analytical solution, 

we make some additional assumptions. According to Vasicek (1991) and Gordy (2003) we 

accept that 

(d) the normalised returns (T)
ia  of all borrowers i = {1,…,n} follow a classical one factor 

model with only non negative correlations (T) (T)
i j i jcorr(a ,a ) 0= ρ ⋅ρ ≥ , with i, 

j ∈ {1,…,n} and i ≠ j, 

(e) the portfolio is “infinitely granular” or “asymptotic invariant”. 

 

With these assumptions the loss rate (0,T) (0,T)
nn

lim : ∞→∞
Λ = Λ  of the (infinitely granular) portfolio 

can be analysed with respect to the risk measure Value at Risk (VaR), Expected Loss (EL) 

and Unexpected Loss (UL).28 Precisely, we may write the UL of the loss rate (0,T)
∞Λ  as a sum 

of the UL of each individual portfolio loss rate (0, T)
i  

( ) (0, T)(0,T)
n i i

i 1

UL : UL( )
∞

=

Λ = ω ⋅∑  (4) 

with the borrowers individual risk contribution to the portfolio-UL of 

(0, T) (0, T) (0, T)
i z i iUL( ) : VaR ( ) E( )= −  (5) 

with 1 z

(0,T) (T)1
(T) i i q

z i
i

N (PD ) x
VaR ( ) N

1
−

−⎛ ⎞− ρ ⋅
= ⎜ ⎟⎜ ⎟− ρ⎝ ⎠

 and (0, T) (0,T)
i iE( ) PD= . (6) 

Here ( )1 z

(T) (T)
1 zqx q x

− −=  is the (1−z)-quantile of (T)x .29 If a bank plans to meet a given target 

probability of default of (only) α, a bank should hold economic capital for each debtor i 

amounting to the respective UL contribution (times the exposure Li of the loan) in order to 

                                                                                                                                                         
foundation approach of the IRB model. In the advanced approach own models have to built up. Therefore, we 
keep at analysing the maturity effect on the default rate or gross loss rate rather than LGD. 
27 I(S) indicates the indicator function with I(S) = 1, if statement S is true, and I(S) = 0, otherwise. 
28 See appendix  A.1 for details. 
29 The equations (5) and (6) are similar to the capital requirements, like they are formulated in the IRB approach 
of Basel II, considering a maturity of one year (M = 1). Additionally, (T)

iPD  is the expected probability of default 
(PD) at time horizon of one year (T = 1 year) and ρi is the correlation (R), that is a function of (T)

iPD , accepting 
values between 0.12 and 0.24. For details, see Basel Committee On Banking Supervision (2004), paragraphs 272 
and 285. Like discussed in footnote 26, the LGD is set to 1. 
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protect itself from potential future losses.30 Since (0, T)
iUL( )  only depends on the individual 

parameters (0,T)
iPD  and iρ  but not on the other exposures in the portfolio, these capital 

charges are called “portfolio invariant”.31 The UL contribution is shown in Figure 1. It has a 

concave characteristic in (0,T)
iPD  for (0,T)

iPD 0.5< .32 Thus, the UL contribution is more 

sensitive to changes in (0,T)
iPD  if the probability of default is low than if it is high. 

 

- Figure 1 about here - 

 

This well known derivation of the portfolio invariant UL contribution builds the basic 

framework for following proceeding to develop economic capital. In credit risk management, 

the concrete time horizon ∆t = T of one year is often used, but we discuss the effect of longer 

maturities in the next sections  2.2 and  2.3.33 Since the economic capital requirement will 

increase with rising probability of default, we analyse the effect of longer maturity on the 

probability of default of an individual borrower in the context of the MERTON-model and 

how this circumstance influences the portfolio credit due to the VASICEK-model. As already 

mentioned, we consider two paradigms: the so called “Capital to Maturity”-approach, that 

considers a time horizon equal to the maturity of the loan, and the “Capital to Maturity”- 

approach, that accounts for a time horizon shorter than the maturity of the loan in a multi-

period framework. 

 

2.2 The “Capital to Maturity”-Approach 
As stated in the introduction we presume in this section, that the capital requirement for a loan 

hold by the bank amounts to the UL contribution until time to maturity of the loan. 

Theoretically, in the VASICEK-Model altering maturities t of (all) loans i = {1,…,n} in the 

portfolio just lead to modified probabilities of default (0,M)
iPD  in equation (2). Therefore, we 

firstly discuss the modification of the probability of default (0,M)
iPD  with respect to the 

                                                 
30 Here we additionally assume, that expected losses are covered by provisions, that reduce the economic capital. 
31 See Gordy (2003), p. 208. 
32 For PD > 0.5 the density function of the portfolio losses changes the characteristic, e.g. the median will be 
higher than PD with PD < 0.5, but lower if PD > 0.5. This leads to a declining UL contribution if PD > 0.5. For 
details see Vasicek (2002). 
33 Due to Basel II, the maturity M in the IRB foundation approach is set to M = 2.5. In the advanced IRB 
approach the values vary between one and five, i.e. M ∈ [1, 5]. 
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variable M in the context of MERTON (1974). After summing up the main results, we 

secondly give a conclusion how these results can be integrated in a capital formula. 

 

Precisely, we compare the probability of default of a loan with maturity t = T to one with 

maturity M = m⋅T and m 1≥ . The probability of default at t = m⋅T becomes34 

( )(0,m T) (m T)
i iPD N b⋅ ⋅=  with 

(0,T)1
i(m T)

i i
N (PD ) m 1b k

m m

−
⋅ −= − ⋅  and (T) (T)

i i,eff ik = µ σ . (7) 

Thus, the probability of default (0,m T)
iPD ⋅  at t = m⋅T depends on the probability of default 

(0,T)
iPD  at t = T and a parameter ki, that can be retrieved from the return after cost of outside 

capital ( (T)
i,effµ ) and its standard deviation ( (T)

iσ ). Furthermore, we want to analyse in which 

way an extension of maturity (from T to m⋅T) influences the probability of default. 

Concretely, we get for m > 1 
(0,T) (0,T)1 1
i i(0,m T) (0,T) (0,T)1

i i i i i
N (PD ) m 1 N (PD )PD PD k N (PD ) k

m m m 1

− −
⋅ −−> ⇔ − ⋅ > ⇔ < −

+
 (8) 

and thus, the probability of default (0,m T)
iPD ⋅  will rise in comparison to (0,T)

iPD  if ki or (0,T)
iPD  

are low. Consequentially, the probability of default (0,m T)
iPD ⋅  is more likely to rise compared 

to (0,T)
iPD  for low probabilities of default (0,T)

iPD  than for high values of (0,T)
iPD .  

 

We receive a similar result if we consider situations with m nearly equal to 1 since35 
(0,T)1
i(0,m T) (0,T)1

i i i im 1 3 3
m 1

N (PD ) m 1PD m k 0 k 0.5 N (PD )
2 m 2 m

−
⋅ −

=
=

+⎛ ⎞∂ ∂ = − − ⋅ > ⇔ < − ⋅⎜ ⎟⋅ ⋅⎝ ⎠
. (9) 

To sum up, an extension of maturity (from M = T to M = m⋅T) for low probabilities (0,T)
iPD  

leads to a stronger increase of the probability of default than for high probabilities (0,T)
iPD . 

This impact is expected to strengthen when examining the UL contribution, since the function 

UL subject to PD has a concave characteristic. This connection will be analysed next. 

 

For the UL contribution of a loan of borrower i with maturity m⋅T we receive 
(0,m T) (0,m T) (0,m T)(CtM) (CtM) (CtM)
i z i iUL ( ) : VaR ( ) E ( )⋅ ⋅ ⋅= −  (10) 

                                                 
34 See appendix  A.2 for a derivation of (7).  
35 For an analysis of the derivations of the probability of default in the Merton-model also see Farmen, Fleten, 
Westgaard, and Van Der Wijst (2004). 
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with 1 z

(0,m T) (m T)1
i i q(0,m T)(CtM)

z i
i

N (PD ) x
VaR ( ) N

1
−

⋅ ⋅−
⋅

⎛ ⎞− ρ ⋅
= ⎜ ⎟⎜ ⎟− ρ⎝ ⎠

 and (0,m T) (0,m T)(CtM)
i iE ( ) PD⋅ ⋅=  (11) 

and 
(0,T)1
i(0,m T)

i i
N (PD ) m 1PD N k

m m

−
⋅ ⎛ ⎞−= − ⋅⎜ ⎟

⎝ ⎠
. (12) 

Obviously, only the parameters (0,T)
iPD , iρ , m, and ki have to be estimated to determine the 

“maturity adjusted” (0,m T)(CtM)
iUL ( )⋅ . Since the first two parameters36 are ascertainable from 

the one period ratings based model37 and the parameter m is given, it is only necessary to 

estimate (T) (T)
i i,eff A,ik = µ σ . Because (T)

i,effµ  und (T)
iσ  are not available the estimation of ki has to 

be based on empirical data using equation (12) and empirical cumulative default rates (to 

estimate (0,m T)
iPD ⋅ ). The concrete (“matching”) procedure for such an implicit model based 

estimation of (CtM)
i ik : k=  will be explained in the empirical section  3.38 

 

In contrast to this, an alternative approach in order to calculate the UL at maturity m⋅T is to 

determine the UL at maturity T and adjust it by a function, that depends on m. Precisely, from 

(10) and (12) we receive the UL contribution of the loan via an equation 

( )(0,m T) (0,T) (0,T)(CtM) (CtM) (CtM)
i i i i iUL ( ) UL ( ) g PD ,k ,m,⋅ = ⋅ ρ  (13) 

with 

1 z

1 z

(0,m T) (T)1
i i q (0,m T)

i
(0,m T)

ii(0,T)(CtM)
i i i (0,T) (0,T) (T)1i i i q (0,T)

i
i

N (PD ) x
N PD

1UL( )g (PD ,k ,m, )
UL( ) N (PD ) x

N PD
1

−

−

⋅−
⋅

⋅

−

⎛ ⎞− ρ ⋅
−⎜ ⎟⎜ ⎟− ρ⎝ ⎠ρ = =

⎛ ⎞− ρ ⋅
−⎜ ⎟⎜ ⎟− ρ⎝ ⎠

. (14) 

The function g(CtM) can be called “maturity adjustment” under the “Capital to Maturity”-

Paradigm. It could be determined, if the parameters (0,T)
iPD , ρi, m, and ki are known.  

 

If the parameters are not available, we have to approximate g(CtM) by a (simple) function 

which is fitted to the data. Such a function would allow for a capital formula (only depending 

                                                 
36 Due to the assumptions of the Vasicek-model correlation parameter ρi remains unchanged with different 
maturities m⋅T. 
37 For the determination of (0,T)

iPD  and ρi see e.g. Gordy and Heitfield (2002), p. 7, Rösch (2003), p. 312, 
Demey, Jouanin, Roget, and Roncalli (2004), p. 105, Düllmann and Trapp (2004), p. 8, Hamerle, Liebig, and 
Rösch (2003), p. 78 (for a Maximum Likelihood estimator) as well as Gordy (2000), p. 133, and Bluhm and 
Overbeck (2003), p. 40 (for a Method of Moments estimator). 
38 We use (CtM)

ik  with the index “CtM” since the concrete value depends on the described specific model. Of 

course, (0,m T)
iPD ⋅  could be used directly to obtain (0,m T)(CtM)

iUL ( )⋅ . 
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on the probability of default (0,T)
iPD ) that accounts for the maturity of a loan under the 

“Capital to Maturity”-approach.  

 

In the next section, we analyse the corresponding effect in the context of the “Capital for One 

Period” paradigm.  

 

2.3 The “Capital for One Period” approach 
Taking into account, that credit engagements are observed over time, i.e. the borrower is re-

rated after a certain period, say one year, a bank may only be interested in the risk 

contribution of a loan until the revaluation. According to the introduction we call this 

approach “Capital for One Period”. Thus, the time horizon for determining credit risk does 

not change with maturity of the loan as in the “Capital to Maturity”-approach. The economic 

capital is only specified for the next period, e.g. until the next annual financial statement. 

 

If the bank is not able to cancel a credit contract until maturity, it faces the problem, that the 

probability of default may increase over several periods until maturity and therefore the 

capital requirements do. If the bank is not able to raise additional economic capital for this 

credit, possibly it would violate the capital rules. To avoid such a situation, an adjustment of 

the Vasicek-formula is needed. Since obviously the change in the individual probability of 

default of the borrower is of interest, we firstly investigate its change over time in the Merton-

framework in a j-period context. Secondly, we suggest an adjustment based on the received 

results. 

 

The maturity of the loan is M = m⋅T with m > 1 and the debitor will be re-evaluated j−1 times 

(with j +∈ ) until time to maturity. Thus, the relevant points in time are th = nh⋅T with h = 

{0, 1, 2, 3, …, j} and nh a real number with 0 = n0 < n1 < n2 < ... < nj = m. Without loss of 

generality we may set n1 = 1. Especially, we are interested in the expected probability of 

default until maturity t = M = m⋅T evaluated at t = 0. We get 

j 1 j1 2 2 3 1 s 1 s

j
( t ,t )(0,m T) (0,T) ( t ,t ) ( t ,t ) (0,t ) ( t ,t )

i i i i i i i
s 2

PD PD PD PD ... PD PD PD− −⋅

=

= + ∆ + ∆ + + ∆ = + ∆∑  (15) 

with 

( )s 1 s s 1 s k 1 k

s 1
(t ,t ) ( t ,t ) ( t ,t )
i i i

k 1

PD : PD 1 PD− − −

−

=

∆ = ⋅ −∏ . (16) 
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The (conditional) probability of default k 1 k(t ,t )
iPD −  represents the probability of default at tk 

evaluated at t = 0, considering (only) the case, that the borrower has survived until tk−1. Thus, 

the value (0,m T)
iPD ⋅  depends on the probability of default (0,T)

iPD  in the first period and the 

marginal values s s 1( t ,t )
iPD −∆ , that can be interpreted as the increase of the probability of default 

for each additional period. These “marginal” probabilities of default can be calculated as39 

( ) ( ) ( )( )h h 1 h 1 h(t ,t ) (0,T) (0,t ) (0,t )1 1 1
i h 1 i i i op o,p 1,...,hPD N N PD ,..., N PD , N PD ;( )− −− − −

+ =∆ = − − ρ  (17) 

with the (unconditional) default probabilities 

( )h h(0,t ) (0,t )
i iPD N b=  and 

( )
h

(0,T)1
i h(0,t )

i i
h h

N PD n 1b k
n n

− −= − ⋅  (18) 

in which 1 n op o,p 1,...,N (x ,..., x ;( ) )η = ηρ  describes the η-dimensional normal distribution at 

1(x ,...,x )η  with correlation matrix op o,p 1,...,( ) = ηρ . The latter matrix can be determined by the 

calculation rule T
op o,p 1,...,( ) T T= ηρ = ⋅  with op o,p 1,...,T ( ) = η= τ  using op p on / n I(p o)τ = ⋅ ≤  for o, 

p = 1, …, η . 

 

Concerning the capital requirements of the specified loan, in the first period the UL 

contribution (0,T)
iUL( )  is derived under consideration of the probability (0,T)

iPD . If the loan 

survives at t = T we expect a UL contribution 2(T,t )
iUL( )  using 2(T,t )

iPD  for the second period. 

Similar, if the loan would survive until tk-1, for the following period a UL contribution 

k 1 k(t ,t )
iUL( )−  using k 1 k(t ,t )

iPD −  will be expected. If k 1 k(t ,t )
iPD −  > (0,T)

iPD  is valid for any k, the 

capital requirement for this credit will raise over the time with reference to the first period (as 

long as the debitor survives and k 1 k(0,T) ( t ,t )
i iPD , PD 0,5− < ). If no “buffer” for this expected 

increase would have been hold in t = 0, the bank would have to raise additional capital. In 

order to prevent this, the maximum expected default probability should be used when 

determining the economic capital via the UL contribution. 

 

Considering the simple two period case with nh ∈ {0, 1, m}, the UL contribution (T,m T)
iUL ⋅  

will increase in comparison to (0,T)
iUL  of the first period if the following statement holds:40 

( )(0,T) (T,m T)
i iPD PD 0,5⋅< <  if (0,T) (T,m T)

i iPD 0,5 0,25 PD ⋅< − − ∆  and (T,m T)
iPD 0,25⋅∆ < . (19) 

                                                 
39 See appendix  A.3 for details. 
40 See appendix  A.4 for details. 
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Obviously, with low values for (0,T)
iPD  it will be more likely to fulfill the inequality than with 

high values. Additionally, low probabilities of default incorporate a high possibility of 

survival during the first period. Therefore, (T,m T)
iPD ⋅∆  is expected to be (relatively) high, 

which leads to an increase of the right hand side of inequality (19). Summing up, for declining 
(0,T)
iPD  the chance of an increase of the UL contribution is expected to grow and a capital 

buffer is more likely to be needed. 

 

Finally, we determine such a capital buffer for the UL contribution. If the loan has a time to 

maturity of m⋅T and if the loan is revaluated we receive the capital rule 
(0,m T) (0,m T) (0,m T)(CoP) (CoP) (CoP)
i z i iUL ( ) VaR ( ) E ( )⋅ ⋅ ⋅= −  (20) 

with 1 z

(0,m T)
(m T)1 i i q(0,m T)(CoP)

z i
i

N (PD ) x
VaR ( ) N

1
−

⋅
⋅−

⋅
⎛ ⎞− ρ ⋅⎜ ⎟=
⎜ ⎟− ρ
⎝ ⎠

, 
(0,m T)

(m T)(CoP) iiE ( ) PD
⋅

⋅ =  (21) 

and ( )j 11 2 2 3
(0,m T) (t ,m T)(0,T) ( t ,t ) ( t ,t )
i i i i iPD max PD , PD , PD , ..., PD −

⋅ ⋅= , (22) 

in which 2 3 3 4(t ,t ) ( t ,t )
i iPD ,PD ,...  are obtained from equations (17) and (18). As presented in the 

“Capital to Maturity” approach,41 only the parameters (0,T)
iPD , iρ , m, and ki are of interest 

when determining (0,m T)(CoP)
iUL ( )⋅ . Again, the first three parameters are known from the one 

period model or are exogenously given. It is only necessary to specify (T) (T)
i i,eff A,ik = µ σ  from 

empirical data. In ratings-based models, we use equation (17) and (18) and empirical default 

rates for the estimation (“matching”) of an implicit, model based (CoP)
i ik : k= , since the 

relevant parameter ki is not observable directly. This will be done in the empirical section  3.  

 

Again, it is possible to calculate the UL at maturity M = m⋅T on the basis of an adjusted UL at 

maturity T. Precisely, from equations (15) to (18) as well as (20) and (22) we get the UL 

contribution of the loan via the equation  

( )(0,m T) (0,T) (0,T)(CoP) (CoP) (CoP)
i i i i iUL ( ) UL ( ) g PD ,k ,m,⋅ = ⋅ ρ  (23) 

                                                 
41 See subsection  2.2 and especially the footnotes 36 to 38. 
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with 

1 z

1 z

(0,m T)
(T)1 (0,m T)i i q

i
(0,m T)(CoP) i
i(0,T)(CoP)

i i i (0,T)(CoP) (0,T) (T)1i i i q (0,T)
i

i

N (PD ) x
N PD

1UL ( )g (PD ,k ,m, ) .
UL ( ) N (PD ) x

N PD
1

−

−

⋅
− ⋅

⋅

−

⎛ ⎞− ρ ⋅⎜ ⎟−
⎜ ⎟− ρ
⎝ ⎠ρ = =
⎛ ⎞− ρ ⋅

−⎜ ⎟⎜ ⎟− ρ⎝ ⎠

(24) 

The function g(CoP) can be called “maturity adjustment” under the “Capital for one Period”-

paradigm. Once more, this adjustment function could be determined, if the parameters 
(0,T)
i iPD , ρ , m, and ki are know. Alternatively (and analogously to the “Capital to Maturity”-

paradigm) a simple function may be used to fit g(CoP) that only requires the knowledge of the 

probability of default (0,T)
iPD  and the maturity of a loan. 

 

After discussing theoretically the effect of the maturity of a loan with respect to the model of 

Vasicek (1987, 1991) and Merton (1974) and after presenting two different approaches for 

determining a maturity adjustment factor, in the next section  3 we implement both models 

under consideration of empirical data. 

 

3. Estimation of the Maturity Adjustment Factor 

In this section the maturity adjustment factor based on the framework of the model of section 

 2 is derived. We start with a description of the data and the general outline of the analysis in 

Subsection  3.1. Subsection  3.2 deals with the maturity adjustment under the “Capital to 

Maturity”-paradigm, whereas in subsection  3.3 the maturity adjustment according to the 

“Capital to Maturity”-paradigm is analyzed. 

 

3.1 Outline of the Empirical Analysis and Data Description 
In order to appraise the effect of longer time to maturity on risk capital in the Vasicek-model, 

we use long-term default rates as estimators for the probabilities of default. We take empirical 

data from worldwide corporate default studies of three rating agencies (Moody’s Investors 

Service, Standard & Poor’s, and Fitch) and from default studies of German corporates of the 

rating agency Creditreform Rating AG, that merely deals with small and medium sized 

companies.42 Concretely, we use the average cumulative default rates 
(0,m T)
iDR

⋅
 for each 

                                                 
42 See Hamilton,  Varma, Ou, and Cantor (2005) for Moody’s, Brady and Vazza (2004) for Standard & Poor’s, 
and Needham, Verde, and Mah (2005) for Fitch. The data of the Creditreform Rating AG were obtained from the 
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rating grade i ∈ {1, …, I} and period T = 1 year with m ∈ {1, 2, 3, 4, 5}.43 The data contains 

default rates for up to I = 7 rating classes. The time series are described in Table 1. 

 

- Table 1 about here - 

 

For the “Capital to Maturity”-approach as well as “Capital for One Period”-approach we do 

the following analyses in order to evaluate the capability of the model to explain empirical 

relationships: 

(1) Estimating (“Matching”) of the model implied parameters (CtM / CoP)
ik̂  using empirical 

default rates 
(0,m T)
iDR

⋅
. 

(2) Comparison of the model based unexpected loses ( (CtM/CoP)
mbUL ) using the estimations 

(CtM / CoP)
ik̂  with the corresponding empirical parameters (CtM/CoP)

emp.UL  derived from the 

empirical default rates 
(0,m T)
iDR

⋅
. 

(3) Comparison of the model based maturity adjustment (CtM/CoP)
mbg  with the empirical maturity 

adjustment (CtM/CoP)
emp.g  using empirical default rates 

(0,m T)
iDR

⋅
. 

(4) Estimating (“Matching”) of a simple (Basel II alike) function (CtM/CoP)
simpleg  using the 

(CtM/CoP)
emp.UL  of the empirical default rates 

(0,m T)
iDR

⋅
. 

(5) Comparison of the simple maturity adjustment (CtM/CoP)
simpleg  with the model based maturity 

adjustment (CtM/CoP)
mbg  and with the empirical maturity adjustment (CtM/CoP)

emp.g  using empirical 

default rates 
(0,m T)
iDR

⋅
 . 

 

We use the cumulative default rate to estimate the probability of default at time horizon t = 

m⋅T in the “Capital to Maturity”-approach (see equation (12)) and in the “Capital for One 

Period”-approach (see equation (17)), i.e. 44 
(0,m T) (0,m T)
i iPD DR

⋅ ⋅
= . (25) 

                                                                                                                                                         
Department of Credit Risk and Portfolio Analysis, Creditreform Rating AG. We claim, that this data might best 
represent observations of a credit portfolio of a medium sized (German) bank. 
43 In order to keep the empirical part tractable, we only account for a maturity of at most 5 years like in Basel II. 
See Basel Committee On Banking Supervision (2004), paragraph 320. 
44 In this context, we are aware of the fact, that cumulative default rates over a period do not represent the 
probabilities of default at a certain point in time as it is modelled in the original framework of Merton (1974) as 
well as Vasicek (1987). However, all common credit portfolio models like CreditPortfolioView, CreditRisk+, 
CreditPortfolioManager, and CreditMetrics, and its derivatives suffer from this fact when implemented on 
empirical data. Since these models are used with great success we accept this inaccuracy. 
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In order to calculate the empirical UL-contribution in the “Capital for One Period”-approach 

we use the conditional default rate as an estimator for the conditional probability of default 

like it is presented in equation (16), i.e. 

( ) ( )h 1 h h h 1 h 1 h 1 h(n T,n T) (0,n T) (0,n T) (0,n T) (n T,n T)
i i i i iPD DR DR 1 DR : DR− − − −⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= − − =  (26) 

with nh ∈ {1, 2, 3, 4, 5}. 

 

For the concrete calculation of the UL contribution as well as the simplified maturity 

adjustment we stick were close to the guidelines of the Basel Committee On Banking 

Supervision. Firstly, in order to derive the UL contribution of each rating grade i the asset 

correlation ρi is needed. We get from the proposal of Basel II, that this is a function of the 

estimated probability of default, i.e.45 

( ) ( )
( )

( )
( )

(0,T) (0,T)
i i(0,T)

ii

1 exp 50 PD 1 exp 50 PD
f PD 0.12 0.24 1

1 exp 50 1 exp 50

⎛ ⎞− − ⋅ − − ⋅⎜ ⎟ρ = = ⋅ + ⋅ −⎜ ⎟− − − −⎝ ⎠
. (27) 

with T = 1 year. 

 

Secondly, for the simple maturity adjustment we use mapping functions (CtM/CoP)
simpleg , that are of 

the same structure as the one implemented in Basel II, that is46 

( ) ( ) ( )
( )

2(0,T)
(CtM / CoP) (CtM / CoP) iq q(0,T)(CtM / CoP)

isimple,q 2(0,T)
(CtM / CoP) (CtM / CoP) iq q

1 m 2.5 a b ln(PD )
g PD , m

1 1.5 a b ln(PD )

+ − ⋅ − ⋅
=

− ⋅ − ⋅
 (28) 

with ( ) ( ) ( ){ }q invest ment grades ; spec ulative grades ; all grades∈  (29) 

and m measuring the time to maturity (in years). Additionally, since this function is specified 

for more than one risk grade, the index q of credit quality of the borrower indicates the range 

of grades that is covered by the function. Therefore, the advantage of this function compared 

to the model based adjustment is the need of only two parameters for each q whereas (CtM/CoP)
mbg  

needs as much parameters as rating grades under consideration. 

 

- Figure 2 about here - 

 

                                                 
45 See Basel Committee On Banking Supervision (2004), paragraph 272. 
46 See Basel Committee On Banking Supervision (2004), paragraph 272, in which a = 0.11852 and b = 0.05478. 
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In Figure 2 the maturity adjustment is plotted with respect to m and 
(0,T)
iPD  using three 

different values for a and b (for all grades). The function can be characterized as follows: 

(i) the adjustment is (linear) increasing in m, 

(ii) the adjustment is (convex) decreasing in PD, 

(iii) for m = 1 the adjustment is “neutral” (g = 1). 

 

Therefore, function (28) especially meets the requirements how they are deducted from the 

theoretical framework in section  2, i.e. that the maturity adjustment is expected to be high for 

low PD’s and increasing in m.47 The impact of the characteristics (i) and (ii) can be influenced 

by varying a and b, that is shown in Figure 2 as well. The dotted surface (··) displays the 

maturity adjustment for the values taken from Basel II. The magnitude of the adjustment with 

respect to the maturity (m) especially can be influenced by the parameter b, as it is shown by 

the dashed surface (⋅-) in Figure 2. Parameter a affects the sensitivity with respect to the 

probability of default (PD) as it can be seen from the straight line surface (-). 

 

In order to map all functions numerically for getting (CtM / CoP)
ik̂  as well as (CtM / CoP)

qâ  and 

(CtM / CoP)
qb̂ , we mostly use an algorithm based on a Newton method.48 For each parameter we 

compute confidence intervals of level 0.99 if possible. Additionally, we calculate the TSS 

(Total Sum of Squares) and ESS (Error Sum of Squares). Here, the TSS quantifies the sum of 

quadratic errors of a so-called naive model, in which the parameters are estimated by the 

mean of the empirical realizations. The ESS specifies the sum of quadratic errors of the 

considered model with respect to the empirical values. The results are reported in sections  3.2 

for the “Capital to Maturity”-approach and in  3.3 for the “Capital for One Period”-approach. 

 

3.2 Maturity Adjustment Factor for the “Capital to Maturity”-
Approach 

For the “Capital to Maturity”-approach only the probability of default at time horizon t = m⋅T 

with T = 1 year and m ∈ {1,…,5} is of interest. This probability is estimated from the average 

                                                 
47 We deal with the qualitative as well as the quantitative evaluation of function (28) in detail in the following 
sections. 
48 The procedure is mainly based on an analytical derived Jacobian matrix. In some cases numerical procedures 
were needed to estimate this matrix. See Mathworks (2004) and Coleman and Li (1996, 1994) for details. 
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cumulative default rate 
(0,m T)
iDR

⋅
. The empirical observed cumulative default rates from four 

time series are presented in Figure 3 on a yearly period for 5 years. 

 

Obviously, the characteristics of the curves are similar. For rating/risk grades with a good 

credit-worthiness (investment grade)49 the default rate increases slightly and nearly linear over 

the years. However, the default rates of the Creditreform obviously are higher (at a time 

horizon over 1 year) in comparison to the data for investment grades of the other rating 

agencies. For rating/risk grades with a doubtable credit-worthiness (speculative grade)50 the 

default rate increases with a decreasing slope (concave characteristics). Except for rating 

grades B and CCC/C of Fitch, the default rate rises with shifting to longer time horizons in 

each grade. The latter is caused by the limited sample in that rating categories and the short 

period that is used for averaging.51 Additionally, the default rate of the worst rating/risk grade 

from Fitch is substantially lower than the ones reported from the other rating agencies (e.g. 

the 5-years default rate varies between 40.60% (C_MM_r) and 60.40% (S_TM_r), but is only 

31.63% (F_CDR_r) for FITCH). 

 

- Figure 3 about here - 

 

Despite the problems of using the default rate as an estimator for the probability of default at 

time horizon t = m⋅T,52 the observed characteristics can be explained qualitatively with the 

Merton-model due to equation (8), since normally the default probability is expected to rise 

with time to maturity and that this increase will be flattened for lower rating grades. 

 

As a next step we validate the Merton-based approach quantitatively by matching the model 

based multi-period defaults from equation (7) with the empirical data in order to check its 

goodness of fit. In fact, we estimated the model implied (CtM)
ik̂  for each rating class and each 

times series. The results are presented in Table 2. 

 

- Table 2 about here - 

                                                 
49 These are the Grades Aaa, Aa, A (Moody’s ), AAA, AA, A (Standard & Poor’s, Fitch) and 1, 2, 3 
(Creditreform). 
50 These are the Grades Baa, Ba, B, Caaa/C (Moody’s), BBB, BB, B, CCC/C (Standard & Poor’s, Fitch) and 4, 
5, 6 (Creditreform). 
51 For details see Mah and Verde (2003), p. 8. 
52 See footnote 44 for details. 
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Obviously, for low rating grades (i.e. high probabilities of default in the first period) the 

parameter (CtM)
ik̂  can be matched nearly perfectly (coefficient of determination R2 > 0.9). For 

high borrowers quality the model seems not be able to explain the default rates since the 

coefficient of determination R2 in most cases (see M_CDR_l, S_CDR_r, and F_CDR_r) is 

below zero. However, this could be explained by two reasons. 

 

Firstly, in good rating grades more or less no defaults occur over the first three years so it is 

difficult anyway to fit any model to the data. Secondly, the negative R2 is caused by the 

following technical reason. Our model is able to explain the cumulative default rates to some 

extend, but the naive model that just assumes identical cumulative default rates for all points 

in time (amounting to the mean of the default rates from 1 year to 5 years) leads to a lower 

error sum of squares (TSS) than error sum of squares (ESS) of our model. But the naive 

model assumes, that the maturity has no effect on the default rate, which definitely not fits 

with the empirical data. Thus, the naive model causes low error sum of squares for high rating 

grades, but lags any economic sense. 

 

Additionally, from the “Capital to Maturity” model we expect the parameter (CtM)
ik̂  to 

decrease when shifting to low rating grades. This results from the fact that (CtM)
ik̂  stands for 

the return-risk rate, whereas the return of the borrower is expected to be high for high quality 

borrowers and low for low quality borrowers. For the risk (measure by the variance) we 

would expect a vice versa relationship. Table 2 exactly shows this expected formation for 

each series. Thus, when implementing our model on empirical data the results for (CtM)
ik̂  

seemingly fit with the a possible economic interpretation. 

 

After examine the multi-period defaults we have analyzed the UL contribution of each rating 

grade. In order to have a first guess how the UL contribution looks like, we calculate the 

empirical UL contribution for each rating grade and for each maturity using the average 

default rate as an estimator for the probability of default (see equation (25)). The results for 

the four mentioned data series are presented in Figure 4. The diagrams show, that especially 

for the investment grades and lower speculative grades (representing lower probabilities of 

default 
(0,T)
iPD ) the capital requirements grow rapidly whereas they are stable for the two 

lowest grades (with high probabilities of default 
(0,T)
iPD ). In case of Moody’s (M_CDR_l) 
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and Standard & Poor’s (S_CDR_r) it declines for the highest grade at a stretch. This is caused 

by the fact that the default rate exceeds 50 %. 

 

- Figure 4 about here - 

 

Next, we compare the UL contributions of the “Capital to Maturity” paradigm defined by 

equations (10) and (11) by using the empirical cumulative default rates for 
(0,m T)
iPD

⋅
 and by 

using equation (12) with the (CtM)
ik̂  and 

(0,T)
iPD  for each rating grade. Thus, we are able to 

compare the empirical unexpected loss (CtM)
emp.UL  with the model based unexpected loss (CtM)

mbUL . 

 

- Table 3 about here - 

 

As it is shown in Table 3, the model based measures are capable to explain the empirical 

derived parameter (CtM)
emp.UL  for nearly all rating grades. Just for the best rating grades the 

model seems not to support the empirical data. However, even for this grade the ESS is very 

small and the model is close to the empirical values. The negative value of R2 just explains 

that the naive “model” outperforms the developed solution, but still lags economic 

explanation for multi-period defaults. 

 

Finally, we plot the “Capital to Maturity” adjustment (CtM)
mbg  that is calculated according to 

equation (14) by using the model based UL estimation (CtM)
mbUL  in comparison to the empirical 

derived UL. The graphs are presented in Figure 5. As expected from the previous analysis 

especially for the speculative grades the model based maturity adjustment (CtM)
mbg  is very close 

to the empirical derived values. For the high-quality grades the fit is not as convincing: for 

shorter maturities (two and three years) the model based adjustment overestimates the effect, 

whereas for long maturities (four and five years) the adjustment is to small. However, the 

general characteristics of (CtM)
mbg  is even for the investment grades close to the empirical 

values. 

 

- Figure 5 about here - 
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As a next step, we give estimations for the parameters (CtM)
iâ  and (CtM)

ib̂  to determine the 

simple maturity adjustment (CtM)
simpleg . First of all it has to be stated, that the empirical UL 

contribution (see Figure 4) for all rating grades is increasing in m with a declining slope in 
(0,T)
iPD . Thus, (CtM)

simpleg  according to (28) seems to be a good estimator for the maturity 

adjustment (see characteristics (i) and (ii) in section  3.1) for all rating grades. 

 

- Table 4 about here - 

 

We fitted the maturity adjustment by estimating the parameters (CtM)
iâ  and (CtM)

ib̂  to the data 

of all four data series, using all investment grades and all speculative grades as well as all 

grades for a time horizon of five years in each case. The results are reported in Table 4. For all 

time series the TSS can be reduced significantly to the ESS. The coefficient of determination 

R2 varies between 0.34 (A-Grades for F_CDR_r) and 0.94 (Grades 1-3 for C_MM_r). Except 

for the data from Creditreform the coefficient of determination is less for the investment 

grades (varying from 0.34 to 0.94) in comparison to the speculative grades (varying from 0.78 

to 0.92). Considering all grades, the parameter R2 is reliable high with values from 0.82 to 

0.91. 

 

A comparison of our values for (CtM)
allâ , varying from 0.06 to 0.22, and (CtM)

allb̂ , ranging from 

0.06 to 0.10, with the corresponding values BIIa  and BIIb  of Basel II confirms a high 

approximation quality. However, our approach overestimates the increase of the UL 

contribution with respect to the time to maturity as well as with respect to the probability of 

default, since both (CtM)
allâ  and (CtM)

allb̂  are higher in general. 

 

- Figure 6 about here - 

 

This result also can be visualized by a surface plot of the maturity adjustment with respect to 

the time to maturity m and rating grades (i.e. one year probabilities of default). The plot for a 

time horizon of five years are shown in Figure 6. The straight line surface (-) shows the 

maturity adjustment from the empirical data of default rates. Our fitted maturity adjustment 

results in the dashed surface (⋅-), whereas the values from Basel II lead to the dotted surface 

(··). Obviously, our results for simple maturity adjustment overestimate the empirical values 
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especially for the upper investment grades, but fits well with shifting to higher probabilities of 

default. This is caused by the fact, that for the upper investment grades the UL contribution is 

low, whereas it is high for speculative grades. Since the maturity adjustment is optimized with 

respect to the ESS of the UL contribution, derivations of the fitted maturity adjustment from 

the empirical maturity adjustment of the investment grades are less weighted than derivations 

of the speculative grades. However, the maturity adjustment of Basel II is lower than our 

values. 

 

Finally, we compare our results for the model-based, the simple maturity and the Basel II 

adjustment in Table 5. 

 

- Table 5 about here - 

 

As it can be seen from the ESS figures, the model based adjustment (CtM)
mbg  outperforms the 

simple method (CtM)
simpleg  in general except for the medium-quality borrowers (grade A for 

Moody’s, Standard & Poor’s, and Fitch). For (CtM)
mbg  the coefficient of determination is reliable 

high except for the high investment grades. However, since the interesting parameter is the 

UL contribution of each grade and since this value is very low for loans with such a good 

grade – even long term loans – the imprecise adjustments might not be of interest there. 

Additionally, as it is shown in the last column, our “Capital to Maturity” approach does not fit 

at all with the Basel II adjustment. 

 

To conclude, we have estimated the parameters of the maturity adjustment using both the 

model based solution as well as an simple, “Basel II formula” using the “Capital to Maturity”-

approach. We get better results for the model based fit, but in total both formulas work well. 

With respect to the simple adjustment, our estimated individual parameters are in line with the 

supervisory values when the data up to a five years time horizon is used. Nevertheless, our 

parameters lead to a significant higher adjustment than the one used in Basel II. 

 

3.3 Maturity Adjustment Factor for the “Capital for One Period”-
approach 

Under the “Capital to One Period”-approach the conditional probabilities of default 
h 1 h(n T,n T)

iPD − ⋅ ⋅
 at a time horizon of ∆t = 1 year are used for calculating the UL contribution, 
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where the conditional default rates h 1 h(n T,n T)
iDR − ⋅ ⋅

 are taken as estimators. These empirical 

derived values are determined in order to have a first guess. 

 

- Figure 7 about here - 

 

The characteristics of all four plots do not differ tremendously. For good creditworthiness, the 

conditional default rates only slightly change over time. This means, that the one-year 

probability of default of a firm with an investment grade is likely to stay over time as long as 

the debtor does not default. However, for bad creditworthiness the conditional default rates 

decline substantially. For the lowest credit/risk grade the conditional default rate drops in the 

first year by 5 percentage points for Moody’s and Creditreform (from 22 % to 17 % and from 

19 % to 14 %), by 18 percentage points for Standard & Poor’s (from 31 % to 13 %), and by 

14 percentage points for Fitch (form 24 % to 10 %). Thus, the creditworthiness of a firm with 

speculative grade is expected to rise as long as the firm will survive on the short time horizon. 

This result is also expected from the Merton-model (in the two-period-case) due to our 

analysis from equation (19) (with (17)), meaning, that the conditional one year probability of 

default is more likely to decline for firms with a high probability of default than for firms with 

a low probability of default in the first year. Besides this qualitative evaluation, we are also 

able to examine if the model fits quantitatively by determining the model based parameter 
(CoP)
ik̂ . The results are presented in Table 6. 

 

- Table 6 about here - 

 

Since the numerical function that has to be matched on the empirical data is rather 

complicated, in most cases no confidence intervals could be evaluated. On the one hand, this 

is a disadvantage of this model. On the other hand it fits with the empirical data quite good. In 

contrast to the “Capital to Maturity” model, the sum of squares can be reduced even for the 

high quality grades (see the low values of the ESS) and thus the parameter R2 varies from 

0.08 to 1.00. 

 

- Figure 8 about here - 

 

The model implied parameter (CoP)
ik̂  has a U-shaped form, meaning that it firstly declines with 

shifting to lower credit grades but increases for the very low credit qualities. We are of the 
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opinion, that this characteristic is surprising on the first sight but economically explainable. 

Since (CoP)
ik̂  is a return-risk parameter, it is relatively high for investment grades. 

Additionally, it has to be high for speculative grades, since at least the borrowers of very low 

creditworthiness with default in the late periods must incorporate a high return-risk parameter. 

Otherwise for low rated debtors no long-term defaults could be observed, since the chance of 

survival over the first period is very small. Thus, the model implied parameter (CoP)
ik̂  is 

positively biased for such rating grades. 

 

After discussing the multi-period defaults we examine the UL contribution of each rating 

grade under the “Capital for one Period” paradigm. Since the effect of the maximisation 

function according to (20) to (22) is not clear, we calculate the empirical UL contribution for 

each rating grade and for each maturity. The results for the four mentioned data series are 

shown in Figure 8. As expected, the UL contribution does not change when shifting to higher 

maturity for the lowest rating/risk grade, since the highest one-year probability of default is 

expected in the first year. The maturity mostly effects the lower investment grades and upper 

speculative grades. At a stretch the UL contribution rises for m = 5 years in comparison to 

m = 1 year for rating grade “Baa” (Moody’s) by (a factor of) 3.14, for rating grade “A” 

(Standard & Poor’s) by 2.81, for rating grade “A” (Fitch) by 2.97, and for rating grade “1” 

(Creditreform) by 2.39. 

 

- Table 7 about here – 

 

As a next step we calculate the model based UL contribution (CoP)UL  (Table 7). The outcomes 

vary tremendously: on the one hand the parameter R2 is below zero since the naive model 

generates a better output than the multi-period model. On the other hand the sum of squared 

errors is very small in any case. Although the PD-adjustment could be matched well to the 

empirical cumulative default rates we detect this does not hold for the maturity adjustment 
(CoP)
mbg  due to the complicated UL-function for longer times to maturity.53 

 

- Figure 9 about here – 

 

                                                 
53 These results form function (22). 
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This conclusion can also be drawn from the graphical examination of the maturity adjustment 
(CoP)
mbg  which is calculated on the basis of equation (24) by using the model based UL 

estimation (CtM)
mbUL  in comparison with the empirical derived unexpected loss. The plots are 

presented in Figure 9. We observe, that especially for the medium credit qualities the model 

based adjustment overestimates the empirical values by a factor of up to three. However, for 

the lower credit grades and the high credit grades the fit still is very good. 

 

Due to this result, the use of the simple version might be a good choice. We argue, that 

function (28) for the maturity adjustment is suitable since the UL contribution is increasing 

with rising time to maturity, but with declining slope for shifting to high one-year probability 

of default. 

 

- Table 8 about here – 

 

Thus, we estimate the parameters (CoP)
iâ  and (CoP)

ib̂  in order to define the maturity adjustment 

function (CoP)
simpleg . The results are displayed in Table 8. For the three analyses of each time series 

(considering the investment grades and the speculative grades separately as well as all grade 

as a whole), the TSS is reduced in comparison to the ESS significantly. The latter statement 

especially is valid for the speculative grades. Here the coefficient of determination R2 varies 

from 0.63 (B-Grades or F_CDR_r) up to 0.99 (Grades 4-6 for C_MM_r). For the investment 

grades the results are less convenient, since R2 realizes between 0.06 (Grades 1-3 for 

C_MM_r) and 0.71 (A-Grades for S_CDR_r). This might be due to the fact, that in the 

“Capital for one Period”-approach the UL contribution does not change in a great manner 

when shifting to longer time to maturity. Therefore, an adjustment function has not a great 

influence. Nevertheless, taking all rating grades into account, the coefficient of determination 

is high and ranging from 0.97 to 0.99. 

 

Under consideration of the values BIIa  and BIIb  of Basel II, we find, that – on the one hand - 

our estimations (CoP)
allâ  for all grades, ranging from 0 to 0.04, are much lower than the 

parameter 0.12 suggested by Basel II. On the other hand, the values for (CoP)
allb̂ , varying from 

0.06 to 0.08, are higher than the corresponding supervisory parameter 0.05. Since both effects 

may neutralize each other, we investigate the result visually. 
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- Figure 10 about here – 

 

Therefore, in Figure 10 the surface plots of the maturity adjustment with respect to the 

rating/risk grades and time to maturity of up to 5 years are presented. Obviously, the straight 

line surface (-) with the maturity adjustment from empirical data only differs from our 

estimated maturity adjustment (dashed surface (⋅-)) for high rating grades. Again we point out, 

that significant deviation of the estimated maturity adjustment from the empirical one is not 

problematic for low probabilities of default, since their UL contribution is low anyway. In 

addition we have to mention, that in the “Capital for one Period”-approach the dotted surface 

(··) of the supervisory maturity adjustment is nearly equal to our estimation. 

 

- Table 9 about here – 

 

For an overlook of the results of the adjustments using the “Capital for one Period” approach, 

we refer to Table 9. Obviously, for all maturity adjustments the ESS are small for low credit 

qualities, that correspond to the most interesting region of the UL contribution function since 

the values are reliable high. Considering the investment grades, the model based adjustments 

works best for the very high rating grades, whereas the (CoP)
simpleg  provides good results for the 

lower grades of this segment. The parameter R2 varies tremendously and is mostly close to 

unit or is negative. Again, the reason for this result is the quite complex function for the 

unexpected loss. However, it is worth mentioning, that the Basel II adjustment formula 

produces similar results as our simple adjustment. 

 

To summarize, when applying the “Capital for One Period”-approach to empirical data, the 

maturity adjustment in a default mode model drops in value compared to the solution of the 

“Capital to Maturity”-approach. Taking into account time series with up to 5 years of time to 

maturity, our estimations for each parameter of the maturity adjustment, like it is 

implemented in Basel II, differ widely from the supervisory values. However, they nearly lead 

to the same adjustments than suggested by Basel II when used jointly. However, the model 

based approach does not improve the simple adjustment formula, although the model works 

fine in order to match empirical cumulative default rates. 
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4. Conclusion 

One of the questions in credit portfolio modelling nearly not discussed, is how the time to 

maturity of a loan affects the appropriate economic capital, that the bank should hold against 

future losses. Especially, in DM models like the one of Basel II no solutions are examined. 

Due to the lack of intensive research, our paper focused on three topics: firstly, we stated 

some key Iss.s in order to motivate the influence of time to maturity on economic capital in a 

default mode model and we suggested two frameworks, that we called “Capital to Maturity”-

approach and “Capital for One Period”- approach. Secondly, we analysed these approaches in 

a simple credit risk model, based on the framework of Vasicek (2002) and Merton (1974), in 

order to derive theoretically the maturity effects on economic capital of these paradigms. 

Thirdly, we implemented our approaches on empirical data from four rating agencies using a 

model based approach as well as a simpler form according to the maturity adjustment formula 

of Basel II. For both paradigms, our estimated values for the maturity adjustment formula are 

close to the parameters of Basel II when using short time horizons of up to five years. 

Particularly, the “Capital for One Period”-approach leads to a similar maturity adjustment. 

We claim, that our results might be a sophisticated contribution for understanding maturity 

effects on economic capital especially when such adjustments are required for practical use. 
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Appendix 

A.1 Derivation of Equations (5) and (6) 
With respect to assumption (d) in section  2.1 we retrieve the following factor model for the 

normalised returns (T)
ia  of each borrower i taking out principal component analysis 

(T) (T) (T)
i i i ia x 1= ρ ⋅ + − ρ ⋅ ε  with (T) (T)

ix , ~ N(0,1)ε  being i.i.d.54 for i = {1,…,n}, (A1) 

whereas (T)x  is the systematic factors and the (T)
iε ’s are the idiosyncratic factors. 

Assumption (e) means, that with the number of borrowers shrinks to infinity the exposure 

share of each obligor in the portfolio tends to zero. Precisely, the following holds 

n

i
i 1

L
=

↑ ∞∑  and 
2n n

i i
i 1 i 1

L L
= =

⎛ ⎞ < ∞⎜ ⎟
⎝ ⎠

∑ ∑  with n → ∞ .55 (A2) 

Given a realisation of the systematic factor (T)x , all asset return are independent distributed, 

and because of assumption (2) the Law of large Number is valid. The loss rate (T)
∞Λ  of the 

portfolio becomes56  
n a.s.

(0, T)(T) (T) (T) (T)(0, T) (0, T)
n i i i in n

i 1 i 1

| x : lim | x lim | x p (x )
∞

∞ →∞ →∞
= =

Λ = Λ = ω ⋅ = ω ⋅∑ ∑  (A3) 

with 
n

i i i
i 1

L L
=

ω = ∑  and ( )(0, T)(T) (T) (0,T) (T)1
i i i i ip (x ) E | x N N (PD ) x 1−⎛ ⎞ ⎡ ⎤= = − ρ ⋅ − ρ⎜ ⎟ ⎣ ⎦⎝ ⎠

.(A4) 

Furthermore, the VaRz at confidence level z is quantified as the z-quantile qz of the loss rate 

(0, T)
∞Λ  of the portfolio, i.e. 

( ) ( )(0, T) (0, T)
z n z nVaR :=qΛ Λ  with ( )( )(0, T) (0, T)

n z nP q zΛ < Λ = , (A5) 

and because (T)
ip (x )  is strictly decreasing in (T)x , we retrieve57 

( ) ( ) 1 z

a.s.
(T)(0, T) (0, T)

z z n i i qn
i 1

VaR : lim VaR p (x )
−

∞

∞ →∞
=

Λ = Λ = ω ⋅∑  with ( )1 z

(T) (T)
1 zqx q x

− −= . (A6) 

Obviously, the expected value of the loss rate (0, T)
∞Λ  of the portfolio is 

( ) ( ) ( )( )
n

(T) (T) (0,T)(0, T) (0, T)
n i i i i in n

i 1 i 1

E : lim E lim E I A B PD
∞

∞ →∞ →∞
= =

Λ = Λ = ω ⋅ < = ω ⋅∑ ∑ . (A7) 

Finally, the UL of the loss rate (0, T)
∞Λ  is just defined by the difference between the VaR and 

the expected value, i.e. 
                                                 
54 We use “i.i.d.” as shortcut for “independently and identically distributed”. 
55 See Bluhm, Overbeck, and Wagner (2003), p. 87 and Gordy (2003). 
56 See Bluhm, Overbeck, and Wagner (2003), p. 89, Gordy (2003), p. 208 and Vasicek (2002), p.p.160 for 
details. 
57 See Bluhm, Overbeck, and Wagner (2003), p. 91. 
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( ) ( ) ( ) ( )(0, T) (0, T) (0, T) (0, T)
n zn

UL : lim UL VaR E∞ ∞ ∞→∞
Λ = Λ = Λ − Λ  (A8) 

Since both the VaR (see equation (A6)) as well as the expected value (see equation (A7)) are 

linear in wi for each i ∈ {1,…,n}, we may write the UL of the loss rate (0, T)
∞Λ  as a sum of the 

UL of each individual portfolio loss rate (0, T)
i  

( ) (0, T)(0, T)
i i

i 1

UL : UL( )
∞

∞
=

Λ = ω ⋅∑  (A9) 

with the risk contribution to the unexpected loss 

(0, T) (0, T) (0, T)(T)
i z i iUL( ) : VaR ( | x ) E( )= −  (A10) 

with 1 z

(0,T) (T)1
(0, T) i i q(T)

z i
i

N (PD ) x
VaR ( | x ) N

1
−

−⎛ ⎞− ρ ⋅
= ⎜ ⎟⎜ ⎟− ρ⎝ ⎠

 and (0, T) (0,T)
i iE( ) PD= . (A11) 

 

A.2 Derivation of Equations (7) and (8) 
For the default probability (0,m T)

iPD ⋅  we get 

( )(0,m T) (m T)
i iPD N b⋅ ⋅=  with 

( )(0) (0) (m T) (T)(T)
i i i,eff i,effi(m T)

i (m T) (T)
A,i A,i

ln B A b m 1b
m m

⋅
⋅

⋅

− µ µ −= = − ⋅
σ σ

. (A12) 

The default probability rises, if 
(T) (T)(T)
i,eff i,effi(m T) (T) (T) (T)

i i i i(T) (T)
A,i A,i

b m 1 m 1b b b b
m 1m m

⋅ µ ⋅ µ− −> ⇔ − ⋅ > ⇔ < − ⋅
σ σ −

. (A13) 

For m = 2 we receive the former results. 

For the derivation we get 
(T)(0,m T) (m T) (T)
i,effi i i(m T)

i (T)3 3
A,i

PD N(b ) 1 b m 1n(b )
m m 2 m m

⋅ ⋅
⋅ ⎛ ⎞µ∂ ∂ += = − ⋅ ⋅ + ⋅⎜ ⎟∂ ∂ σ⎝ ⎠

. (A14) 

It is positive if 

( )
(T)
i,eff (T)

i(T)
A,i

m 1 b
µ

⋅ + < −
σ

 for (T) (T)
i ib 0 PD 0.5< ⇔ < . (A15) 

 

A.3 Derivation of Equation (17) 
We write for the conditional value at th = nh⋅T with h = {0, 1, 2, 3, …, j} and 0 = n0 ≤ n1 < n2 < 

... < nh = m of the firms assets 

( ) jh 1 h 1

h 1
( t )( t ) ( t ) ( t ) (0) (T) (T)

i i i i i,eff i s s 1 i
j 1

A | a ,..,a A exp h n n a−

−

−
=

⎛ ⎞⎡ ⎤= ⋅ µ ⋅ + σ ⋅ − ⋅⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠
∑  (A16) 

Thus, for the conditional probability we get  
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( ) ( )( ) ( )j 1 j 1 j 1 j 10 1 1 1 1( t ) ( t ) ( t ) ( t )( t ,M) ( t ) (M) ( t ) ( t ) ( t )
i i i i i i i i i iPD | a ,..,a N b | a ,..,a | a b ,...,a b− − − −⎡ ⎤= > >⎣ ⎦  (A17) 

with the conditional default point 

( )
j

h
h 1 h 1

h 1
( t )j j 1
i( t )

j 1 hi( t ) ( t ) ( t )
i i i

h h 1 h h h 1 h

n n
a

nbb | a ,..,a .
n n n n n n

−

−
−

=

− −

−
⋅

= −
− −

∑
 (A18) 

using the (unconditional) default points 

( ) ( )
h 1

(0) (T)
h 1i i,eff h 1( t ) ( t )

i i i(T)
i h h h

n nln B A n nb b k
n n n

−− µ ⋅
= = ⋅ − ⋅

σ ⋅
 with 

(T)
i,eff

i (T)
i

k µ
=

σ
 

Next, we use the definition 

( )s 1 s s 1 s k 1 k

s 1
(t ,t ) ( t ,t ) ( t ,t )
i i i

k 1

PD : PD 1 PD− − −

−

=

∆ = ⋅ −∏  (A19) 

and get for  

( )

( )( t )( M ) ( t ) j 11
i i i

j 1 j 1 j 11 1

( t ) ( t ) ( t )h 1 h 1
i i i

b | a ,..,aj 1
( t ,m T) ( t ) ( t )( t ) ( t )
i i i i i

h 1 b | a ,..,a

PD n(z) n(a ) ... n(a ) dzda ...da
−

− − −

−

∞−
⋅

= −∞

⎛ ⎞
∆ = ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∫ ∫ (A20) 

where we write  

( )( ) ( t )( t ) ( t ) ( t ) ( t ) ( t )1h 1 h 1 j 1 ( t ) j 21ii i i i i i

j 1

h 1 bb | a ,..,a b | a ,..,a

...
− − −

∞ ∞ ∞−

=

=∏ ∫ ∫ ∫ . (A21) 

Now we make the following transformation: 

( )h h h h h h( t ) ( t ) ( t ) ( t ) ( t ) ( t )
i i i i i iy : f a a a y : a= = − ⇔ = − = −  for h = {1, …, j−1}. (A22) 

Considering that 

( )f ∞ = −∞ , ( )( ) ( )h s h s( t ) ( t ) ( t ) ( t )
i i i is 1,2,..,h 1 s 1,2,..,h 1

f b | a b | a
= − = −

= − , h h h( t ) ( t ) ( t )
i i in( y ) n(y ) : n(a )− = =  and  

h h h h h( t ) ( t ) ( t ) ( t ) ( t )
i i i i ida dy 1 da dy : da= − ⇔ = − = −  (A23) 

we receive 
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(A24) 

where ( )
j

h
h 1 h 1

h 1
( t )j j 1
i(n )

j 1 hi( t ) ( t ) ( t )
i i i

h h 1 h h h 1 h

n n
a

nbb | a ,..,a .
n n n n n n

−

−
−
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− −

−
⋅

= +
− −

∑
 

In order to solve the integral, we use the following expression58 

                                                 
58 The following integral follows from Tong (1990), p. 184. 
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1 op o,p 1,..., 1 1
i 1
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⎜ ⎟
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where 1 n op o,p 1,...,N (x ,..., x ;( ) )η = ηρ  describes the η-dimensional normal distribution at 

1(x ,...,x )η  with the correlation matrix T
op o,p 1,...,( ) T T= ηρ = ⋅  whereas op o,p 1,...,T ( ) = η= τ  is the 

lower triangular matrix. We get for the integral (A25) 

( ) ( ) ( )( )h h 1 h 1 h(t ,t ) (0,T) (0,t ) (0,t )1 1 1
i n 1 i i i op o,p 1,...,hPD N N PD ,..., N PD , N PD ;( )− −− − −

+ =∆ = − − ρ  (A26) 

with ( )h h(0,t ) (0,t )
i iPD N b=  and 

( )
h

(0,T)1
i h(0,t )

i i
h h

N PD n 1b k
n n

− −= − ⋅  (A27) 

and op o,p 1,...,T ( ) = η= τ  using op p on / n I(p o)τ = ⋅ ≤  for o, p = 1, …, η  (A28) 
 

A.4 Derivation of Equations (19) 
The probability of default (0,T)

iPD  of the first period will be lower than (T,m T)
iPD ⋅  if 

(T,m T)
i(T,m T) (0,T)

i i(0,T)
i

PDPD PD
1 PD

⋅
⋅ ∆= >

−
 (A29) 

is valid. This can be written as 

( )2(0,T) (T,m T)
i iPD 0,5 0,25 PD ⋅− > − ∆ , (A30) 

that is always true, as long as 
(T,m T)
iPD 0,25⋅∆ >  (A31) 

or (0,T) (T,m T)
i iPD 0,5 0,25 PD ⋅> + − ∆  

or (0,T) (T,m T)
i iPD 0,5 0,25 PD ⋅< − − ∆  if (T,2T)

iPD 0,25∆ < . (A32) 

Since the cases of an high marginal increase of the probability of default, (T,2T)
iPD 0,25∆ > , as 

well as a high probability of default in the first period, (T)
iPD 0,5> , may not be relevant in 

practice, we focus on the second term in equation (A32). 
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C. Tables 

Table 1: Description of the Data Set Used in the Analysis 

Dataseries Source Type Number of 
Rating Grades 

Observed 
Period 

Time Horizon 
of Default 

Rates 

M_CDR_l MOODY’S 
Average 
Cumulative 
Default Rates 

7 
Letter Rating 1970 to 2004 1 to 5 years 

yearly 

S_CDR_r STANDARD & 
POOR’S 

Cumulative 
Default Rates 

7 
Rating 1981 to 2003 1 to 5 years 

yearly 

F_CDR_r FITCH 
Average 
Cumulative 
Default Rates: 

7 
Rating 1990 to 2004 1 to 5 years 

yearly 

C_MM_r CREDITREFORM 
Rating AG 

Average Rating 
Migrations 
Matrix 

6 
Risk Grade 1999 to 2004 1 to 5 years 

yearly 
 

 
 

Table 2: Parameter Estimates for the multi-period PD-Adjustment under the “Capital to 
Maturity” approach over a five years period 

(CtM)
ik̂  Error  

Series Rating 
Grade Lower 

Bound 
Expected 

Value 
Upper 
Bound 

ESS 
(·10-6) 

TSS 
(·10-6) R2 

Aaa 0.53 1.05 1.56 1.16 0.62 < 0 
Aa 0.46 0.91 1.35 2.94 2.35 < 0 
A 0.47 0.63 0.79 4.24 15.21 0.721 

Baa 0.32 0.46 0.60 42.28 231.39 0.817 
Ba 0.06 0.16 0.26 330.02 5731.23 0.942 
B -0.16 -0.08 -0.01 699.06 38276.37 0.982 

Moody's 
M_CDR_l 

Caa-C -0.36 -0.32 -0.27 405.29 88800.91 0.995 
AAA 0.61 1.05 1.48 0.85 0.38 < 0 
AA 0.49 0.77 1.04 4.00 5.49 0.271 
A 0.45 0.62 0.79 7.25 22.91 0.684 

BBB 0.26 0.39 0.53 91.99 581.09 0.842 
BB 0.04 0.11 0.19 228.04 7,816.72 0.971 
B -0.07 -0.03 0.00 123.31 27,517.75 0.996 

Standard & 
Poor's 

S_CDR_r 

CCC/C -0.18 -0.16 -0.14 95.25 30,425.55 0.997 
AAA 0.85 1.13 1.40 0.17 0.00 < 0 
AA 0.70 1.10 1.49 0.45 0.13 < 0 
A 0.50 0.59 0.68 2.50 21.39 0.883 

BBB 0.27 0.35 0.43 34.12 670.25 0.949 
BB 0.21 0.24 0.26 14.48 3,050.13 0.995 
B 0.24 0.33 0.42 168.24 1,563.06 0.892 

Fitch 
F_CDR_r 

CCC/C -0.04 0.11 0.26 3781.91 5,640.49 0.330 
Risk Grade 1 0.23 0.34 0.45 70.91 786.12 0.910 
Risk Grade 2 0.25 0.35 0.44 86.21 1,065.15 0.919 
Risk Grade 3 0.25 0.32 0.39 88.56 1,607.26 0.945 
Risk Grade 4 0.15 0.21 0.27 141.28 4,600.15 0.969 
Risk Grade 5 0.03 0.04 0.05 15.77 1,6315.05 0.999 

Creditreform 
C_MM_r 

Risk Grade 6 -0.18 -0.11 -0.05 866.80 32,194.21 0.973 
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Table 3: Comparison of the empirical UL with the model based UL using the (estimated) 
multi-period PD-Adjustment under the “Capital to Maturity” approach over a five years 

period 
Error Error Series Rating 

Grade ESS TSS R2 Series Rating 
Grade ESS TSS R2 

Aaa 0.001 0.000 < 0 AAA 0.000 0.000 < 0 

Aa 0.002 0.002 < 0 AA 0.000 0.000 < 0 

A 0.002 0.006 0.738 A 0.001 0.007 0.914 

Baa 0.004 0.023 0.846 BBB 0.002 0.038 0.954 

Ba 0.002 0.054 0.954 BB 0.000 0.034 0.996 

B 0.000 0.023 0.987 B 0.001 0.019 0.944 

Moody's 
M_CDR_l 

Caa-C 0.000 0.006 0.995 

Fitch 
F_CDR_r 

CCC/C 0.000 0.000 0.642 

AAA 0.001 0.000 < 0 R. Grade 1 0.004 0.042 0.906 

AA 0.002 0.003 0.297 R. Grade 2 0.002 0.032 0.936 

A 0.002 0.007 0.731 R. Grade 3 0.001 0.026 0.958 

BBB 0.004 0.031 0.874 R. Grade 4 0.001 0.026 0.976 

BB 0.001 0.057 0.975 R. Grade 5 0.000 0.010 1.000 

B 0.000 0.021 0.996 

Credit- 
reform 

C_MM_r 

R. Grade 6 0.000 0.000 0.897 

Standard & 
Poor's 

S_CDR_r 

CCC/C 0.000 0.002 0.995  
 
 

 

Table 4: Parameters From Own Estimates of the Simple Maturity Adjustment using “Capital 
to Maturity”-Paradigm over a Five Years Period 

    a b Error 

Series Rating- 
Grades 

Lower 
Bound 

Ex- 
pected
Value 

Upper
Bound 

Lower
Bound 

Ex- 
pected
Value 

Upper
Bound ESS TSS R2 

A-Grades n.a. 0.0107 n.a. n.a. 0.0743 n.a. 0.007 0.012 0.44 

B-Grades 0.1598 0.2551 0.3503 0.0418 0.0616 0.0814 0.018 0.231 0.92 Moody's 
M_CDR_l 

All 
Grades 0.0167 0.1477 0.2787 0.0459 0.0673 0.0887 0.163 0.903 0.82 

A-Grades -0.7913 0.6317 2.0547 2.0547 0.0000 2.0547 0.004 0.017 0.75 

B-Grades 0.1098 0.2336 0.3575 0.0403 0.0674 0.0945 0.024 0.191 0.87 
Standard & 

Poor's 
S_CDR_r All 

Grades 0.0570 0.1718 0.2866 0.0460 0.0652 0.0845 0.154 0.910 0.83 

A-Grades -6.2528 0.5979 7.4486 7.4486 0.0000 7.4486 0.013 0.019 0.34 

B-Grades -0.0470 0.1375 0.3221 0.0480 0.0846 0.1213 0.023 0.113 0.79 Fitch 
F_CDR_r 

All 
Grades 0.0577 0.1713 0.2849 0.0439 0.0637 0.0835 0.122 0.830 0.85 

Grades  
1-3 -0.0305 0.1083 0.2471 0.0631 0.0896 0.1161 0.006 0.109 0.94 

Grades 
4-6 -0.1469 0.0000 0.1469 0.0785 0.1252 0.1720 0.013 0.062 0.78 

Credit- 
reform 

C_MM_r 
All 

Grades -0.0097 0.0605 0.1307 0.0848 0.0992 0.1137 0.027 0.292 0.91 

Basel II All 
Grades 0.11852 0.05478       
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Table 5: Comparison of the Maturity Adjustments: the Error Sum of Squares and R2 for the 
Model Based Adjustment (using different values ki for Each Rating Class), 
the Simple Adjustment (using own Estimates for the Parameters a and b), 

and the Simple Adjustment (using Basel II Parameters for a and b). 
 Model Based Adjustment Simple Adjustment Basel II Adjustment Series Rating 

Grade TSS ESS R2 ESS R2 ESS R2 
Aaa 2.700 5.396 < 0 64.526 < 0 4.533 < 0 

Aa 8.513 10.787 < 0 39.783 < 0 2.406 < 0 

A 32.094 8.395 0.738 0.371 0.988 37.060 < 0 

Baa 8.631 1.331 0.846 3.225 0.626 12.451 < 0 

Ba 2.671 0.123 0.954 2.652 0.007 5.147 < 0 

B 0.370 0.005 0.987 0.332 0.101 0.701 < 0 

Moody's 
M_CDR_l 

Caa-C 0.036 0.000 0.995 0.376 < 0 0.227 < 0 

AAA 1.822 4.193 < 0 76.954 < 0 3.829 < 0 

AA 15.444 10.850 0.297 22.068 < 0 6.809 < 0 

A 17.241 4.634 0.731 0.058 0.997 19.323 < 0 

BBB 5.044 0.634 0.874 1.799 0.643 7.585 < 0 

BB 2.624 0.066 0.975 2.575 0.019 5.514 < 0 

B 0.320 0.001 0.996 0.192 0.401 0.585 < 0 

Standard & Poor's 
S_CDR_r 

CCC/C 0.014 0.000 0.995 0.321 < 0 0.150 < 0 

AAA 0.000 0.894 < 0 80.230 < 0 10.937 < 0 

AA 0.688 2.156 -2.133 68.957 < 0 7.317 < 0 

A 24.170 2.069 0.914 3.746 0.845 39.652 < 0 

BBB 7.938 0.366 0.954 6.302 0.206 15.066 < 0 

BB 1.422 0.006 0.996 1.117 0.214 2.776 < 0 

B 0.682 0.038 0.944 0.440 0.355 1.127 < 0 

Fitch 
F_CDR_r 

CCC/C 0.000 0.000 0.642 0.150 < 0 0.038 < 0 

R. Grade 1 8.619 0.810 0.906 0.348 0.960 14.754 < 0 

R. Grade 2 2.637 0.170 0.936 0.165 0.937 4.194 < 0 

R. Grade 3 1.228 0.052 0.958 0.146 0.881 1.841 < 0 

R. Grade 4 0.751 0.018 0.976 0.231 0.692 1.205 < 0 

R. Grade 5 0.111 0.000 1.000 0.054 0.511 0.135 < 0 

Credit- 
reform 

C_MM_r 

R. Grade 6 0.003 0.000 0.897 0.052 < 0 0.035 < 0 
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Table 6: Parameter Estimates for the multi-period PD-Adjustment under the “Capital for one 
Period” approach over a five years period 

ki Error  
Series Rating 

Grade Lower 
Bound 

Expected 
Value 

Upper 
Bound 

ESS 
(·10-6) 

TSS 
(·10-6) R2 

Aaa n.a. 1.490 n.a. 0.570 0.620 0.081 

Aa 0.170 1.000 1.830 2.015 2.348 0.142 

A -0.096 0.516 1.129 9.808 15.208 0.355 

Baa n.a. 0.630 n.a. 69.436 231.388 0.700 

Ba n.a. 0.590 n.a. 78.022 5,731.228 0.986 

B n.a. 0.540 n.a. 48.988 38,276.368 0.999 

Moody's 
M_CDR_l 

Caa-C n.a. 0.830 n.a. 228.669 88,800.908 0.997 

AAA n.a. 1.490 n.a. 0.330 0.380 0.132 

AA -0.312 1.000 2.312 4.142 5.492 0.246 

A -0.078 0.543 1.163 14.049 22.912 0.387 

BBB n.a. 0.530 n.a. 261.568 581.088 0.550 

BB n.a. 0.430 n.a. 712.052 7,816.720 0.909 

B n.a. 0.560 n.a. 525.231 27,517.752 0.981 

Standard & Poor's 
S_CDR_r 

CCC/C n.a. 1.260 n.a. 672.757 30,425.548 0.978 

AAA 10.534 10.534 10.534 0.000 0.000 1.000 

AA -0.216 1.962 4.140 0.120 0.128 0.062 

A -0.064 0.438 0.940 10.286 21.388 0.519 

BBB n.a. 0.440 n.a. 99.568 670.248 0.851 

BB n.a. 0.660 n.a. 49.815 3,050.128 0.984 

B n.a. 0.720 n.a. 89.580 1,563.060 0.943 

Fitch 
F_CDR_r 

CCC/C n.a. 1.500 n.a. 4,391.864 5,640.492 0.221 

Risk Grade 1 n.a. 0.640 n.a. 54.326 786.124 0.931 

Risk Grade 2 n.a. 0.600 n.a. 153.985 1,065.146 0.855 

Risk Grade 3 n.a. 0.750 n.a. 40.132 1,607.258 0.975 

Risk Grade 4 n.a. 0.690 n.a. 117.079 4,600.148 0.975 

Risk Grade 5 0.665 0.781 0.898 644.302 16,315.046 0.961 

Creditreform 
C_MM_r 

Risk Grade 6 n.a. 0.970 n.a. 1,137.454 32,194.210 0.965 
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Table 7: Comparison of the empirical UL with the model based UL using the (estimated) 
multi-period PD-Adjustment under the “Capital for one Period” approach over a five years 

period 
Error Error Series Rating 

Grade ESS TSS R2 Series Rating 
Grade ESS TSS R2 

Aaa 0.000 0.000 < 0 AAA 0.000 0.000 1.000 

Aa 0.001 0.000 < 0 AA 0.000 0.000 < 0 

A 0.004 0.001 < 0 A 0.022 0.001 < 0 

Baa 0.004 0.002 < 0 BBB 0.018 0.005 < 0 

Ba 0.000 0.005 0.973 BB 0.001 0.003 0.666 

B 0.000 0.001 0.953 B 0.000 0.001 1.000 

Moody's 
M_CDR_l 

Caa-C 0.000 0.000 1.000 

Fitch 
F_CDR_r 

CCC/C 0.000 0.000 1.000 

AAA 0.000 0.000 < 0 R. Grade 1 0.003 0.008 0.630 

AA 0.000 0.000 0.171 R. Grade 2 0.005 0.001 < 0 

A 0.015 0.001 < 0 R. Grade 3 0.000 0.000 0.598 

BBB 0.015 0.003 < 0 R. Grade 4 0.000 0.000 < 0 

BB 0.005 0.007 0.275 R. Grade 5 0.000 0.000 1.000 

B 0.000 0.001 0.870 

Credit- 
reform 

C_MM_r 

R. Grade 6 0.000 0.000 1.000 

Standard & 
Poor's 

S_CDR_r 

CCC/C 0.000 0.000 1.000  
 
 

 

Table 8: Parameters From Own Estimates of the Simple Maturity Adjustment using “Capital 
for one Period”-Paradigm over a Five Years Period 

    a b Error 

Series 
Rating- 
Grades 

Lower 
Bound 

Ex- 
pected
Value 

Upper
Bound 

Lower
Bound 

Ex- 
pected
Value 

Upper
Bound ESS TSS R2 

A-Grades 0.0000 0.0087 0.0000 0.0000 0.0603 0.0000 0.001 0.002 0.45 

B-Grades -0.1317 0.0140 0.1597 0.0454 0.0769 0.1084 0.004 0.098 0.96 
Moody's 

M_CDR_l 
All Grades -0.0539 0.0207 0.0954 0.0535 0.0684 0.0834 0.009 0.691 0.99 

A-Grades -1.7031 0.4810 2.6652 2.6652 0.0004 2.6652 0.001 0.003 0.71 

B-Grades -0.2050 0.0172 0.2393 0.0276 0.0779 0.1282 0.009 0.077 0.88 
Standard & 

Poor's 
S_CDR_r 

All Grades -0.0435 0.0427 0.1289 0.0475 0.0655 0.0835 0.014 0.718 0.98 

A-Grades -8.4547 0.4514 9.3576 9.3576 0.0000 9.3576 0.002 0.004 0.31 

B-Grades -0.3604 0.0000 0.3604 0.0003 0.0775 0.1547 0.009 0.024 0.63 
Fitch 

F_CDR_r 
All Grades -0.1179 0.0040 0.1260 0.0448 0.0688 0.0927 0.016 0.617 0.97 

Grades 1-3 -0.6790 0.0000 0.6790 -0.0624 0.0734 0.2093 0.012 0.013 0.06 

Grades 4-6 -0.1362 0.0000 0.1362 -0.0131 0.0363 0.0857 0.001 0.095 0.99 
Credit- 
reform 

C_MM_r 
All Grades -0.1545 0.0000 0.1545 0.0284 0.0666 0.1048 0.017 0.273 0.94 

Basel II  0.11852 0.05478       
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Table 9: Comparison of the Maturity Adjustments for the “Capital for One Period” 
Approach: the Error Sum of Squares and R2 of  

the Model Based Adjustment (using different values ki for Each Rating Class), 
the Simple Adjustment (using own Estimates for the Parameters a and b),  

and the Simple Adjustment (using Basel II Parameters for a and b). 
 Model Based Adjustment Simple Adjustment Basel II Adjustment Series Rating 

Grade TSS ESS R2 ESS R2 ESS R2 
Aaa 1.026 1.283 < 0 8.374 < 0 6.748 < 0 

Aa 2.122 3.177 < 0 4.320 < 0 3.233 < 0 

A 4.867 22.643 < 0 1.085 0.777 1.270 0.739 

Baa 0.918 1.573 < 0 0.185 0.799 0.134 0.854 

Ba 0.249 0.007 0.973 0.228 0.086 0.125 0.500 

B 0.016 0.001 0.953 0.014 0.152 0.056 < 0 

Moody's 
M_CDR_l 

Caa-C 0.000 0.000 1.000 0.007 < 0 0.055 < 0 

AAA 0.051 0.064 < 0 11.480 -< 0 9.775 < 0 

AA 2.752 2.281 0.171 1.677 0.391 1.116 0.594 

A 2.007 38.855 < 0 0.106 0.947 0.076 0.962 

BBB 0.414 2.519 < 0 0.069 0.834 0.077 0.813 

BB 0.326 0.236 0.275 0.416 < 0 0.283 0.129 

B 0.012 0.002 0.870 0.016 < 0 0.062 < 0 

Standard & Poor's 
S_CDR_r 

CCC/C 0.000 0.000 1.000 0.006 < 0 0.037 < 0 

AAA 0.000 0.000 1.000 10.809 < 0 10.937 < 0 

AA 0.051 0.064 < 0 9.656 < 0 9.777 < 0 

A 2.955 78.284 < 0 2.418 0.182 2.300 0.222 

BBB 1.036 3.831 < 0 1.289 < 0 0.862 0.168 

BB 0.124 0.041 0.666 0.136 < 0 0.112 0.095 

B 0.024 0.000 1.000 0.048 < 0 0.210 < 0 

Fitch 
F_CDR_r 

CCC/C 0.000 0.000 1.000 0.003 < 0 0.050 < 0 

R. Grade 1 1.739 0.644 0.630 2.196 < 0 1.274 0.268 

R. Grade 2 0.100 0.405 < 0 0.081 0.193 0.264 < 0 

R. Grade 3 0.023 0.009 0.598 0.065 < 0 0.324 < 0 

R. Grade 4 0.006 0.008 < 0 0.044 < 0 0.252 -< 0 

R. Grade 5 0.000 0.000 1.000 0.022 < 0 0.147 < 0 

Credit- 
reform 

C_MM_r 

R. Grade 6 0.000 0.000 1.000 0.005 < 0 0.065 < 0 
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D. Figures 

Figure 1: The value for the UL contribution in the Vasicek-model with respect to the 
probability of default ( (0,T)

iPD ) for correlation parameter iρ =0.20 and α = 0.001 

 
 
 

Figure 2: The function value of the maturity adjustment with respect to number of years 

(m = 1 to 5) and Probability of Default (
(0,1 year )
iPD  = 0.01 to 0.3) using different parameters 

for a and b, that are [a, b] = [0.11852, 0.05478] (··), [a, b] = [0.03951, 0.05478] (-), and 
[a, b] = [0.11852, 0.01826] (⋅-) 
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Figure 3: Average Cumulative Default Rates by Rating Grades for Moody’s (M_CDR_l), 
Standard & Poor’s (S_CDR_r), Fitch (F_CDR_r), and Creditreform (C_MM_r) 
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Figure 4: UL using Average Cumulative Default Rates by Rating Grades for Moody’s 
(M_CDR_l), Standard & Poor’s (S_CDR_r), Fitch (F_CDR_r), and Creditreform (C_MM_r) 
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Figure 5: Comparison of the Maturity Adjustment using “Capital to Maturity”-Paradigm: 
Empirical Adjustment (-), and Model Based Adjustment (⋅-) from Cumulative Default Rates 
over a Five Years Period from Moody’s (M_CDR_l), Standard & Poor’s (S_CDR_r), Fitch 

(F_CDR_r), and Creditreform (C_MM_r) 
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Figure 6: Comparison of the Maturity Adjustment using “Capital to Maturity”-Paradigm: 
Empirical Adjustment (-), Own Estimates (⋅-) and from Basel II (••) using Cumulative 
Default Rates over a Five Years Period from Moody’s (M_CDR_l), Standard & Poor’s 

(S_CDR_r), Fitch (F_CDR_r), and Creditreform (C_MM_r) 
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Figure 7: Average Conditional Default Rates be Rating Grades for Moody’s (M_CDR_l), 
Standard & Poor’S (S_CDR_r), Fitch (F_CDR_r), and Creditreform (C_MM_r) 
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Figure 8: UL under the “Capital for one Period”-Paradigm using Average Conditional Default 
Rates by Rating Grades for Moody’s (M_CDR_l), Standard & Poor’S (S_CDR_r), Fitch 

(F_CDR_r), and Creditreform (C_MM_r) 
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Figure 9: Comparison of the Maturity Adjustment using “Capital to Maturity”-Paradigm: 
Empirical Adjustment (-), and Model Based Adjustment (⋅-) from Cumulative Default Rates 
over a Five Years Period from Moody’s (M_CDR_l), Standard & Poor’S (S_CDR_r), Fitch 

(F_CDR_r), and Creditreform (C_MM_r) 
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Figure 10: Comparison of the Maturity Adjustment using “Capital for One Period”-Paradigm: 
the Empirical Adjustment (-), Own Estimates (⋅-) and from Basel II (••) using Cumulative 
Default Rates over a Five Years Period from Moody’s (M_CDR_l), Standard & Poor’S 

(S_CDR_r), Fitch (F_CDR_r), and Creditreform (C_MM_r) 

 

 
 




