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1 Introduction
Accurate modelling of financial time series is a fundamental task for investment decisions and the risk management
of banks and insurance companies. In the course of regulatory developments by the Basel Committee on Banking
Supervision and the Committee of European Insurance and Occupational Pensions Supervisors the Value at Risk
(henceforth VaR) has become a benchmark risk measure for capital requirements. From the two main approaches to
VaR measurement, full valuation and local-valuation, mentioned in Jorion (2006), the latter got famous in the form of
the delta-normal method, that works with a first order Taylor approximation for the market value, e.g. the basis point
value for fixed income. This approach, also named variance-covariance model or parametric VaR, assumes iid normal
distributed benchmark returns that are mapped to the ’delta’-conception of exposures. The aim is a factor-based model
where exposures are stressed by empirical standard deviations or risk factors to univariate risks, that are aggregated
by correlation matrix multiplication to a portfolio VaR. As part of a companion paper, Gürtler and Rauh (2009) test
that modelling assumptions for a multitude of financial time series carefully.1 They have to be rejected in the majority
of hypothesis tests, especially on a daily data base: The normality of the return distribution is denied as well as the
serial identity and independence. The latter results query volatility measurement via empirical standard deviations
and risk measurement in terms of (normal) quantiles entirely. Instead, modelling more general time-evolving return
distributions with a focus on heteroscedasticity and querying the stationarity may be the ways to success.

These results are in line with the early analyses of Mandelbrot (1963) and Fama (1965) on several US stock series.
They draw the following empirical conclusions for return series, often labeled as stylized facts:

• there is a serial data dependence,

• the volatility is changing over time (heteroscedasticity),

• the returns are asymmetrically distributed with heavy tails,

• a negative return amplitude entails a greater volatility than a positive return of same amount (Leverage Effects).

Let {Pt}t=0,...,n be the market value of an asset over n periods of time, and let Xt = lnPt − lnPt−1 (t = 1, . . . , n)
be the corresponding series of log-returns. Evidence on the first stylized fact is often brought by correlograms, that
are graphs of sample autocorrelations ρ(h) = γ(h)

γ(0) (SACF, where γ(h) is the empirical estimate for Cov (Xt, Xt+h))
versus discrete time lags h ≥ 0 for a stationary return series {Xt}t. Taylor (1986), Ding et al. (1993), Drees and
Starica (2002), Straumann (2004), Mikosch and Starica (2004) and Herzel et al. (2005) came to the same typical
picture for several financial instruments: Daily returns themselves contain little serial correlation, but their absolute
values and their squares are significantly autocorrelated, with ρ|X|t(h) or ρX2

t
(h) being positive and decaying slowly

over a large number of lags.2 This effect is called long range dependence (LRD) and one might draw the conclusion
of serial dependent time series.

On the ideas of serial dependence and conditional time-varying volatility Robert F. Engle and Tim Bollerslev
developed in the 1980s nonlinear time series models as autoregressive conditional heteroscedastic (ARCH-processes).
The general form is

Xt = µt + ςtεt, t ∈ Z, (1)

where {εt}t is an iid sequence with Eε1 = 0 and V arε1 = 1, {µt} and {ςt} are stochastic processes that depend
only on past information, i.e. µt+1, ςt+1 are measurable with respect to the σ-field Ft = σ ({εj | j ≤ t}). Hence Xt

is Ft-measurable for every t and µt+1 = E (Xt+1 | Ft) is the conditional mean and ς2t+1 = V ar (Xt+1 | Ft) is the
conditional variance of Xt+1 given the past returns. The starting point was set by the seminal paper of Engle (1982)
who introduced the ARCH(p)-process, where conditional volatility dynamics {ςt}t are imposed via linear regression
over past squared (centered) returns. An extension of Bollerslev (1986), named generalized ARCH (GARCH(p, q)-
process), includes past variances next to historical returns into the parametric regressed volatility process, what enables
a parsimonious parametrisation with a reasonable fit to empirical data. For purposes of parameter estimation, processes

1The empirical studies are executed for 29 benchmark series as equity indices, interest rates, credit spreads and exchange rates.
2Further examples are provided in Gürtler and Rauh (2009). Ding et al. (1993) extended the result to power transformations of absolute returns,

|Xt|d for d > 0, and showed them to be ’long-memory’ for a S&P 500 return series, with quite high autocorrelations for large lags. Furthermore,
they found that for a fixed lag τ the function ρτ (d) = Corr

(
|Xt|d, |Xt+τ |d

)
has a unique maximum when d ≈ 1.
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of the ARCH-family are defined to be stationary, but finding conditions for the existence and uniqueness of a stationary
solution was nontrivial.3 Besides the focus on heteroscedasticity and uncorrelated, serial dependence, the features of
heavy-tailedness and asymmetry are mostly imposed on the distribution of innovations εt.4

Coming back to the LRD, Mikosch and Starica (2004) derive theoretically that the aforementioned SACF for
absolute returns could alternatively arise from non-stationarities in the data. Correlograms are only a significant tool
for detecting dependence under the assumption of stationarity, otherwise structural breaks in the data as shifts in the
variance might cause identical results,5 and it cannot be discriminated between stationary, long memory and non-
stationary time series. Secondly, Granger and Starica (2005) came by a long-term case study on the S&P 500 index to
the conclusion, that the second interpretation is the more probable: The main reason of the example LRD is to be seen
in the non-stationarities due to structural breaks of the unconditioned variance. From this follows a grave criticism on
ARCH-type models, since they are parameterized as stationary processes (what implies a fortiori a fixed unconditional
variance) and focus on modelling a long-range dependence structure of the second moments.

Another observation on ARCH modelling arises over longer periods of daily returns: The typical outcome of
a GARCH(1, 1) implementation is that the sum of estimated parameters α1, β1 is approximately 1, leading to an
IGARCH(1, 1) model, which is referred to as IGARCH effect in Starica (2003) or Mikosch and Starica (2004). But
IGARCH-processes imply an infinite variance of the random variables, which contradicts to the results of a direct tail
analysis, that indicate a finite second moment for daily financial returns (see De Haan et al. (1994)). Mikosch and
Starica (2004) prove theoretically and empirically that the IGARCH effect may be generated by non-stationarities via
shifts in the unconditional variance of the return series.6 Although some ARCH-extensions allow structural breaks in
the volatility structure while holding up stationarity,7 one should question the stationarity assumption at all.

More and more sophisticated ARCH-type processes were developed to improve the characterisation of volatility
and of single aspects in the return dynamics;8 Bollerslev et al. (1994) give a statistical overview of model extensions.
Following Drees and Starica (2002), the need of an increasing complexity for volatility modelling can be possibly
explained that a simple endogenous specification does not exist. In that case, the model fit can only be improved by
a change of the working hypothesis: In their univariate approach the volatility is supposed to be exogenous to the
return process. The evolution of market prices is interpreted as a manifestation of complex market conditions, driven
by unknown exogenous factors, that evolve smoothly through time and that are expressed mainly in the level of un-
conditional variance of recent returns. Continuing with the multiplicative model (1) for log-return series {Xt}t=1,...,n

we replace the volatility term ςt by an unconditional variable σ(t). The corresponding variance σ(t)2 is modelled as a
smooth, deterministic function of time via a nonparametric kernel regression9 over centered, squared returns Rt:

σ̂2(t) =

∑n
i=1Kh (i− t)R2

i∑n
i=1Kh (i− t)

, t = 1, . . . , n. (2)

The approach preserves the independence assumption for financial returns (unlike the LRD suggestion), but it aban-
dons the hypothesis of stationarity, motivated in the expertise of Mikosch and Starica (2004) or Granger and Starica
(2005) that the paradigm of time-varying unconditional variance is superior over some specifications of stationary
long memory in explaining the return dynamics. The volatility estimates σ̂2(t) may be employed to forecast close
future returns since they are supposed to be within (nearly) the same market environment. Former attention is paid to
asymmetry and heavy tails in the return distribution, involved by the features of random residuals εt. An accurate de-
scription is achieved by fitting the Pearson type VII distribution to positive and negative innovations separately, which
enables a simple but flexible modelling. Drees and Starica (2002) show on a 12-year S&P 500 example that their
non-stationary model fits the data adequately and gets better short-term forecasts on the return distribution than con-
ventional GARCH models. Herzel et al. (2005) extend these ideas to a multivariate non-stationary framework. Vectors

3Bougerol and Picard (1992) gave the solution for stationary GARCH(p, q) processes via stochastic recurrence equations. Straumann (2004)
summarizes this among other stochastic features on GARCH processes.

4The exponential GARCH (EGARCH) model of Nelson (1991) and the asymmetric power GARCH (AGARCH) model by Ding et al. (1993)
include asymmetry and leverage effects directly in the volatility dynamics, that reacts different to financial gains and losses.

5The authors found that the stronger the non-stationarity, e.g. the difference of the variation of subsamples X(1) and X(2) measured as(
E|X(1)| − E|X(2)|

)2
, the more pronounced the LRD effect. This theoretical result is supplemented with a long-term empirical study of the

S&P 500 index by ex-/ including the 1970s US-recession, generating the LRD effect.
6Concerning persistence in variance and long memory (IGARCH- and LRD effect) caused by structural changes, see also Lamoureux and

Lastrapes (1990) or Diebold and Inoue (2001).
7E.g. regime-switching ARCH models by Hamilton and Susmel (1994) with transitions governed by an unobserved, fixed Markov chain.
8On the other hand stochastic volatility models specialized substantial to find endogenous (co-)variance descriptions for financial instruments.
9The rescaled kernel functionKh is defined asKh(·) = 1

h
K
( ·
h

)
with bandwidth h and an appropriate kernelK on a compact support [−1, 1].
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of financial returns are assumed to have a time-varying unconditional covariance matrix that evolves smoothly, cap-
tured by classical nonparametric regression. Vectors of standardized innovations are modelled again parametrically
with an asymmetric version of Pearson VII. Another univariate extension with a time-varying expected return was
introduced by Mikosch and Starica (2004a).

In this article, we will directly refer to the approaches of Herzel et al. (2005) and Drees and Starica (2002).
After presenting the steps for fitting the non-stationary model to empirical return data in general, we specialize on
the univariate description. The article is thought as the theoretical grounding for the companion paper Gürtler and
Rauh (2009), where the non-stationary approach is applied to a multitude of financial time series. Here we focus on
deriving the modelling components as the nonparametric volatility estimate (2) and its one-sided equivalent, which is
based only on past/ recent data and should be used in forecasting. A lot of effort is spent to prove the consistency and
asymptotic normality of both variance estimators analytically in a transformed version of the nonparametric regression
model with an equidistant unit design. Remarks on the kernel selection and the optimal choice of bandwidths follow,
a cross-validation setup is developed. The task of fitting innovations via the Pearson type VII distribution is simplified
by providing a method of moments for parameter estimation. Moreover a connection to the Student-t distribution is
derived, where the idea of a factor-based implementation of the non-stationary regression model for the purpose of
VaR calculation emerged from: The univariate V aR1−α(t) of an exposure w(t) will be modelled as its product with
the nonparametric estimated volatility σ̂(·)(t) and the (1−α) Pearson VII innovation quantile of the benchmark return
distribution, adjusted by the mean return.

Our theoretical results are confirmed by simulation studies: We document for a predefined volatility function that
the approximation of the two-sided and one-sided variance estimates improves with a more and more refined data base.
Moreover we prove the non-stationary model being able to capture prices processes entirely and to produce good dis-
tributional forecasts. A Kupiec hypothesis testing evaluates forecasts in terms of predicted VaR limits V aR1−α,1d(t)
and their shortfall rates concerning the next day’s returns Xt+1. We will show with that backtesting method that the
non-stationary model significantly outperforms the parametric (Gaussian) VaR model. Furthermore, Gürtler and Rauh
(2009) fit the regression model to daily return series of stock indices, exchange rates, interest rates and credit spreads
and provide evidence for the empirical validity of that approach and its ouperformance to the standard VaR model.

The rest of the paper is organized as follows: In section 2 we introduce the non-stationary model for asset returns
formally. We delve into the nonparametric estimation of volatility theoretically, and focus on the procedure of fitting
innovations. In section 3 we provide some simulation studies with the non-stationary approach, that underline the
theoretical results and motivate a practical application in risk management. We conclude in section 4.

2 A non-stationary model for asset returns
As motivated in section 1, our following return model adopts the conceptual framework of Herzel et al. (2005) and
Drees and Starica (2002) (univariate case) for analysing the return dynamics via classical nonparametric regression
with fixed equidistant design points. The vectors of financial returns are assumed to have a time-varying unconditional
covariance matrix that evolves smoothly through time and is modelled exogenously deterministic. The standardized
residuals are modelled parametrically, allowing for asymmetry and heavy tails. This leads to a multiplicative approach,
with a constant mean return µ added, for a non-stationary sequence of independent random vectors {Xt}t:

Xt = µ+ Stεt, t = 1, . . . , n (3)
ε1, . . . , εn iid random vectors with mutually independent coordinates,

Eεk,1 = 0, V arεk,1 = 1, ∀k = 1, . . . , d,

St : [0, n]→ Rd×d is an invertible matrix and a smooth function of time.

We emphasise that this regression-type model does not exclude random effects of the volatility dynamics. The basic
idea is that recent past and the next future returns depend on the same unknown exogenous economic factors, that
evolve gradually through time. Those factors are included in the recent asset returns and imply the level of the uncon-
ditional variance and the unconditional covariance structure. The aim is to estimate the multivariate return dynamics
only by dint of recent returns and to build up short-term forecasts of future return distributions in a similar economic
environment. Three steps have to be arranged to fit the regression-model to a financial time series:
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1. Centering returns
The demeaned return series {Rt}t is defined as

Rt = Xt − X̄n, t = 1, . . . , n, (4)

with column vectors centered componentwise by the empirical mean of the whole series, X̄k,n = 1
n

∑n
t=1Xk,t for all

k = 1, . . . , d. Neglecting the estimation error of X̄t for µ (i.e. assumption: X̄t = µ =⇒ Rt = Stεt) it follows that:

E (Rt | Rt−1,Rt−2, . . .) = ERt = StEεt = 0

E (RtR
′
t | Rt−1,Rt−2, . . .) = E (RtR

′
t) = StS

′
t =: Σ2(t)

Hence, {RtR
′
t}t is an independent sequence of matrices with pointwise expectations Σ2(t), a smooth function of

time. This is the framework for a nonparametric regression with equidistant design points t = {1, . . . , n}, where vari-
ances and covariances in matrices

{
Σ2(t)

}
t

may be estimated by kernel estimators applied to the sequence {RtR
′
t}t.

2. Estimating volatilities
In any nonparametric regression the conditioned expectation of a variable Y relative to X can be written as

m(x) = E[Y | X = x] ,

wherem is an unknown function with certain regularity conditions. We estimatem with a local polynomial regression
method (Taylor approximation), i.e.

m(x) ≈
p∑
k=0

βk(x− x0)k, βk :=
m(k)(x0)

k!

in a neighbourhood U(x0) of x0 with m being p times differentiable, applying the method of least squares for the
sample (X1, Y1) , . . . , (Xn, Yn):

n∑
i=1

{Yi −m(Xi)}2 ≈
n∑
i=1

{
Yi −

p∑
k=0

βk(Xi − x0)k

}2

!−→ min
β0,...,βp

Since this expression is only locally valid, the data is localized by weighting the summands with respect to the
distance |Xi−x0| using symmetric kernel functionsK andKh on compact supports [−1, 1] and [−h, h], respectively:

K : R→ [0,∞) with
∫ ∞
−∞

K(u)du =

∫ 1

−1
K(u)du = 1, Kh(u) :=

1

h
K
(u
h

)
,

denoting Kh as rescaled kernel on bandwidth h. The minimization problem is modified to:

n∑
i=1

{
Yi −

p∑
k=0

βk(Xi − x0)k

}2

Kh(Xi − x0)
!−→ min

β0,...,βp

Moreover the degree of the regression polynomial is simplified to p = 0, so that m is approximated locally with a
constant β0 (local constant regression):10

n∑
i=1

{Yi − β0}2Kh(Xi − x0)
!→ min

β0

=⇒ β̂0 =

∑n
i=1 YiKh(Xi − x0)∑n
i=1Kh(Xi − x0)

is the LS-estimator

The hereafter definition follows with β̂0 = m̂(0)(x0) = m̂(x), x ∈ U(x0).

10For a symmetrical design around x0 a local linear regression (p = 1) would achieve the same estimator, which is generally the case for the
two-sided volatility estimation. Else an additive correcting term will improve the estimator.
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Definition 2.1

m̂h(x) =

∑n
i=1Kh(Xi − x)Yi∑n
i=1Kh(Xi − x)

, (5)

where Kh(·) = 1
hK

( ·
h

)
with h > 0 and K : R→ [0,∞), x 7→ K(x) symmetrically and

∫∞
−∞K(u) du = 1, is called

Nadaraya-Watson kernel estimator.

Kernel estimators are linear smoothers, m(x) is estimated via a weighted local average of observations Y1, . . . , Yn.
Applied to the regression model (3) the two-sided Nadaraya-Watson estimator (short: NWE) has the form:

Σ̂2(t) =

∑n
i=1Kh(i− t)RiR

′
i∑n

i=1Kh(i− t)
(6)

with Kh(·) = 1
hK

( ·
h

)
, where K is an appropriate kernel as defined in the sequel. Herzel et al. (2005) motivate

the application of nonparametric regression by theoretical results of Müller and Stadtmüller (1987) in an asymptotic
context (compare section 3.2 in Herzel et al. (2005)). That way, they additionally derive propositions on confidence
intervals for (Σi,j(t))i,j . We restrict ourselves later to the univariate case and proof some common, useful statistical
properties. Moreover, a one-sided volatility estimator for forecasting purposes will be introduced and analyzed.

3. Fitting innovations
In the last step we have to focus on the distribution of innovations {εt}t. In the multivariate and the univariate con-
text the approach for fitting innovations may be equal because of their mutual independent coordinates. Firstly, the
innovations εk,t are componentwise estimated by dint of demeaned returns Rk,t and estimated volatilities σ̂k(t) =(

Σ̂k,k(t)
)
i,j

(the k-th diagonal element of the square root of the estimate Σ̂2(t) for StS
′
t) in each point of time t:

ε̂k,t =
Rk,t
σ̂k(t)

, t = 1, . . . , n (7)

Due to their independence it is sufficient to specify the distributions of ε̂k,t, k = 1, . . . , d univariately. The easiest
approach without any extra assumption could be the empirical distribution function F̂ empn (x) of the series {ε̂t}t, but
this is not able to capture heavy tails.11 The normal distribution drops out due to neglecting skewness and heavy tails.
Herzel et al. (2005) as well as Drees and Starica (2002) found the Pearson type VII distribution to be a flexible and
parsimonious family of (heavy-tailed) distributions.12 It has the following one-sided density with shape parameter m
and scale parameter c:

fV II(1)m,c (x) =
2Γ(m)

cΓ
(
m− 1

2

)
π1/2

(
1 +

(x
c

)2)−m
I[0,∞)(x) (8)

The one-sided Pearson VII presentation, concentrated on the positive axis, was chosen to allow for asymmetry: It
is fitted separately to nonnegative innovations {ε̂t | ε̂t ≥ 0}t and absolute values of negative innovations {−ε̂t |
ε̂t < 0}t. In the above mentioned literature the corresponding parameters (m+, c+) and (m−, c−) are estimated with
maximum-likelihood methods. We solve that task with a method of moments, later. Because usually there are about
as many positive as negative innovations in a financial time series, it may be assumed that the median of innovations
is 0. Hence, the fitted one-sided Pearson type VII densities fV II(1)m+,c+ and fV II(1)m−,c− are combined as

fV IIm+,c+,m−,c−(x) =
1

2

(
fm−,c−(−x)I(−∞,0)(x) + fm+,c+(x)I[0,∞)(x)

)
, (9)

its cdf is referred as F̂V II(x) and called asymmetric Pearson type VII distribution (Drees and Starica (2002)) of
random innovations εt.13

11Being xmax = maxt ε̂t and xmin = mint ε̂t of the innovation sample {ε̂t}t=1,...,n, then F̂ empn (xmax + δ) = 1 for all δ ≥ 0 and

F̂ empn (xmin − ε) = 0 for all ε > 0. Consequently the probability for extreme future innovations εN /∈ [xmin, xmax], N > n would equal 0.
The empirical distribution function underestimates the extremes, which is an unacceptable shortcoming for risk management purposes.

12The Pearson VII family includes the t-distribution, the Cauchy distribution and (asymptotically) the Gaussian distribution. Other applications
are e.g. to be seen in Kitagawa and Nagahara (1999) for standardized innovations in a stochastic volatility (state-space) model.

13An alternative approach for fitting innovations could be kernel density estimation, to stay completely within a nonparametric world.
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Concluding, the estimated distributions F̂V IIεk
of the d independent random innovations together with (the square

root of) the covariance matrix estimates Σ̂2(t) and the mean vector X̄n completely specify the distribution of returns
Xt in the regression model (3).

From now on we specialize on the univariate non-stationary model, as introduced in Drees and Starica (2002):

Xt = µ+ σ(t)εt, t = 1, . . . , n, (10)
ε1, . . . , εn iid with Eε1 = 0, V ar ε1 = 1,

σ(t), t = 1, . . . , n, a smooth, deterministic function of time.

The series {Xt}t=1,...,n of log-returns or diff-returns14 preserves the independence assumption, but a time evolution
of the return distribution is incorporated via the unconditional heteroscedasticity. Asymptotic and heavy tailed ran-
dom innovations, modelled as Pearson-type VII distributed rvs, enable a flexible capturing of return series, leading
altogether to an enhanced multiplicative approach.

2.1 Focus on univariate nonparametric volatility estimation
After demeaning the return series {Xt}t=1,...,n in the univariate regression model (10) we base the nonparametric
regression on equidistant points t of squared returns {Rt}t with the methods developed above. The Nadaraya-Watson
estimator for volatility estimation is obtained as:

(I) Two-sided NWE (smoother):

σ̂2(t) :=

∑n
i=1Kh(i− t)R2

i∑n
i=1Kh(i− t)

(11)

with Kh(·) = 1
hK

( ·
h

)
for an appropriate kernel K on a compact support [−1, 1].

(II) One-sided NWE (filter):

σ̂2
(1)(t) :=

∑t
i=1Kh(i− t)R̃2

i∑t
i=1Kh(i− t)

(12)

with Kh(·) = 1
hK

( ·
h

)
and R̃i := Xi − X̄i−1.

The first estimator immediately follows from equation (6). An asymmetric version is supplemented, that includes only
past and current returns and that is consistently applicable to estimate the volatility at the last observed point n and
to forecast close future returns. The distinction between both estimates is fundamentally: While the first estimation
of σ2(t) depends on a symmetrical data base around t, using all returns Ri that are temporally close enough in a
band [t − h, t + h], the asymmetric estimator σ̂2

(1)(t) inserts (past centered) returns R̃i up to time t, restricted to
values within the left-sided band [t − h, t].15 While a symmetric kernel will be used to describe the dynamics of
changes in the historical sample, the one-sided estimation is applied in forecasting volatility. Of course, the one-sided
estimator delivers in a historical sample generally a bigger estimation error (with a bigger variance) than its two-sided
counterpart due to the lack of information.

For deriving statistical results as consistency or asymptotic normality of our volatility estimates, we have to define
an appropriate asymptotic framework, firstly. The following asymptotic does not only involve an increasing number of

14We define diff-returns as differences of prices,Xt = Pt−Pt−1 (t = 1, . . . , n), which are needed in Gürtler and Rauh (2009) as corresponding
return type to interest rate- and credit-spread-exposures, measured as basis point values. The model and statistical features given below work for
diff-returns as well as for log-returns. The asymptotical results use the asset return series as input but do not have any conditions on the return type.

15Values outside this radius are assumed not to influence σ(t) and are zero-weighted. Nevertheless it requires a sufficient long sample: the
calculation is only possible if 1 ≤ t − h and t + h ≤ n (last condition only for symmetrical case). Else the required band would go beyond the
data base and boundary effects occur. Several approaches for treating the boundary t ∈ [0, h) and t ∈ (n − h, n] of a regression region exist in
the literature of nonparametric curve estimation. Fan and Yao (2003) list e.g. special boundary kernels, methods of reflection and transformation
or local polynomial fitting of a higher degree. In general, the order of magnitude of the bias is different in the interior and near the boundaries.
This is to be seen in the subsequent analysis as the optimal two-sided (interior) bandwidth is of order n4/5 while the optimal bandwidth of the
one-(left)-sided bandwidth has size n2/3, that could be interpreted as a boundary corrected estimator for the right interval boundary.
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observations but even more an increase of the frequency for observing data points on a fixed time-frame. Analytically,
we rescale the observations to the interval [0, 1] and refine the data base gradually. That way, an increase of sample
size n means including more observations on closer design points, e.g. an increase of information via switching from
monthly to daily returns within the predefined horizon. Henceforth we scan the (unknown) regression function more
and more precisely, until it is infinitesimal granulated.

We assume that beyond the series of returns {Xt}t=1,...,n the discrete sequence {σ(t)}t is gathered from a contin-
uous volatility function:

σ : [0, n] −→ R+
0 , x 7→ σ(x) (13)

The aforementioned asymptotic is implemented by transforming the data series to the standardized window [0, 1] with
design points 1

n ,
2
n , . . . ,

n−1
n , 1, that adopts the volatility values as s

(
t
n

)
= σ(t) for all t = 1, . . . , n. Formally:

s : [0, 1] −→ R+
0 , y 7→ s(y) := σ(ny) (14)

This produces the transformed multiplicative return model:

Xt,n = µ+ s

(
t

n

)
εt,n, t = 1, . . . , n, (15)

ε1,n, . . . , εn,n iid with Eε1,n = 0, V ar ε1,n = 1,

s

(
t

n

)
, t = 1, . . . , n, a smooth, deterministic function of time.

The corresponding nonparametric estimators are:

(I) Two-sided transformed NWE:

ŝ2hn(u) :=

∑n
i=1Khn

(
i
n − u

)
R2
i,n∑n

i=1Khn

(
i
n − u

) , (16)

with u ∈ [0, 1], hn := h(n) and Khn(·) = 1
hn
K
(
·
hn

)
.

(II) One-sided transformed NWE:

ŝ2(1)hn(u) :=

∑bunc
i=1 Khn

(
i
n − u

)
R̃2
i,n∑bunc

i=1 Khn

(
i
n − u

) , (17)

with u ∈ [0, 1], hn := h(n), Khn(·) = 1
hn
K
(
·
hn

)
and R̃i,n = Xi,n − X̄i−1.

To reach the desired statistical properties of estimators ŝ2hn(u) and ŝ2(1)hn(u) the following conditions on the kernel
K, the bandwidth hn and the smoothness of the (transformed) volatility function s(·) are required:

(C1) Let K : R → [0,∞) be a symmetrical density with compact support [−1, 1], i.e. the kernel has the following
features: (i) K(v) = 0 ∀v /∈ [−1, 1], (ii)

∫∞
−∞K(v)dv = 1, (iii)

∫∞
−∞ vK(v)dv = 0.

(C2) Let K be continuous with a limited first derivation K ′.

(C3) Khn(·) = 1
hn
K
(
·
hn

)
with restrictions to the bandwidth hn: (i) hn

n→∞−→ 0, (ii) nhn, . . . , nh4n
n→∞−→ ∞,

nh6n, nh
7
n, . . .

n→∞−→ 0, (iii) nh5n
n→∞−→ C2 ≥ 0.

(C4) Let s2 be two times continuous differentiable.

(C5) Let rvs ε1,n, . . . , εn,n be iid with Eε1,n = 0, V ar ε1,n = 1 and E |ε1,n|4+δ <∞ for a δ > 0 and n ∈ N.

Two-sided volatility estimation
We start the mathematical survey with the symmetrical estimate ŝhn(u) of the volatility function s(u) on the stan-
dardized time frame [0, 1]. A minimum requirement to a developed, feasible estimator is consistency. Heuristically,
an increase of the sample size should imply that the estimator converges to the parameter to be estimated. That way,
a good estimate should be asymptotically unbiased and its variance should converge to zero as n goes to infinity. We
prove both features and conclude the stochastical convergence.
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Proposition 2.1 Under the conditions (C1) - (C5) in setup (15) the sequence
(
ŝ2hn(u)

)
n∈N of estimators for s2(u) is

consistent for all u ∈ (0, 1).

Proof: Appendix A.
In the sequel we extend the consistency result by inspecting the rate of convergence. Searching for the maximum

functional of n (hn respectively), whose factorisation with ŝ2hn(u) still generates a limited sequence, we detected√
nhn as the according convergence rate. Zn,hn(u) :=

√
nhn

(
ŝ2hn(u)− s2(u)

)
is limited (in probability) due to an

asymptotical bias, a finite variance and an asymptotic normal distribution. Hence, it holds that:

Proposition 2.2 Let C ≥ 0 and V := Eε41,n − 1 ∈ (0,∞) and the conditions (C1) - (C5) be satisfied. Then the
sequence of estimators

(
ŝ2hn(u)

)
n∈N for s2(u) is asymptotic normally distributed for all u ∈ (0, 1) in terms of√
nhn

(
ŝ2hn(u)− s2(u)

) D−→ N
(
β(u), τ2(u)

)
, where (18)

β(u) =
C

2

(
s2(u)

)′′ ∫ 1

−1
v2K(v)dv,

τ2(u) = V s4(u)

∫ 1

−1
K2(v)dv.

Proof: Appendix A.
The asymptotic normality result of the two-sided variance estimate entails some more insights: For the finite

approximation of s2(u) by ŝ2hn(u) the slowest error terms have a
√
nhn rate of convergence. Concluding from propo-

sition 2.2, for a sufficiently large n the pointwise approximation is nearly distributed as:

ŝ2hn(u)− s2(u) ≈ N
(
h2n
2

(
s2(u)

)′′ ∫ 1

−1
v2K(v)dv,

V

nhn
s4(u)

∫ 1

−1
K2(v)dv

)
(19)

The approximate bias has a negligible magnitude relative to the variance term. Hence, an approximative confidence
interval for s2(u) can be simplistic implemented with Gaussian quantiles, built on a normal distribution centered at
ŝ2hn(u) and a variance as above. Moreover, due to the approximate centered moments β(u)√

nhn
and τ2(u)

nhn
of the fi-

nite sample, discussions on optimal bandwidths could continue. Since the mean squared error is MSEŝ2hn(u) =
Bias2ŝ2hn(u)+V arŝ2hn(u), minimizing that function with respect to the bandwidth will provide the optimal trade-off
between bias and variance.16 This typical trade-off from nonparametric curve estimation explains finally why the
asymptotic bias of

√
nhnŝ

2
hn

(u) does not equal zero, subjected to a maximum rate of convergence and the predefined
bandwidth dimension from (C3). It is for the benefit of the asymptotic variance.

One-sided volatility estimation
We execute a similar statistical analysis for the historical, left-sided volatility estimator ŝ2(1)hn(u). The one-sided
NWE for s2(u) in the transformed regression model has the exact definition:

ŝ2(1)hn(u) =


∑bunc
i=1 Khn

(
i
n − u

)
R̃2
i,n∑bunc

i=1 Khn

(
i
n − u

) , bunc ≥ 1

0 , bunc = 0

, u ∈ [0, 1] (20)

The case differentiation is only for theoretical sake of completeness, because the later propositions are based on half-
open intervals u ∈ (0, 1] and for design points u = t

n , t = 1, . . . , n there is no bunc = 0. The one-sided mean of past
returns is defined as

R̃i,n = Xi,n − X̄i−1 where X̄m =


1

m

m∑
j=1

Xj,n , m ∈ N

µ , m = 0

, (21)

where the second case (for i = 1, with µ a technical, unspecified constant) is again asymptotically without influence.
For the one-sided NWE condition (C3) has to be replaced with (C3’), the other premises (C1) to (C5) persist:

16Our later considerations regarding optimal bandwidths are based on that pointwise result and extend it to the MISE-criterion.
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(C3’) Khn(·) = 1
hn
K
(
·
hn

)
with restrictions to the bandwidth hn: (i) hn

n→∞−→ 0, (ii) nhn, nh2n
n→∞−→ ∞,

nh4n, nh
5
n, . . .

n→∞−→ 0, (iii) nh3n
n→∞−→ D2 ≥ 0.

Hence, a faster rate of convergence is claimed to the bandwidth hn of one-sided estimators. This rate and the more
complicated construction of the NWE require a multitude of effort in the convergence analysis, albeit the line of
proofs is structurally similar to the both-sided case. We start again with the consistency of ŝ2(1)hn(u). The estimator is
asymptotically unbiased, its variance tends to zero for large samples and the stochastical convergence follows.

Proposition 2.3 Under the conditions (C1), (C2), (C3’), (C4), (C5) in setup (15) the sequence
(
ŝ2(1)hn(u)

)
n∈N

of

estimators for s2(u) is consistent for all u ∈ (0, 1].

Proof: Appendix A.
The consistency of ŝ2(1)hn(u) is not only valid at interior points of [0, 1] (as restricted for the two-sided approach),

but also at the right frontier. This makes the estimator consistently applicable for forecasting volatility and return
distributions. Again

√
nhn is the (maximum) rate of convergence, where Z(1)

n,hn
(u) :=

√
nhn

(
ŝ2(1)hn(u)− s2(u)

)
is

limited due to an asymptotical bias and a finite variance, and a convergence in distribution to a Gaussian follows.

Proposition 2.4 LetD ≥ 0 and V := Eε41,n−1 ∈ (0,∞) and the conditions (C1), (C2), (C3’), (C4), (C5) be satisfied.

Then the sequence of estimators
(
ŝ2(1)hn(u)

)
n∈N

for s2(u) is asymptotic normally distributed for all u ∈ (0, 1] in

terms of √
nhn

(
ŝ2(1)hn(u)− s2(u)

)
D−→ N

(
β(1)(u), τ2(1)(u)

)
, where (22)

β(1)(u) = 2D
(
s2(u)

)′ ∫ 0

−1
vK(v)dv,

τ2(1)(u) = 4V s4(u)

∫ 0

−1
K2(v)dv.

Proof: Appendix A.
We notice that the asymptotic variance τ2(1)(u) is twice the two-sided counterpart τ2(u) from proposition 2.2,

which is the consequence that only half the return information is used by ŝ2(1)hn(u) at the interior of (0, 1]. But at
the right boundary the two-sided (uncorrected) estimator ŝ2hn(u) is implicitly limited to the identical data base and the
same asymptotic error terms result. Moreover, we conclude from proposition 2.4 for the finite approximation:

ŝ2(1)hn(u)− s2(u) ≈ N
(

2hn
(
s2(u)

)′ ∫ 0

−1
vK(v)dv,

4V

nhn
s4(u)

∫ 0

−1
K2(v)dv

)
, (23)

for a sufficiently large sample size n. An approximative confidence interval for s2(u) can be simplistic implemented
via normal quantiles, centered at ŝ2(1)hn(u) and scaled by the above standard deviation. Last but not least, discussions
on optimal bandwidths, that minimize the MSE or MISE of ŝ2(1)hn(u), employ the asymptotic normality result.

Choice of kernel and bandwidth
In the prevalent literature it is established, that the choice of a kernel function plays a relatively unimportant role
compared with the chosen bandwidth for nonparametric regression. Different kernels perform very similar in large
samples. But the simplest kernels, as a rectangle-, a triangular- or a normal kernel, are incompatible to the regression
models (10) or (15), respectively, due to the conditions of continuous differentiability and a compact support, that are
needed for the desired properties of the estimators. A polynomial kernel of fourth degree, with its maximum in zero
and boundary roots in −1 and +1 is recommended:

K(u) :=

{
15
16 (1− u2)2 , |u| ≤ 1
0 , else

, (24)

which is also called biweight kernel17 and depicted in figure 1.

17Following Fan and Yao (2003), this kernel is from the ’symmetric Beta family’ Kγ(u) =
(
B
(
1
2
, γ + 1

))−1 (
1− u2

)γ
I[−1,1](u) with

beta-integral B(α1, α2) =
∫ 1
0 (1− y)α1−1yα2−1dy as the special case γ = 2.
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Figure 1: Biweight kernel.

Using the biweight kernel in the sequel, we turn to the task of bandwidth decision, where we have to find a trade-off
between oversmoothing and undersmoothing. Oversmoothing means in terms of NWEs to build an average over a too
large neighbourhood of return points (large bandwidth), where recent return information is dominated; a very smooth
shape of the regression function (small variance, but biased) results. Undersmoothing averages over a very small
neighbourhood (small bandwidth), where only a few recent data points are included; a rough shape (small bias, but
large variance) of the estimated volatility function follows. Hence, the bandwidth is also called smoothing parameter.

Discussions on optimal bandwidths require an error measure. Local bandwidth optimization can be based on
minimizing the MSE with respect to hn for a point in time. The afore derived asymptotic results are constraining. An
average of MSE optimal bandwidths over all design points corresponds to the MASE criterion. Superior to this is to
integrate the squared deviation of the estimator ŝ(·) to the volatility function s(·) over the (standardized) horizon and
to minimize this MISE. For sufficient large n we get the following global optimal bandwidths:

(I) For the two-sided (transformed) NWE (16):

hoptn = n−
1
5

 V
(∫ 1

0
s4(u)du

)(∫ 1

−1K
2(v)dv

)
(∫ 1

0

(
(s2(u))

′′)2
du
)(∫ 1

−1 v
2K(v)dv

)2


1
5

(25)

(II) For the one-sided (transformed) NWE (17):

hoptn = n−
1
3

 V
(∫ 1

0
s4(u)du

)(∫ 0

−1K
2(v)dv

)
2
(∫ 1

0

(
(s2(u))

′)2
du
)(∫ 0

−1 vK(v)dv
)2


1
3

(26)

Those approaches can be used directly only for simulation studies, where the volatility function s(·) is a predefined
input. For empirical samples, it is the task to estimate s(·), so bandwidth criteria that are based on that function or
its derivatives are problematical.18 One usual way out is the cross-validation method, which we use for automatised
bandwidth selection as in Gürtler and Rauh (2009). Basic idea is the ’leave-one-out prediction’ over the discrete
design. In our context, the variance s2(·) has to be reestimated for each point j

n , j = 1, . . . , n, without using the
actual observation R2

j,n (or R̃2
j,n) itself. The resulting cross-validation estimators (CVE) for bandwidths hn > 1

n are:

(I) Two-sided (transformed) CVE:

ŝ
2(j)
hn

(
j

n

)
=

∑n
i=1,i6=j Khn

(
i−j
n

)
R2
i,n∑n

i=1,i6=j Khn

(
i−j
n

) ∀j = 1, . . . , n (27)

(II) One-sided (transformed) CVE:

ŝ
2(j)
(1)hn

(
j

n

)
=

∑j−1
i=1 Khn

(
i−j
n

)
R̃2
i,n∑j−1

i=1 Khn

(
i−j
n

) ∀j = 2, . . . , n (28)

18So called plug-in methods develop kernel estimators for the unknown volatility s(·) and its derivatives s2(·)′′ or s2(·)′ and plug them into the
above bandwidth formula, with an iterative procedure leading to optimal bandwidths, compare Gasser et al. (1991).
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The bandwidth selection criterion resembles a MASE method. A sum of squared differences between returns R2
j,n

and CVEs ŝ2(j)hn

(
j
n

)
(alternatively R̃2

j,n and ŝ2(j)(1)hn

(
j
n

)
), called CV-function, is minimized:

(I)

CV (hn) =
1

n

n∑
j=1

(
R2
j,n − ŝ

2(j)
hn

(
j

n

))2

=
1

n

n∑
j=1

(∑n
i=1Khn

(
i−j
n

) (
R2
j,n −R2

i,n

)∑n
i=1,i6=j Khn

(
i−j
n

) )2

!→ min
hn>1/n

(29)

(II)

CV(1)(hn) =
1

n− 1

n∑
j=2

(
R̃2
j,n − ŝ

2(j)
(1)hn

(
j

n

))2

=
1

n− 1

n∑
j=2

∑j−1
i=1 Khn

(
i−j
n

) (
R̃2
j,n − R̃2

i,n

)
∑j−1
i=1 Khn

(
i−j
n

)
2

!→ min
hn>1/n

(30)

The CV-optimal bandwidths hCVn and h
CV(1)
n for the two- and one-sided volatility estimation are numerically found

via a value table for a sufficient fine grid of bandwidths hn or via analysing the CV-plot. An example of functions
CV (hn) and CV(1)(hn) from the later executed simulation studies is presented in figure 2.

Figure 2: Cross validation graphs for the two-sided (grey) and the one-sided CV function (black) regarding the pre-
defined volatility process and simulated log-returns in section 3, part B (n = 5000). The CV-plot is minimal for
hCV5000 = 0.0300 and h

CV(1)

5000 = 0.0150 on a grid pattern of widths 0.005.

The CV-method determines the optimal smoothing parameter solely with the return series and without any know-
ledge about the regressed volatility function. For empirical samples {Xt}t=1,...,n it is not necessary to transform the
setup first for estimating s

(
t
n

)
, rather the volatility σ(t) should be estimated directly. We turn back the definition

h = nhn and derive in the original regression model (10) likewise CV-functions to be minimized:

(I) Two-sided (untransformed):

C̃V (h) =
1

n

n∑
j=1

(
R2
j − σ̂

2(j)
h (j)

)2
=

1

n

n∑
j=1

(∑n
i=1Kh(i− j)

(
R2
j −R2

i

)∑n
i=1,i6=j Kh(i− j)

)2

(31)

where σ̂2(j)
h (j) =

∑n
i=1,i6=j Kh(i− j)R2

i∑n
i=1,i6=j Kh(i− j)

, h > 1 (∀j = 1, . . . , n)

(II) One-sided (untransformed):

C̃V (1)(h) =
1

n− 1

n∑
j=2

(
R̃2
j − σ̂

2(j)
(1)h(j)

)2
=

1

n− 1

n∑
j=2

∑j−1
i=1 Kh(i− j)

(
R̃2
j − R̃2

i

)
∑j−1
i=1 Kh(i− j)

2

(32)

where σ̂2(j)
(1)h(j) =

∑j−1
i=1 Kh(i− j)R̃2

i∑j−1
i=1 Kh(i− j)

, h > 1 (∀j = 2, . . . , n)

It is easy to see that C̃V (h) = CV (hn) and hC̃V = hCVn n (two-sided example, one-sided approach works as well)
and hence it does not matter on which setup the optimization is based on.



2 A NON-STATIONARY MODEL FOR ASSET RETURNS 13

2.2 Focus on fitting innovations
In the sequel we develop the theory for fitting the Pearson type VII distribution to a series of estimated innovations
ε̂1, . . . , ε̂n via a method of moments. Because the residual sample is evaluated in each point of time t by the ratio
of a demeaned return and an estimated volatility from the regression-type model (10), we have to distinct between
innovation estimates on a two-sided and one-sided data base:

• Two-sided innovation estimators:

ε̂t =
Rt
σ̂(t)

, t = 1, . . . , n (33)

• One-sided innovation estimators:

ε̂t =
R̃t

σ̂(1)(t)
, t = 1, . . . , n (34)

Agreeing with Drees and Starica (2002), Herzel et al. (2005), Mikosch and Starica (2004a) or Kitagawa and
Nagahara (1999), and as shown in comprehensive empirical studies of Gürtler and Rauh (2009), the Pearson type
VII distribution can capture some heavy tailed innovations quite nicely. Remember, that we fit the Pearson VII
density (term (8)) separately to nonnegative {ε̂t | ε̂t ≥ 0}t and absolutes of negative innovations {−ε̂t | ε̂t < 0}t.
Under the assumption that their median equals 0, the one-side fitted densities fV II(1)m+,c+ and fV II(1)m−,c− are combined via
fV IIm+,c+,m−,c− as described in equation (9), called asymmetric Pearson type VII density.

The Pearson VII density is part of the Pearson system, which can be studied in Johnson and Kotz (1970). Every
member of the system has a probability density function p(x) that solves a differential equation of form

1

p

dp

dx
= − a+ x

d0 + d1x+ d2x2

where a, d0, d1 and d2 are real shape parameters. Type VII is a special case with a = d1 = 0 and d0 > 0, d2 > 0. The
explicit solution of the differential equation is

p(x) = k
(
d0 + d2x

2
)−(2d2)−1

,

with k chosen to satisfy
∫ +∞
−∞ p(x)dx = 1. This is called the symmetric Pearson VII density. Johnson and Kotz (1970)

estimate the parameters of the Pearson system via a general method of moments, especially:

d0 = (4β2 − 3β1) (10β2 − 12β1 − 18)
−1
µ2,

d2 = (2β2 − 3β1 − 6) (10β2 − 12β1 − 18)
−1
,

where µ2(X) = EX2, β1(X) =
(

E(X−EX)3

(E(X−EX)2)3/2

)2
(squared skewness) and β2(X) = E(X−EX)4

(E(X−EX)2)2
(kurtosis).

Since the Pearson VII density p(x) is symmetrical, β1 = 0, and β2 > 3 is required due to a positive d2. This means,
that the conception is only applicable for samples that are heavier than a normal distribution.

Substituting m := (2d2)−1 and interpreting d0 as a rescaled constant d0 = c2

2m (i.e. substitute c :=
√

2m · d0) we
derive an expression for k:

p(x) = k

(
c2

2m
+

1

2m
x2
)−m

= k

(
c2

2m

(
1 +

(x
c

)2))−m
⇒ 1

!
= k

(
2m

c2

)m
2

∫ ∞
0

1(
1 +

(
x
c

)2)m dx
y:=( xc )

2

= k

(
2m

c2

)m
c

∫ ∞
0

y−1/2

(1 + y)m
dy = k

(2m)m

c2m−1
B
(

1

2
,m− 1

2

)
,

⇒ k =
1

B
(
1
2 ,m−

1
2

) c2m−1

(2m)m
, where B(α1, α2) =

∫ ∞
0

uα1−1

(1 + u)α1+α2
du =

Γ(α1)Γ(α2)

Γ(α1 + α2)
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Applying that term for k in the symmetric Pearson VII density p(x) leads to:

p(x) =
1

B
(
1
2 ,m−

1
2

) c2m−1

(2m)m
·
(

2m

c2

)m(
1 +

(x
c

)2)−m
=

Γ(m)

cΓ
(
m− 1

2

)
π1/2

(
1 +

(x
c

)2)−m
=: fV II(2)m,c (x) (35)

This expression corresponds to (8), but defined on the whole real axis, i.e. fV II(1)m,c (x) = 2 · fV II(2)m,c (x) I[0,∞)(x),

x ∈ R. That way we achieve moment estimators for parameters m, c of the one-sided Pearson VII density fV II(1)m,c :

m =
1

2d2
=

5β2 − 9

2β2 − 6
(36)

c =
√

2md0 =

√
2m

2β2µ2

5β2 − 9
=

√
2β2µ2

β2 − 3
(37)

By inserting the empirical moment estimators for β2 and µ2 we can fit fV II(1)m,c to the data set. More precisely,
the asymmetric Pearson VII parameterisation m+, c+, m−, c− is to estimate successively for the innovation sets
ε+ := {ε̂t | ε̂t ≥ 0}t and ε− := {−ε̂t | ε̂t < 0}t concerning the right and left tail. Special attention should be
paid to that method of moments in the one-sided implementation: For estimating β̂2 (ε+) we recommend to include
the hypothetical counterpart −ε+ of the one-sided set and to work on the symmetrical base {ε+,−ε+} with standard
formula.19 It follows, that estimators can be reduced to:

β̂2 (ε+) =
Eε4+
Eε2+

, analogous: β̂2 (ε−) =
Eε4−
Eε2−

Next to the self created asymmetry, the Pearson VII setup detects heavy tailed distributions quite flexible20 and
its density can be parameterized to decay slower than any arbitrary decreasing polynomial. For β2 ↘ 3 and µ2 = 1
(=⇒ m → ∞, c → ∞) the normal distribution follows from the symmetric Pearson VII asymptotically. Special
cases are the Cauchy distribution21 and a scaled Student-t distribution with 2m− 1 df.22 With respect to

gn(x) =
Γ
(
n+1
2

)
√
nπ Γ

(
n
2

) (1 +
x2

n

)−n+1
2

, −∞ < x <∞,

as the Student-tn density, it holds for a t-distributed rv with 2m− 1 df which is rescaled by γ := c√
2m−1 that:

ḡ2m−1,γ(x) =
1

γ
g2m−1

(
x

γ

)

=

√
2m− 1

c

Γ(m)√
2m− 1 Γ

(
m− 1

2

)√
π

(
1 +

(√
2m− 1

c

x√
2m− 1

)2
)−m

= fV II(2)m,c (x)

Because of the simple transformation from the Pearson type VII to a Student-t distribution, whose quantiles are
looked up in tables, we developed the idea to implement the non-stationary model (10) for the task of VaR calculation
as a factor-based model. The univariate Value at Risk V aR1−α(t) of an exposure w(t) at time t with yields Xt

following the regression model (10) is then to be modelled as the product of w(t) with a nonparametric estimated
volatility σ̂(·)(t) and the α-quantile um,c;α of a Pearson VII innovation. Since the cdfs are connected as

FV II(2)m,c (x) =

∫ x

−∞

1

γ
g2m−1

(
y

γ

)
dy

z:=y/γ
=

∫ x/γ

−∞

1

γ
g2m−1(z) γ dz = G2m−1

(
x

γ

)
,

19Else Eε+ 6= 0 and β̂2 builds powers on a falsely centered rv.
20But the method does not work, if innovations are not heavy tailed, i.e. if β2 (εt) ≤ 3. That case one can conservatively (with a pure risk

aversion view) apply the normal distribution.
21The Cauchy density follows from p(x) with k = 1

2λπ
(λ > 0) and d0 = d2 = 1

2
.

22Student’s df is a measure for the heavy-tailedness and is called tail index point estimate in the common literature, e.g. Drees and Starica (2002).
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it follows immediately for the corresponding quantiles:

t2m−1;α =
um,c;α
γ

⇐⇒ um,c;α = γ t2m−1;α (38)

Regarding the one-sided presentation, some attention has to be paid to:

FV II(1)m,c (x) = 2 · FV II(2)m,c (x) =⇒ α(1) = 2α (e.g. for confidence level α = 1%)

Moreover, from the Student-t connection follows a restriction to the shape parameter m, that ensures the asymp-
totic normality of the NWEs ŝ2hn(u) and ŝ2hn(1)(u), respectively. Amongst others, (C5) E |ε1,n|4+δ < ∞ (δ > 0)
was required theoretically. As all (central) moments µk with n > k exist for a tn-distributed rv, the Pearson VII fit of
innovations has to be conform with

2m− 1 > 4 ⇔ m >
5

2
.

If the set of innovations was symmetric (special case, not observed in general), the assumption V arε1 = 1 for iid
{εt}t implies additionally the relation c =

√
2m− 3 of shape parameters.23

3 Simulation studies with the non-stationary approach
So far we have provided the necessary statistical tools for estimating the volatility structure (σ(t))t nonparametrically
and for approximating estimated innovations {ε̂t}t by the asymmetric Pearson type VII distribution via a method of
moments. These are the main steps for fitting the regression model to a financial time series. In this section we apply
the theory to a simulation study, where firstly the focus is set on the goodness of volatility (re-)estimation, dependent
on the sample size and bandwidth optimization. Afterwards we formulate a price process in terms of the regression
model (10), perturbated by a Pearson VII noise, and finally evaluate the approximation by the non-stationary model in
a backtesting framework.

A) For the beginning we predefine a heteroscedastic volatility function (standard deviation) as:

σa(t) =
1

10

(
sin

(
2π

100
t

)
+ 1

)
t ∈ [0, 500] (39)

sa(u) =
1

10
(sin(10πu) + 1) u ∈ [0, 1] (40)

This corresponds to a multimodal oscillation with 5 periods in the interval [0, 500]. The values on the discrete design
1, . . . , 500 could be thought as annualized volatilities σa(t) at the end of days t, observed over two years (250 trading
days p.a.). The transformed version is sa(u). The example focusses first on reestimating the volatility in a simplified
case of the standardized regression model (15), with an expectation µ = 0 for log-returns {Xt,n}t=1,...,n and innova-
tions distributed as ε1,n ∼ N (0, 1). The main point is to estimate the heteroscedastic part of the simulated series24

with the two-sided ŝ2hn(u) and the one-sided NWE ŝ2(1)hn(u). We observe the influence of sample size to the volatility
estimator’s fit.25 Bandwidths are optimized via the MISE-criterion (formulas (25), (26)).

As discussed in section 2.1 the asymptotic works by increasing the data density on a fixed time-frame [0, 1]. A
larger sample size n enables more and closer observations, the predefined function is scanned more precisely. Figure
3 displays the nonparametric curve estimation of sa for different sample sizes in a median simulation of 65 repeats.
By calculating the sum of squared errors SSE ŝhn :=

∑n
i=1

(
ŝhn

(
i
n

)
− s

(
i
n

))2
of the estimator relative to the given

volatility function for each simulated sample and ordering paths by their SSE we select the median simulation.

23This is to be seen with V arY = n
n−2

for a (unscaled) tn-distributed rv Y (n > 2). Then V arε1 = γ2 V arY = c2

2m−1
· 2m−1
2m−3

!
= 1.

24We include later the proposed innovation modelling. The alternative choice of an expectation µ = const has a negligible influence on the
simulation example due to centering the returns first of all. Assuming µ = 0 is just for the sake of convenience.

25The simulation was implemented in a C programme, using the Box-Muller method for transforming uniform to normal random numbers.
Secondly we wrote VBA-code for MS Excel, to be used for smaller samples.
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BW two-sided error (SSE) BW one-sided error (SSE)
100 points 0.06013 0.15739 0.06377 0.30549
500 points 0.04358 0.25614 0.03730 0.59948
1000 points 0.03794 0.28939 0.02960 0.75579
5000 points 0.02750 0.46056 0.01731 1.36289

Figure 3: Median simulation (65 samples ordered by SSE) of volatility curve estimation on sa (continuous line, black)
for 100, 500, 1000 and 5000 equidistant design points (from top to bottom) by two-sided NWEs (rhombuses, grey)
and one-sided NWEs (triangles, black) with MISE-optimal bandwidths (BW).

We discover visually that the fit improves with the sample size for both NWEs. The SSE increases considerably
slower than the sample size, for very large samples it decreases absolutely. The approximation of sa(u) in terms
of nonparametric volatility estimators ŝhn(u) and ŝ(1)hn(u) is already noticeable for smaller samples of 100 or 500
points and quite satisfying using 1000 design points. Due to its additional future information, the two-sided estimator
produces generally a better and smoother fit. The left-sided approach lags behind, since the volatility does not increase
until the first extremal event happens, and after a series of shocks it decays typically slower. We did not correct
boundary effects, so the first nhn points are distorted, for the two-sided estimator also the last nhn values. On the
right boundary both estimators are nearly the same (neglecting different bandwidths). For the sample size of 5000 the
estimates cover the predetermined volatility function visually excellent.
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B) To appreciate how good the cross-validation method works, we estimate the optimal bandwidth in the simulation
example directly without including the knowledge of sa. The corresponding CV functions of a two- and one-sided
5000-point setup were plotted in figure 2. The resulting volatility estimations ŝhn(u) and ŝ(1)hn(u), presented in graph
4, deliver again an excellent fit to the predetermined sa(u). Compared with the MISE-optimal smoothing parameters
the bandwidths from CV are very close, with absolute differences lower/ equal 0.0025, which may also be caused by
the grid pattern of widths 0.005. The SSEs are marginally larger. Deviations from figure 3 (bottom graph) are mainly
caused due to other random innovations.

BW two-sided error (SSE) BW one-sided error (SSE)
5000 points 0.0300 0.54153 0.0150 1.57060

Figure 4: Two-sided (rhombuses, grey) and one-sided estimation (triangles, black) of the hypothetical volatility sa

(continuous line, black) for 5000 design points with optimal bandwidths from cross-validation.

C) In the next step we expand the volatility simulation to a discrete price process {Pt}t=0,...,500, where σa(t) on
[0, 500] is involved as time-variant part of an annualized volatility function σ̃a(t), that additionally includes a base
volatility σ0. Moreover a constant trend µ is modelled and a heavy-tailed approach for the innovations is chosen:

Pt = Pt−1 e
Xt , P0 := 1000 , t = 1, . . . , 500, where (41)

Xt = µ+ σ(t)εt, with µ :=
15%

250
and

σ(t) =
σ̃a(t)√

250
, σ̃a(t) := σa(t) + σ0, with σ0 := 10%,

εt ∼ PearsonV II(2)m,c where m := 4 and c :=
√

5.

The log-return of prices, Xt = ln (Pt/Pt−1) = ln eXt = µ + σ(t)εt corresponds to the (untransformed) regression
approach (10). Innovations εt are modelled as symmetrical Pearson VII distributed rvs, i.e. following density fV II(2)m,c

from (35). Figure 5 displays a representative simulated path of prices26 and the nonparametric estimated volatilities
relative to the original volatility in the course of time.

For that example the fit is quite acceptable despite the small sample size of 500 and the strong influence of random
heavy-tailed innovations εt. The comparison to the price graph shows, that the nonparametric estimators are able to
capture fast phases of market shocks or increased volatility, respectively. Repeats of the simulation setup may produce
very different paths, because a high volatility level (medium 20% p.a.) dominates the price process more than its trend
(µ = 15% p.a.) and the incident of extreme innovations leads to considerable shocks. Due to the random innovations,
the NWEs may have different optimal bandwidths and, of course, some different developing of estimates adapted to
the realized volatility of the simulated sample.

D) We finish our simulation studies with a forecasting experiment, continuing on the price process (41) and its re-
alisation displayed in figure 5, i.e. realized innovations {εt}t were frozen. We imagine, that we observed only the
first 251 prices (P0, . . . , P250) up to a forecast starting point t0 = 250, and refer to that half-series as ’in-sample part’.

26Innovations were simulated in MS Excel via uniform random numbers α, that where interpreted as probabilities corresponding to the α-quantile
of a student-t2m−1 rv. The Pearson VII random number is then um,c;α = c√

2m−1
t2m−1;α.
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Figure 5: Simulation path for price process (41) including the regression model (10) (top) and annualized volatility
estimates for log-returns (bottom): σ̂(t) (rhombuses, grey) and σ̂1(t) (triangles, black) of the predefined volatility
σ̃a(t) (continuous line, black) for 500 design points with CV-optimal bandwidths (hC̃V = 34, hC̃V (1) = 29).

The other half, called ’out-of-sample part’, will follow within the next year. We plan to forecast the distribution of the
1-day ahead return Xt+1 with the information available in t ≥ t0, successively. For forecasting purposes we naturally
have to work with the one-sided setup of the regression model (10) since only past information is available.

The model is calibrated in-sample and optimal parameters are fixed for the out-of-sample part:27 After estimat-

ing a centered return series R̃1, . . . , R̃t0 , the optimal smoothing parameter h
C̃V (1)
n is identified with cross-validation

for the purpose of nonparametric volatility estimation. Having calculated the series of standard deviation estimates
σ̂(1)(1), . . . , σ̂(1)(t0) we estimate the innovation series ε̂1, . . . , ε̂t0 and fit the asymmetric Pearson VII density
fV IIm+,c+,m−,c− to nonnegative and absolutes of negative innovations.28 That way, we use the distribution of Xt0 as
a forecast of Xt0+1. Afterwards, we develop with the new returns, their volatility estimates and the fixed innovation
parametrization the distributions of X251, . . . , X500 successively.

We obtain an optimal one-sided bandwidth h
C̃V (1)
n = 36 days. This differs slightly from the optimum on the

full sample due to the impact of random innovations in the quite small series. The one-sided annualized, estimated
volatilities of the price process are shown in figure 6. The in-sample estimates are grey depicted, while the later
pointwise estimators of the out-of-sample part are printed in black. The optimal Pearson VII parameters for estimated
innovations {ε̂t}t=1,...,250 in terms of one-sided volatilities and returns are m+ = 5.6299, c+ = 2.9038 and m− =

7.1976, c− = 3.2758. They define the right and the left tail of the asymmetric Pearson VII density fV IIm+,c+,m−,c− , that
are presented in figure 7 relative to the histogram of innovations.

A pretty good approximation of the (scaled) innovation frequencies by the Pearson VII densities (black line) is
observed on both sides. Moreover, this illustration presents a comparison to a standardized Gaussian density (grey
line). Deviations from the normal densities are to be seen in the middle of the distribution and in the tails, where

27An alternative approach could be to re-calibrate the model every day or every fixed period out-of-sample, to incoporate the new parameter
information.

28Even though we have assumed a symmetric Pearson VII distribution, the random innovations of the small sample cause different optimal
parameters m+, c+ vs. m−, c− on both sides following the method of moments.
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Figure 6: One-sided nonparametric estimator of volatilities σ̂1(t) in the price process (41) with an CV-optimal band-
width of 36 days. The in-sample estimates are printed in grey, out-of-sample volatilities are black depicted.

Figure 7: Pearson VII fit of negative and nonnegative innovations by the density fV II5.63,2.90,7.20,3.28. The bottom graphs
compare the asymmetric Pearson VII (black) and the standard normal density (grey).

extreme Pearson quantiles differ significantly from normal quantiles.29 There are only slight differences of the optimal
left and right fitted distribution of innovations due to the simulation setup.

It should be attended, that in general a trade-off between the smoothness of volatility estimates and the innova-
tion’s distribution was observed: The bigger the bandwidth in nonparametric volatility estimation the smoother is the
volatility graph and the more heavy-tailed are the innovations.30

To measure the modelling performance we apply the Kupiec test to shortfall rates of the out-of-sample-part. The
two-sided hypothesis test is an extension of a binomial test for the likelihood of N shortfalls in a sample of size
n, where the true shortfall probability is hypothetical H0 : p = α for an (1 − α) VaR-level. Based on a normal

29Concerning the input parameters (Pearson density fV II(2)
4,
√

5
), we observe that lower confidence levels (in terms of maximum losses), as 95%,

may have Pearson quantiles that are absolutely smaller than the normal (−1.6012 Pearson vs. −1.6449 Gaussian). But for extreme shortfall levels,
as 99% or 99.5%, Pearson overtakes the Gaussian quantiles (99%: −2.5337 vs. −2.3263; 99.5%: −2.9576 vs. −2.5758). In other words, the
probability of falling short the 0.5%-normal quantile is for the Pearson VII distributed rv almost twice as much (0.93%).

30On the other hand, this is the reason why the Pearson VII fit of innovations may fail in some cases for good volatility estimates with small
bandwidths, entailing a kurtosis < 3 of estimated innovations. Then the normal distribution may be conservative for the task of extreme return
quantile approximation.
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approximation, Kupiec (1995) developed approximate 95% confidence regions of failure rates. The log-likelihood-
ratio

LRp = −2 ln
[
(1− p)n−NpN

]
+ 2 ln

[(
1− N

n

)n−N (
N

n

)N]
(42)

is χ2
1-distributed under H0. Thus the risk measure and H0 are rejected on a 5% level of significance if LRp > 3.84.

This test is widely used by financial risk managers to evaluate their risk models, even the penalty zones of the Basel
II committee are based on this methodology (see e.g. Jorion (2006)). The Kupiec test is used by scientifics as well to
support return models, e.g. in Choi and Nam (2008).

Primarily, we use Kupiec backtesting for the non-stationary modelling of the price process (41) to evaluate the
forecasted daily returns in terms of certain quantiles. We focus on the loss tail and deduce a relative 1-day Value at
Risk V aR1−α,1d(t) for the next day’s return Xt+1 corresponding to the regression model (10):

V aR1−α,1d(t) = X̄t + σ̂(1)(t)um,c;α(1) = X̄t + σ̂(1)(t)γt2m−1;α(1) , γ = c√
2m−1 , (43)

where um,c;α(1) and t2m−1;α(1) , with α(1) = 2α, are the quantiles of the left-side Pearson VII fit and the corresponding
Student-t expression. This forecast for a maximum loss, that is not exceeded at the end of the horizon (t, t + 1] with
probability 1−α, is compared to the realized next days returnXt+1. A shortfall is observed ifXt+1 ≤ V aR1−α,1d(t).
The number of shortfalls in the out-of-sample part is accumulated and evaluated with the Kupiec test statistic LRp.
Illustration 8 summarizes for a 99% confidence level of maximum losses.

Figure 8: Kupiec backtesting of forecasted V aR99%,1d(t) against realized returns Xt+1 (out-of-sample) in the non-
stationary model.

The non-stationary forecasts experienced 5 exceedances over the VaR threshold, which deviates slightly from the
expected number of shortfalls, but is within the allowed range of {1, . . . , 6} for the 5% level of significance. The
model is accepted by the Kupiec test. Furthermore, acceptance was shown for all possible confidence levels greater-
than-or-equal 80%. Most exceedances occured generally, when the volatility was at a low and started again to increase.
The example was chosen with quite extreme volatility changes and short periods of the oscillation. Nevertheless the
non-stationary approach works.

It could be supposed that a parametric VaR based on a long-term standard deviation is advantaged, since it covers
more periods of the recuring volatility structure. That’s why we backtest a simple risk model, based on Gaussian
quantiles and scaled by empirical standard deviations of historical returns (from a moving window of certain length),
the same way and compare both model performances. Figure 9 gives the number of exceedances for the different
models. Based on a 250-day standard deviation (fourth column), the basic risk model seems to benefit from the higher
average volatility: Less exceedances occur for the most confidence levels and the number of shortfalls is closer to the
expectation for levels from 95% to 99.5%. But this VaR model is too conservative, it is rejected on lower levels where
certain exceedances are required. Based on a window adjusted to the bandwidth of the one-sided NWE (right column)
the parametric VaR model passes the lower but fails at some higher confidence levels.31

31The basic risk models, based on standard deviations over 50 days and 36 days, respectively, show on the given confidence levels the same
number of shortfalls.
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Figure 9: Kupiec test results for the non-stationary model and two types of a Gaussian risk model, scaled by empirical
standard deviations (over different horizons), on several levels of confidence. Model rejections on a 5% level of
significance are grey highlighted.

Concluding, the simulation experiment proved that the non-stationary model is not only of theoretical quality:
Moreover it was able to capture simulated return dynamics and to provide satisfactory distributional forecasts as well.
Finally, the regression approach outperformed a standard VaR model, although a fast oscillating price process was
chosen to challenge that implementation.

In Gürtler and Rauh (2009), the same non-stationary model is executed for real financial times series, as series
of equity indices, interest rates, credit spreads and currencies. They observe satisfactory model approximations to
the return series, where volatility clusters are detected by the nonparametric estimates and extremal or asymmetric
behavior is incorporated by the Pearson VII fit of innovations. An excellent modelling of empirical data is confirmed
again by Kupiec backtesting and an outperformance against the standard Gaussian VaR model is proved.

4 Summary and conclusion
In this paper we discuss a non-stationary, heteroscedastic model for financial returns theoretically. The multiplicative
return model, introduced first by Drees and Starica (2002) and Herzel et al. (2005), works with a nonparametric
regression approach for unconditional volatility and an asymmetric, heavy-tailed fit of random innovations. Based
on the idea that recent past and future returns depend on the same unknown exogenous economic factors, that evolve
smoothly through time and are manifested in pricing, the current level of (co-)variance is dominated exogenously. The
vectors of returns are assumed to be independent while having an unconditional covariance structure that is a smooth
deterministic function of time, modelled via nonparametric regression on equidistant centered returns (Nadaraya-
Watson estimators, NWE). For the purpose of accurate modelling of the residuals, an asymmetric version of the
Pearson type VII distribution is applied. We specialize on a univariate description.

Our article is thought as the theoretical background for the empirical research of Gürtler and Rauh (2009) in the
non-stationary approach. So, we focus here on deriving the modelling components. A lot of effort is spent to statistical
properties as consistency and asymptotic normality of the variance estimates in the nonparametric regression model
(with constant trend) on an equidistant design. Both features are proved analytically for the symmetrical NWE as
well as for the one-sided NWE, which is based only on past/ recent data and should be used in forecasting. The
statistical analysis requires a special kernel, where the biweight kernel is established, and appropriate bandwidths.
Cross-validation is adopted for an automatised bandwidth selection. The task of fitting innovations via Pearson type
VII is simplified by providing a method of moments for parameter estimation and by deriving a connection to the
Student-t distribution. By dint of the latter presentation of residuals a factor-based VaR calculation can be implemented
in terms of the regression model: The univariate V aR1−α(t) of an exposure w(t) can be modelled as its product with
the nonparametric estimated volatility σ̂(·)(t) and the (1−α) Pearson VII innovation quantile of the benchmark return
distribution, adjusted by the mean return.

Besides the statistical results of volatility estimates, we document in simulation studies how their fit to a predefined
function is improved by a more and more refined data base, and that the non-stationary model is able to capture price
processes entirely. A Kupiec hypothesis testing confirms the goodness of distributional forecasts, where value at risk
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limits are compared to the next day’s returns and are evaluated by their shortfall rates. Regarding that backtesting
method the non-stationary model clearly outperforms a parametric (normal) VaR model.

Gürtler and Rauh (2009) provide evidence that the regression model approximates daily return series of several
financial instruments successfully. It outperforms parametric VaR implementations as they test model assumptions
and evaluate shortfall rates. Extensive empirical studies focus on the practical usage of the nonparametric volatility
estimations and the connection to the Pearson VII fit of innovations. Drees and Starica (2002) establish on a S&P 500
return series that their equivalent approach fits the data significantly better than conventional GARCH-type models,
and provided a forecasting analysis with 1-, 20-, and 40-days ahead distributional forecasts. Herzel et al. (2005) show
on a tri-variate example (exchange rate EUR/USD, FTSE 100 index, 10-year US T-bond rate) that the non-stationary
paradigm describes the dynamics well and delivers good multivariate distributional forecasts. They proved an outper-
formance against theRiskMetricsTM (JP Morgan) approach. Last but not least, Mikosch and Starica (2004a) extend
the non-stationary, nonparametric framework by including a time-varying expected return in the univariate case, giving
statistical evidence that the return expectation and the market price of risk vary significantly through time.

Having outlined the practical advantages and having proved the theoretical model quality in this article, we see
the following fields for future research: The main task will be to develop an adequate multivariate setup for a broad
exposure conception. This could be based on the direct multivariate setup of Herzel et al. (2005). Otherwise, a risk
aggregation in a simulation approach could be fruitful, e.g. approximatively with Cholesky decomposition of correla-
tions, that continues on the empirically approved univariate implementation for VaR-purposes. A full nonparametric
setup is conceivable, where the (still restrictive) parametric approach for the innovation’s distribution could be substi-
tuted with a nonparametric kernel density. Following Mikosch and Starica (2004a), the inclusion of a time-dependent
expected yield, modelled with kernel regression, may be a further step. Based on our basic belief that both recent
past and future returns are manifestations of the same unspecified, exogenous economic factors, that evolve smoothly
through time, we may use that frame for portfolio optimization in terms of a tactical asset allocation.

A Proofs for section 2.1
Proof of proposition 2.1:
1.) We first show that ŝ2hn(u) is asymptotically unbiased for all u ∈ (0, 1).
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The goodness of the approximation is to be seen with the mean value theorem for integrals and the mean value theorem
for differentiation (where x̃i ∈
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n − u
hn

)
−K

(
x̃i − u
hn

) ∣∣∣∣∣ =
1

nhn

∣∣∣∣∣
n∑
i=1

K ′
(
ξi − u
hn

)
︸ ︷︷ ︸
≤M :=maxi|K′(·)|

·

(
i
n − x̃i
hn

)
︸ ︷︷ ︸
≤ 1
nhn

∣∣∣∣∣ ≤ 1

nhn
n

(
M

1

nhn

)

= O

(
1

nh2n

)
(C3)−→ 0

And the denominator has the deterministic limit value 1.
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1.b.) Regarding the enumerator it holds for the expectation of R2
i,n that

ER2
i,n = s2

(
i

n

)
− 2

n
s2
(
i

n

)
+

1

n2

n∑
j=1

s2
(
j

n

)
,

where the most effort is spent to the first terms scalar product with the kernel.
1.b.i.) Here we start again with an approximation, substitute v := x−u

hn
and use a Taylor expansion (where

û ∈ (u, u+ vhn) if v > 0, else û ∈ (u+ vhn, u)) for assessing convergence.

1

hn

n∑
i=1

1

n
K

(
i
n − u
hn

)
s2
(
i

n

)
≈ 1

hn

∫ 1

0

K

(
x− u
hn

)
s2(x)dx =

1

hn

∫ u+hn

u−hn
K

(
x− u
hn

)
s2(x)dx

=
1

hn

∫ 1

−1
K(v)s2(u+ vhn)hndv = s2(u)

∫ 1

−1
K(v)dv︸ ︷︷ ︸

=1, (C1)

+
(
s2(u)

)′
hn

∫ 1

−1
vK(v)dv︸ ︷︷ ︸

=0, (C1)

+
h2n
2

∫ 1

−1

(
s2(û)

)′′
v2K(v)dv︸ ︷︷ ︸

<∞, (C4), (C2)

= s2(u) +O(h2n)→ s2(u)

The goodness of the approximation is shown with mean value theorems (where x̃i ∈
[
i−1
n , in

]
and ξi, ζi ∈

(
x̃i,

i
n

)
):∫ 1

0

K

(
x− u
hn

)
s2(x)dx =

n∑
i=1

∫ i/n

(i−1)/n
K

(
x− u
hn

)
s2(x)dx =

n∑
i=1

1

n
K

(
x̃i − u
hn

)
s2(x̃i)

1

nhn

∣∣∣∣∣
n∑
i=1

K

(
i
n − u
hn

)
s2
(
i

n

)
−K

(
x̃i − u
hn

)
s2(x̃i)

∣∣∣∣∣
=

1

nhn

∣∣∣∣∣
n∑
i=1

s2
(
i

n

)[
K

(
i
n − u
hn

)
−K

(
x̃i − u
hn

)]
+K

(
x̃i − u
hn

)[
s2
(
i

n

)
− s2 (x̃i)

]∣∣∣∣∣
=

1

nhn

∣∣∣∣∣
n∑
i=1

s2
(
i

n

)
K ′
(
ξi − u
hn

)
︸ ︷︷ ︸
≤M :=maxi|K′(·)|

·

(
i
n − x̃i
hn

)
︸ ︷︷ ︸
≤ 1
nhn

+K

(
x̃i − u
hn

) (
s2(ζi)

)′︸ ︷︷ ︸
≤N :=maxi|(s2(ζi))′|

·
(
i

n
− x̃i

)
︸ ︷︷ ︸
≤ 1
n

∣∣∣∣∣
≤ 1

nhn

n∑
i=1

s2
(
i

n

)
M

nhn
+K

(
x̃i − u
hn

)
N

n
= O

(
1

nh2n

)
+O

(
1

nhn

)
→ 0

Putting both limit considerations together, we get with the triangle inequality:∣∣∣∣∣ 1

nhn

n∑
i=1

K

(
i
n − u
hn

)
s2
(
i

n

)
− s2(u)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

nhn

n∑
i=1

K

(
i
n − u
hn

)
s2
(
i

n

)
− 1

hn

∫ 1

0

K

(
x− u
hn

)
s2(x)dx

∣∣∣∣∣
+

∣∣∣∣ 1

hn

∫ 1

0

K

(
x− u
hn

)
s2(x)dx− s2(u)

∣∣∣∣ = O

(
1

nh2n

)
+O

(
h2n
) (C3)−→ 0

And it follows that
1

n

n∑
i=1

Khn

(
i

n
− u
)
s2
(
i

n

)
→ s2(u).

1.b.ii.) Paying attention to the residual components of the enumerator it is easy to see that:

− 2

n2

n∑
i=1

Khn

(
i

n
− u
)
s2
(
i

n

)
→ 0

with factorisation in
(
− 2
n

)
and the expression of the previous part. Finally,

1

n3

n∑
i=1

n∑
j=1

Khn

(
i

n
− u
)
s2
(
j

n

)
≤ 1

n3hn
n2 max

i=1,...,n
K

(
i
n − u
hn

)
max

j=1,...,n
s2
(
j

n

)
︸ ︷︷ ︸

<∞, (C2),(C4)

→ 0
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It immediately follows with the convergence in numerator and denominator: Eŝ2hn(u)
n→∞−→ s2(u) ∀u ∈ (0, 1).

2.) With a similar, more expensive analysis we prove that the variance of ŝ2hn(u) converges to zero as n goes to
infinity:

V ar ŝ2hn(u) =

1
n2V ar

{∑n
i=1Khn

(
i
n − u

) (
s
(
i
n

)
εi,n − 1

n

∑n
j=1 s

(
j
n

)
εj,n

)2}
1
n2

(∑n
i=1Khn

(
i
n − u

))2
2.a.) The denominator is the squared expression of 1.a.), i.e. its limit value is 1.
2.b.) We decompose the numerator in several sums of variances and covariances.

2.b.i.) The central component (with the lowest convergence rate) is:

1

n2
V ar

{
n∑
i=1

Khn

(
i

n
− u
)
s2
(
i

n

)
ε2i,n

}
iid
=

1

n2

n∑
i=1

K2
hn

(
i

n
− u
)
s4
(
i

n

)
V,

where V := V arε21,n = Eε41,n − 1
(C5)
< ∞. With the same technique as above, we approximate initially:

V

nh2n

n∑
i=1

1

n
K2

(
i
n − u
hn

)
s4
(
i

n

)
≈ V

nh2n

∫ 1

0

K2

(
x− u
hn

)
s4(x)dx =

V

nh2n

∫ 1

−1
K2(v)s4 (u+ vhn)hndv

=
V s4(u)

nhn

∫ 1

−1
K2(v)dv +

V
(
s4(u)

)′
n

∫ 1

−1
vK2(v)dv︸ ︷︷ ︸

=0, symmetry

+
V hn
2n

∫ 1

−1
(s4(û))′′v2K2(v)dv

= O

(
1

nhn

)
+O

(
hn
n

)
→ 0

The absolute approximation error is again a zero-sequence:∫ 1

0

K2

(
x− u
hn

)
s4(x)dx =

n∑
i=1

∫ i/n

(i−1)/n
K2

(
x− u
hn

)
s4(x)dx =

n∑
i=1

1

n
K2

(
x̃i − u
hn

)
s4 (x̃i)

V

n2h2n

∣∣∣∣∣
n∑
i=1

K2

(
i
n − u
hn

)
s4
(
i

n

)
−K2

(
x̃i − u
hn

)
s4(x̃i)

∣∣∣∣∣
=

V

n2h2n

∣∣∣∣∣
n∑
i=1

s4
(
i

n

)(
K2

(
i
n − u
hn

)
−K2

(
x̃i − u
hn

))
+K2

(
x̃i − u
hn

)(
s4
(
i

n

)
− s4 (x̃i)

)∣∣∣∣∣
=

V

n2h2n

∣∣∣∣∣
n∑
i=1

s4
(
i

n

) (
K2

(
ξi − u
hn

))′
︸ ︷︷ ︸

=2K
(
ξi−u
hn

)
K′
(
ξi−u
hn

)
≤2M̃

(
i
n − x̃i
hn

)
+K2

(
x̃i − u
hn

)(
s4(ζi)

)′︸ ︷︷ ︸
≤Ñ

(
i

n
− x̃i

) ∣∣∣∣∣
≤ V

n2h2n

n∑
i=1

s4
(
i

n

)
2M̃

nhn
+K2

(
x̃i − u
hn

)
Ñ

n
= O

(
1

n2h3n

)
+O

(
1

n2h2n

)
→ 0

By dint of the triangle inequality it follows altogether:

0 ≤ V

n2h2n

n∑
i=1

K2

(
i
n − u
hn

)
s4
(
i

n

)
≤

∣∣∣∣∣ V

n2h2n

n∑
i=1

K2

(
i
n − u
hn

)
s4
(
i

n

)
− V

nh2n

∫ 1

0

K2

(
x− u
hn

)
s4(x)dx

∣∣∣∣∣
+

V

nh2n

∫ 1

0

K2

(
x− u
hn

)
s4(x)dx = O

(
1

n2h3n

)
+O

(
1

nhn

)
→ 0



A PROOFS FOR SECTION 2.1 25

From this results that
1

n2

n∑
i=1

K2
hn

(
i

n
− u
)
s4
(
i

n

)
V → 0.

2.b.ii.) All other components can be absolutely restricted to zero (with a faster rate of convergence). For lack of
space we do not write out the full calculation.32

Herewith it immediately follows that V ar ŝ2hn(u)
n→∞−→ 0 ∀u ∈ (0, 1).

3. The stochastic convergence is finally derived with the Markov inequality. Formally, let
{
Pn,s2 : s2 ∈ R+

0

}
n∈N

be the corresponding sequence of statistical models for the sequence of estimators
(
ŝ2hn
)
n∈N:

Pn,s2
{∣∣ŝ2hn(u)− s2(u)

∣∣ ≥ ε} ≤
E
∣∣ŝ2hn(u)− s2(u)

∣∣2
ε2

=
V ar

(
ŝ2hn(u)

)
ε2

+

(
E
(
ŝ2hn(u)− s2(u)

))2
ε2

n→∞−→ 0 ∀ε > 0

I.e. ŝ2hn(u)
P−→ s2(u) for all s2 ∈ R+

0 , u ∈ (0, 1).
�

Proof of proposition 2.2:
A useful decomposition of Zn,hn(u) =

√
nhn

(
ŝ2hn(u)− s2(u)

)
is:

Zn,hn(u) =
√
nhn

1
n

∑n
i=1Khn

(
i
n − u

) (
R2
i,n − ER2

i,n

)
1
n

∑n
i=1Khn

(
i
n − u

) }
variance-

part

+
√
nhn

1
n

∑n
i=1Khn

(
i
n − u

) (
ER2

i,n − s2(u)
)

1
n

∑n
i=1Khn

(
i
n − u

) }
bias-
part

Since the first summand is a centered rv we refer to as variance-part. The second term is deterministic and may contain
a systematic bias of expected squared returns to the curvature s2(u).

1.) We concentrate first on both moments:
1.a.) With the expression of ER2

i,n as used in the proof of proposition 2.1 we rewrite the expectation of Zn,hn(u):

EZn,hn(u) =

√
nhn
n

∑n
i=1Khn

(
i
n − u

) [
s2
(
i
n

)
− 2

ns
2
(
i
n

)
+ 1

n2

∑n
j=1 s

2
(
j
n

)
− s2(u)

]
1
n

∑n
i=1Khn

(
i
n − u

)
The denominator converges to 1 as seen before. For the numerator we pick up the results of proof 2.1 as well.
Concerning the first and fourth summand in brackets we repeat the steps of 1.b.i.) and arrive at:

√
nhn
hn

n∑
i=1

1

n
K

(
i
n − u
hn

)(
s2
(
i

n

)
− s2(u)

)
→ C

2

(
s2(u)

)′′ ∫ 1

−1
v2K(v)dv,

where C ≥ 0 with nh5n
n→∞−→ C2 as postulated in (C3). The sums of kernels multiplied with the second and third

term in brackets are still zero-sequences (compare point 1.b.ii.) of proof 2.1), the factorisation with
√
nhn only slows

up its convergences. This implies for the numerator as well as for the whole expectation of Zn,hn(u) ∀u ∈ (0, 1) a
pointwise limiting value of β(u):

EZn,hn(u)
n→∞−→ C

2

(
s2(u)

)′′ ∫ 1

−1
v2K(v)dv

32Interested readers are welcome to ask us for the full proof. The methods are to a certain extent similar to the prevoius. The Cauchy-Schwarz
inequality was applied for covariance terms.
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1.b.) We rephrase the variance of Zn,hn(u) as:

V arZn,hn(u) = nhnV ar

{
1
n

∑n
i=1Khn

(
i
n − u

)
R2
i,n

1
n

∑n
i=1Khn

(
i
n − u

) }

=

nhnV ar

{
1
n

∑n
i=1Khn

(
i
n − u

) (
s
(
i
n

)
εi,n − 1

n

∑n
j=1 s

(
j
n

)
εj,n

)2}
1
n2

(∑n
i=1Khn

(
i
n − u

))2
Again the denominator converges to 1. By enhancing the results of proof 2.1, part 2.b.i.), the dominant term of the
numerator and its limit value are:

nhn
1

n2

n∑
i=1

K2
hn

(
i

n
− u
)
s4
(
i

n

)
V =

V

hn

n∑
i=1

1

n
K2

(
i
n − u
hn

)
s4
(
i

n

)
→ V s4(u)

∫ 1

−1
K2(v)dv,

where V := Eε41,n − 1. The other components hold the zero limit value (due to faster convergence in proof 2.1). This
implies for the numerator of the variance-part as well as for the whole variance of Zn,hn(u) ∀u ∈ (0, 1) a pointwise
limiting value of τ2(u):

V arZn,hn(u)
n→∞−→ V s4(u)

∫ 1

−1
K2(v)dv

2.) To prove the convergence in distribution, we have to focus mainly on the stochastic numerator of the variance-part,
which can be decomposed in:

1√
nhn

n∑
i=1

K

(
i
n − u
hn

)(
s2
(
i

n

)(
ε2i,n − 1

))
︸ ︷︷ ︸

=:mn

+
√
nhn

1

n

n∑
i=1

Khn

(
i

n
− u
)− 2

n

n∑
j=1

s

(
i

n

)
s

(
j

n

)
εi,nεj,n +

2

n
s2
(
i

n

)
︸ ︷︷ ︸

=:pn

+
√
nhn

1

n

n∑
i=1

Khn

(
i

n
− u
) 1

n2

 n∑
j=1

s

(
j

n

)
εj,n

2

− 1

n2

n∑
j=1

s2
(
j

n

)
︸ ︷︷ ︸

=:qn

2.a.) We apply the central limit theorem of Lindeberg-Feller33 to show the distributional convergence of mn. The
triangle-schema is

Yn,i :=
1√
nhn

K

(
i
n − u
hn

)
s2
(
i

n

)(
ε2i,n − 1

)
,

with µn,i =
1√
nhn

K

(
i
n − u
hn

)
s2
(
i

n

)
E
(
ε2i,n − 1

)
= 0, σ2

n,i =
V

nhn
K2

(
i
n − u
hn

)
s4
(
i

n

)
∈ (0,∞) and

s2n =
V

hn

n∑
i=1

1

n
K2

(
i
n − u
hn

)
s4
(
i

n

)
→ V s4(u)

∫ 1

−1
K2(v)dv.

33CLT of Lindeberg-Feller: For each n ∈ N let Yn,1, . . . , Yn,n be independent rvs with EYn,i = µn,i, V arYn,i = σ2
n,i ∈ (0,∞), s2n :=∑n

i=1 σ
2
n,i and Ln(ε) := 1

s2n
E
∑n
i=1

[
(Yn,i − µn,i)2 I {|Yn,i − µn,i| > εsn}

]
. If Ln(ε) −→ 0 for all ε > 0 (’Lindeberg-condition’), then

1
sn

∑n
i=1 (Yn,i − µn,i)

D−→ N (0, 1).
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For the verification of the Lindeberg condition we apply the Hölder inequality and the Markov inequality to get
the following upper bound:34

Ln(ε) ≤

∑n
i=1

(
1
nhn

K2
(
i
n−u
hn

)
s4
(
i
n

))1+ δ′
1+δ′

W

ε
2δ′

1+δ′ (s2n)1+
δ′

1+δ′
,

with an upper bound W ∈ (0,∞) and δ′ := δ
4 with δ from condition (C5). The finite, non-zero convergence of the

denominator follows from the limit value of s2n. For the convergence analysis of the numerator similar methods as
seen before can be applied, leading to a limiting value of 0. Hence the Lindeberg condition holds. With a Slutsky
argument it follows that

n∑
i=1

Yn,i
D−→ N

(
0, lim
n→∞

s2n

)
⇐⇒ 1√

nhn

n∑
i=1

K

(
i
n − u
hn

)
s2
(
i

n

)(
ε2i,n − 1

) D−→ N
(

0, V s4(u)

∫ 1

−1
K2(v)dv

)
2.b.) It can be proven that E pn = 0 and V ar pn → 0. With the Markov inequality we conclude (compare proof 2.1,
part 3.)) that pn

P→ 0. It follows the same way that qn
P→ 0. With the Slutsky theorem we combine the results:

mn + pn + qn
D−→ N

(
0, V s4(u)

∫ 1

−1
K2(v)dv

)
Due to the deterministic limit 1 of the denominator (and by applying Slutsky again) the limit distribution persists for
the whole variance-part.
2.c.) Finally, we add the deterministic bias-part and the asymptotic distribution of Zn,hn(u) results.

�

Proof of proposition 2.3:
1.) We first show that ŝ2(1)hn(u) is asymptotically unbiased. For sufficiently large n (else case differentiation as in
equation (20) necessary) its expectation is:

Eŝ2(1)hn(u) =
1
n

∑bunc
i=1 Khn

(
i
n − u

)
ER̃2

i,n

1
n

∑bunc
i=1 Khn

(
i
n − u

) .

1.a.) The denominator is approximatively

1

hn

bunc∑
i=1

1

n
K

(
i
n − u
hn

)
≈ 1

hn

∫ u

0

K

(
x− u
hn

)
dx =

1

2
,

the last equality is to be seen by executing the steps of proof 2.1, part 1.a.). The approximation quality follows with
two mean value theorems (where x̃i ∈

[
i−1
n , in

]
, x̃ ∈

[ bunc
n , u

]
and Resn := (un− bunc)K

(
x̃−u
hn

)
< ∞∀n;

ξi ∈
(
x̃i,

i
n

)
):

∫ u

0

K

(
x− u
hn

)
dx =

bunc∑
i=1

∫ i
n

i−1
n

K

(
x− u
hn

)
dx+

∫ u

bunc
n

K

(
x− u
hn

)
dx

=

bunc∑
i=1

1

n
K

(
x̃i − u
hn

)
+
un− bunc

n
K

(
x̃− u
hn

)
=

bunc∑
i=1

1

n
K

(
x̃i − u
hn

)
+
Resn
n

34The complete calculation is available upon request.
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1

nhn

∣∣∣∣∣∣
bunc∑
i=1

K

(
i
n − u
hn

)
−K

(
x̃i − u
hn

)
−Resn

∣∣∣∣∣∣ ≤ 1

nhn

∣∣∣∣∣
bunc∑
i=1

K ′
(
ξi − u
hn

)
︸ ︷︷ ︸
≤M :=maxi |K′(·)|

·

(
i
n − ξi
hn

)
︸ ︷︷ ︸
≤ 1
nhn

∣∣∣∣∣+
Resn
nhn

≤ 1

nhn
un

(
M

1

nhn

)
+
Resn
nhn

= O

(
1

nh2n

)
+O

(
1

nhn

)
(C3′)−→ 0

And the denominator has the deterministic limit value 1
2 .

1.b.) Regarding the enumerator we use ER̃2
1,n = s2

(
1
n

)
by definition and

ER̃2
i,n = s2

(
i

n

)
+

1

(i− 1)2

i−1∑
j=1

s2
(
j

n

)
for i ≥ 2.

Summing up the numerator has the form

1

n

bunc∑
i=1

Khn

(
i

n
− u
)
s2
(
i

n

)
+

1

n

bunc∑
i=2

Khn

(
i

n
− u
)

1

(i− 1)2

i−1∑
j=1

s2
(
j

n

)
1.b.i.) We turn to the limit of the first sum. After approximating, we repeat the steps (integral transformation,

Taylor expansion) of proof 2.1, part 1.b.):

1

hn

bunc∑
i=1

1

n
K

(
i
n − u
hn

)
s2
(
i

n

)
≈ 1

hn

∫ u

0

K

(
x− u
hn

)
s2(x)dx

= s2(u)

∫ 0

−1
K(v)dv︸ ︷︷ ︸
= 1

2

+
(
s2(u)

)′
hn

∫ 0

−1
vK(v)dv︸ ︷︷ ︸
<∞

+
h2n
2

∫ 0

−1

(
s2(û)

)′′
v2K(v)dv︸ ︷︷ ︸

<∞

=
s2(u)

2
+O(hn) +O

(
h2n
)
−→ s2(u)

2

The approximation goodness is shown using mean value theorems (with variables as above and ζi ∈
(
x̃i,

i
n

)
):∫ u

0

K

(
x− u
hn

)
s2(x)dx =

bunc∑
i=1

∫ i
n

i−1
n

K

(
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)
s2(x)dx+

∫ u
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n
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(
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)
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=
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n
K

(
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)
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n

1
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∣∣∣∣∣
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(
i
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)
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(
i

n

)
−K

(
x̃i − u
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(
i

n

)(
K

(
i
n − u
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(
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(
i

n

)
− s2 (x̃i)
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=
1
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bunc∑
i=1
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(
i

n

)
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(
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)
︸ ︷︷ ︸
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·

(
i
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)
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(
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(
i

n
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)
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)
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)
N
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+
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= O

(
1

nh2n

)
+O

(
1

nhn

)
→ 0



A PROOFS FOR SECTION 2.1 29

Putting both limit considerations together, we get by using the triangle inequality∣∣∣∣∣ 1

nhn

bunc∑
i=1

K

(
i
n − u
hn

)
s2
(
i

n

)
− s2(u)

2

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

nhn
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i=1

K

(
i
n − u
hn

)
s2
(
i

n

)
− 1

hn

∫ u

0

K

(
x− u
hn

)
s2(x)dx

∣∣∣∣∣
+

∣∣∣∣ 1

hn

∫ u

0

K

(
x− u
hn

)
s2(x)dx− s2(u)

2

∣∣∣∣ = O

(
1

nh2n

)
+O(hn)

(C3′)−→ 0

And it immediately follows that
1

n

bunc∑
i=1

Khn

(
i

n
− u
)
s2
(
i

n

)
→ s2(u)

2
.

1.b.ii.) We now pay attention to the second component of the enumerator:

0 ≤ 1

nhn
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i=2

K

(
i
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hn

)
1

(i− 1)2

i−1∑
j=1

s2
(
j

n

)
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≤(i−1)maxj s2(·)

≤ 1

nhn
max
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s2
(
j

n

)
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i=2,...,bunc
K

(
i
n − u
hn

)
︸ ︷︷ ︸

=:An<∞

bunc∑
i=2

1

i− 1

≤ An
nhn

n∑
i=1

1

i
≤ An

nhn

(
1 +

∫ n

1

1

x
dx

)
=

An
nhn

+
An ln(n)

nhn
→ 0

It immediately follows with the convergence in numerator and denominator:35

Eŝ2(1)hn(u)
n→∞−→ s2(u)

2
· 2 = s2(u) ∀u ∈ (0, 1].

2.) We execute an analogous analysis to the variance of ŝ2(1)hn(u) proving that its limiting value is zero. For a
sufficiently large n,

V ar ŝ2(1)hn(u) =
V ar

(
1
n

∑bunc
i=1 Khn

(
i
n − u

)
R̃2
i,n

)
1
n2

(∑bunc
i=1 Khn

(
i
n − u

))2 .

2.a.) The denominator is the squared expression of 1.a.), i.e. its limit value is 1
4 .

2.b.) Regarding the numerator, we first fragment the sum in brackets similar to the examination of the expected return
of R̃2

i,n in part 1.b.) of this proof, and then again decompose it in several sums of variances and covariances.
2.b.i.) We concentrate on the central component (with lowest convergence rate):

1

n2
V ar
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Khn
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)
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)
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)
s4
(
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n

)
V,

where V := V arε21,n = Eε41,n − 1
(C5)
< ∞. With the same technique as above, we approximate initially:
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)
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nh2n
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0
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(
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)
s4(x)dx =

V
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∫ 0
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K2(v)s4(u+ vhn)hndv

=
V s4(u)

nhn

∫ 0
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K2(v)dv +

V
(
s4(u)

)′
n
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−1
vK2(v)dv +

V hn
2n
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−1

(
s4(û)

)′′
v2K2(v)dv

= O

(
1

nhn

)
+O

(
1

n

)
+O

(
hn
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)
→ 0

35Altogether, much more effort was to spent due to by Gaussian brackets truncated sums. Moreover the power of zero-sequences was assessed
in a way, that holds in the later analysis on asymptotic normality despite the stronger condition (C3’) of the bandwidth dimension.
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The absolute approximation error is again a zero sequence, following a similar argumentation to 1.b.i) (this proof) and
2.b.i.) in proof 2.1, respectively:
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We conclude with the triangle inequality at:
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0

K2

(
x− u
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s4(x)dx = O

(
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)
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(
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)
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And it results that
1

n2

bunc∑
i=1

K2
hn

(
i

n
− u
)
s4
(
i

n

)
V → 0.

2.b.ii.) All other components can be absolutely restricted to zero (with a faster rate of convergence, compare
part 2.b.ii.) in proof 2.1).
Herewith it immediately follows that V arŝ2(1)hn(u)

n→∞−→ 0 ∀u ∈ (0, 1].

3. The stochastic convergence is finally derived with the Markov inequality. With
{
Pn,s2 : s2 ∈ R+

0

}
n∈N as the

sequence of statistical models corresponding to the estimators sequence
(
ŝ2(1)hn

)
n∈N

we conclude:

Pn,s2
{∣∣∣ŝ2(1)hn(u)− s2(u)

∣∣∣ ≥ ε} ≤
E
∣∣∣ŝ2(1)hn(u)− s2(u)

∣∣∣2
ε2

=
V ar

(
ŝ2(1)hn(u)

)
ε2

+

(
E
(
ŝ2(1)hn(u)− s2(u)

))2
ε2

n→∞−→ 0 ∀ε > 0

I.e. ŝ2(1)hn(u)
P−→ s2(u) for all s2 ∈ R+

0 , u ∈ (0, 1].
�

Proof of proposition 2.4:
We decompose Z(1)

n,hn
(u) =

√
nhn

(
ŝ2(1)hn(u)− s2(u)

)
into a centered rv (variance-part) and a deterministic bias-

part. For sufficiently large n it can be expressed as:
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n,hn

(u) =
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1
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(
i
n − u

) (
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(
i
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)
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1.) We concentrate first on both moments.
1.a.) The expectation of Z(1)

n,hn
(u) can be written as used in proof of proposition 2.3:

√
nhn
n

∑bunc
i=1 Khn

(
i
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) (
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(
i
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)
− s2(u)

)
+
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(
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)
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2
(
j
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)
1
n
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i=1 Khn

(
i
n − u

)
The denominator converges to 1

2 as seen before. For the numerator we exploit the results of proof 2.3, part 1.b.) as
well. Concerning the first sum we arrive at:

√
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n
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(
i
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hn

)(
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(
i

n

)
− s2(u)

)
→ D

(
s2(u)

)′ ∫ 0

−1
vK(v)dv,
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where D ≥ 0 and nh3n → D2 as postulated in (C3’). The second sum can still be restricted absolutely to zero as
n goes to infinity, the factorisation with

√
nhn slows up the convergence rate. This implies for the expectation of

Z
(1)
n,hn

(u)∀u ∈ (0, 1] a pointwise limiting value of β(1)(u):

EZ
(1)
n,hn

(u)
n→∞−→ 2D

(
s2(u)

)′ ∫ 0

−1
vK(v)dv

1.b.) We address ourselves now to the variance-part, enlarging the asymptotic results for the variance of ŝ2(1)hn(u)
from proof 2.3:

V arZ
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)
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)
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(
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))2
The denominator converges to 1

4 . From the aforementioned decomposition (proof 2.3, part 2.b.i)) it follows that the
predominant part of the numerator and its limit value are (with V := Eε41,n − 1):
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∫ 0

−1
K2(v)dv

The other components hold the zero convergence (due to a faster rate in proof 2.3). This implies for the whole variance
of Z(1)

n,hn
(u)∀u ∈ (0, 1] a pointwise limiting value of τ2(1)(u):

V arZ
(1)
n,hn

(u)
n→∞−→ 4V s4(u)

∫ 0

−1
K2(v)dv

2.) To prove the convergence in distribution, we have to focus mainly on the stochastic numerator of the variance-part,
which can be decomposed as:

1√
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2.a.) We apply again the central limit theorem of Lindeberg-Feller to show the distributional convergence of mn. The
triangle-schema is
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1√
nhn
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)
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)(
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)
,

where Yn′,1, . . . , Yn′,n′ are independent rvs with n′ := bunc. Its moments are:
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For the verification of the Lindeberg condition we apply amongst others the Hölder inequality and the Markov in-
equality to get the following upper bound:

Ln′(ε) ≤

∑bunc
i=1
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1
nhn

K2
(
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n−u
hn

)
s4
(
i
n

))1+ δ′
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W
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1+δ′ (s2n′)
1+ δ′

1+δ′

with an upper bound W ∈ (0,∞) and δ′ := δ
4 with δ from condition (C5). The finite, non-zero convergence of the

denominator follows from the limit value of s2n′ . For the convergence analysis of the numerator similar methods as
seen before can be applied, leading to a limiting value of 0. Hence the Lindeberg condition holds. With a Slutsky
argument it follows that

n′∑
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Yn′,i
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n→∞
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K2(v)dv

)

2.b.) It can be proved that E pn = 0 and V ar pn → 0, which implies (e.g. with Markov inequality) that pn
P→ 0. We

combine both convergence results and include the limit 1
4 of the denominator with the Slutsky theorem. We gain the

following convergence in distribution:

’variance-part’ D−→ N
(

0, 4V s4(u)

∫ 0

−1
K2(v)dv

)
2.c.) Finally, we add the limit value of the deterministic bias-part and the asymptotic distribution of Z(1)

n,hn
(u) results.

�
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