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1 Introduction 

The two-fund separation theorem originally developed by Tobin (1958) for mean-variance 

preferences and later on generalized by Hakansson (1969) and – in particular – Cass and 

Stiglitz (1970) to the consideration of utility functions with hyperbolic absolute risk aversion 

(HARA, henceforth) is one of the basic ingredients of modern portfolio and capital market 

theory. For individual portfolio optimization, the two-fund separation theorem states the 

optimality of a certain (sub-) portfolio of risky assets regardless of the investor’s degree of 

risk aversion and his initial wealth, as long as the investor’s utility function belongs to a 

certain class. For capital market theory, the two-fund separation theorem enables us to derive 

very straightforward valuation functions for risky payoffs in equilibrium with the most 

important special case of the Capital Asset Pricing Model according to Sharpe (1964), Lintner 

(1965), and Mossin (1966) (SLM-CAPM, henceforth). 

One of the key prerequisites of the two-fund separation theorem is the possibility to 

buy or sell arbitrary amounts of a riskless asset with a certain interest rate 0r . Moreover, an 

investor’s portfolio selection problem is certainly well defined, only when − over the whole 

domain of accessible return realizations − utility is defined and marginal utility is positive. 

Except for the case of negative exponential utility, the consideration of such a well defined 

portfolio selection problem for HARA preferences requires a restriction of the admissible 

amount of riskless lending and borrowing. But then the two-fund separation theorem by Cass 

and Stiglitz (1970) cannot be applied in its original form any longer. In what follows, we want 

to examine under which conditions a restricted two-fund separation theorem may hold in the 

case of borrowing and lending constraints with respect to the riskless asset. 

In the following section 2, we describe our formal background and present the basic 

problem graphically for the special case of quadratic utility. Section 3 then characterizes 

formally for the general case of HARA utility which restrictions on riskless lending and 

borrowing, risky investments, investors’ preferences and initial wealth as well as return 
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distributions are necessary and sufficient in order to guarantee that the investor’s portfolio 

selection problem is well defined and exhibits the separation property. In section 4, central 

implications of our findings are presented to emphasize the practical importance of the 

problem under consideration. First of all, we derive under which conditions the so-called 

“bias-in-beta” problem in mutual fund performance evaluation does not occur. Second, for the 

case of quadratic utility, we are able to state conditions so that the SLM-CAPM remains valid 

even in the case of only restricted borrowing and lending opportunities. Otherwise, the Black-

CAPM (according to Black, 1972) becomes relevant. Section 5 presents an additional 

empirical application of our theoretical results by examining a set of 45 different mutual funds 

investing in German stocks under the (alternative) assumptions of quadratic, cubic or bi-

quadratic HARA utility. It will be shown that the admissible variations of an investor’s risk 

aversion and initial endowment supporting two-fund separation are quite small, in particular 

for quadratic utility, casting some doubts upon the practical relevance of the two-fund 

separation theorem. Moreover, the range of admissible parameter values becomes 

considerably greater when switching from quadratic to cubic or bi-quadratic utility. In this 

respect, quadratic utility functions do not approximate results for higher-order utility 

functions quite well – a result that is in contrast to the well-documented good quality of 

quadratic utility when approximating optimal portfolio structures for higher-order utility 

functions. Section 6 summarizes our findings and gives a brief outlook onto potential future 

research. 

2 The basic problem 

2.1 The assumptions 

In what follows, we consider an individual who wants to invest his initial wealth 0W  from t = 

0 to t = 1 in three different securities i = 0, 1, 2. Let ix  be the fraction of 0W  which is 

invested in security i. Negative values for ix  stand for short sales. Securities 1 and 2 are risky 
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with ir~  (i = 1, 2) being their uncertain rate of return from t = 0 to t = 1. Security 0 is riskless 

and its interest rate is denoted as 0r . Furthermore, we define 0ii rr~:u~ −=  as the excess return 

of security i and assume 0)u~(E i >  (i = 1, 2) as well as )u~(E)u~(E 21 ≠ . 

Let 1W~  be the investor’s uncertain terminal wealth at time t = 1. Assume further that 

the investor’s utility function )W~(U 1  exhibits hyperbolic absolute risk aversion (HARA), i.e. 

we have )W~ba/(1)W~('U/)W~(''U 111 ⋅+=−  ( ℜ∈b,a ). In what follows, a class of HARA 

utility functions is defined as the subset of all HARA functions with the same b and arbitrary 

a. To abbreviate notation, we define the fraction 0W/a:=τ  as some kind of standardized risk 

tolerance, because (for given b) the higher a, the lower is an individual’s risk aversion. τ is the 

most important determinant of an investor’s behavior for any given class of HARA utility 

functions and given return distributions of all securities i = 0, 1, 2. 

With )xx/(x:y 211 +=  we can characterize the structure of the risky part of the 

investor’s overall portfolio, since y describes the fraction of the investor’s risky holding 

which is invested in security 1. Under the assumption x ∈ ℜ and neglecting special problems 

resulting from the requirement of positive marginal utility, Cass and Stiglitz (1970) showed 

that (only) for a given class of HARA utility functions the resulting optimal structure ( )*y ℜ  of 

the investor’s risky engagement is independent of parameter value a and initial wealth 0W  

and thus τ for any given return distributions of securities 1 and 2. 0W  and a only determine 

the absolute amount of the individual’s risky investment in relation to his riskless borrowing 

and lending, but they do not influence the structure of an investor’s risky portfolio. This 

means, while ( )*y ℜ  is not depending on 0W  and a, the optimal values for 0 1 2x , x , and x  do.  

However, as suggested in the introduction, only the consideration of well defined 

portfolio selection problems in the following way seems to make sense. 
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Definition 1. Consider an investor’s portfolio selection problem. We call it well 

defined if violations of the domain of the investor’s utility function and negative marginal 

utility are effectively avoided for all admissible portfolios and all possible return realizations. 

Furthermore, we state 

Definition 2. Consider an investor with a HARA utility function belonging to a certain 

class b who faces a well defined portfolio selection problem. Let X, Y, and T be sets of ℜ. We 

assume )x;x(Xx 000 ⊃∈ , Xinfx =0 , Xsupx =0  with 0x0 ≤≤∞−  and 1x0 ≥≥∞  as 

well as )y;y(Yy ⊃∈ , Yinfy = , Ysupy =  with −∞ ≤ ≤y 0  and 1y ≥≥∞ . Let −∞≥u  

be the infimum of possible realizations of the investor’s overall excess return u~  for any 

arbitrary admissible securities portfolio and ∞≤u  shall describe the supremum. Let the 

investor’s standardized risk tolerance τ  be any of a certain set );( ττΤ ⊃ , Tinf=τ , 

Tsup=τ  with ∞≤<≤∞− ττ . We say that the separation theorem holds for this special 

portfolio selection problem if the optimal structure *y  is the same for all Ττ ∈ . Obviously, 

this definition only makes sense in the case of 1x0 ≠ . 

According to Definition 2, the separation property has to be examined for a certain 

(well defined) given portfolio selection problem which is characterized by intervals X, Y, and 

T and given excess return distributions of securities 1 and 2. The restrictions with respect to X 

and Y in Definition 2 assure that any positive investment in risky or riskless securities shall be 

admissible. There may only be some kind of short sales restrictions. In the same way we will 

adhere to situations with a given set X ⊃ [0, 1] for the whole paper. The main goal of our 

analysis now is to find out the relevance of the two-fund separation theorem of Cass and 

Stiglitz (1970), when the requirement of positive marginal utility is explicitly allowed for. We 

do this by addressing the following two questions: 
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1) When it is possible to get the optimal value ( )*y ℜ  (according to Cass and Stiglitz, 1970) 

indeed as the solution of a well defined portfolio selection problem with separation, and 

which values of τ can then be part of T? 

2) How must X be defined in order to maximize the difference τ−τ  (i.e. the possible scope 

of the separation theorem) under the restriction that a given value τ is part of T? 

2.2 A graphical representation 

It is easy to present graphically our basic idea for the special case of quadratic utility 

functions. Figure 1 displays a well defined portfolio selection problem for a German investor 

at the end of the 1990ies1 with a quadratic utility function and a time horizon of one month 

who is searching for the optimal combination of the mutual fund “INVESCO GT German 

Growth C” and the DAX 100 index as risky securities 1 and 2 as well as riskless lending or 

borrowing. The DAX 100 (listed until 03/21/2003) consisted of 100 continuously traded 

shares of German companies including the 30 blue chips of the DAX 30 and the 70 midcap-

stocks of the MDAX. Based on historical return realizations, we assume 1E(u ) =  1.71649 %, 

2E(u ) =  1.77189 %, 1Var(u ) =  0.32236 %, 2Var(u ) =  0.39055 %, 1 2Cov(u ,u ) =  0.24657 %, 

u 44.90 %,=  and r0 = 0.22297 %. P* denotes the optimal risky subportfolio as implied by the 

two-fund separation theorem. However, as mentioned previously, we have to restrict the 

investor’s access to riskless lending and borrowing in order to avoid possibilities of negative 

marginal utility. As a consequence, mean-variance efficient portfolios do not lie on a straight 

line any more, but this (bold) line is eventually curved, when the lower bound x0 for riskless 

lending becomes binding. In what follows, we assume Y = [0, 1] and x0 = −200 %. The two-

fund separation theorem can only hold for the investor’s risk tolerance τ not being too great so 

that the optimal portfolio does not lie on the curved section of the set of µ-σ-efficient 

                                                 
1 For more details see the empirical section 5 below. 
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combinations. In fact, in Figure 1 we must have τ ≤ τ  = 1.5664. Obviously, for any other 

lower bound x0, it is possible to compute a corresponding upper bound τ  as well. However, 

in addition, the investor’s risk tolerance must be greater than a lower bound τ, because 

otherwise non-positive marginal utility would result at least for high portfolio return 

realizations. In Figure 1, we have τ = 1.4512, so that marginal utility (as well as the slope of 

all corresponding indifference curves) would just be zero for the (assumed) highest possible 

portfolio return realization u  = 44.90 %. Summarizing, for a given lower bound 0x =  −200 

%, the separation property holds for T = (1.4512, 1.5664]. Moreover, we can set the upper 

bound for x0 equal to one without causing any additional problems, because riskless lending 

beyond an upper bound 0x  = −138,7665 % will not be optimal for τ ∈T. However, the 

concept of standardized risk tolerance – though useful for analytical derivations – seems 

somewhat too abstract. We therefore introduce an alternative measure for an individual’s risk 

aversion which we call the relative risk discount d. This measure is defined as the difference 

between 100 % and the quotient of the certainty equivalent assigned by the investor to his 

risky portfolio excess return and the expected excess return. For our example and T = (1.4512, 

1.5664], a given value of x0 = −200 % (together with the realization of the risky portfolio P*) 

coincides with relative risk discounts in the – rather narrow – range [48.79 %, 61.98 %). 

Moreover, variations of the lower bound x0 may lead to variations of the admissible set T of 

standardized risk tolerances τ and thus relative risk discounts. However, lower standardized 

risk tolerances than ˆ 1.1519τ =  coinciding with *
0x 20.41 %=  are not possible, as for the 

minimal required set X = [0, 1] we have u 14.97 %=  so that (under consideration of r0 = 

0.22297 %) values τ < 1.1519 would imply negative marginal utility for u u.=  

>>> Insert Figure 1 about here <<< 

All these results will be shown analytically in Proposition 3 of section 3. Based on our 

theoretical considerations, the empirical analysis in section 5 verifies as our first practically 
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important result our finding of the present example that only small ranges of relative risk 

discounts are generally in accordance with the two-fund separation theorem and that these 

ranges are smaller for quadratic utility than for cubic or bi-quadratic one. 

Secondly, we are able to identify situations for given return distributions as well as 

given riskless interest rate so that there are no sets X and T at all which support the two-fund 

separation theorem. Apparently, if the dashed indifference curve in Figure 1 exhibited 

negative marginal utility for excess return realization u  = 45.12 %, the separation property 

according to Definition 2 could not hold for x0 = −200 %. Rather interestingly, from 

Proposition 2 of the formal part of our analysis we will learn that in such a situation the 

separation property cannot hold for any other lower bound x0, either. It is only such a 

portfolio selection situation with necessarily negative marginal utility where new information 

may reduce an investor’s maximum expected utility, as is the case for the well-known bias-in-

beta problem of fund management. As a second practically quite important result of our 

formal exposition we thus will be able to state conditions under which bias-in-beta problems 

will not be possible. 

Thirdly, as mentioned at the beginning of this paper, the problem under consideration 

is not only relevant for individual portfolio optimization, but also for asset pricing theory, 

since the SLM-CAPM is based on the validity of the two-fund separation theorem. For 

illustrative purposes, assume P* in Figure 1 to be identical to the market portfolio of the SLM-

CAPM. For the SLM-CAPM to be valid in spite of riskless lending and borrowing constraint 

X, investors’ risk tolerances must not be greater than τ  = 1.5664. This is equivalent to the 

requirement that investors’ relative risk discounts for the hypothetical case x0 = −200 % must 

not be smaller than 48.79 %. Otherwise, the riskless borrowing constraint would be binding 

and the Black-CAPM would be in effect. We are able to show the remarkable fact that this 

critical relative risk discount is the same for any possible lower bound x0. Summarizing, we 
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believe that the explicit recognition of the requirement of positive marginal utility is of 

interest both from an individual’s point of view and from a market perspective. 

3 A characterization of well defined portfolio selection problems exhibiting the 

separation property 

3.1 Necessary and sufficient restrictions for well defined portfolio selection problems 

As already mentioned, well defined portfolio selection problems are only possible if we 

impose additional restrictions on the set of admissible portfolios or parameter values τ. This is 

made more precise by 

Proposition 1. Consider an investor with a HARA utility function belonging to a 

certain class b. Let )x(u 0  be the infimum of realizations of excess returns 

0 0 1 2u( x , y ) : (1 x ) [ y u (1 y ) u ]= − ⋅ ⋅ + − ⋅  for all admissible values of y and u  be the infimum 

of all )x(u 0 . In the same way define supremum values )x(u 0  and u . In this context, we 

make the plausible assumptions 0)0(u <  and 0)0(u > . For given restrictions Xx0 ∈  and 

Yy ∈  the investor’s portfolio selection problem is well defined if and only if 

b)r1u( 0 ⋅++−>τ  for b ≥ 0 or b)r1u( 0 ⋅++−>τ  for b < 0. 

Thereby, we have  

)}0(u)x1(),0(u)x1min{(:u 00 ⋅−⋅−=  and )}0(u)x1(),0(u)x1max{(:u 00 ⋅−⋅−= . 

Proof. See the Appendix. � 

Proposition 1 gives us the minimum required risk tolerance so that marginal utility is 

positive even for the highest and the smallest possible return realization for any portfolio 

under consideration. Not very surprisingly, in the case of constant absolute risk aversion, i.e. 

b = 0, all values τ > 0 lead to well defined portfolio selection problems. In what follows we 

therefore will only focus on the more interesting case b ≠ 0. For our example of Figure 1, we 
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have b = −1, u u( 200 %)= −  = 44.90 %, and thus τ > 0u 1 r+ + = 1.4512. As a direct 

consequence of Proposition 1 we may state the following 

Corollary 1. Consider an investor with a HARA utility function belonging to a certain 

class b ≠ 0. For given standardized risk tolerance τ with −∞ < τ < ∞ the investor’s portfolio 

selection problem may be well defined only if X ≠ ℜ and the domain of u~  is not unbounded 

from above and from below for any admissible portfolio. Moreover, we must have 

)r1(b 0+⋅−>τ . 

Proof. If we assume ℜ=X  or an unbounded domain of u~  for a certain portfolio, we 

obviously violate the conditions 0(u 1 r ) bτ > − + + ⋅  for b ≥ 0 or 0(u 1 r ) bτ > − + + ⋅  for b < 0, 

respectively, because we then have u = −∞ and u = ∞ . Moreover, these conditions 

particularly imply 0b (1 r ),τ > − ⋅ +  since b u 0− ⋅ >  for b > 0 and b u 0− ⋅ >  for b < 0. � 

The last part of Corollary 1 states that marginal utility must be positive at least in 

situations where the overall rate of portfolio return equals the riskless interest rate. In fact, for 

our example of Figure 1 this condition is fulfilled, since we have τ > 1+r0 = 1.0022297. 

Because of the first part of Corollary 1 we must focus on situations with −∞>0x  and/or 

∞<0x , i.e. unlimited riskless lending and borrowing apparently is not admissible. 

3.2 Optimal portfolio structure *)(y ℜ  in spite of restricted riskless lending and 

borrowing 

Against the background of section 3.1, we now analyze how X and T must be designed in 

order to reconstitute the optimal portfolio structure *)(y ℜ  evolving for X = ℜ and neglecting 

problems of negative marginal utility. First of all, we have to examine the question under 

which conditions it will be possible to find non-empty sets X and T which support *)(y ℜ  as an 

optimal solution. To do so we need 



 10

Lemma 1. Consider a well defined portfolio selection problem and an investor with a 

HARA utility function belonging to a certain class b ≠ 0. Let )(x*
0 τ  be the optimal solution 

for 0x  for given restrictions X and Y as well as given T∈τ  and define 

))r1(b/()x1(: 000 +⋅+−= τξ  with 0)r1(b 0 >+⋅−>τ  as a substitute for 0x . Let *)(
0

ℜξ , 

)(x *)(
0 τℜ  and *)(y ℜ  be the optimal values of 0ξ , 0x  and y, respectively, for given restrictions 

T and Y and X = ℜ. In addition, we assume an (inner) optimal solution Yy *)( ∈ℜ \ }y,y{ . 

1) A necessary and sufficient condition for separation to hold is that there is no subset 

T],[ ⊂++ ττ  with 0>− ++ ττ  and }x,x{)(x*
000 ∈τ  for all ],[ ++∈ τττ  (⇔ 

*)(
0

*
0 x)(x ℜ≠τ  for all but at most one ],[ ++∈ τττ ). Then we have *)(* yy ℜ= . 

2) Recall ))r(b/())(x(:)( **
000 11 +⋅+−= τττξ . Another necessary and sufficient condition 

for separation to hold is *)(
0

*
0 )( ℜ= ξτξ  = const. for all T∈τ . 

3) Let }x)(x|inf{: 0
*
0

(max) =ℜ∈= τττ  and }x)(x|sup{: 0
*
0

(min) =ℜ∈= τττ . In the case of 

separation we have (max)ττ ≤ , if 0*
0 >ξ . For 0*

0 <ξ  we have (min)ττ ≥ . 

Proof. See the Appendix. � 

Lemma 1 introduces an auxiliary decision variable 0ξ  as a function of an investor’s 

riskless lending x0 with the interesting feature of its optimal value being independent of 

standardized risk tolerance τ and corresponding optimal value *
0x ,  when the two-fund 

separation theorem applies. For the example of section 2.2 we have ( )*
0
ℜξ =  5.3176. Moreover, 

Lemma 1 in particular states the necessity of the absence of binding restrictions with respect 

to riskless borrowing and lending for the separation theorem to hold in the case of inner 

solutions regarding y and thus enables us to answer the questions mentioned above with 



 11

Proposition 2. Consider an investor with a HARA utility function belonging to a 

certain class b ≠ 0. If and only if 0)y,0(ub1 *)(*)(
0 ≤⋅⋅+ ℜℜξ  for at least one possible 

realization of )y,0(u~ *)( ℜ , then for given Y and inner solution Yy *)( ∈ℜ \ }y,y{  there exist 

no sets T, X ⊂ ℜ so that the separation property with *)(* yy ℜ=  can be re-established. In the 

case of a border solution ℜ ∈( )*y { y, y }  the condition 0)y,0(ub1 *)(*)(
0 ≤⋅⋅+ ℜℜξ  for at least 

one possible realization of )y,0(u~ *)( ℜ  implies that the separation property can only be 

reconstituted for sets T so that the restriction x0 ∈ X is binding for all τ ∈ T. 

Proof. See the Appendix. � 

According to Proposition 2 there may be situations where an inner solution )*(* yy ℜ=  

cannot be supported by a well defined portfolio selection problem exhibiting the separation 

property, even if X and T are restricted in any arbitrary manner. Only if 

0)y,0(ub1 )*()*(
0 >⋅ξ⋅+ ℜℜ  for all possible realizations of )y,0(u~ *)(ℜ , separation with an 

inner solution )*(* yy ℜ=  can be derived for adequately defined sets X and T. Indeed, in our 

example of section 2 we have ( )* ( )*
01 b u(0, y )ℜ ℜ+ ⋅ξ ⋅ ≥ 49.51 % > 0. 

Things look somewhat different in the case of border solutions * ( )y y {y, y}ℜ= ∈ , 

because in such a situation binding restrictions x0 ∈ X may be consistent with y* = y(ℜ)* for a 

set T [ , ]+ += τ τ  with 0++τ − τ > . For example, for Y = {y(ℜ)*} it will in general be possible to 

find sets X = {x0} and T [ , ]+ += τ τ  with 0++τ − τ >  which lead to a well defined portfolio 

selection problem and exhibit the separation property even if ( )* ( )*
01 b u(0, y ) 0ℜ ℜ+ ⋅ ξ ⋅ ≤ . 

Certainly, such a situation is not very interesting. This assessment is confirmed if we take into 

account the requirement [0, 1] ⊂ X stated previously. For X satisfying this condition, a 

nonpositive sign of ( )* ( )*
01 b u(0, y )ℜ ℜ+ ⋅ ξ ⋅  in connection with a border solution 
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* ( )y y {y, y}ℜ= ∈  immediately implies according to Proposition 2 that well defined portfolio 

selection problems exhibiting the separation property are characterized by *
0x 0≤  for all τ ∈ T 

or *
0x 1≥  for all τ ∈ T. Obviously, such scenarios are of only minor practical importance. 

Moreover, in capital market equilibrium with two-fund separation and homogenous 

expectations as well as [0, 1] ⊂ Y, market clearing conditions will require an inner solution 

for y which offers additional support for the assessment of only minor relevance of border 

solutions with respect to the holding of risky assets. As a consequence of Proposition 2, we 

therefore restrict our analysis for the rest of our paper to situations with inner2 solutions for y 

and thus assume the condition ( )* ( )*
01 b u(0, y ) 0ℜ ℜ+ ⋅ ξ ⋅ >  to be fulfilled for all possible 

realizations of )y,0(u~ *)(ℜ . With this in mind, we now want to analyze further which values of 

τ can be part of T and how X must be defined in order to maximize the difference τ−τ  for 

given τ ∈ T. 

Because of Lemma 1 binding restrictions for borrowing and lending will circumvent 

the separation theorem from being valid as long as we restrict our analysis to inner solutions 

for the optimal structure of the risky part of an investor’s overall portfolio. Moreover, for 

given restrictions Y and X, Proposition 1 and Lemma 1 offer us lower and upper bounds for 

admissible values τ leading to well defined portfolio selection problems that guarantee the 

separation property for all τ ∈ T and arbitrary (not unbounded) return distributions according 

to Definition 2. To be precise, part 1) or 2) of Lemma 1 in connection with Proposition 1 

describe necessary and sufficient conditions for a portfolio selection problem satisfying 

Definition 2 with inner solution *)(* yy ℜ= . 

Note that 0*)(
0 >ξ ℜ  means that for given securities 1 and 2 as well as riskless interest 

rate 0r  and restrictions X and Y, all investors with a HARA utility function of the same class 

                                                 
2 However, separation results for the borderline case of ( )y {y, y}ℜ ∈  are available from the authors upon request. 
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will choose 1)(x *)(
0 <τℜ , whereas 0*)(

0 <ξ ℜ  corresponds to the fact that all investors arrive at 

1)(x *)(
0 >τℜ , thus selling short the optimal portfolio of risky securities 1 and 2. Obviously, a 

situation with 0*)(
0 >ξ ℜ  seems to be much more important and interesting. We therefore focus 

on such situations:3 

Proposition 3. Assume b ≠ 0. For given Y, the inequalities ℜ+ ⋅ ⋅ >( )*
01 b u(0 ) 0ξ  as 

well as ( )*
01 b u(0 ) 0ξ ℜ+ ⋅ ⋅ >  shall be true. Moreover, we restrict ourselves to situations with 

( )*ℜ ∈y Y \ }y,y{  and ℜ >( )*
0 0ξ . Define * ( )*

0 0 0x ( ) : min{1 ( b (1 r )),0 }τ ξ τℜ= − ⋅ + ⋅ + , 

−= 1max{:)(x*
0 τ ( )*

0 0( b (1 r )),1}ξ τℜ ⋅ + ⋅ + , and a function g with 

⎩
⎨
⎧

<⋅−++⋅−⋅+
>⋅−++⋅−⋅+= .0b)x1(if),r1)0(u)x1((b

,0b)x1(if),r1)0(u)x1((b:),x(g
000

000
0 τ

ττ  

Then a critical value τ̂  with 0)ˆ),ˆ(x(g *
0 =ττ  exists and (only) for any + > ˆτ τ  there is 

a set Τ with Ττ ∈+  so that the separation property holds for given restrictions Y and 

]1),(x[X *
0 τ=  with 0)(x*

0 ≤τ . The difference ττ −  with ],[ τττ ∈+  is maximized by 

setting += ττ  and τ  so as to guarantee 0)),(x(g *
0 =ττ . The portion )(x*

0 τ  converges to 

−∞  for ∞→+τ . In addition, only for borrowing restrictions *
0 0 ˆx x ( )< τ  the separation 

theorem may hold and the set T which maximizes ττ −   for given value 0x  is (implicitly) 

defined by 0
*
0 x)(x =τ  and 0)),(x(g *

0 =ττ . Since ( )*
0 0ℜ >ξ  corresponds with ℜ <( )*

0x ( ) 1τ , 

ceteris paribus deviations from the minimum setting 1x0 =  might only reduce the admissible 

set T for given lower bound 0x . 

Proof. See the Appendix. � 

                                                 
3 However, separating results are similar for ( )*

0 0ℜξ <  as well. Details are available from the authors upon 
request. 
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Proposition 3 tells us the range of possible well defined portfolio selection problems 

for which the separation theorem may hold, if we assume inner optimal solutions for y. In 

particular, in any case an investor’s standardized risk tolerance must exceed a certain 

threshold value τ̂  and is generally restricted to values of a bounded set T. Rather 

interestingly, according to Proposition 3 there is a limiting case where (approximately) 

unrestricted borrowing is allowed and the range of admissible values for τ is (approximately) 

infinite. Such a situation resembles the original separation theorem by Cass and Stiglitz 

(1970). Unfortunately, in contrast to Cass and Stiglitz (1970), all those admissible values for τ 

are (nearly) infinite. Especially this result may highlight the necessity for an explicit notion of 

positive marginal utility. A graphical interpretation of the main results of Proposition 3 has 

already been given in section 2. There we have τ =  1.4512 and the upper bound τ  = 1.5664 

maximizes the difference τ − τ  for given lower bound 0x =  −200 %. 

Moreover, it is straightforward to extend our analysis in Proposition 3 to more than 

just two risky securities, since we only consider situations with a fixed optimal structure *)(y ℜ  

of risky portfolios. More interestingly, Proposition 3 enables us to derive conclusions 

regarding the practical relevance of the bias-in-beta problem and of the SLM-CAPM versus 

the Black-CAPM.  

4 Practical Implications of missing positive marginal utility 

4.1 Bias in beta in mutual fund performance evaluation 

It is well-known from the theory of mutual fund performance evaluation that better 

information might deteriorate the assessment of a portfolio manager according to Jensen’s 

(1968) alpha. This phenomenon is called the bias-in-beta problem and in what follows we 

want to analyze a generalized version of this phenomenon. To this end, we look at the 

situation of section 2.2 and consider an investor with HARA utility who wants to choose 

exactly one out of F different funds f = 1, .., F in order to combine it optimally with a 
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reference portfolio P of direct stockholding (the DAX 100, for example) and riskless lending 

and borrowing. Propositions 2 and 3 now refer to each of the F different portfolio selection 

problems of this section separately, and it is straightforward to draw conclusions for the 

overall selection problem. In particular, choosing T and X in such a way so that any of the F 

sub-problems exhibits the separation property also guarantees the same characteristic for the 

overall portfolio problem. Though without a discussion of the problem of negative marginal 

utility, in Breuer and Gürtler (2006) (in particular Propositions 2 and 3) it has been shown that 

investors’ expected (HARA) utility maximization and the two-fund separation theorem lead 

to a fund ranking according to some kind of generalized and optimized Sharpe measure that 

comprises the classical performance measures of Treynor (1965), Sharpe (1966), Jensen 

(1968) and Treynor and Black (1973) as special cases. Against this background, we now 

introduce 

Definition 3. A situation where ceteris paribus better information in the sense of at 

least second-order stochastic dominance for a fund manager f may deteriorate his ranking, 

although − given this information −  he is maximizing investors' expected utility according to 

the two-fund separation theorem, is called a generalized bias-in-beta problem. 

Grinblatt and Titman (1989) showed that the "conventional" bias-in-beta problem is a 

consequence of implicitly assuming negative marginal utility. In fact, this cause carries over 

to the generalized bias-in-beta problem of Definition 3. Only if marginal utility can become 

negative, first- or second-order-stochastic dominance may not be favorable so that "better" 

information might indeed not be better. This immediately gives us 

Corollary 2. The generalized bias-in-beta problem does not occur for the ranking of 

mutual funds according to the optimized and generalized Sharpe measure of Breuer and 

Gürtler (2006), as long as there are non-empty sets X and T so that for all F sub-portfolio 

selection problems under consideration are well defined and exhibit the separation property. 
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In particular, such non-empty sets of X and T do exist if all funds fulfil the condition 

( )* ( )*
01 b u(0, y ) 0ξ ℜ ℜ+ ⋅ ⋅ >  of Proposition 2  for all possible realizations of ( )*u(0, y )ℜ . In 

case there are such non-empty sets X and T, a fund g with a return distribution of its optimal 

combination with the reference portfolio P that dominates the corresponding "optimized" 

return distribution of a fund h according to first- or second-order stochastic dominance will 

attain a better ranking position. 

Proof. See derivation above: Since the generalized and optimized Sharpe measure leads to the 

choice of that fund that maximizes investors’ expected utility and all fund managers’ portfolio 

selection problems are well defined, better information cannot deteriorate a fund’s ranking 

position. Thereby, it is not necessary to restrict the analysis to inner solutions for y, as in the 

case of border solutions the only difference lies in the possibility of well defined portfolio 

selection problems exhibiting the separation property even if ( )* ( )*
01 b u(0, y ) 0ℜ ℜ+ ⋅ξ ⋅ >  is not 

true for all of ( )*u(0, y )ℜ . � 

According to Corollary 2, the bias-in-beta-problem is not a weakness of a certain 

performance measure like Jensen’s alpha. Instead, it is the result of implicitly considering 

portfolio selection problems which cannot fulfill the requirement of positive marginal utility 

so that the whole approach of performance evaluation based on the two-fund separation 

theorem becomes invalid. Moreover, Corollary 2 offers an alternative to the suggestion of 

Grinblatt and Titman (1989) to define so-called positive period weighting measures in order 

to circumvent the bias-in-beta problem. Instead of this, one could restrict oneself to investors' 

preferences (like always the negative exponential one) which enable the derivation of non-

empty sets X and T leading to a well defined portfolio selection problem that exhibits the 

separation property. Then, funds can be ranked according to the approach presented by Breuer 

and Gürtler (2006) thus giving one's ranking a clear portfolio theoretic foundation – 

something which in general cannot be assured by positive period weighting measures. 
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4.2 SLM-CAPM versus Black-CAPM 

In the SLM-CAPM, the optimal portfolio P* of risky securities is an inner solution to the 

investors’ portfolio selection problem because of market clearing conditions and the 

assumption of homogeneous expectations. Moreover, as is known from Black (1972), in the 

absence of a riskless asset, all mean-variance efficient portfolios can be interpreted as the 

linear combination of just two given risky portfolios, i.e. return distributions, so that the 

formal analysis of the previous section 3 directly applies to the equilibrium situation in the 

SLM-CAPM if we denote these two risky portfolios as securities 1 and 2. However, the SLM-

CAPM is only valid if there are no binding constraints for riskless borrowing and lending. 

From Lemma 1 and the graphical analysis of section 2 it is known that investors’ standardized 

risk tolerance τ therefore must not exceed a certain threshold (max)
0(x )τ . Otherwise, restriction 

X is binding and thus the Black-CAPM applies. It is therefore easy to compute restrictions on 

τ which are necessary for the validity of the SLM-CAPM. However, while analytically 

helpful, the variable τ lacks some vividness so that we focus instead on the examination of 

minimum required relative risk discounts d. In fact, for any arbitrary given holding x0 of the 

riskless asset and maximum standardized risk tolerance, the corresponding (minimum) 

relative risk discount can be computed. To be precise, we have 

Proposition 4. Assume a well defined portfolio selection problem with b ≠ 0.4 An 

investor’s relative risk discount db for given preference parameter b does not depend on x0 

and standardized risk tolerance τ, as long as ))r1(b/()x1(: 000 +⋅+−= τξ  and y are 

unchanged.  

Proof. See the Appendix. � 

Among other things, Proposition 4 implies that in the case of inner solutions with 

respect to riskless lending and borrowing relative risk discounts are independent of 

                                                 
4 Though not of interest here, it should be noted that Proposition 4 holds for b = 0 as well. 
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standardized risk tolerance τ, because optimal values ( )*
0
ℜξ  and ( )*y ℜ  do not depend on τ. This 

gives 

Corollary 3. Assume a situation with all investors exhibiting quadratic utility functions 

and homogenous expectations. Moreover, let the portfolio selection problem of any investor 

be well defined in the sense of Definition 1 with x0 = 0. Then for given values E[u ]  and 

Var[u ]  of expected market portfolio return and corresponding return variance, compute the 

corresponding certainty equivalent uCE  for quadratic utility and x0 = 0 as  

{ }1/ 22
CE 0 0b 1

2 2 1/ 2
0 0 0

u ( ) E[ (1 r u )] 1 r

{ 2 (1 r E[u ]) Var[u ] (1 r E[u ]) } 1 r .

τ τ τ

τ τ τ
=−
= − − + + + − −

= − − ⋅ ⋅ + + + + + + + − −
 

The SLM-CAPM is only valid if and only if there is no investor with a relative risk 

discount that is smaller than 1−uCE( (max)
0( x 0 )τ = )/ E[u ]  in the (hypothetical) case of solely 

holding the market portfolio (and with τ(max) as defined in Lemma 1) 3) for x0 = 0). Otherwise, 

x0 = 0 is binding and only the Black-CAPM holds true. For other lower bounds of x0, the 

same critical relative risk discount results. 

Proof. Follows immediately from Lemma 1 3) and Proposition 4. � 

For example, for the time period from 1951 to 2000 in the U.S., Fama and French 

(2002) offer three estimators of (real) equity risk premia on the market portfolio, i.e. an 

estimator based on historically realized stock returns amounting to 7.43 % p.a., while the 

other two estimators are based on the historical development of fundamentals (dividends or 

earnings) and amount to 2.55 % or 4.32 % p.a., respectively. Moreover, corresponding Sharpe 

ratios of the market portfolio for these three approaches are presented as 44 %, 15 %, and 25 

%, respectively, thus showing a strong difference between the first approach and the two 

others. From given equity risk premia and corresponding Sharpe ratios we are able to 

calculate variances of excess returns of 2.8514 %, 2.89 %, and 2.986 %, respectively. With 
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these few data and an average (real) riskless interest rate of 2.19 % p.a., also according to 

Fama and French (2002), it is already possible to calculate minimum required relative risk 

discounts which are necessary to avoid a binding arbitrary lower bound 0x .  In fact, we arrive 

at minimum required relative risk discounts of 47.79 %, 49.24 %, and 49.72 %, respectively. 

If there is only one individual (with quadratic utility function) whose relative risk discount 

when (fictitiously) realizing x0 = x0 (and the market portfolio as the risky investment) is less 

than 47 %, then the valuation function derived by Black (1972) becomes relevant, as long as 

we restrict ourselves to the consideration of well defined portfolio selection problems 

according to Definition 1. 

5 Mutual funds investing in German stocks and the separation theorem 

As an additional illustration we analyze the special mutual fund portfolio selection problem of 

an investor outlined at the beginning of section 4.1 and already examined in Breuer and 

Gürtler (2005, 2006) (though without explicit recognition of the requirement of positive 

marginal utility) with Y = [0, 1] and F = 45 different mutual funds that are investing on the 

German stock market.  

We start by assuming the investor’s utility function to be quadratic. With the two-fund 

separation being valid, all funds then are ranked according to the respective Sharpe ratios of 

their best combination with the DAX 100 reference portfolio of direct stock holding, i.e. 

according to the optimized Sharpe measure as defined in Breuer and Gürtler (2006). Table 1 

presents excess return moments according to Breuer and Gürtler (2005) and (in addition) 

minimum and maximum realized monthly fund returns for the time period from July 1996 to 

August 1999 under consideration. Moreover, we follow Breuer and Gürtler (2005) in 

assuming a riskless interest rate 0r  of 0.22297 %. 

>>> Insert Table 1 about here <<< 
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Let ( )*
0,f
ℜξ  be the optimal value of ξ0 as defined in Lemma 1 for a certain fund f in the 

case of quadratic utility. In what follows, variables that are depending on characteristics of 

fund f are indexed by f. We calculate ( )*
0,f
ℜξ  for all funds f under consideration. Two of them 

do not satisfy the condition ( )* ( )*
01 u(0, y ) 0ℜ ℜ− ξ ⋅ >  for all possible excess return realizations 

( )*u(0, y ) 0ℜ >  and thus have to be excluded in order to guarantee a well defined portfolio 

selection problem exhibiting the separation property. For all other 43 funds, values for ( )*
0,f
ℜξ  

are positive, so that situations with short selling of risky portfolios do not appear for our 

example. As a consequence, according to section 3.2 we can immediately conclude that an 

upper bound 0x 1=  is admissible. For 24 funds of the remaining 43 ones we get border 

solutions ( )*
fy 0,ℜ =  i.e. these funds will not be combined positively with the DAX 100 and 

thus shall be omitted. 12 more funds are characterized by a binding restriction ( )*
fy 1,ℜ =  so 

that these funds will be held without any additional investment in the DAX 100. As we 

restrict ourselves in this paper to situations with inner solutions with respect to y, these funds 

are omitted as well. We will return to this issue later on. Summarizing, there are only seven 

funds left that are considered in more detail and thus are shaded in gray in Table 1. 

Now, we assume different (alternative) lower bounds 0x {0, 1, 2}.∈ − −  For each of 

these three lower bounds and for all of the remaining seven funds, we compute the interval Tf 

of risk tolerances according to Proposition 3, which support the optimal risky holding 

( )*
fy .ℜ The first part of Table 2 displays all resulting intervals Tf as well as their intersections 

(max) (min)( , ]τ τ  for the case of quadratic utility (b = − 1) and 0x {0, 1, 2}.∈ − −  According to 

Table 2, resulting intersections become greater with decreasing lower bound 0x ,  but 

generally seem to be quite small. Nevertheless, it remains difficult to assess the relevance of 

the range of possible degrees of risk aversion that are consistent with the existence of a well 

defined portfolio selection problem according to Definition 1. In addition, we therefore 
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calculate relative risk discounts for 00,fx x= , ( )*
f fy y ℜ=  and (max)τ = τ  or (min) ,τ = τ  

respectively. Maybe somewhat surprisingly, we find that all intervals of resulting relative risk 

discounts are independent of the value 0x  under consideration. This is caused by the fact, that 

the same fund (f = 12: DekaFonds) is responsible for the determination of the lower bound 

(max)τ  of the resulting intersection of all intervals Tf regardless of 0x . In the same way, the 

fund f = 29: “INVESCO GT German Growth C” always determines the upper bound (min)τ  of 

the intersection of all Tf. As a consequence, for any τ under consideration we have 

*
00,f 12x ( ) x= τ =  and thus constant values ( )*

0,f 12 0,f 12
ℜ

= =ξ = ξ  and ( )*
f 12 f 12y y ℜ

= == , so that Proposition 4 

directly applies with respect to the relative risk discounts for f = 7 and varying values of x0,f. 

Moreover, as we use the same values for (max)τ  and *
00,f 12x x= =  for all funds under 

consideration, we have, by construction, ( )*
0,f 0,f 12 const.ℜ

=ξ = ξ =  for any fund f under 

consideration. As ( )*
f fy y ℜ=  is constant as well for any fund under consideration, upper 

bounds for relative risk discounts do not change with varying 0x . The same holds true 

regarding lower bounds of relative risk discounts caused by the relevance of fund #29.  

>>> Insert Table 2 about here <<< 

Summarizing, for any fund f the ultimate column of Table 2 offers the maximum as 

well as the minimum relative risk discounts for 00,fx x=  and ( )*
f fy y ℜ=  which do not depend 

on the choice 0x {0, 1, 2}.∈ − −  Moreover, resulting intervals of relative risk discounts are 

quite “narrow”, as they amount at most to twelve percentage points. After all, for this 

empirical example and the assumption of quadratic utility the consequences of the two-fund 

separation as indicated by the resulting ranking positions of the funds in the third column are 

only valid for rather a small range of admissible standardized risk tolerances. 

Correspondingly, the underlying “optimized” Sharpe ratios (that – for quadratic utility – lead 

to the same fund ranking as the Treynor and Black, 1973, appraisal ratio, as shown by Jobson 
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and Korkie, 1984) are far from generally applicable even under the assumption of quadratic 

utility. Certainly, intervals of admissible risk tolerances would even be (considerably) smaller 

if we accounted for all 43 funds of Table 1 that satisfy the condition ( )* ( )*
01 u(0, y ) 0ℜ ℜ− ξ ⋅ >  

for all possible excess return realizations ( )*u(0, y ) 0ℜ >  (thus including funds with border 

solutions ( )*y {0,1}ℜ ∈ ).5 

The second and the third part of Table 2 present corresponding results for cubic (b = 

−0.5) as well as bi-quadratic (b = −1/3) HARA utility. While minimum relative risk discounts 

are nearly the same as for quadratic utility, absolutely lower values for b increase significantly 

maximum relative risk discounts which are in line with a well defined portfolio selection 

problem exhibiting the separation property. Even cubic utility instead of quadratic one makes 

relative risk discounts beyond 100 % possible which – in the context of Table 2 – means that 

the investor would be willing to pay for not being obliged to realize a riskless holding of 

(only) 00x x=  together with ( )*
f fy y .ℜ=  The reason for this extension of ranges of admissible 

relative risk discounts is that 0b (1 r u)τ + ⋅ + +  determines the sign of an investor’s marginal 

utility. Absolutely smaller values of b make smaller values of τ compatible with the 

requirement 0b (1 r u) 0τ + ⋅ + + >  and thus imply that higher relative risk discounts become 

admissible. 

Although admissible domains of τ are quite different for different utility functions, one 

may use quadratic utility functions as a second-order approximation of higher-order utility 

functions in order to identify more easily reasonable portfolio structures (see, for example, 

Samuelson, 1970). In fact, one can determine optimal values *
0,f ,bξ  and *

f ,by  for b = −1 and use 

this as an approximation for the “true” optimal values of these variables in the case of b = 

−0.5 or b = −1/3. Because of the cardinality of utility functions it is then possible to compute 

                                                 
5 As available upon request, intervals of admissible relative risk discounts shrink to about 3 percentage points. 
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the resulting investor’s certainty equivalent for “approximative” portfolio composition 

* *
0,f , 1 f , 1( , y )− −ξ  as a fraction of the investor’s certainty equivalent when realizing the “actually” 

optimal portfolio structure * *
0,f ,b f ,b( , y )ξ  for b = −0.5 or b = −1/3. This fraction does not depend 

on the standardized risk tolerance τ. The value of τ only is relevant in order to determine the 

corresponding riskless holding x0 as a function of *
0,f ,bξ  according to 

* *
0 0,f ,b 0,f ,b 0x ( ) 1 ( b (1 r )).ξ = − ξ ⋅ τ + ⋅ +   

For the seven funds of Table 2 all those fractions of certainty equivalents are almost 

identical to 100 %. In fact, the lowest value amounts to 99.84 %. Regardless of possible 

variations in fund rankings for different values of b, this finding indicates the very good 

approximative quality of optimal portfolios in the case of quadratic utility when preferences 

are indeed non-quadratic. That (numerical) property of quadratic utility functions is well 

documented in the literature (see, e.g., Levy and Markowitz, 1979, and Kroll et al., 1984). 

However, the present paper now suggests the – at first glance somewhat surprising result – 

that non-quadratic utility functions may be important, because they enlarge the set of possible 

standardized risk tolerances which are compatible with the separation requirement. As a 

practically remarkable consequence, the range of possible applications of optimal portfolio 

structures from quadratic utility goes beyond the intervals of relative risk discounts computed 

for b = −1. That means that in general the Sharpe ratio of optimal risky portfolios and the 

(equivalent) Treynor and Black appraisal ratio underlying the ranking of funds according to 

Table 2, case b = −1, can be justified quite well as a sorting means for funds in the case of 

high relative risk discounts (and higher-order HARA utility functions). However, lower 

relative risk discounts (for assumed riskless lending 00x x )=  than about 50 % to 60 % are 

not in line with the postulation of a well defined portfolio selection problem exhibiting the 

separation property. At least up to our best knowledge, such questions do not seem to have 

been extensively discussed by the existing literature. 
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6 Summary and outlook 

This paper was mainly motivated by the problem that the requirement of positive marginal 

utility restricts the possibility to derive a two-fund separation theorem as presented by Cass 

and Stiglitz (1970). We showed that the explicit recognition of positive marginal utility only 

makes it possible to derive restricted separation properties for portfolio selection problems. 

We characterized in detail for which portfolio selection problems separation holds and 

presented two practical applications regarding an analysis of the bias-in-beta problem of 

mutual fund performance evaluation and the validity of the SLM-CAPM versus the Black-

CAPM. Moreover, we gave a simple empirical application of our results that emphasizes our 

assessment of the only limited validity of the separation theorem and its implications for 

mutual fund ranking in the light of the requirement of positive marginal utility. Moreover, 

despite the general good approximative quality of quadratic utility for portfolio optimization 

in the case of higher-order utility functions, we found the interesting result that higher-order 

HARA utility functions may lead to a greater range of standardized risk tolerances that imply 

well defined portfolio selection problems exhibiting the separation property. 

As an interesting task for further research one could try to implement constraints of 

positive marginal utility in the capital asset pricing model of Vanden (2004) that is based on 

HARA utility as well and assumes (up to now) only nonnegativity constraints for an 

investor’s terminal wealth. Maybe such an extended asset pricing model would do empirically 

even better than the original approach of Vanden (2004).
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Appendix 

Proof of Proposition 1: 

Since the postulated statement is obvious in the case b = 0, we only deal with the case b ≠ 0. 

First of all we can show that for an arbitrary utility function of the HARA type and any wealth 

level 1W  the investor’s utility is defined and his marginal utility is positive, if and only if we 

have 0Wba 1 >⋅+ .6 

Case 1: 0 ≠ b ≠ 1 

0Wba0)Wba()W('U 1
b/1

11 >⋅+⇔>⋅+= − . (A1) 

Case 1: b = 1 

0Wba0
Wba

1)W('U 1
1

1 >⋅+⇔>
⋅+

= . (A2) 

Obviously, the property 0Wba 1 >⋅+  also guarantees 1W  to be in the domain of U. 

From this statement we know that for each realization u(0,y) we need 

)r1(b)y,0(u)x1(b
0))y,0(u)x1(r1(b

00

00

+⋅−⋅−⋅−>τ⇔
>⋅−++⋅+τ

 (A3) 

since ))y,0(u)x1(r1(WW 0001 ⋅−++⋅= . In addition, since we have assumed 0)0(u <  and 

0)0(u > , we get the following inequalities: 

.u})0(u)x1(,)0(u)x1(max{)y,0(u)x1(

,u})0(u)x1(,)0(u)x1(min{)y,0(u)x1(

00

0
00

00

00

0
00

00

=⋅−⋅−≤⋅−

=⋅−⋅−≥⋅−

≥≥≤≤

≤≥≥≤  (A4) 

Summarizing, it follows from (A3) that positive marginal utility is assured if and only 

if 

                                                 
6 In fact, this condition additionally guarantees that the second derivative of an investor’s utility function of the 
HARA type is negative thus exhibiting diminishing positive marginal utility. 
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.0bforb)r1u(
or,0bforb)r1u(

0

0

<⋅++−>τ
>⋅++−>τ

 (A5) 

Proof of Lemma 1: 

1) Firstly, we assume the existence of a subinterval T],[ ⊂ττ ++  with 0>τ−τ ++  and 

}x,x{)(x 00
*
0 ∈τ  for all ],[ ++ ττ∈τ . For our problem this assumption apparently implies 

)const(
0

*
0 x)(x =τ  for all ],[ ++ ττ∈τ  with }x,x{x 00

)const(
0 ∈ . For HARA utility functions with 

0b ≠ , i.e. non-constant absolute risk aversion, and all ],[ ++ ττ∈τ  the inner optimal solution 

*y  = )(y* τ  is determined by solving the following necessary condition: 

.0))u~u~())))(y,x(u~r1(b((E

0))u~u~())))(y,x(u~r1(Wba((E

21
b/1*)const(

00

21
b/1*)const(

000

=−⋅τ++⋅+τ⇔

=−⋅τ++⋅⋅+
−

−

 (A6) 

Assume )(y* τ  to be constant for all ],[ ++ ττ∈τ . With the abbreviations 

)y,x(u~:u~ *)const(
0=  and 0))u~u~())u~r1(b((E:)(ĥ 21

b/1 =−⋅++⋅+τ=τ −  for all ],[ ++ ττ∈τ  we 

get that all derivatives (k) 1/ b k1 1 1
0b b bĥ ( ) ( 1) ... ( k 1) E(( b (1 r u))− −τ = − ⋅ − − ⋅ ⋅ − − + ⋅ τ + ⋅ + + ⋅  

1 2(u u ))−  are zero for all ),( ++ ττ∈τ . Since h is continuous, the set }0)(ĥ|{})0({ĥ 1 =ττ=−  

is closed and thus only two cases are possible. Either there exists a maximum 

ℜ∈=τ − }))0({ĥmax( 1
0  or })0({ĥ 1−  is unbounded, i.e. ∞=− }))0({ĥsup( 1 . Firstly, we 

consider the case of a real maximum 0τ . Define 0}2|,b/1max{|: >=κ , 0: >τ−τ=ε ++  and 

00 )/(: τ>κε+τ=τ . Since ++⋅+τ+
0r1(b 0)u~ >  and 0 ,+τ ≥ τ  we immediately obtain 

ε>++⋅+τ )u~r1(bˆ 0  for all 0ˆ τ>τ . Consequently, we know from Taylor’s theorem for 

arbitrary k ∈ IN the existence of ),(ˆ 0 ττ∈τ  with 
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The asserted convergence is obvious, since 

.0cif,011
...

1c1

,0cif,0
11

...
1c1

k

k

2/1

k
c

2
c

k

1k

1/|c1|

2
c

k
c

2
c

>⎯⎯ →⎯
κ

<
κ
−

⋅⋅
κ
−

⋅
κ
−

<⎯⎯ →⎯
κ
−

<
κ
−

⋅⋅
κ
−

⋅
κ
−

∞→

≤

∞→

−

≤κ−<  (A8) 

Summarized, we get ĥ (τ) = 0 which contradicts ℜ∈=τ − }))0({ĥmax( 1
0 . Thus, 

}))0({ĥsup( 1−  = ∞ which implies the existence of a sequence (τn)n∈IN with ∞=τ∞→ nnlim  

and ĥ (τn) = 0 for all n ∈ IN. This statement contradicts (A6) for all distributions with 

]u~[E]u~[E 21 ≠  since 1/ b
1 2

ˆlim(h( ) ) E[u u ] 0
τ→∞

τ ⋅ τ = − ≠ . Thus, the assumption of a constant *y  is 

not true, i.e. a change in ],[ ++ ττ∈τ  implies different values for *y . This statement 

corresponds with the fact that separation does not hold. 

Secondly, the assumption )x,x()(x 00
*
0 ∈τ  for all T∈τ \ },{ ττ  leads to the validity of 

the separation theorem according to the analysis presented in Cass and Stiglitz (1970). 

2) Let U be a HARA utility function with parameters a and b and Û  be the corresponding one 

with parameters a = 1 and b. With the identity 
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⎜
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 (A9) 

we get ))y,0(u(Û))r1(Wba()))y,0(u)x1(r1(W(U 0
b/11

00000 ⋅ξ⋅+⋅⋅+=⋅−++⋅ −  if 0 ≠ b 

≠ 1, and ))y,0(u(Û))r1(Wbaln()))y,0(u)x1(r1(W(U 000000 ⋅ξ++⋅⋅+=⋅−++⋅  if b = 1. 

From the cardinality of utility functions we are allowed to maximize ))]y,0(u(Û[E 0 ⋅ξ  with 

respect to 0ξ  and y instead of maximizing )))]y,0(u)x1(r1(W(U[E 000 ⋅−++⋅  with respect 

to 0x  and y.  

If there are no binding restrictions for )(x*
0 τ  (i.e. )x,x()(x)(x 00

*)(
0

*
0 ∈τ=τ ℜ ) the 

solution *
0ξ  = *)(

0
ℜξ  of the optimization problem is obviously independent of τ. But in the case 

}x,x{x)(x 00
)const(

0
*
0 ∈=τ  for ],[ ++ ττ∈τ  the solution ))r1(b/()x1()( 0

)const(
0

*
0 +⋅+τ−=τξ  is 

strictly decreasing or strictly increasing for all ],[ ++ ττ∈τ . From part 1) we immediately get 

the postulated equivalence. 

3) Using the identity ))r1(b(1)(x 0
*
0

*
0 +⋅+τ⋅ξ−=τ  the function )(x*

0 τ  is strictly decreasing in 

τ if 0*)(
0

*
0 >ξ=ξ ℜ  and strictly increasing if 0*)(

0 <ξ ℜ . Now assume 0*)(
0 >ξ ℜ . For separation to 

be true we need 0
*
0 x)(x >τ  for all T∈τ \ }{τ . This in turn implies the requirement (max)τ<τ  

for all T∈τ \ }{τ  and consequently (max)τ≤τ  if 0*)(
0 >ξ ℜ . In the same way it follows (min)τ>τ  

for all T∈τ \ }{τ  and thus (min)τ≥τ  if 0*
0 <ξ . 

Proof of Proposition 2: 

From Lemma 1, part 2), we know that the condition .const)()( )*(
0

*
0 =τξ=τξ ℜ  is necessary and 
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sufficient for the separation theorem to hold if the portfolio problem is well defined. Thus, we 

only have to show that the fact of a well defined portfolio problem corresponds with 

0)y,0(ub1 *)(
0 >⋅ξ⋅+ ℜ  for all Yy ∈ . By multiplying (A3) with W0 which is equivalent with 

the fact of a well defined portfolio selection problem we get from (A9) for all Yy ∈  

0)y,0(ub10))y,0(u))(x1(r1(Wba *)(
0

*)(
000 >⋅ξ⋅+⇔>⋅τ−++⋅⋅+ ℜℜ . Consequently, the 

maintained equivalence is shown.  

In addition, let *
0ξ  be the optimal 0ξ -value in the restricted case X ≠ ℜ . As a result of 

(A9) it is only possible to reconstitute the separation property if * ( )*
01 b u(0, y ) 0ℜ+ ⋅ξ ⋅ > . 

Thus, the assumption ( )* ( )*
01 b u(0, y ) 0ℜ ℜ+ ⋅ξ ⋅ ≤  leads to ( )* *

0 0
ℜξ ≠ ξ  and ( )* *

0 0x xℜ ≠ , 

respectively. The latter statement implies ( )*
0x Xℜ ∉ , so that the restriction 0x X∈  is binding. 

Proof of Proposition 3: 

According to Proposition 2 the following condition has to be fulfilled to guarantee separation: 

).r1)y,0(u))(x1((b

)r1(bb)y,0(u))(x1(

0)y,0(u
)r1(b

)(x1
b1

0)y,0(ub1

0
*
0

0
*
0

0

*
0

*
0

++⋅τ−⋅−>τ⇔

+⋅−τ−>⋅⋅τ−⇔

>⋅
+⋅+τ
τ−

⋅+⇔

>⋅ξ⋅+

 (A10) 

Moreover, the case 0*
0 >ξ  obviously corresponds with the case 0)(x1 *

0 >τ− . 

Case 1: 0b >  

0)),(x(g)r1)0(u))(x1((b)10A( *
00

*
0 >ττ⇔++⋅τ−⋅−>τ⇔ . (A11) 

Case 2: 0b <  

0)),(x(g)r1)0(u))(x1((b)10A( *
00

*
0 >ττ⇔++⋅τ−⋅−>τ⇔ . (A12) 

Since }0)),r1(b(1min{)(x 0
*
0

*
0 +⋅+τ⋅ξ−=τ  it follows  
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⎩
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0
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0
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0*

0  (A13) 

(A13) implies the existence of a parameter δ > 0 so that δ>τττ d/)),(x(dg *
0  for all τ 

and thus ∞=ττ
∞→τ

)),(x(glim *
0  and −∞=ττ

−∞→τ
)),(x(glim *

0 , respectively. This leads to the 

existence of a unique parameter τ̂  with 0)ˆ),ˆ(x(g *
0 =ττ . In addition, we get from (A11) and 

(A12) 0x/g 0 >∂∂  if 1x 0 <  and 0x/g 0 <∂∂  if 1x 0 > . With the additional obvious property 

0/g >τ∂∂  we get from (A13) and 0)ˆ),ˆ(x(g *
0 =ττ  the statement 

0)ˆ,x(g 0 >τ  for all ]1),ˆ(x(x *
00 τ∈  and 0)),ˆ(x(g *

0 >ττ , 0)),(x(g *
0 >ττ  for all τ>τ ˆ . (A14) 

Let τ>τ+ ˆ  be a given parameter. With 0)ˆ),ˆ(x(g *
0 =ττ  and 0d/)),(x(dg *

0 >τττ  we get 

0)),(x(g *
0 >ττ ++ . The continuity of g implies the existence of a parameter ε so that 

0)),(x(g *
0 >ττ  for all ( , ) : Tτ∈ τ τ =  with τ>ε−τ=τ + ˆ:  and ε+τ=τ +: . Thus, the maintained 

existence of T is shown.  

We have to maximize the difference τ−τ  such that ( , )+τ ∈ τ τ  and separation holds. For  

that purpose we show: 

a) Given the parameter τ>τ ˆ  the difference τ−τ  is maximized by setting τ  in such a way so 

as to guarantee 0)),(x(g *
0 =ττ , 

b) Given two parameters τ>τ>τ ˆ12  and corresponding parameters 1τ , 2τ  determined 

according to a), we get 1122 τ−τ>τ−τ . 

Proof of a): 

For τ>τ ˆ  we immediately get from (A14) 0)),(x(g *
0 >ττ . Using the definition of g it 
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 results −∞=τ
−∞→

),x(glim 0x0

. Since −∞=τ
∞→τ

)(xlim *
0  in the case 0*

0 >ξ , this fact implies the 

existence of a parameter τ>τ  with  

0)),(x(g *
0 =ττ . (A15) 

Let τ  fulfill property (A15). With 0/)(x*
0 ≤τ∂τ∂  the assumption τ≥τ ˆ  leads to 

*
0g(x ( ), ) 0τ τ >  for all ( , )τ∈ τ τ  (A16) 

so that separation holds in the interval ( , )τ τ  and τ  is maximal with this property for given τ  

since 0)),(x(g *
0 <ττ  for all τ>τ .  

Proof of b): 

From (A15) we are able to determine the following relationship between τ  and τ : 

⎩
⎨
⎧

<⋅τ−++⋅−
>⋅τ−++⋅−=τ

.0bif)),0(u))(x1(r1(b
,0bif)),0(u))(x1(r1(b

*
00

*
00  (A17) 

The assumption 12 τ>τ  implies 12 τ>τ  and the difference )),(x(g *
0 ττ=τ−τ  is 

monotone increasing in τ . Consequently, 12 τ>τ  leads to 1122 τ−τ>τ−τ .  

From a) and b) it follows immediately that the difference τ−τ  is maximized by 

setting +τ=τ  and τ  in such a way so as to guarantee 0)),(x(g *
0 =ττ . Since ∞→τ  for 

∞→τ+  we obviously get ∞−→τ
∞→τ+

)(x*
0 . 

We know that )(x*
0 τ  is decreasing in τ, since 0*

0 >ξ . If we assume *
0 0 ˆx x ( )≥ τ  

separation has to hold for τ with * *
0 0 0 ˆx ( ) x x ( )τ ≥ ≥ τ , i.e. ˆτ ≤ τ . From (A13) we know 

*
0g(x ( ), ) 0τ τ ≤  for all ˆτ ≤ τ  which leads to a contradiction. Thus, we immediately get the 

necessary condition *
0 0 ˆx x ( )< τ  for separation to hold. Given the border 0x  it is obvious that 

0
*
0 x)(x =τ  and 0)),(x(g *

0 =ττ .  
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Proof of Proposition 4: 

b ≠ 1: 

Using 0 0 0(1 x ) /( b (1 r ))ξ = − τ + ⋅ + , we have: 

b
b 1 b 1
b0 0

CE 0

b
b 1 b 1
b0 0 0

b
b 1 b 1
b0

0
0

E [ b (1 r (1 x ) u(0, y))]
u 1 r

b

E [(1 x ) ((1/ ) b u(0, y))] ( b (1 r ))

b

1E [((1/ ) b u(0, y))]
(1 x ) .

b

− −

− −

− −

⎧ ⎫τ + ⋅ + + − ⋅ − τ⎨ ⎬
⎩ ⎭= − −

⎧ ⎫− ⋅ ξ + ⋅ − τ + ⋅ +⎨ ⎬
⎩ ⎭=

⎧ ⎫ξ + ⋅ −⎨ ⎬ ξ⎩ ⎭= − ⋅

 (A18) 

Since 0 0E[(1 x ) u(0, y)] (1 x ) E[u(0, y)]− ⋅ = − ⋅  and ξ0 as well as y are assumed to be 

constant, we finally get b CEd 1 u / E[u]= −  to be independent of x0. 

b = 1: 

CE 0 0 0

0 0 0

0 0 0

u exp(E[ln( 1 r (1 x ) u(0, y))]) 1 r
exp(E[ln((1 x ) ((1/ ) u(0, y)))]) ( 1 r )
(1 x ) {exp(E[ln((1/ ) u(0, y))]) (1/ )}.

= τ + + + − ⋅ − τ − −
= − ⋅ ξ + − τ + +
= − ⋅ ξ + − ξ

 (A19) 

Again, we get the postulated statement.  

 



 33

References 
Black F. Capital market equilibrium with restricted borrowing. Journal of Business 1972; 45; 

444-455. 
Breuer W, Gürtler M. Investors’ direct stock holdings and performance evaluation for mutual 

funds. Kredit und Kapital 2005; 38; 541-572. 
Breuer W, Gürtler M. Performance evaluation, portfolio selection, and HARA utility. 

European Journal of Finance 2006; 12; coming soon. 
 Download: http://www.bfw.rwth-aachen.de/publika/wpaper/download/wp0201.pdf. 
Cass D, Stiglitz JE. The structure of investor preferences and asset returns, and separability in 

portfolio allocation: A contribution to the pure theory of mutual funds. Journal of 
Economic Theory 1970; 2; 122-160. 

Fama EF, French KR. The equity premium. Journal of Finance 2002; 57; 637-659. 
Grinblatt M, Titman S. Portfolio performance evaluation: Old issues and new insights. 

Review of Financial Studies 1989; 2; 393-421. 
Hakansson NH. Risk disposition and the separation property. Journal of Financial and 

Quantitative Analysis 1969; 8; 401-416. 
Jensen MC. The performance of mutual funds in the period 1956-1964. Journal of Finance 

1968; 23; 389-416. 
Jobson JD, Korkie B. On the Jensen measure and marginal improvements in portfolio 

performance – A note. Journal of Finance 1984; 39; 245-251. 
Kroll Y, Levy H, Markowitz HM. Mean-variance versus direct utility maximization. Journal 

of Finance 1984; 39; 46-61. 
Levy H, Markowitz HM. Approximating expected utility by a function of mean and variance. 

American Economic Review 1979; 69; 308-317. 
Lintner J. The valuation of risk and the selection of risky investments in stock portfolios and 

capital budgets. Review of Economics and Statistics 1965; 47; 13-37. 
Mossin J. Equilibrium in a capital asset pricing market. Econometrica 1966; 34; 768-783. 
Samuelson PA. The fundamental approximation theorem of portfolio analysis in terms of 

means, variances, and higher moments. Review of Economic Studies 1970; 37; 537-542. 
Sharpe WF. Capital asset prices: A theory of market equilibrium under conditions of risk. 

Journal of Finance; 19; 425-442.  
Sharpe WF. Mutual fund performance. Journal of Business 1966; 39; 119-138. 
Tobin J. Liquidity preference as behaviour towards risk. Review of Economic Studies 1958; 

25; 65-86. 
Treynor JL. How to rate management of investment funds, Harvard Business Review 1965; 

43 (January/February); 63-75.  
Treynor JL, and Black F. How to use security analysis to improve portfolio selection. Journal 

of Business 1973; 46; 66-86. 
Vanden JM. Options trading and the CAPM. Review of Financial Studies 2004; 17; 207-238. 
 



1u  

σP 

2u  

σ2 = 6.25 % 

σ1 = 5.68 %

0P*(x 0)u =  P*u (τ = 1.5664) P*u (τ = 1.4512) uCE(τ = 1.4512) 

uCE(τ = 1.5664) 
(2.67 %) 

u

1
2

P*

(1.72 %) (1.74 %) (1.77 %) (2.13 %) (4.15 %) (5.21 %) (44.90 %) 
Pu

Figure 1: Two-fund separation for restricted borrowing when utility is quadratic (schematic, not true-to-scale) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The curve connecting points 1, P*, and 2 describes the set of all achievable risky portfolios for y ∈ [0,1]. 
The bold line presents all mean-variance efficient overall portfolios. 
The dashed and the dotted curve represent indifference curves for different standardized risk tolerances τ. 



Table 1: Unbiased estimators for expectation values fu , standard deviations fσ , and 
covariances fPσ  of excess returns of funds (investing in German stocks) and reference 
portfolio P as well as minimum and maximum realized monthly excess fund returns 

 
No. name of fund fu  fσ  fPσ  u(0,0)  u(0,0)  

1 Aberdeen Global German Eq 0.46351 % 5.77708 % 0.33096 % 5.77708 % 0.33096 % 
2 ABN AMRO Germany Equity 2.42189 % 7.09676 % 0.42209 % 7.09676 % 0.42209 % 
3 AC Deutschland 1.86378 % 7.09276 % 0.41137 % 7.09276 % 0.41137 % 
4 ADIFONDS 2.16243 % 7.22614 % 0.44304 % 7.22614 % 0.44304 % 
5 Baer Multistock German Stk A 1.77270 % 5.48620 % 0.32287 % 5.48620 % 0.32287 % 
6 Baring German Growth 2.85000 % 7.05836 % 0.33608 % 7.05836 % 0.33608 % 
7 BBV Invest Union 1.90946 % 6.30927 % 0.38537 % 6.30927 % 0.38537 % 
8 Berlinwerte Weberbank OP 1.57595 % 5.68085 % 0.33807 % 5.68085 % 0.33807 % 
9 CB Lux Portfolio Euro Aktien 1.79676 % 6.77890 % 0.42088 % 6.77890 % 0.42088 % 

10 Concentra 1.85919 % 6.71783 % 0.41575 % 6.71783 % 0.41575 % 
11 CS EF (Lux) Germany 1.58297 % 6.66003 % 0.40816 % 6.66003 % 0.40816 % 
12 DekaFonds 1.91459 % 6.81638 % 0.42138 % 6.81638 % 0.42138 % 
13 DELBRÜCK Aktien UNION-Fonds 1.42919 % 6.25222 % 0.38175 % 6.25222 % 0.38175 % 
14 Dexia Eq L Allemagne C 1.67865 % 6.23957 % 0.38700 % 6.23957 % 0.38700 % 
15 DIT Fonds für Vermögensbildung 1.32405 % 5.79650 % 0.34777 % 5.79650 % 0.34777 % 
16 DIT Wachstumsfonds 1.88919 % 6.28905 % 0.37674 % 6.28905 % 0.37674 % 
17 DVG Fonds SELECT INVEST 2.07243 % 6.61112 % 0.40792 % 6.61112 % 0.40792 % 
18 DWS Deutschland 1.60784 % 6.08441 % 0.36909 % 6.08441 % 0.36909 % 
19 EMIF Germany Index plus B 1.57108 % 6.45667 % 0.40139 % 6.45667 % 0.40139 % 
20 Fidelity Fds Germany 1.72892 % 6.24931 % 0.37989 % 6.24931 % 0.37989 % 
21 Flex Fonds 1.39730 % 5.98888 % 0.36524 % 5.98888 % 0.36524 % 
22 Frankfurter Sparinvest Deka 1.81324 % 6.41583 % 0.39600 % 6.41583 % 0.39600 % 
23 FT Deutschland Dynamik Fonds 1.79459 % 6.59269 % 0.40786 % 6.59269 % 0.40786 % 
24 Gerling Deutschland Fonds 1.41054 % 5.19347 % 0.31236 % 5.19347 % 0.31236 % 
25 HANSAeffekt 1.73973 % 6.49867 % 0.40096 % 6.49867 % 0.40096 % 
26 Hauck Main I Universal Fonds 1.45865 % 6.58482 % 0.40521 % 6.58482 % 0.40521 % 
27 Incofonds 2.13865 % 6.04074 % 0.34912 % 6.04074 % 0.34912 % 
28 Interselex Equity Germany B 1.72514 % 6.60614 % 0.40989 % 6.60614 % 0.40989 % 
29 INVESCO GT German Growth C 1.71649 % 5.67770 % 0.24657 % 5.67770 % 0.24657 % 
30 Investa 2.11541 % 6.92485 % 0.42699 % 6.92485 % 0.42699 % 
31 Köln Aktienfonds DEKA 1.83865 % 6.54772 % 0.40355 % 6.54772 % 0.40355 % 
32 Lux Linea 1.71378 % 7.60317 % 0.46976 % 7.60317 % 0.46976 % 
33 Metallbank Aktienfonds DWS 2.07324 % 5.14655 % 0.26836 % 5.14655 % 0.26836 % 
34 MK Alfakapital 1.98243 % 7.41669 % 0.45851 % 7.41669 % 0.45851 % 
35 MMWI PROGRESS Fonds 1.76081 % 6.71760 % 0.41379 % 6.71760 % 0.41379 % 
36 Oppenheim Select 1.69757 % 6.47148 % 0.39475 % 6.47148 % 0.39475 % 
37 Parvest Germany C 1.60108 % 6.31697 % 0.39222 % 6.31697 % 0.39222 % 
38 Plusfonds 2.40324 % 6.83304 % 0.40050 % 6.83304 % 0.40050 % 
39 Portfolio Partner Universal G 1.09946 % 6.08717 % 0.32420 % 6.08717 % 0.32420 % 
40 Ring Aktienfonds DWS 1.86784 % 6.15453 % 0.37430 % 6.15453 % 0.37430 % 
41 SMH Special UBS Fonds 1 1.90811 % 6.60503 % 0.40739 % 6.60503 % 0.40739 % 
42 Thesaurus 1.72811 % 6.36330 % 0.39459 % 6.36330 % 0.39459 % 
43 Trinkaus Capital Fonds INKA 1.71541 % 6.49609 % 0.40013 % 6.49609 % 0.40013 % 
44 UniFonds 1.74784 % 6.42735 % 0.39665 % 6.42735 % 0.39665 % 
45 Universal Effect Fonds 1.74568 % 6.27421 % 0.38306 % 6.27421 % 0.38306 % 
P DAX 100 1.77189 % 6.24936 % 0.39055 % 6.24936 % 0.39055 % 



Table 2: Intervals Tf,b of admissible standardized of risk tolerances and relative risk 
discounts (in the cases b = −1, b = −1/2, b = −1/3) 

 
0x 0 %=  0x 100 %= −  0x 200 %= −  relative risk discounts 

b = −1 Ran- 
king 

( )*y ℜ  
τ  τ  τ  τ  τ  τ  * (min)d ( )τ  * (max)d ( )τ  

Berlinwerte Weberbank OP 2 29.65 % 1.1520 1.2312 1.3016 1.4598 1.4512 1.6885 60.10 % 72.12 % 
DekaFonds 7 6.23 % 1.1601 1.2418 1.3176 1.4808 1.4752 1.7201 62.98 % 75.55 % 
Fidelity Fds Germany 6 5.61 % 1.1520 1.2402 1.3016 1.4778 1.4512 1.7155 62.56 % 75.05 % 
Frankfurter Sparinvest Deka 3 36.43 % 1.1520 1.2419 1.3016 1.4810 1.4512 1.7204 63.00 % 75.58 % 
INVESCO GT German Growth C 1 61.21 % 1.1520 1.1905 1.3016 1.3783 1.4512 1.5664 48.79 % 58.70 % 
Köln Aktienfonds DEKA 4 14.61 % 1.1520 1.2418 1.3016 1.4808 1.4512 1.7201 62.98 % 75.55 % 
Universal Effect Fonds 5 9.48 % 1.1520 1.2402 1.3016 1.4776 1.4512 1.7153 62.54 % 75.03 % 
 Intersections (max) (min)( , ] :τ τ  1.1601 1.1905 1.3176 1.3783 1.4752 1.5664   

0x 0 %=  0x 100 %= −  0x 200 %= −  relative risk discounts 
b = −0.5 Ran- 

king 
( )*y ℜ  

τ  τ  τ  τ  τ  τ  * (min)d ( )τ  * (max)d ( )τ  

Berlinwerte Weberbank OP 3 29.53% 0.5760 0.7315 0.6508 0.9618 0.7256 1.1922 60.00% 144.82% 
DekaFonds 4 23.37% 0.5800 0.7447 0.6588 0.9883 0.7376 1.2319 63.63% 151.92% 
Fidelity Fds Germany 7 bor. sol.         
Frankfurter Sparinvest Deka 2 53.75% 0.5760 0.7417 0.6508 0.9823 0.7256 1.2229 62.85% 149.77% 
INVESCO GT German Growth C 1 64.33% 0.5760 0.6906 0.6508 0.8800 0.7256 1.0695 48.67% 120.26% 
Köln Aktienfonds DEKA 5 17.75% 0.5760 0.7421 0.6508 0.9830 0.7256 1.2240 62.89% 150.76% 
Universal Effect Fonds 6 1.63% 0.5760 0.7407 0.6508 0.9802 0.7256 1.2197 62.50% 150.03% 
 Intersections (max) (min)( , ] :τ τ  0.5800 0.6906 0.6588 0.8800 0.7376 1.0695   

0x 0 %=  0x 100 %= −  0x 200 %= −  relative risk discounts 
b = −1/3 Ran- 

king 
( )*y ℜ  

τ  τ  τ  τ  τ  τ  * (min)d ( )τ  * (max)d ( )τ  

Berlinwerte Weberbank OP 3 29.81% 0.3840 0.5667 0.4339 0.7993 0.4837 1.0319 59.82% 216.62% 
DekaFonds 4 30.51% 0.3866 0.5811 0.4392 0.8281 0.4917 1.0751 63.81% 225.66% 
Fidelity Fds Germany 6 bor. sol.         
Frankfurter Sparinvest Deka 2 61.08% 0.3840 0.5768 0.4339 0.8195 0.4837 1.0621 62.68% 220.45% 
INVESCO GT German Growth C 1 65.19% 0.3840 0.5255 0.4339 0.7169 0.4837 0.9083 48.47% 182.62% 
Köln Aktienfonds DEKA 5 19.94% 0.3840 0.5776 0.4339 0.8211 0.4837 1.0646 62.80% 224.35% 
Universal Effect Fonds 6 bor. sol.         
 Intersections (max) (min)( , ] :τ τ  0.3866 0.5255 0.4392 0.7169 0.4917 0.9083   

Shaded funds imply border solutions (“bor. sol.”) for b = −0.5 or b = −1/3 and thus are consequently not considered 
in these cases. 




