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1 INTRODUCTION 2

1 Introduction
Financial risk management has become an important task for banks and insurance companies in the last two decades.
Focussing on the European market, first the Basel Committee on Banking Supervision defined the Value at Risk
(henceforth VaR) as the benchmark risk measure for a banks capital requirements. Similar concepts are currently de-
veloped by the Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS) for the insurance
sector. But only the smaller part of VaR calculations are made for regulatory purposes, it is widely used for estimating
the riskiness of trading activities, for the maximum loss potential in market value of an existing portfolio and for min-
imization of risk in portfolio optimization. A growing importance of risk management is observed in an asset-liability
framework, focussing on a total market value balance and the surplus between assets and liabilities. Especially in life
insurance, it is a main target to keep the duration gap between fixed income securities and long-term liabilities with an
obligatory target yield low or rather in line with a risk budget to avoid reinvestment problems.

In this paper we first investigate the validity of a general Value at Risk approach, which is widely used for risk
management in financial institutions. We discuss and widely reject the conventional assumptions, e.g. independent
identically distributed normal returns, and as consequence develop an improved model for non-stationary returns.
Therein volatility dynamics are modelled both exogenously and deterministic, captured by a nonparametric regression-
type approach. Consistency and asymptotic normality of a symmetric and of a one-sided kernel estimator of volatility
are outlined with remarks on the bandwidth decision. We pay further attention to asymmetry and heavy tails of
the return distribution, implemented by the framework for innovations. On a multitude of financial time series for
equity indices, exchange rates, interest rates and credit spreads it is shown that our univariate approach is practically
manageable and outperforms the standard tools.

In the early days of time series analysis, a return series {Xt}t=1,...,n on market prices {Pt}t=0,...,n of an asset
over n periods of time was expected to be a series of independent and identically distributed (iid) random variables
and lnPt = lnPt−1 +Xt was assumed to follow a random walk; an overview gives Samuelson (1973). He proposed
modelling prices in continuous time by a geometric Brownian motion, whose discretization leads to a random walk
with iid normal increments for the discrete log-prices. The normal distribution assumption was preserved in a plenty of
practical applications due to its great features (e.g. invariance property) until modern days of finance: For example, the
Markowitz portfolio theory (Markowitz (1952)) postulates multivariate normal yields. Black and Scholes (1973), or
Merton (1973) respectively, built up their option pricing theory on the geometric Brownian motion of prices. Moreover,
we will start later on with a basic risk model, that exploits the mathematical tractability of iid normal returns.

The hypothesis of geometric Brownian motion was first rejected in the 1960s statistically, e.g. by the analyses of
Mandelbrot (1963) and Fama (1965) on several US stock series. They draw the following empirical conclusions on
return series, often labeled as stylized facts:

• there is a serial data dependence,

• the volatility is changing over time (heteroscedasticity),

• the returns are asymmetrically distributed with heavy tails,

• a negative return amplitude entails a greater volatility than a positive return of same amount (Leverage Effects).

Concerning the last stylized fact, Nelson (1991) gives theoretical considerations that volatility tends to response asym-
metrically to positive and negative returns. We later provide evidence on the stylized facts as a by-product of testing
the assumptions of the basic risk model on a multitude of financial time series. An indication for the first stylized fact is
often derived from correlograms, that test graphically whether there is any sample autocorrelation ρ(h) = γ(h)/γ(0),
with γ(h) the empirical estimate for Cov (Xt, Xt+h), for several discrete time lags h ≥ 0, provided a stationary se-
ries. The typical picture for liquid financial instruments is that daily returns themselves contain little serial correlation,
but their absolute returns |Xt| are significantly positive correlated over a large number of lags with a slowly declining
sample autocorrelation function (SACF). For stock returns Taylor (1986) established that there is little serial correla-
tion, which is in agreement with the efficient market theory, and that absolute and squared returns contain substantially
more correlation.1 This effect is also named long range dependence (LRD), and one might draw the conclusion of a
serial dependence of the time series.

1Ding et al. (1993) extended the result to power transformations of absolute returns, |Xt|d for d > 0, and showed on an S&P return series
them to be ’long-memory’, with quite high autocorrelations for large lags. Furthermore, they found that for a fixed lag τ the function ρτ (d) =
Corr

(
|Xt|d, |Xt+τ |d

)
has a unique maximum when d ≈ 1.



1 INTRODUCTION 3

On the ideas of serial dependence and conditional time-varying volatility Robert F. Engle and Tim Bollerslev
developed in the 1980s nonlinear time series models as autoregressive conditional heteroscedastic (ARCH-processes).
The general form is

Xt = µt + ςtεt, t ∈ Z, (1)

where {εt}t is an iid sequence with Eε1 = 0 and V arε1 = 1, {µt} and {ςt} are stochastic processes that depend only
on past information, i.e. µt+1, ςt+1 are measurable with respect to the σ-field Ft = σ ({εj | j ≤ t}). Hence Xt is
Ft-measurable for every t and µt+1 = E (Xt+1 | Ft) is the conditional mean and ς2t+1 = V ar (Xt+1 | Ft) is the con-
ditional variance of Xt+1 given the past returns. The starting point was set by the seminal paper of Engle (1982) intro-
ducing the ARCH(p)-process, where conditional volatility dynamics {ςt}t are imposed via linear regression over past
squared (centered) returns. An extension of Bollerslev (1986), named generalized ARCH (GARCH(p, q)-process),
includes past variances next to historical returns into the parametric regressed volatility process. This enables often
a parsimonious parametrization with a reasonable fit to empirical data. For purposes of parameter estimation, pro-
cesses of the ARCH-family are defined to be stationary. But finding conditions for the existence and uniqueness of a
stationary solution was nontrivial.2 Besides the focus on heteroscedasticity and uncorrelated, serial dependence, the
features of heavy-tailedness and asymmetry are mostly imposed on the distribution of innovations εt. The exponential
GARCH (EGARCH) model of Nelson (1991) and the asymmetric power GARCH (AGARCH) model by Ding et al.
(1993) include asymmetry and leverage effects directly in the volatility dynamics, that reacts different to financial
gains and losses. In his nobel price lecture Engle (2004) gives a brief history of ARCH models and an alphabet of
model extensions, but the ’GARCH(1,1) specification is the workhorse of financial applications’ (Engle (2004), p.
408), emphasising that this is a good starting point for an analysis of multifaceted financial returns.

Coming back to the LRD, Mikosch and Starica (2004) derive theoretically that the aforementioned SACF for ab-
solute returns could alternatively arise from non-stationarities in the data. Correlograms are only a significant tool for
detecting dependence under the assumption of stationarity, otherwise structural breaks in the data as shifts in the vari-
ance might cause identical results,3 and it cannot be discriminated between stationary long-memory and non-stationary
time series. Secondly, Granger and Starica (2005) came in a long-term case study on the S&P 500 index to the conclu-
sion, that the second interpretation is the more probable alternative: The main reason for the sample LRD is to be seen
in the non-stationarities due to structural breaks of the unconditioned variance. From this follows a grave criticism on
ARCH-type models, since they are parameterized as stationary processes (that implies a fortiori a fixed unconditional
variance) and focus on modelling a long-range dependence structure of the second moments. More inconsistencies
arise on ARCH modelling over longer periods of daily returns: So, the typical outcome of a GARCH(1, 1) imple-
mentation is that the sum of estimated parameters is approximately one, leading to an IGARCH(1, 1) model, which
is referred to as IGARCH effect in Starica (2003) or Mikosch and Starica (2004). But an IGARCH-model implies an
infinite variance of the observed random variables, which contradicts to the results of a direct tail analysis indicating
that daily returns have a finite second moment (see De Haan et al. (1994)). Mikosch and Starica (2004) prove theoret-
ically and empirically that the IGARCH effect may be generated by non-stationarities via shifts in the unconditional
variance of the return series.4 Although some ARCH-models that allow structural breaks in the volatility while holding
up stationarity were developed,5 one should question the stationarity assumption at all.

In face of that shortcomings, a huge list of ARCH-type specifications was imposed to the literature (see Engle
(2004) or Bollerslev et al. (1994) for a statistical overview), where more and more sophisticated processes were devel-
oped to specify the volatility dynamics for fitting the return data. Following Drees and Starica (2002), the need of an
increasing complexity for volatility modelling can be possibly explained that a simple endogenous specification does
not exist. In that case, the model fit can only be improved by a change of the working hypothesis: in their univariate
approach the volatility is supposed to be exogenous to the return process. The evolution of market prices is interpreted
as a manifestation of complex market conditions, driven by unknown exogenous factors. In the multiplicative model

2Bougerol and Picard (1992) gave the solution for stationary GARCH(p, q) processes via stochastic recurrence equations. Straumann (2004)
summarizes this among other stochastic features on GARCH processes.

3The authors found that the stronger the non-stationarity, e.g. the difference of the variation of subsamples X(1) and X(2) measured as(
E|X(1)| − E|X(2)|

)2
, the more pronounced the LRD effect is. This theoretical result is supplemented with a long-term empirical study of the

S&P 500 index by ex-/ including the 1970s US-recession, generating the LRD effect.
4Concerning persistence in variance and long memory (IGARCH- and LRD effect) caused by structural changes, see also Lamoureux and

Lastrapes (1990) and Diebold and Inoue (2001).
5E.g. regime-switching ARCH models by Hamilton and Susmel (1994) with transitions governed by an unobserved, fixed Markov chain.
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(1) the volatility term is replaced by an unconditional variable. The corresponding variance σ(t)2 is modelled as a
smooth, deterministic function of time via a nonparametric kernel regression6 over centered, squared returns Rt:

σ̂2(t) =

∑n
i=1Kh (i− t)R2

i∑n
i=1Kh (i− t)

, t = 1, . . . , n. (2)

That approach preserves the independence assumption of log-returns, but it abandons the hypothesis of stationary,
identically distributed (normal) returns. A special focus is set on an accurate description of the innovations {εt}t by
fitting a Pearson type VII distribution to positive and negative innovations separately to allow asymmetry and heavy-
tailedness. Drees and Starica (2002) show on a twelve-year S&P 500 example that their non-stationary model fits
the data adequately and gets better short-term forecasts on the return distribution than conventional GARCH models.
Herzel et al. (2005) extend these ideas to a multivariate, non-stationary framework. Vectors of financial returns
are assumed to have a time-varying unconditional covariance matrix that evolves smoothly, captured by classical
nonparametric regression. Vectors of standardized innovations are modelled again parametrically with Pearson VII
for asymmetric, heavy tails. Another univariate extension with a time-varying expected return was developed by
Mikosch and Starica (2004a).

In this article, we will support the non-stationary paradigm of Herzel et al. (2005) and Drees and Starica (2002)
for modelling financial time series. The aims and scope of our research article are the following: From the starting
point of the aforementioned, opposite basic risk model, which is in detail a widespread parametric VaR approach, we
will motivate the necessity of an advanced non-stationary model. Since the basic risk model assumes iid normal return
series, in a conception where exposure classes are mapped to benchmark indices for the purpose of VaR calculation,
we apply an extensive hypothesis testing on a multitude of financial time series to reject the conventional assumptions
and the random walk hypothesis, respectively. Moreover, we recognize the stylized facts and provide evidence of
non-stationary and heteroscedastic returns that way. We ask for optimal return types Xt = f (Pt, Pt−1),7 and the
influence of sampling frequency on the financial return modelling.

Within the non-stationary model the main focus is set on the univariate return dynamics of financial time series,
which is established by nonparametric curve estimation of the unconditional variances

{
σ2(t)

}
t

and the distribu-
tional features of the innovation series {εt}t. While a symmetric volatility estimator σ̂(t) is employed to describe
heteroscedasticity in the historical sample, a one-sided, historical version σ̂(1)(t), that includes only past and present
data, is employed for forecasting exercises. The statistical properties of nonparametric regression are executed for
the symmetric case in Herzel et al. (2005) and Mikosch and Starica (2004a) referring on the results of Müller and
Stadtmüller (1987). Gürtler et al. (2009) provide self-contained full proofs for both the two-sided and one-sided
kernel estimators, we outline the consistency and asymptotic normality results here. Remarks on the kernel decision
and an automatised bandwidth selection rule, based on cross-validation, are further subjects of interest. Following our
main references, we fit the estimated innovations with an asymmetric version of the Pearson type VII distribution, to
enable a flexible return modelling under aspects of asymmetry and heavy tails. But in contrast, we develop a method
of moments for the parameter estimation of the one-sided Pearson VII densities.8 By dint of a Student-t connection to
the Pearson VII distribution we develop a factor-based VaR implementation of the non-stationary model, that offers a
direct comparison to the basic risk model in terms of VaR forecasts. Altogether, we hope that those steps encourage a
broad practical application of the non-stationary regression model.

A main focus of our research is devoted to the last objective. In simulation studies we challenge the asymptoti-
cal results on finite samples of a predefined volatility function and calibrate the complete non-stationary model to a
high-volatile, heavy-tailed price process. The goodness of fit is tested in a simulation forecasting experiment and its
performance is compared to the parametric VaR approach via Kupiec backtesting. In terms of extensive empirical
studies on equity indices, exchange rates, interest rates and credit spreads we survey practical opportunities and draw-
backs of the non-stationary regression model. We extend the existing literature by new asset types and feasible return

6The rescaled kernel function Kh is defined as Kh(·) = 1
h
K
( ·
h

)
for an appropriate kernel K on a compact support [−1, 1].

7In the following we use three return conceptions, corresponding to the specific models and exposure classes. The parametric risk model works,
by default, with arithmetic (or discrete) returns f(x, y) := (x− y)/y for the total returns of equity indices and the performance of exchange rates.
Parallel, for interest rates and credit spreads the difference of prices between time units is regarded, called diff-returns f(x, y) := x−y. On the other
hand the non-stationary return model is introduced with log-returns (geometric rate of return) f(x, y) := lnx− ln y for equities and currencies, but
still diff-returns for swap curve- and spread changes. In the econometric literature log-returns are prevalent, because of some nice properties (see.
e.g. Jorion (2006)). The difference between arithmetic and log-returns is rather small,Xt = lnPt−lnPt−1 = ln

(
1 +

Pt−Pt−1

Pt−1

)
≈ Pt−Pt−1

Pt−1
,

as can be seen writing ln(1 + x), x > −1 as a Taylor series close to 0, especially for returns with an absolute value lower 10%.
8The above quoted literature uses maximum-likelihood estimation techniques.



2 A PARAMETRIC VAR APPROACH 5

types. In fact we recognize that the non-stationary regression modelling is problematic to be automatised at all, since
the cross-validation method in nonparametric curve estimation may fail on the one hand for reasons documented in
the sequel. On the other hand a trade-off between volatility estimation and Pearson VII fitting of innovations becomes
obvious. We describe how the smoothing parameter and the Pearson VII parametrization may vary in time, which is
to be reconsidered for forecasting purposes. Finally, we present on the example of the MSCI North America equity
index an ’out-of-sample’ forecasting evaluation and proof the superiority of the non-stationary paradigm against the
basic risk model in terms of VaR-forecasts.

The rest of the paper is organized as follows: In section 2 we introduce a standard approach to a risk adjusted
portfolio management, including a parametric VaR model. Hypothesis testing of the conventional assumptions reveals
the pitfalls of that approach and motivates a non-stationary, heteroscedastic setup. We statistically introduce the
multivariate regression model in section 3 and specialize on the univariate frame. Besides the statistical discussion of
the two- and a one-sided kernel estimator, attention is paid to asymmetry and heavy tails in the return distribution by
approximating the stochastic innovations as the Pearson type VII. We survey in section 4 whether the non-stationary
regression model offers an adequate approximation to hypothetical price processes and whether it is an enhanced,
practically manageable approach for the dynamics of real financial time series. We conclude in section 5.

2 A parametric VaR approach
The VaR is an estimate for the maximum loss at a predefined confidence level (1 − α) for holding a position over a
target horizon, generally,

V aR1−α = uα = inf {u : F (u) ≥ α} (3)

for a given positive value α close to zero, that equals to the shortfall probability. According to Jorion (2006), chapter
10, there are two main approaches to VaR measurement. Full valuation methods measure risk by repricing a portfolio
over a multitude of scenarios, e.g. the historical simulation method and the monte carlo simulation method are
well-known instances. The other group consists of local-valuation methods, where a portfolio is valued once at a
starting point and possible movements are inferred by local derivatives. The easiest approach is the delta-normal
method, that works with a first order Taylor approximation for the market value, e.g. the basis point value for a fixed
income portfolio,9 and infers the measure from the assumption of normally distributed risk factors. In the common
literature this method is also named as parametric Value at Risk or variance-covariance model. For large portfolios
with a limited insertion of options and other nonlinear financial derivatives this method provides a fast and efficient
measurement of VaR. In the following we present a risk management approach, based on a parametric VaR, that is
widely used in banks and insurances.

2.1 Basic risk model
An asset risk controller should possess instruments that measure the risks from a portfolio or asset strategy and com-
pare the maximum loss amount with the (total or disposable) amount of risk capital. We will first give a brief outline of
the whole model, we refer to as risk adjusted portfolio management. The risk of capital investment is being calculated
in a multilevel process: We start with a complete portfolio valuation, followed by identifying exposures and aggregat-
ing them to exposure classes. Afterwards suitable benchmark indices are mapped on it. Their probability distribution
is used to specify market risks of the exposures, which leads to a Value at Risk V aRP of the portfolio. The absolute
value of market risks is supplemented by default risks and risks of misevaluation for special assets, e.g.

• a default risk for corporate or structured bonds RD1
, a default risk for mortgage loans RD2

,

• an evaluation risk for strategic participations RE1 , an evaluation risk for property (real estate) RE2 ,

• a concentration risk RC for huge proportions of single securities (measuring additional volatility relative to its
benchmark) or for accumulations of issuers (risk of issuer default).

Altogether RAP = |V aRP | + RC + RD1
+ RD2

+ RE1
+ RE2

is the total risk from the asset portfolio. To get
a complete risk balance, we aggregate other risks outside the asset management, e.g. for an insurance company the

9As an extension Jorion (2006) presents the delta-gamma approximations, that involve additionally convexity.
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underwriting risks RUW and operational risks ROP . These general risk fields have to be aggregated in a certain way,
e.g. by copulas on their marginal distributions, or, as proposed by the CEIPOS (2008), by a correlation approach on
their absolute measures:10

Rtot :=

√√√√√[RAP , ROP , RUW ]

 1 ρAP,OP ρAP,UW
ρOP,AP 1 ρOP,UW
ρUW,AP ρUW,OP 1

 ·
 RAP
ROP
RUW

, (4)

where ρi,j are pairwise correlations between risk categories i, j. We call Rtot the total risk result.
The whole approach could be used as a multidimensional controlling tool: With focus on the balance sheet (the

profit and loss account, respectively) one can measure a maximum loss of that portfolio of assets, that may lead
to amortization, to a release of (hidden) reserves or a deficit in the P&L. This will be called balance risk. On the
other hand, with a long-term economic view on a market value balance one can measure a maximum loss to the
surplus of the liabilities (net equity). Here, the market variation risk of an asset portfolio is regarded relative to
contractual commitments, especially in terms of an interest rate risk and credit risk caused by different durations of
assets and liabilities. This will be called ALM risk. Last but not least one can measure the risk of falling short of
regulatory requirements, that is not to cover the actuarial reserve fund by listed securities or to fail the solvency capital
requirements in a ’solvency II world’ (regulatory risk). Interpreting in each of these dimensions the risk result as
capital requirement, one has to assure possessing a total risk capital Ctot at least of that amount. Else, a risk reduction
has to be put on immediately, to reach the area of safety margins. The risk capital of an insurance company can be
composed of

• coverage capital CAP from the asset portfolio (unrealized gains, (hidden) reserves),

• coverage capital CCE from the contractual commitments (actuarial reserves, discount reserves) and equity cap-
ital in a wider sense (including revenue reserves),

• coverage capital CPL from a forecast of the P&L (current/ extraordinary income above target earnings),

whereby Ctot = CAP + CCE + CPL. Management rules for the asset allocation can be deduced from the proportion
of the total risk result Rtot and risk capital Ctot,

Q· =
R·tot
C ·tot

, (· labels the risk dimension) (5)

which should be significantly lower than 100%, so that even in the event of shortfall the budget is most likely not
totally consumed.11

In the following we come back to the VaR approach for the market risk of assets and focus on an easy implemen-
tation of the delta-normal-method. Suppose a broad portfolio of m investments, consisting for the most part of several
stocks, multifaceted fixed income securities or investment funds12 with different denominations. Options, futures and
other financial derivatives are kept only in a negligible amount. After marking-to-market all assets a1, . . . , am, the
exposures of each asset according to the following general exposure classes have to be identified:

• equity exposures: equity subclasses (e1, . . . , ed1) for different economic areas, the corresponding exposures
(w1, . . . , wd1) are measured as the effective (market valued) investments.

• interest rate exposures: subclasses (ed1+1, . . . , ed1+d2) for different currency areas, the corresponding exposures
(wd1+1, . . . , wd1+d2) are measured as the basis point value (bpv) of the assigned securities.13

10That presumes implicitly, that all risk results are equally scaled standard deviations of normally distributed random variables.
11Based on a VaR approach, we assess only a maximum loss to a certain probability, but neither an expectation of such a shortfall nor the

maximum possible loss. That is why (depending on the confidence level) not the full amount of risk capital should be on risk. On the other hand, a
certain degree of risk is eligible, to achieve a higher expected yield from available investment capital.

12Investment funds have to be considered as their single securities. Structured products should be decomposed in their building blocks, if possible.
13wj =

dmodj ·aj
100

(in bp), for a single bond with current value aj and dmodj as its modified duration (j = d1 + 1, . . . , d1 + d2). For
long-positions wj has a negative sign, since an increase of the corresponding yield curve decreases the fair value.
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• credit spread exposures: subclasses (ed1+d2+1, . . . , ed1+d2+d3) for different rating classes respectively types of
coverage, the corresponding exposures (wd1+d2+1, . . . , wd1+d2+d3) are measured as the bpv.14

• currency exposures: subclasses (ed1+d2+d3+1, . . . , ed), d =
∑4
i=1 di, for different denominations, the corre-

sponding exposures (wd1+d2+d3+1, . . . , wd) are measured as the effective investments in home currency.

Table 1 represents a real-world implementation, which will be referred to in the remainder of this article. We adopt the
perspective of an European investor (EUR as home currency). A single security can contribute exposures to several
classes.15 To obtain a risk measure for each exposure wi or each class ei, an applicable benchmark bi is matched to
it. The benchmarks, also called risk factors in the pertinent literature, are selected liquid market indices.16 Via the
moments of the benchmark return series {Xi,t}t=1,...,n the variation of the exposure wi,t shall be estimated later. The
general benchmark conception is:

• equity benchmarks (b1, . . . , bd1): MSCI equity indices (total return) in local currency

• interest rate benchmarks (bd1+1, . . . , bd1+d2): Swap rates (5 years),17 in bp

• credit spread benchmarks (bd1+d2+1, . . . , bd1+d2+d3): JP Morgan asset swap spread in bp

• currency benchmarks (bd1+d2+d3+1 . . . , bd): ECB exchange rates, expressed as EUR
x (home currency per for-

eign unit, price quotation)

A detailed view on all subsequently analysed exposure classes and matched benchmarks18 gives table 1. The exposure
classes require specific return types of benchmark prices {Pi,t}t: Arithmetic returns Xi,t = (Pi,t − Pi,t−1) /Pi,t−1
(alternatively log-returns Xi,t = lnPi,t − lnPi,t−1) have to be applied to equities (i = 1, . . . , 5) and currencies
(i = 17, . . . , 30), since we measure performances of market values. Differences of prices between time units, so
called diff-returns Xi,t = Pi,t − Pi,t−1, have to be applied to interest rates and credit spreads (i = 6, . . . , 16), since
we measure how many times the bpv damps the market value.

In the next step from each benchmark return seriesXi,1, . . . , Xi,n the (empirical) expected returns µi and standard
deviations σi as well as pairwise correlations ρi,j (i 6= j) are estimated. The basic risk model assumes the returns
Xi,t to be serially independent and in each period of time identically distributed (iid), following a normally distributed
random variable (rv) with expectation µi and variance σ2

i (henceforth: N
(
µi, σ

2
i

)
). A slight modification fixes µi = 0

for all i, leading to N
(
0, σ2

i

)
distributed benchmark yields.19

We start univariately measuring the maximum loss, that is not exceeded with a given probability 1− α in a target
horizon τ (e.g. α = 1% by default, τ = 10 days or 3 months), which is the V aR1−α,τ

i for the benchmark return
Xi and exposure wi (for a fixed point t0; we omit time subscript whenever possible). In one period it equals the
α-quantile ũα of a N

(
0, σ2

i

)
rv, which can be expressed as the product of the volatility σi and the standard normal

quantile uα due to features of the normal distribution. Extending this result over τ units of time, one benefits from the
assumption of iid periodical returns Xi,t0+1, . . . , Xi,t0+τ and the τ -period volatility is σi multiplied by square root of
τ . Altogether the α-quantile of the τ -period return has the form

ũ(τ)α = uα
√
τ σi =: ν

(1−α,τ)
i , (6)

also called risk factor for the exposure amount wi. Thus, the absolute of the product ν(1−α,τ)i wi =: V aR
(1−α,τ)
i is

the maximum (undiversified) loss or Value at Risk of the exposure wi in the period (t0, t0 + τ ] with probability 1−α.
14The credit spread to swap curve is modelled here. Again, a long-exposure wj shows a negative sign, since a spread expansion decreases the

bond value.
15For example an US-American corporate bond causes an interest rate exposure, a credit spread exposure as well as currency exposure.
16Our general data source is Bloomberg. A special thanks is addressed to the index data providers MSCI Barra, JP Morgan and Merrill Lynch as

well as to Bloomberg.
17The 5-year segment corresponds to the average fixed income duration for many insurers.
18Some benchmarks are self created, signed as ‘synthetic’, according to allocation purposes:
• CredSta: global spread index for (quasi) government guaranteed, 75% Euro +20% US +5% Japan Govt. to Swap Spread (5yr.)
• CredSwa: spread index for pfandbriefe/ covered bonds, 5 year PEX yield to 5 year Swap rate
• CurrEUR: index constant 1 (aim: showing EUR exposure, but having no risk in home currency)
• CurrEM: performance index for all emerging markets currencies (’EM-Dollar’ (EMD), exchange rate as EUR/EMD), modelled as difference of
periodic returns from MSCI EM index (in EUR) and MSCI EM index (local).

19For daily data this is an adequate simplification, for longer periods like monthly returns this corresponds to a conservative left shift of the cdf
(in general µi > 0, else prefer riskless investment).
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exposure class benchmark (BM)
ID synonym amount ID name/ description
e1 EquEUR w1 b1 MSCI Daily TR Gross EMU Local
e2 EquexEUR w2 b2 MSCI Daily TR Gross Europe ex EMU Local
e3 EquNA w3 b3 MSCI Daily TR Gross North America Local
e4 EquAsP w4 b4 MSCI Daily TR Gross (Asia) Pacific Local
e5 EquEM w5 b5 MSCI Emerging Markets (Free) Local
e6 RateEUR w6 b6 EUR Swap annual (30/360), 5 year
e7 RateUSD w7 b7 USD Swap annual (30/360), 5 year
e8 RateEUR w8 b8 JPY Swap annual (act/365), 5 year
e9 CredSta w9 b9 synthetic BM, models Spread Govt. to Swap
e10 CredSwa w10 b10 synthetic BM, models Spread all Swap-equivalent
e11 CredAAA w11 b11 JP Morgan Credit Index AAA Asset Swap Spread
e12 CredAA w12 b12 JP Morgan Credit Index AA Asset Swap Spread
e13 CredA w13 b13 JP Morgan Credit Index A Asset Swap Spread
e14 CredBBB w14 b14 JP Morgan Credit Index BBB Asset Swap Spread
e15 CredEM w15 b15 JP Morgan EMBI Global Divers. Sov. Spread
e16 CredHY w16 b16 Merrill Lynch HY US BB-B (Spread to US-Swap)
e17 CurrEUR w17 b17 synthetic BM, set constant 1 (home currency)
e18 CurrGBP w18 b18 ECB Euro Exchange Ref. Rate as EUR/GBP
e19 CurrCHF w19 b19 ECB Euro Exchange Ref. Rate as EUR/CHF
e20 CurrSEK w20 b20 ECB Euro Exchange Ref. Rate as EUR/SEK
e21 CurrDKK w21 b21 ECB Euro Exchange Ref. Rate as EUR/DKK
e22 CurrNOK w22 b22 ECB Euro Exchange Ref. Rate as EUR/NOK
e23 CurrUSD w23 b23 ECB Euro Exchange Ref. Rate as EUR/USD
e24 CurrCAD w24 b24 ECB Euro Exchange Ref. Rate as EUR/CAD
e25 CurrJPY w25 b25 ECB Euro Exchange Ref. Rate as EUR/JPY
e26 CurrAUD w26 b26 ECB Euro Exchange Ref. Rate as EUR/AUD
e27 CurrNZD w27 b27 ECB Euro Exchange Ref. Rate as EUR/NZD
e28 CurrSGD w28 b28 Bloomberg exchange rate as EUR/SGD
e29 CurrHKD w29 b29 Bloomberg exchange rate as EUR/HKD
e30 CurrEM w30 b30 synthetic BM for exchange rate EUR/EMD

Table 1: Exposure classes ei of amount wi and corresponding benchmarks bi.

Adopting this to the whole exposure vector w = (w1, . . . , wd) and vector of risk factors ν =
(
ν1−α,τ1 , . . . , ν1−α,τd

)
a simple factor-based model with the risk vector VaR =

(
V aR

(1−α,τ)
1 , . . . , V aR

(1−α,τ)
d

)
results,

VaR = ν � w , with � as elementwise vector multiplication. (7)

A scalar product (of absolutes) would quantify the undiversified risk of the portfolio, V aR(undiv)
P = |νw′| =∑n

i=1

∣∣V aR(1−α,τ)
i

∣∣, that neglects diversification benefits from the exposures. Of course, an adequate risk measure
has to include the dependence of its risk factors or exposures.

The total portfolio return equals w1X1 + w2X2 + . . . + wdXd = wX′ ∼ N
(
0, σ2

P

)
for invested exposures w

with normal yields X according to their benchmarks. With the d × d correlation matrix Ω = (ρi,j)i,j it immediately
follows for the (monetary) variance σ2

P of the portfolio P :

σ2
P =

d∑
i=1

d∑
j=1

wiwjρi,jσiσj = (σ � w)Ω (σ � w)
′ (8)

Using property (6) we get the α-quantile of the τ -period portfolio return, in other words the V aR(1−α,τ)
P for the

portfolios market price risk:
V aR

(1−α,τ)
P = uα

√
τ σP (9)
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Alternatively, the risk measure V aR(1−α,τ)
P can be expressed as:

V aR
(1−α,τ)
P = uα

√
τ
√

(σ � w)Ω (σ � w)′

= −

√√√√√√
(uα

√
τσi)︸ ︷︷ ︸

=νi

wi


i=1,...,d

Ω

(uα
√
τσi)wi︸ ︷︷ ︸

=V aRi


′

i=1,...,d

= −
√

VaR Ω VaR′ (10)

Summing up, the basic risk model is computationally easy to implement by a matrix multiplication of stressed
exposures and correlations. It requires current market values and their first derivations as exposures, benchmarked by
appropriate market indices that reflect the variation of exposures and produce risk factors. The chosen risk measure
is the Value at Risk V aR(1−α,τ)

P of the portfolio,20 estimating a maximum loss over a target horizon τ to a certain
confidence 1− α. On the other hand, a number of criticisms have to be kept in mind:

1. Empirically the return distributions are often asymmetric with fat tails. This is not captured by the proposed
model, the VaR restricts the return distribution just to one normal quantile in the left tail. The extent of outliers
is not directly described and inadequately modelled due to normal tails.

2. The method insufficiently measures the risk of nonlinear instruments.

3. Besides the assumption of normality for each exposure class, the adjustment to other periods by the square root
of time factor assumes that returns are serially independent and identically distributed, which is queried in the
next paragraph.

2.2 Testing model assumptions
In the following we are getting granular on the parametric VaR approach by testing its model assumptions. We
apply the basic risk model univariately to each exposure class ei (with amount wi) respectively their benchmark bi,
i = 1, . . . , 30, as defined in table 1. Remember the premises on their returns {Xi,t}t:

A. the yields of each benchmark index are normally distributed,

B. the returns follow each period the same distribution (identically distributed),

C. the returns of each index are serially independent (independently distributed).

The first attribute allows the simple transformation of volatilities to quantiles V aR(1−α,τ)
i in a factor-based setup and

the multivariate risk aggregation to V aR(1−α,τ)
P with a Gaussian portfolio return. The second and the third point are

necessary for transforming the one-period VaR to any horizon τ . The last one legitimizes the unconditional volatility
estimation. In short, we decompose and test the hypothesis of iid normal returns Xi,1, . . . , Xi,n for the benchmarks
bi, i = 1, . . . , 30 univariately. One example of each exposure type is focussed especially: the equity index EquNA, the
5-year swap rate RateUSD, the government to swap spread CredSta and the exchange rate EUR/USD (CurrUSD).

A. Testing normal returns
We start testing the normal hypothesis with monthly returns of the benchmark indices (monthly closing prices) from
January 29, 1999 to December 29, 2006 (95 return points), using arithmetic returns for equity indices and exchange
rates and diff-returns for interest rates and credit spreads (standard conception of basic risk model). In the following
the null hypothesis

H0 : sample is normally distributed

20In the proceeded normal model the risk measure can be straightforward transformed to the expected shortfall, that measures the expected loss
ES

(1−α,τ)
P in the case of a loss exceeding the V aR(1−α,τ)

P . It can be derived that ES(1−α,τ)
P = −φ(uα)

1−α
√
τσP = − φ(uα)

uα(1−α)V aR
(1−α,τ)
P ,

i.e the ES can be expressed as a real multitude (> 1) of the VaR depending on the confidence level.
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is tested on the 5% level of significance via the χ2-goodness of fit test, the Kolmogorov-Smirnov (K-S) test, the
Anderson-Darling (A-D) test and the Jarque-Bera (J-B) test. The statistical tests are graphically supplemented by
quantile-quantile-plots (qq-plots) of ordered sample returns against normal quantiles, provided in figure 1.

Figure 1: QQ-plots for monthly returns of EquNA, RateUSD, CredSta and CurrUSD against quantiles of the normal
distribution (from top left to bottom right, line-by-line).

The qq-plots of the monthly benchmark returns indicate a surprising good approximation by a normal distribution,
especially for the equity and currency example the points are quite close to the bisecting line. The hypothesis tests
come to similar results on the 5% level, presented in figure 2. Most rejections (12 of 29 benchmarks21) occur to the
J-B test on skewness and excess kurtosis.22 Within the distance tests, the A-D is the strongest leading to 11 rejections,
followed by K-S, where H0 is 9 times denied. We summarize the testing results per benchmark in the following way:

H0 is rejected at all, if more than 2 tests are not passed.

This summary test heuristic is chosen quite weak, it leads to 7 overall rejections, that are reported in the tableau, figure
3, aggregated within the general exposure types. From this it follows, that the normal fit is worst for the credit spread
indices with 4 rejections, apart from that a satisfactory approximation is observed.

The normal hypothesis tests are repeated with the return types arithmetic, diff-returns and log-returns applied to
all benchmark indices successively. The target is getting a qualitative result, what return type works best (for which
exposure classes) concerning the normal approximation. The outcomes for the three types are very close to each
other,23 with summary test heuristics similar to figure 3. We conclude in preferring as best return conception:

• log-returns for equities and currencies,

• diff-returns for interest rates and credit spreads.

21CurrEUR is removed from hypothesis testing, because the riskless class was set constant and only introduced for exposure completeness.
22In a basic statistical evaluation on all benchmarks, it stands out that the centered third moments and fourth moments (minus 3) deviate from

zero. More than a half of the time series tend to be leptokurtic. Most benchmark returns are skewed to its loss tail.
23For lack of space we do not reprint the full statistics. Concerning equity returns there are marginal distinctions in the normal fit: diff-returns

deliver worst results, log-returns may be preferred because of their convenient features. For interest rates next to smaller differences (arithmetic
returns worst) modelling errors may arise to arithmetic and esp. log-returns when rates become zero or negative; that’s why diff-returns are preferred.
The same technical failure is quite likely for credit spreads due to zero or negative spreads (in the higher ratings), so that they should be modelled
as diff-returns. For currencies we observed only marginal distinctions amongst the conceptions and log-returns are (subjective) favored.
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Figure 2: Goodness of fit tests against normality for benchmark indices from table 1. Rejected tests are grey high-
lighted. The summary test statistic rejects, if more than 2 single tests are rejected.

Figure 3: Test summary for Gaussian returns in the standard conception.

Leaving the monthly base, we now reinvestigate if the previous results hold for daily returns. Our benchmark
data is refined to daily closing prices from January 4, 1999 to December 29, 2006 (2061 returns). This time the qq-
plots in figure 4 present a different impression. The normal fit seems to be very bad: on all four examples strong,
systematic deviations can be observed. The sample tails are in most instances much heavier than a normal distribution
and asymmetric behavior of gains and losses is to be noticed in some extent.24

These results are statistically confirmed by testing the hypothesis H0 with the four test statistics. All singular tests
are rejected on a 5% level for all benchmark return series. Mostly the test statistic is far apart from the critical value.25

The summarizing heuristic, as shown in figure 5 is also identical for all return types, neglectingH0 for all benchmarks.
The normal distribution of empirical daily returns is clearly rejected.

24An extension of this analysis to exponential quantiles exhibited for some examples, that return data (with sample gains and losses separately
fitted) decays slightly slower than tails of the exponential distribution. Another argument for asymmetry can be obtained by comparing the gains
with the losses, e.g. by plotting the empirical quantiles of Xt against −Xt.

25Interested readers are welcome to ask us for the complete test results, we will gladly provide analogous to figure 2.
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Figure 4: QQ-plots for daily returns of EquNA, RateUSD, CredSta and CurrUSD against normal quantiles (from top
left to bottom right, line-by-line).

Figure 5: Test summary heuristic, which is identical for all types of daily returns, rejecting each normal hypothesis.

The testing results on daily and monthly normal returns are contrary, a temporal closedness of the risk model and
the assumed iid returns are queried furthermore. But are daily performances indeed so much worse against monthly
returns regarding the normal approximation? We try to answer this by enlarging the monthly data base to price series
from January 31, 1991 to March 31, 2008 (206 return points).26 Replaying the monthly analysis, a clearly worse nor-
mal fit results compared to the horizon 1999 to 2006. The number of total rejections increases from 7 to 17. Especially
for equity benchmarks (4 rejections, former 1) and credit spreads (7 rejections, former 4) normality is rejected mostly.
Possible reasons may be a stronger robustness of that sample and tighter confidence bands, that improve statistical
quality even if short- and long-term data are identically distributed. The homogenous normal distribution has to be
challenged on the long-term monthly sample. Because different sample sizes and periodicities imply different results,
the temporal closedness and the normality of the risk model has to be denied after all. Furthermore, concluding on the
J-B tests, a heavy tailed, asymmetric return distribution should be imposed instead.

B. Testing identically distributed returns
The risk model is based on the assumption that returns are subject to the same probability distribution each period.
This can be proved for each benchmark by dividing the time series in several subsamples and comparing their dis-
tributions pairwise. Similar techniques as in the previous paragraph can be applied by assuming that the (unknown)

26Some benchmark indices have to be approximated by similar reference indices, most important: RateEUR: DEM Swap before 1999; CredSwa:
100% US govt. to swap before 1996; CredAAA,...: Merrill Lynch US Corp. Spreads before 1999; Curr...: exchange rate DEM/x converted via
EUR-fixing (EUR introduction on January 1, 1999).
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distribution of subsample A is the hypothetical distribution of subsample B. The null hypothesis

H0 : subsample A is identically distributed as subsample B

is tested on the 5% level of significance via the two-sample Kolmogorov-Smirnov (K-S) test and the two-sample χ2-
goodness of fit test.27 Basically, identical distributions need to have identical moments, that is proved with the t-test
for expectations µA = µB (restricted to σ2

A = σ2
B) and the F-test for variances σ2

A = σ2
B . The formal tests may be

graphically supplemented by qq-plots of subsample returns.

Figure 6: Tests for identically distributed monthly returns of benchmark indices from table 1.

27The test statistics are approximative for large samples. Our K-S implementation measures the maximum difference of steps of the empirical
distribution functions of subsamples A and B. The χ2-test sums up k class-wise differences of relative frequencies. Our class fragmentation is
fixed on quantiles of the ’null subsample’. This approach is not symmetrically, i.e. changing the ’null part’ may lead to different results. We test
both ways and compare the maximum test statistic to the critical value χ2

k−1;95%
.
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Again, we work first with the monthly and afterwards with the daily data base from 1999 to 2006 of benchmark
returns28 and analyse the impact of different return types. The subsamples are chosen as:

(i) subsequences of 2 years of data (length: 24 months or 515 days)

(ii) subsequences of 4 years of data (length: 48 months or 1030 days)

(iii) subsequences of even vs. odd months (respectively days alternating)

For point (i) 6 combinations are possible, altogether 8 (pairwise) input series can be arranged and are proved by each
of the id-test procedures. On a singular approach (e.g. K-S) the results are summed up in the following way:

H0 is (preliminary) rejected if more than 3 pairs fail the test.

Former we define a summary rule on all testing approaches:

H0 is rejected overall if K-S and χ2-test fail or if more than 2 tests fail.

Starting with monthly returns, figure 6 presents for the first ten benchmark series the detailed test statistics. For the
remaining samples only the number of rejected pairs regarding the approaches and the summary heuristic is shown.29

The χ2-test statistic seems to be the most severe with 23 rejected benchmark series, followed by the K-S test with 19
rejections. The serial identity of all equity samples is rejected by both tests and the majority of credit spreads fail.
Only some currencies as well as the EUR and USD swap rate pass the identity assumption. These results dominate the
summary test heuristic, which denies H0 likewise 19 times. The t-test for identical expectations is only for European
equity indices denied. The test of homoscedastic subsamples (F-test) leads to 11 classwise rejections, above all at
equity and credit series.

Paying attention which return types fulfill the assumption of identity best, there are slight differences observed.
But the stronger influence is again exerted by possible modelling errors at zero/ negative rates or spreads when using
arithmetic- and especially log-returns. This leads to the same predominances as derived in the foregoing paragraph
and a preferred conception consisting of log-returns for equities and currencies and diff-returns for interest rates and
credit spreads.

Switching to daily returns, we start this time with qq-plots of bisected samples for the return series EquNA, Ra-
teUSD, CredSta and CurrUSD. Figure 7 shows varying results on the exposure classes: The fit to the bisecting line
is especially bad for the equity and the credit spread example, where the extent of returns is stronger in the first four
years and the distribution seems to differ between the series’ subsamples. Some tail deviations are observed for the
CurrUSD example. A visually quite good quantile-quantile fit appears for the daily US swap rates.

The graphical impression is not fully affirmed by the hypothesis tests: Because of the longer data base and closer
non-rejection areas, most pairs of subsamples are rejected by the goodness of fit tests and the F-test, even the USD
interest rate. The only exception is the spread series CredSwa that scrapes through the K-S test and therewith passes at
all. For all benchmarks identical daily expectations (close to zero) are confirmed with the t-test. Figure 8 summarizes
the test rejections for the exposure types according to the predefined rules.30 H0 is rejected for 28 benchmarks on the
daily data base and the periodical identity of the return distribution has to be strongly rejected. This result holds for
the different return types and the before preferred return conception can be recommended again.

Concluding on all identical distribution tests, this assumption does not hold for the majority of monthly samples,
with a particularly bad fit of equity and credit spread subsamples. On the daily refinement the univariate identity
of return series can be denied at all. It immediately follows that a stationary assumption on that return series is in-
appropriate. Furthermore, since the F-test for identical variances fails in the majority of disjoint subsamples for all
benchmarks, a homoscedastic implementation is denied. As a consequence a non-stationary, heteroscedastic financial
time series model should be chosen.

28For practical reasons (sample size divisible by four) the monthly data base is extended by one return point for January 1999. On the other hand,
in the daily samples the first return point (January 5, 1999) is removed.

29For lack of space we do not display qq-plots of monthly subsamples. Moreover the small data bases would complicate an interpretation,
whether quantile deviations are random or systematic. A good example was the bisected EquNA series, where the distance to the bisecting line is
especially obvious, indicating a stronger extent of North American equity returns in the first half (1999-2002) of the sample.

30Interested readers are welcome to ask us for the complete test results, we will gladly provide analogous to figure 6.
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Figure 7: Two-sample qq-plots for daily returns 1999-2002 vs. 2003-2006 of EquNA, RateUSD, CredSta and CurrUSD
(from top left to bottom right, line-by-line).

Figure 8: Test summary heuristic concerning the serial identity of daily benchmark returns.

C. Testing serially independent returns
It is a well known fact in mathematical statistics that the consistency of the empirical mean or variance requires
a stochastically independent series of random variables with some equal, finite moments. So, serially independent
benchmark returns Xi,1, . . . , Xi,n (i = 1, . . . , d) are necessary for volatility estimation as introduced in the basic risk
model. A necessary condition for independent realisations is the uncorrelatedness within a time series. This can be
checked via correlograms, that depict sample autocorrelations ρ(h) against time lags h ∈ N0.31 To give evidence
whether a SACF differs significantly from zero, we develop a criterion with some basic statistical considerations:32

For an iid series X1, . . . , Xn [
± 1√

n
tn−1;1−α2

]
(11)

is an approximative (1− α) confidence interval of γ(h), h ∈ N0.
While a correlogram graphically checks a necessary linear condition, an easy nonlinear extension is to analyse

parallel the absolute values of returns (or their power transformations) with their correlogram. Here we can profit
from additional criteria: An uncorrelated stationary return seriesX1, . . . , Xn that has autocorrelated absolutes {|Xt|}t

31Compare section 1. This analysis implicitly requires a stationary stochastic process.
32For iid normal distributed rvsX1, . . . , Xn withEX1 = µ and V arX1 = σ2 unknown,

[
X̄n ±

σ̂tn−1;1−α
2√

n

]
is an exact (1−α) confidence

interval for µ, where tm;α denotes the α quantile of a student distribution with m df. Without the normality assumption the confidence interval for

µ is approximative. From Chan (2002) we apply, that for an iid series X1, . . . , Xn it holds for each h ∈ N0 that ρ(h)
D−→ N

(
0, 1
n

)
, with D

denoting the convergence in distribution.
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(or power transformations {Xp
t }t , p ∈ R) is serially dependent.33 Moreover, a nice corollary whether the return

distribution is possibly Gaussian follows:34 If a stationary return sample X1, . . . , Xn is serially uncorrelated but their
absolutes (or power transformations) are significantly autocorrelated, then a normal distribution cannot hold.

Having the necessary theory, we analyse graphically the serial dependence structure for the reference examples
on the 8-year monthly benchmark series,35 plotting their correlograms in figure 9. The displayed SACFs ρXt(h) on
returns and their absolutes ρ|Xt|(h) are for the very most lags within the 95% acceptance region. In the EquNA example
four bars (regarding absolute returns) exceed the upper limit marginally, but no systemtatic structure is obvious. The
correlograms give a clear indication that there is no serial dependence in the monthly benchmark returns.36

Figure 9: Correlograms for monthly returns (left) and their absolutes (right) of EquNA, RateUSD, CredSta and Curr-
USD (from top to bottom). The dashed lines define the approximative 95% acceptance region for iid returns.

33This follows from the equivalence of independence between rvs X,Y and independence between rvs f(X), f(Y ) for continuous functions f ,
with contraposition on uncorrelatedness of f(X), f(Y ).

34Since independence and uncorrelatedness are equivalent for normal distributed rvs, this must hold for their continuous functions; compare
footnote 33.

35We stay in the standard return conception. The other return types are supposed to show the same results regarding independence, because of
the aforementioned transformation result.

36Several credit spread examples, as CredSwa, CredAAA or CredHY, show somewhat stronger autocorrelations, especially in the first lag.
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Validating this result in a formal way, the null hypothesis

H0 : sample is serially independent

is tested on the 5% significance level via a Portmanteau test in the version of Ljung-Box (LB)37 and via the test statistic
of Brock, Dechert, Scheinkman (BDS independence test)38. Figure 10 gives an overview of test results concerning
all monthly benchmark series. LB accepts for 20 of the 29 indices the serial independence, with no rejections on
stock indices and interest rates. Some credit spreads and currencies (e.g. CurrUSD) show negative results. The BDS
independence test rejects independence for the Euro area and North American equities as well as for the EUR swap and
all credit spreads except CredSta, but currencies show a good performance. Altogether BDS arrives at 11 rejections.
Again a summary test heuristic for both tests is defined:

H0 is overall rejected if both tests fail.

Following that rule only three rejections are left. But remember, that the small sample size implies rather broad
acceptance regions and that the assumption of identically distributed returns is needed.

Figure 10: Tests for stochastically independent monthly returns of benchmark indices, table 1.

Switching to daily returns on the same horizon, figure 11 presents the correlograms for the benchmark returns
{Xt}t and their absolutes {|Xt|}t. While again the SACF of original returns (except CredSta)39 shows only a few
outliers from the confidence band [−0.05, 0.05], a systematic and significant autocorrelation appears in the absolute
returns. The SACF is strictly positive for all lags and declines slowly with the number of lags. A notably high
level of absolute autocorrelation arises from the CredSta (ρ|Xt|(h) ≥ 0.2 for h = 1, . . . , 50) and EquNA series. As
motivated in the introduction, this could be interpreted as a (stationary) long range dependence.40 With the criteria
above, independence of daily returns is hardly requested and the features contradict to a normal distribution.

Once again, the result is statistically supplemented by testing H0 with the LB and BDS test for all benchmarks.
As displayed in figure 12 the assumption of serially independent returns is rejected on the majority of indices. The
BDS test denies H0 for all but one (CurrHKD) benchmark returns. Also the LB test constitutes 22 rejections, which
corresponds to the number of rejected independence hypotheses in the summary. That way, independence is accepted
for EquAsP, RateUSD and some currency series.

37Portmanteau proves whether a sum of squared autocorrelation coefficients differs from zero, with a χ2
K test statistic. Intrinsically,H0 : ρ(1) =

ρ(2) = . . . = ρ(K) = 0 is tested (K ≈ 2
√
n, following a rule of thumb; K = 20 for monthly, K = 90 for daily samples).

38We use the BDS independence test of the software EViews, testing for different dimensions.
39For the diff-returns of CredSta we identify a significant negative first order autocorrelation. Similar correlograms are observed for the other

daily credit series, too. An autoregressive (AR(1)) structure is suggested on that exposures.
40But non-stationary effects could entail similar results.
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Figure 11: Correlograms for daily returns (left) and their absolutes (right) of EquNA, RateUSD, CredSta and CurrUSD
(from top to bottom). The dashed lines define the approximative 95% confidence band.

Figure 12: Test summary heuristic concerning the serial independence of monthly benchmark returns.

Altogether, after having seen a surprising good independence feature on the monthly data base, the daily bench-
mark returns do not fulfill this hypothesis in most instances. Daily returns are established to be serially uncorrelated
but dependent. A bridging to the normal distribution and the resulting correlograms gave further evidence that the
daily returns cannot be Gaussian. On the other hand the testing approaches required a serially identical distribution,
which was partly denied before. The interpretation of correlograms depends on the stationarity assumption, which
should be queried itself and is abandoned in section 3.
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Summary and conclusion on testing model assumptions:
The modelling premise of iid normally distributed benchmark returns was requested in a comprehensive survey. On
an 8-year monthly data base of benchmark returns it can be barely supported, albeit for 7 of 29 indices the normal
assumption was denied and serial identity was rejected 19 times. Testing independence brought only 3 rejections.
This result worsens when refining the horizon to improve statistical quality: For 8-year daily samples the assumptions
of normality and identity were clearly rejected, independence tests performed with only 22 rejections still best. The
premise of iid normal returns fails entirely. Among the exposure classes credit spreads caused the most approximation
problems, but also equities showed a very bad fit with respect to the assumptions. The use of different return types has
a minor influence on the testing results as long as no modelling errors occur (for zero/ negative prices and arithmetic
or log-returns). Those troubles dominated the choice of a preferred return conception, where we arrived at log-returns
for equity indices and exchanges rates and at diff-returns for series of interest rates and credit spreads.

Besides the normal distribution assumption, the volatility measurement via empirical standard deviations and the
transformation of volatility and VaR to other horizons are critical if returns are not iid. Due to different testing
results on the monthly and daily setup the temporal closedness of the model is requested.41 Contradictions arise
when transforming the VaR on daily or monthly returns into each other or when comparing annualized volatilities.
Altogether and consequently, the premises of the basic risk model have to be denied.42 Improvements can be based on
a non-stationary and heteroscedastic setup for financial returns. Since the larger problems were identified on the daily
data base, we switch from this point to the daily benchmark series, working with the preferred return conception.

3 A non-stationary model for asset returns
In the previous section the demand for a non-stationary and heteroscedastic model that allows adequate (asymmetric,
heavy tailed) return distributions evolved from testing the benchmark return series. Since Granger and Starica (2005)
have documented the superiority of the paradigm of time-varying unconditional variance over some specifications of
stationary long memory, our following approach is based on interpreting the slow decay of the SACF of absolute
returns as a sign of non-stationarities in the second-moment structure (compare section 1). While ARCH-type and
stochastic volatility models specialized more and more to find endogenous variance or covariance descriptions for
special financial instruments, we draw the conclusion that a simple endogenous specification does not exist and assume
the unconditional volatility to be exogenous to the return process. The evolution of market prices is interpreted as a
manifestation of complex market conditions, driven by unknown endogenous factors. As a consequence we model the
volatility deterministic, building on a non-stationary model for daily log-returns Xt = lnPt− lnPt−1 and diff-returns
Xt = Pt − Pt−1 (t = 1, . . . , n) according to the modelled exposure type.43

We take up the conceptual framework of Herzel et al. (2005) and Drees and Starica (2002) (univariate case) for
analysing the return dynamics via classical nonparametric regression with fixed equidistant design points. The vectors
of financial returns are assumed to have a time-varying unconditional covariance matrix that evolves smoothly through
time. The standardized residuals are modelled parametrically, allowing asymmetry and heavy tails. This leads to a
multiplicative approach congruent to equation (1), with a constant mean return µ added, for a non-stationary sequence
of independent random vectors {Xt}t:

Xt = µ+ Stεt, t = 1, . . . , n, (12)
ε1, . . . , εn iid random vectors with mutually independent coordinates,

Eεk,1 = 0, V arεk,1 = 1, ∀k = 1, . . . , d,

St : [0, n]→ Rd×d is an invertible matrix and a smooth function of time.
41In another case study on estimated standard deviations we surveyed the impact of the choice of periodicities and lengths of the measurement

window. While caring for autocorrelation effects, the higher volatility estimate depends on the current market stadium and the influence of past
extremal movements or on the fast capturing of recent (upcoming) movements, leading to a trade-off between long-memory and instantaneous
changes. Problems of time transformation (via square root of time) between the measures emerged, that could be due to a lack of robustness
of (small) samples or due to serial dependence. Hence, the length and granularity of financial time series is important for estimating volatility.
Moreover, most volatility estimations motivated a heteroscedastic setup.

42A justification for the professional risk manager using similar models is, that for a multitude of exposures in a highly diversified portfolio
several model shortcomings compensate each other. So arbitrary probability distributions of different exposures lead to an approximative normally
distributed portfolio return, following the law of large numbers. A similar argument holds on temporal distributional changes and dependencies.
Daily autocorrelations decrease on monthly returns. Backtesting procedures may confirm that effects and a holistic functionality.

43The model and statistical features given below work for diff-returns as well as for log-returns.
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The residuals εt are called standardized innovations. We emphasise that this regression-type model does not exclude
random effects of the volatility dynamics. The basic idea is that recent past and the next future returns depend on
the same unknown exogenous economic factors, that evolve gradually through time. Those factors are included in
the recent asset returns and imply the level of the unconditional (co)variance. The aim is to estimate the multivariate
return dynamics only by dint of recent returns and to build up short-term forecasts of future return distributions in a
similar economic environment. Three steps have to be arranged to fit the regression model to a financial time series:

1. Centering returns
The demeaned return series {Rt}t is defined as

Rt = Xt − X̄n, t = 1, . . . , n, (13)

with column vectors centered componentwise by the empirical mean of the whole series, X̄k,n = 1
n

∑n
t=1Xk,t for all

k = 1, . . . , d. If the estimation error of X̄t for µ was neglected (i.e. X̄t = µ =⇒ Rt = Stεt), it follows that:

E (Rt | Rt−1,Rt−2, . . .) = ERt = StEεt = 0 (14)
E (RtR

′
t | Rt−1,Rt−2, . . .) = E (RtR

′
t) = StS

′
t =: Σ2(t) (15)

Hence, {RtR
′
t}t is an independent sequence of matrices with pointwise expectations Σ2(t), a smooth function of

time. This offers the framework for a nonparametric regression on equidistant design points t = {1, . . . , n}, where
variances and covariances in matrices

{
Σ2(t)

}
t

are estimated with standard nonparametric estimators.

2. Estimating volatilities
With the tools of classical nonparametric regression, we derive from a local polynomial regression method (local
constant regression) on {RtR

′
t}t, with data localized by kernel functions Kh,44 and the method of least squares a

Nadaraya-Watson estimator:

Σ̂2(t) =

∑n
i=1Kh(i− t)RiR

′
i∑n

i=1Kh(i− t)
, (16)

with Kh(·) = 1
hK

( ·
h

)
, where K is an appropriate kernel as defined in the sequel. This is the two-sided volatility

estimate for the multivariate regression model (12). Regarding the included return information we have to distinguish
later between the two-sided (symmetrical) and the one-sided (historical) estimation.

Herzel et al. (2005) motivate the application of nonparametric regression by theoretical results of Müller and
Stadtmüller (1987) in an asymptotic context (compare section 3.2 in Herzel et al. (2005)). That way, they additionally
derive propositions on confidence intervals for (Σi,j(t))i,j . We restrict ourselves later to the univariate case and out-
line some useful statistical results from Gürtler et al. (2009).

3. Fitting innovations
In the last step we have to model the distribution of innovations {εt}t. Firstly, the innovations εk,t are componentwise

estimated by dint of demeaned returnsRk,t and estimated volatilities σ̂k(t) =
(

Σ̂k,k(t)
)
i,j

(the k-th diagonal element

of the square root of the estimate Σ̂2(t) for StS
′
t) in each point of time t:

ε̂k,t =
Rk,t
σ̂k(t)

, t = 1, . . . , n. (17)

Due to their independence it is sufficient to specify the distributions of ε̂k,t, k = 1, . . . , d univariately. The easiest
approach without any extra assumption could be the empirical distribution function F̂ empn (x) of the series {ε̂t}t, but
this is not able to capture heavy tails.45’46 Herzel et al. (2005) as well as Drees and Starica (2002) found the Pearson

44We use symmetric kernel functionsK andKh on compact supports [−1, 1] and [−h, h], respectively: K : R→ [0,∞) with
∫∞
−∞K(u)du =∫ 1

−1K(u)du = 1. Kh(u) := 1
h
K
(
u
h

)
, denoting Kh as rescaled kernel on a bandwidth h > 0.

45Being xmax = maxt ε̂t and xmin = mint ε̂t of the innovation sample {ε̂t}t, then F̂ empn (xmax+δ) = 1 for all δ ≥ 0 and F̂ empn (xmin−
ε) = 0 for all ε > 0. Consequently the probability for extreme future innovations εN /∈ [xmin, xmax], N > n would equal 0. The empirical
distribution function underestimates the extremes, which is an unacceptable shortcoming for risk management purposes.

46Moreover, the normal distribution drops out due to neglecting skewness and heavy tails.
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type VII distribution to be a flexible and parsimonious family of heavy-tailed distributions.47 It has the following
one-sided density with shape parameter m and scale parameter c:

fV II(1)m,c (x) =
2Γ(m)

cΓ
(
m− 1

2

)
π1/2

(
1 +

(x
c

)2)−m
I[0,∞)(x). (18)

The one-sided Pearson VII presentation, concentrated on the positive axis, was chosen to allow for asymmetry: It
is fitted separately to nonnegative innovations {ε̂t | ε̂t ≥ 0}t and absolute values of negative innovations {−ε̂t |
ε̂t < 0}t. In the above mentioned literature the corresponding parameters (m+, c+) and (m−, c−) are estimated with
maximum-likelihood methods. We solve that task with a method of moments, later on. Because of the fact that there
are usually about as many positive as negative innovations in a financial time series, it may be assumed that the median
of innovations is zero. Hence, the fitted one-sided Pearson VII densities fV II(1)m+,c+ and fV II(1)m−,c− are combined as

fV IIm+,c+,m−,c−(x) =
1

2

(
fV II(1)m−,c− (−x)I(−∞,0)(x) + fV II(1)m+,c+ (x)I[0,∞)(x)

)
, (19)

its cdf is referred as F̂V II(x) and called asymmetric Pearson type VII distribution (Drees and Starica (2002)) of
random innovations εt.48

Concluding, the estimated distributions F̂V IIεk
of the d independent random innovations together with (the square

root of) the covariance matrix estimates Σ̂2(t) and the mean vector X̄n completely specify the distribution of returns
Xt in the regression model (12).

3.1 Univariate nonparametric estimation of volatility
From now on we specialize on the univariate non-stationary model, as introduced in Drees and Starica (2002):

Xt = µ+ σ(t)εt, t = 1, . . . , n, (20)
ε1, . . . , εn iid with Eε1 = 0, V ar ε1 = 1,

σ(t), t = 1, . . . , n, a smooth, deterministic function of time.

The series of log-returns {Xt}t=1,...,n preserves the independence assumption, but it abandons the hypothesis of
serial identity, because of the unconditional time-varying volatility within the return distribution. Furthermore the
asymptotic, heavy tailed modelling of the random innovations replaces the overall normal return distribution of the
basic risk model.

After demeaning the return series {Xt}t we base the nonparametric regression on equidistant points t = {1, . . . , n}
of squared returns {Rt}t with the methods developed above. The Nadaraya-Watson estimator (short: NWE) for
volatility estimation is obtained as:

(I) Two-sided NWE (smoother):

σ̂2(t) :=

∑n
i=1Kh(i− t)R2

i∑n
i=1Kh(i− t)

(21)

with Kh(·) = 1
hK

( ·
h

)
for an appropriate kernel K on a compact support [−1, 1].

(II) One-sided NWE (filter):

σ̂2
(1)(t) :=

∑t
i=1Kh(i− t)R̃2

i∑t
i=1Kh(i− t)

(22)

with Kh(·) = 1
hK

( ·
h

)
and R̃i := Xi − X̄i−1.

The symmetric estimator (I) immediately follows from equation (16), an asymmetric version (II) that includes only
past/ current returns is supplemented. The distinction between both approaches is fundamentally. The first estimation
of σ2(t) depends on a symmetrical data base around t, using all returns Ri that are temporally close enough, i.e. all
values whose design points i are within the bandwidth h around t.49 From that perspective past and future returns are

47The Pearson VII family includes the Student t-distribution, the Cauchy distribution and asymptotically the Gaussian distribution. Other
applications are e.g. to be seen in Kitagawa and Nagahara (1999) for standardized innovations in a stochastic volatility (state-space) model.

48Another approach for fitting innovations could be kernel density estimation, to stay completely within a nonparametric approach.
49Values outside this radius are assumed not to influence σ(t) and are zero-weighted.
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included in volatility estimation. The calculation requires a sufficient long sample and is only possible if 1 ≤ t − h
and t+ h ≤ n. Else the required band [−h,+h] would go beyond the data base and boundary effects occur.50

While a symmetric kernel will be used to describe the dynamics of changes in a historical sample, the one-sided
estimation is applied in forecasting volatility. The asymmetric estimator σ̂2

(1)(t) inserts only past (centered) returns R̃i
up to time t, restricted to values within the left-sided band [t − h, t]. Again a sufficient long past series is required,
the (unbiased) estimation is possible for points t with 1 ≤ t − h. Else a boundary effect results on the left end. Of
course, in a historical sample the one-sided estimator delivers generally a bigger estimation error than its two-sided
counterpart due to the lack of information.

We aim at deriving statistical results as consistency or asymptotic normality for our volatility estimates. At first
we have to define an appropriate asymptotic framework, where we do not only involve an increasing number of
observations but even more an increase of the frequency for observing data points on a fixed time-frame. Analytically,
we rescale the observations to a unit interval and refine gradually the data base. That way, an increase of sample size
n means including more observations on closer design points. Henceforth we scan the (unknown) regression function
more and more precisely, until n goes to infinity.

We assume that beyond the series of returns {Xt}t=1,...,n the discrete sequence {σ(t)}t is gathered from a contin-
uous volatility function:

σ : [0, n] −→ R+
0 , x 7→ σ(x) (23)

The aforementioned asymptotic is implemented by transforming the data series to the standardized window [0, 1] with
design points 1

n ,
2
n , . . . ,

n−1
n , 1, that adopts the volatility values as s

(
t
n

)
= σ(t) for all t = 1, . . . , n. Formally we

have:

s : [0, 1] −→ R+
0 , y 7→ s(y) := σ(ny). (24)

This produces the transformed multiplicative return model:

Xt,n = µ+ s

(
t

n

)
εt,n, t = 1, . . . , n, (25)

ε1,n, . . . , εn,n iid with Eε1,n = 0, V ar ε1,n = 1,

s

(
t

n

)
, t = 1, . . . , n, a smooth, deterministic function of time.

The corresponding nonparametric estimators obviously are:

(I) Two-sided transformed NWE:

ŝ2hn(u) :=

∑n
i=1Khn

(
i
n − u

)
R2
i,n∑n

i=1Khn

(
i
n − u

) , (26)

with u ∈ [0, 1], hn := h(n) and Khn(·) = 1
hn
K
(
·
hn

)
.

(II) One-sided transformed NWE:

ŝ2(1)hn(u) :=

∑bunc
i=1 Khn

(
i
n − u

)
R̃2
i,n∑bunc

i=1 Khn

(
i
n − u

) , (27)

with u ∈ [0, 1], hn := h(n), Khn(·) = 1
hn
K
(
·
hn

)
and R̃i,n = Xi,n − X̄i−1.

For proving consistency and asymptotic normality of the estimators ŝ2hn(u) and ŝ2(1)hn(u) certain conditions on
the kernel K, the bandwidth hn and the smoothness of the (transformed) volatility function s(·) are required:

50Several approaches for treating the boundary region t ∈ [0, h) and t ∈ (n − h, n] exist in the literature of nonparametric curve estimation.
Fan and Yao (2003) list e.g. special boundary kernels, methods of reflection and transformation or local polynomial fitting of a higher degree. In
general, the order of magnitude of the bias is different in the interior and near the boundaries. This is to be seen in the subsequent analysis as
the optimal two-sided (interior) bandwidth is of order n4/5 while the optimal bandwidth of the left-sided estimator has size n2/3, that could be
interpreted as a boundary corrected estimator for the right interval boundary.
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(C1) Let K : R → [0,∞) be a symmetrical density with compact support [−1, 1], i.e. the kernel has the features:
(i) K(v) = 0 ∀v /∈ [−1, 1], (ii)

∫∞
−∞K(v)dv = 1, (iii)

∫∞
−∞ vK(v)dv = 0.

(C2) Let K be continuous with a limited first derivation K ′.

(C3) Khn(·) = 1
hn
K
(
·
hn

)
with restrictions to the bandwidth hn: (i) hn

n→∞−→ 0, (ii) nhn, . . . , nh4n
n→∞−→ ∞,

nh6n, nh
7
n, . . .

n→∞−→ 0, (iii) nh5n
n→∞−→ C2 ≥ 0.

(C4) Let s2 be two times continuous differentiable.

(C5) Let rvs ε1,n, . . . , εn,n be iid with Eε1,n = 0, V ar ε1,n = 1 and E |ε1,n|4+δ <∞ for a δ > 0 and n ∈ N.

Two-sided volatility estimation
A minimum requirement to a developed, feasible estimator is consistency, that we prove first for the both-sided esti-
mate ŝhn(u) of the volatility function s(u), u ∈ [0, 1]. Heuristically, an increase of the sample size should imply that
the estimator converges to the parameter to be estimated. That way, a good estimate has to be asymptotically unbiased
and its variance should converge to zero as n goes to infinity. Finally, the stochastical convergence is to be concluded,
as presented in proposition 2.1 of Gürtler et al. (2009):

(P1) Under the conditions (C1) - (C5) in setup (25) the sequence
(
ŝ2hn(u)

)
n∈N of estimators for s2(u) is consistent

for all u ∈ (0, 1).

Furthermore they extended the consistency result by inspecting the rate of convergence.
√
nhn

(
ŝ2hn(u)− s2(u)

)
is limited (in probability) due to an asymptotical bias, a finite variance and an asymptotic normal distribution. The
convergence in distribution was proved with the central limit theorem of Lindeberg-Feller. Hence, it holds that (propo-
sition 2.2, Gürtler et al. (2009)):

(P2) Let C ≥ 0 and V := Eε41,n − 1 ∈ (0,∞) and the conditions (C1) - (C5) be satisfied. Then the sequence of
estimators

(
ŝ2hn(u)

)
n∈N for s2(u) is asymptotic normally distributed for all u ∈ (0, 1) in terms of√

nhn
(
ŝ2hn(u)− s2(u)

) D−→ N
(
β(u), τ2(u)

)
, where (28)

β(u) =
C

2

(
s2(u)

)′′ ∫ 1

−1
v2K(v)dv,

τ2(u) = V s4(u)

∫ 1

−1
K2(v)dv.

The asymptotic normality result of the two-sided variance estimate reveals some more insights: For the finite
approximation of s2(u) by ŝ2hn(u) the slowest error terms have a

√
nhn rate of convergence. Concluding from the

quoted proposition, for a sufficiently large n the pointwise approximation is nearly distributed as:

ŝ2hn(u)− s2(u) ≈ N
(
h2n
2

(
s2(u)

)′′ ∫ 1

−1
v2K(v)dv,

V

nhn
s4(u)

∫ 1

−1
K2(v)dv

)
. (29)

Here, the approximate bias has a negligible magnitude relative to the variance term. Thus, an approximative confidence
interval for s2(u) can be simplistic implemented with Gaussian quantiles, built on a normal distribution centered at
ŝ2hn(u) and a variance as above. Moreover, discussions on an optimal bandwidth continue on that approximate normal
parameters. Since the mean squared error is MSEŝ2hn(u) = Bias2ŝ2hn(u) + V arŝ2hn(u), minimizing the function
with respect to the bandwidth will provide the optimal trade-off between bias and variance. Our later considerations
regarding optimal bandwidths extent that result to a MISE criterion.

One-sided volatility estimation
A similar statistical analysis was executed for the historical, left-sided volatility estimator ŝ2(1)hn(u). Concluding,
the statistical results of the two-sided estimate can be transfused to the one-sided counterpart, conditioned on a faster
convergence rate of the bandwidth hn. For the one-sided NWE condition (C3) has to be replaced with (C3’) while the
other premises (C1), (C2), (C4), (C5) persist:
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(C3’) Khn(·) = 1
hn
K
(
·
hn

)
with restrictions to the bandwidth hn: (i) hn

n→∞−→ 0, (ii) nhn, nh2n
n→∞−→ ∞,

nh4n, nh
5
n, . . .

n→∞−→ 0, nh3n
n→∞−→ D2 ≥ 0.

The one-sided-estimator ŝ2(1)hn(u) is asymptotically unbiased, its variance tends to zero for large samples and the
stochastical convergence follows. Gürtler et al. (2009) provide with proposition 2.3.:

(P3) Under the conditions (C1), (C2), (C3’), (C4), (C5) in setup (25) the sequence
(
ŝ2(1)hn(u)

)
n∈N of estimators for

s2(u) is consistent for all u ∈ (0, 1].

The consistency result for ŝ2(1)hn(u) is not only valid at interior points of [0, 1] (as it was the case for the two-sided
approach), but also at the right frontier. This makes the estimator consistently applicable for forecasting volatility and
return distributions, respectively. Again

√
nhn

(
ŝ2(1)hn(u)− s2(u)

)
is limited (in probability) due to an asymptotical

bias, a finite variance and a convergence in distribution to a Gaussian. Hence, it holds that (proposition 2.4, Gürtler et
al. (2009)):

(P4) Let D ≥ 0 and V := Eε41,n − 1 ∈ (0,∞) and the conditions (C1), (C2), (C3’), (C4), (C5) be satisfied. Then
the sequence of estimators

(
ŝ2(1)hn(u)

)
n∈N for s2(u) is asymptotic normally distributed for all u ∈ (0, 1] in

terms of √
nhn

(
ŝ2(1)hn(u)− s2(u)

)
D−→ N

(
β(1)(u), τ2(1)(u)

)
, where (30)

β(1)(u) = 2D
(
s2(u)

)′ ∫ 0

−1
vK(v)dv,

τ2(1)(u) = 4V s4(u)

∫ 0

−1
K2(v)dv.

It is possible to draw similar conclusions from the asymptotic normality of ŝ2(1)hn(u), as done for the two-sided
NWE. It follows from the last proposition for sufficiently large n pointwise:

ŝ2(1)hn(u)− s2(u) ≈ N
(

2hn
(
s2(u)

)′ ∫ 0

−1
vK(v)dv,

4V

nhn
s4(u)

∫ 0

−1
K2(v)dv

)
. (31)

With that result, an approximative confidence interval for s2(u) can be simplistic implemented in terms of normal
quantiles, centered at ŝ2(1)hn(u) and scaled by the standard deviation from above. Moreover, discussions on optimal
one-sided bandwidths, that minimize the MSE or MISE of ŝ2(1)hn(u), continue in the subsequent section.

Choice of kernel and bandwidth
In the prevalent literature it is established, that the choice of the kernel function plays a relatively unimportant role
compared with the optimal bandwidth for nonparametric regression. Although different kernels perform very similar
in large samples, we have to remember some of the smoothness conditions,51 which exclude standards as rectangle-,
triangular- or normal kernels. We recommend a polynomial of fourth degree, also called biweight kernel:52

K(u) :=

{
15
16 (1− u2)2 , |u| ≤ 1
0 , else

. (32)

Using the biweight kernel in the sequel, we turn to the task of bandwidth selection. The bandwidth is also called
smoothing parameter because one has to find a trade-off between over- and undersmoothing.53 Discussions on optimal

51Amongst others we need a continuous differentiable kernel with a compact support.
52Following Fan and Yao (2003), this kernel is from the ’symmetric Beta family’ Kγ(u) =

1

B
(
1
2
, γ + 1

) (1− u2)γ I[−1,1](u) with beta-

integral B(α1, α2) =
∫ 1
0 (1− y)α1−1yα2−1dy as the special case γ = 2.

53Oversmoothing means in terms of NWEs to build an average over a too large neighbourhood of return points (large bandwidth), where recent
return information is dominated; a very smooth shape of the regression function results (small variance, but biased). Undersmoothing averages over
a very small neighbourhood (small bandwidth), where only a few recent data points are included; a rough shape (small bias, but large variance) of
the estimated volatility is the consequence.
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bandwidths require an error measure. Local bandwidth optimization can be based on minimizing the MSE with respect
to hn for a point in time. Doing so, the afore derived asymptotic results are constraining. An average of MSE optimal
bandwidths over all design points corresponds to the MASE criterion. Superior to this is to integrate the squared error
of the estimator ŝ(·) to the volatility function s(·) over the (standardized) horizon and to minimize that functional.
We arrive at the MISE and get for sufficient large n the following global optimal bandwidths (compare Gürtler et al.
(2009)):

(I) For the two-sided (transformed) NWE (26):

hoptn = n−
1
5

 V
(∫ 1

0
s4(u)du

)(∫ 1

−1K
2(v)dv

)
(∫ 1

0

(
(s2(u))

′′)2
du
)(∫ 1

−1 v
2K(v)dv

)2


1
5

. (33)

(II) For the one-sided (transformed) NWE (27):

hopt(1)n = n−
1
3

 V
(∫ 1

0
s4(u)du

)(∫ 0

−1K
2(v)dv

)
2
(∫ 1

0

(
(s2(u))

′)2
du
)(∫ 0

−1 vK(v)dv
)2


1
3

. (34)

Those criteria can be used directly only for simulation studies (as in section 4.1), where the volatility function
s(·) is a predefined input. For empirical samples it is naturally the task to estimate s(·), so bandwidth criteria that are
based on that function or its derivatives are problematical.54 One usual way out is the cross-validation method (CV),
that determines the optimal smoothing parameter solely with the return series and without any knowledge about the
regressed volatility function. For empirical samples {Xt}t=1,...,n it is not necessary to transform the setup first for
estimating s

(
t
n

)
, rather the volatility σ(t) should be estimated directly (as done in section 4.2). Thus, we turn back

the transformation, h = nhn, and motivate the CV-criterion in the original regression model (20).
The basic idea is the ’leave-one-out prediction’ over the discrete design. In our context, the variance σ2(·) has

to be reestimated for each point j = 1, . . . , n, without using the actual observation R2
j (or R̃2

j , respectively) itself.
We modify the nonparametric volatility estimators (21) and (22) to accordant cross-validation estimators (CVEs)
σ̂
2(j)
h (j) and σ̂2(j)

(1)h(j). The bandwidth selection criterion is to minimize the CV-function, which is the sum of squared

differences between returns R2
j and CVEs σ̂2(j)

h (j) (alternatively R̃2
j and σ̂2(j)

(1)h(j)).

(I) The two-sided CV-function and CVE (untransformed) are:

CV (h) =
1

n

n∑
j=1

(
R2
j − σ̂

2(j)
h (j)

)2
=

1

n

n∑
j=1

(∑n
i=1Kh(i− j)

(
R2
j −R2

i

)∑n
i=1,i6=j Kh(i− j)

)2

!−→ min
h>1

where σ̂2(j)
h (j) =

∑n
i=1,i6=j Kh(i− j)R2

i∑n
i=1,i6=j Kh(i− j)

, h > 1 (∀j = 1, . . . , n) (35)

(II) The one-sided CV-function and CVE (untransformed) are:

CV(1)(h) =
1

n− 1

n∑
j=2

(
R̃2
j − σ̂

2(j)
(1)h(j)

)2
=

1

n− 1

n∑
j=2

∑j−1
i=1 Kh(i− j)

(
R̃2
j − R̃2

i

)
∑j−1
i=1 Kh(i− j)

2

!−→ min
h>1

where σ̂2(j)
(1)h(j) =

∑j−1
i=1 Kh(i− j)R̃2

i∑j−1
i=1 Kh(i− j)

, h > 1 (∀j = 2, . . . , n) (36)

The CV-optimal bandwidths hCV and hCV(1) for the two- and one-sided volatility estimation are numerically found
via a value table for integers h ≥ 2 or via analysing the resulting CV-plot.

54So called plug-in methods develop kernel estimators for the unknown volatility s(·) and its derivatives s2(·)′′ or s2(·)′ and plug them into the
above bandwidth formula, with an iterative procedure estimating optimal bandwidths, compare Gasser et al. (1991).
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3.2 Fitting innovations
In the sequel we shortly introduce the theory for fitting the Pearson type VII distribution to a series of estimated
innovations {ε̂t}t=1,...,n with a method of moments. Because the residual sample is evaluated in each point of time t
by the ratio of a demeaned return and an estimated volatility from the regression-type model (20), we have to distinct
between innovation estimates on a two-sided and one-sided data base:

(I) The two-sided innovation estimators follow as:

ε̂t =
Rt
σ̂(t)

, t = 1, . . . , n (37)

(II) Accordingly, the one-sided innovation estimators are:

ε̂t =
R̃t

σ̂(1)(t)
, t = 1, . . . , n (38)

Agreeing with Drees and Starica (2002), Herzel et al. (2005), Mikosch and Starica (2004a) or Kitagawa and
Nagahara (1999), the Pearson VII distribution can capture some heavy tailed innovations quite nicely.55 The goal
is to fit the one-sided Pearson VII density fV II(1)m,c from (18) separately to nonnegative and absolutes of negative
realisations of εt. Under the assumption that the median is close to zero, both one-sided densities are combined to the
whole asymmetric presentation (19).

The Pearson VII density is part of the Pearson systems, which can be studied in Johnson and Kotz (1970).56 The
symmetric Pearson type VII density57 f

V II(2)
m,c satisfies the equation

p(x) = k
(
d0 + d2x

2
)−(2d2)−1

, (39)

where d0 > 0, d2 > 0 and k chosen to satisfy
∫ +∞
−∞ p(x)dx = 1. Johnson and Kotz (1970) estimate the parameters of

the Pearson system via a method of moments, especially:

d0 = (4β2 − 3β1) (10β2 − 12β1 − 18)
−1
µ2, (40)

d2 = (2β2 − 3β1 − 6) (10β2 − 12β1 − 18)
−1
, (41)

where µ2(X) = EX2, β1(X) =
(

E(X−EX)3

(E(X−EX)2)3/2

)2
(squared skewness) and β2(X) = E(X−EX)4

(E(X−EX)2)2
(kurtosis).

Since the Pearson VII density p(x) is symmetric, β1 = 0, and β2 > 3 is required due to a positive d2. This means,
that the conception is only applicable for samples that are heavier than a normal distribution.

Gürtler et al. (2009) provide a link from (39) to the initially used expression (18) and achieve moment estimators
for m and c of the one-sided Pearson VII density fV II(1)m,c (x). Those are:

m =
1

2d2
=

5β2 − 9

2β2 − 6
, (42)

c =
√

2md0 =

√
2β2µ2

β2 − 3
. (43)

By inserting the empirical moment estimators for β2 and µ2 of subsamples ε+ := {ε̂t | ε̂t ≥ 0}t and ε− :=

{−ε̂t | ε̂t < 0}t we fit fV II(1)m,c to gains and to losses. Therewith we obtain the parsimonious parametrization m+, c+,

55This will also be demonstrated in our empirical studies in section 4.2.
56Every member of the system has a probability density function p(x) that solves a differential equation of form 1

p
dp
dx

= − a+x
d0+d1x+d2x2

,
where a, d0, d1 and d2 are real shape parameters.

57The symmetric expression is defined on the whole real axis x ∈ R and is connected to the one-sided equivalent via fV II(1)m,c (x) =

2 · fV II(2)m,c (x) I[0,∞)(x).
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m−, c− for the asymmetric Pearson VII density (19).58 The estimation of β2 can be reduced to:

β̂2 (ε+) =
Eε4+
Eε2+

, β̂2 (ε−) =
Eε4−
Eε2−

(44)

Moreover, the symmetric Pearson type VII distribution equates to a scaled Student-t distribution with 2m−1 df.59

We get

fV II(2)m,c (x) =
1

γ
g2m−1

(
x

γ

)
, with γ :=

c√
2m− 1

(45)

and FV II(2)m,c (x) =

∫ x

−∞

1

γ
g2m−1

(
y

γ

)
dy

z:=y/γ
=

∫ x/γ

−∞

1

γ
g2m−1(z) γ dz = G2m−1

(
x

γ

)
, (46)

where g· and G· are the density and cdf of a Student-t rv. Because of the simple transformation from the Pearson
type VII to the Student-t distribution, whose quantiles are looked up in tables, we developed the idea to implement
the non-stationary model (20) for the task of VaR calculation as a factor-based model. The univariate Value at Risk
V aR1−α(t) of an exposure w(t) at time t can be modelled with a yield Xt following the regression model, as the
product of w(t) with a nonparametric estimated volatility σ̂(·)(t) and the α-quantile of a Pearson VII innovation. With
um,c;α and t2m−1;α being the corresponding α-quantiles it immediately follows:

t2m−1;α =
um,c;α
γ

⇐⇒ um,c;α = γ t2m−1;α.

Regarding the one-sided presentation, some attention has to be paid to

FV II(1)m,c (x) = 2 · FV II(2)m,c (x) =⇒ α(1) = 2α (e.g. for α = 1%).

Finally, from the Student-t connection follows a restriction to the shape parameter m, that ensures the asymptotic
normality of the NWEs ŝ2hn(u) and ŝ2hn(1)(u), respectively. Amongst others, (C5) E |ε1,n|4+δ < ∞ (δ > 0) was
required in the asymptotic theory. As all (central) moments µk with n > k exist for a tn-distributed rv, the Pearson
VII fit of innovations has to be conform with

2m− 1 > 4 ⇐⇒ m >
5

2
.

If the set of innovations was symmetric (special case, not observed in general), the assumption V ar ε1 = 1 for iid
{εt}t implies additionally the relation c =

√
2m− 3 of shape parameters.

4 Simulation and empirical studies
So far we have provided the necessary statistical tools for estimating the volatility structure (σ(t))t nonparametrically
and for approximating estimated innovations {ε̂t}t by the asymmetric Pearson type VII distribution via a method of
moments. These are the main steps for fitting the regression model to a financial time series. In the first part of this
section we apply the theory to simulations, that challenge the asymptotical results for finite samples by predefining
a volatility function or a price-process, perturbated by a Pearson VII noise, and reestimating. In the second part,
the whole regression model is applied for empirical studies on the benchmark indices, introduced in section 2, and
evaluated in a backtesting framework.

58Special attention should be paid to that method of moments in the one-sided implementation: For estimating β̂2 (ε+) we recommend to include
the hypothetical counterpart−ε+ of the one-sided set and to work on the symmetrical base {ε+,−ε+} with standard formula. ElseEε+ 6= 0 and
β̂2 builds powers on a falsely centered rv. Proceed analogically for β̂2 (ε−).

59Student’s df is a measure for the heavy-tailedness and is called tail index point estimate in the common literature, e.g. Drees and Starica (2002).



4 SIMULATION AND EMPIRICAL STUDIES 28

4.1 Simulation experiment
A) Firstly, we predefine a heteroscedastic volatility function (standard deviation) as:

σa(t) =
1

10

(
sin

(
2π

100
t

)
+ 1

)
t ∈ [0, 500], (47)

sa(u) =
1

10
(sin(10πu) + 1) u ∈ [0, 1]. (48)

This corresponds to a multimodal oscillation with 5 periods in the interval [0, 500]. The values on the discrete design
1, . . . , 500 could be thought as annualized volatilities σa(t) at the end of days t, observed over two years (250 trading
days p.a.). The transformed version is sa(u). The example focusses first on reestimating the volatility in a simplified
case of the standardized regression model (25), with a return expectation µ = 0 and innovations distributed as ε1,n ∼
N (0, 1).60 The main point is to estimate the heteroscedastic part of the simulated series via the two-sided ŝ2hn(u)

and the one-sided NWE ŝ2(1)hn(u) and to observe the influence of sample size to the estimator’s fit.61 Bandwidths are
optimized with the MISE-criterion.

As discussed in section 3.1 the asymptotic works by increasing the data density on a fixed time-frame [0, 1].
A larger sample size n enables more and closer observations, the predefined function is scanned more precisely.
Figure 13 displays the nonparametric curve estimation of the volatility function sa for different sample sizes in a
median simulation of 65 repeats.62 We discover visually that the fit improves with the sample size for both NWEs.
The median SSE increases considerably slower than the sample size, for very large samples it decreases absolutely.
The approximation of the predefined volatility sa(u) by nonparametric estimators ŝhn(u) and ŝ(1)hn(u) is already
noticeable for smaller samples of 100 or 500 points and quite satisfying using 1000 design points. Due to its additional
future information, the two-sided estimator leads generally to a better and smoother fit. The left-sided approach lags
behind, since the volatility does not increase until the first extremal event happens, and after a series of shocks it decays
typically slower. We did not correct boundary effects, implying the first nhn points to be distorted, for the two-sided
estimator also the last nhn values. On the right boundary both estimators are nearly the same (neglecting different
bandwidths). For the sample size of 5000 both estimates cover the predetermined function visually excellent.

To appreciate the goodness of cross-validation, we estimate optimal bandwidths in the simulation example again
with the CV method. Although we do not include any knowledge of sa, the outcomes are quite similar parameters
and volatility graphs. For the 5000-point setup the resulting bandwidths are 0.030 (two-sided) and 0.015 (one-sided),
that are very close to the MISE-optimal smoothing parameters (compare figure 13), with absolute differences lower/
equal 0.0025, which may also be caused by the chosen grid pattern of widths 0.005. The SSEs (0.54153 for two-sided,
1.57060 for one-sided setup) are marginally larger, but the volatility estimators ŝhn(u) or ŝ(1)hn(u) deliver again an
excellent fit to the predetermined sa(u), that is visually very similar to the bottom graph of figure 13.

B) In the next step we expand the simulation to a simple, discrete price process {Pt}t=0,...,500, where σa(t) on [0, 500]
is involved as time-variant part of an annualized volatility function σ̃a(t), that additionally includes a time-invariant
component σ0. Moreover, a constant trend µ is modelled and a heavy-tailed approach for the innovations is chosen:

Pt = Pt−1 e
Xt , P0 := 1000 , t = 1, . . . , 500, where (49)

Xt = µ+ σ(t)εt, with µ :=
15%

250
,

σ(t) =
σ̃a(t)√

250
, σ̃a(t) := σa(t) + σ0 and σ0 := 10%,

εt ∼ PearsonV II(2)m,c with m := 4 and c :=
√

5.

The log-return of prices,Xt = ln (Pt/Pt−1) = ln eXt = µ+σ(t)εt corresponds to the (untransformed) regression ap-
proach (20). Innovations εt are modelled as symmetrical Pearson VII distributed rvs with equal shape parameters m, c

60We include later the proposed innovation modelling. The alternative choice of an expectation µ = const has a negligible influence on the
simulation example due to centering the returns first of all. Assuming µ = 0 is just for the sake of convenience.

61The simulation was implemented in a C programme, using the Box-Muller method for transforming uniform to normal random numbers. In
addition we wrote VBA-code for MS Excel, to be used for smaller samples.

62By calculating a sum of squared errors SSE ŝhn :=
∑n
i=1

(
ŝhn

(
i
n

)
− s

(
i
n

))2 of the estimator relative to the predefined volatility function
for each simulated sample and ordering paths by the extent of their SSE we select the median simulation.
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BW two-sided error (SSE) BW one-sided error (SSE)
100 points 0.06013 0.15739 0.06377 0.30549
500 points 0.04358 0.25614 0.03730 0.59948
1000 points 0.03794 0.28939 0.02960 0.75579
5000 points 0.02750 0.46056 0.01731 1.36289

Figure 13: Median simulation (65 samples ordered by SSE) of volatility curve estimation on sa (continuous line,
black) for 100, 500, 1000 and 5000 equidistant design points (from top to bottom) by two-sided NWEs (rhombuses,
grey) and one-sided NWEs (triangles, black) with MISE-optimal bandwidths (BW).

for gains and losses. Figure 14 displays a representative simulated path of prices63 and the nonparametric estimated
volatilities relative to the original volatility in the course of time.

Here, the fit is quite acceptable despite the small sample size of 500 and the strong influence of random heavy-
tailed innovations εt. The comparison to the price graph shows, that the nonparametric estimators are able to capture
fast phases of market shocks and increased volatility, respectively.64

63Innovations were simulated in MS Excel via uniform[0, 1] random numbers α, that where interpreted as probabilities corresponding to the
α-quantile of a Student-t2m−1 rv. The Pearson VII random number is then um,c;α = c√

2m−1
t2m−1;α.

64Repeats of the simulation may produce very different paths, because the volatility level (medium 20% p.a.) dominates the price process more
than its trend (µ = 15% p.a.) and the incident of extreme innovations may cause considerable shocks. Due to the extent of random innovations,
the NWEs may have different optimal bandwidths and a different developing of estimates adapted to the realized volatility of the simulated sample.



4 SIMULATION AND EMPIRICAL STUDIES 30

Figure 14: Simulation path for price process Pt = Pt−1 e
Xt combined with regression model (20) (top) and annualized

volatility estimates for log-returns Xt: σ̂(t) (rhombuses, grey) and σ̂1(t) (triangles, black) of the predefined volatility
σ̃a(t) (continuous line, black) for 500 design points with CV-optimal bandwidths (hCV = 34, hCV(1) = 29).

C) We finish our simulation studies with a forecasting experiment, continuing on the price process (49) and its reali-
sation displayed in figure 14, i.e. realized innovations {εt}t were frozen. We imagine, that we have observed only the
first 251 prices (P0, . . . , P250) up to a forecast starting point t0 = 250, and call that half of the sample as ’in-sample’
part. The second half, called ’out-of-sample’ part, will follow within the next year. We plan to forecast the distribution
of the 1-day ahead return Xt+1 with the information available in t ≥ t0, successively. For forecasting purposes we
have to work with the one-sided setup of the regression model (20) since only past information is available.

The model is calibrated in-sample and optimal parameters are fixed for the out-of-sample part:65 After estimating
a centered return series R̃1, . . . , R̃t0 , the optimal smoothing parameter h

CV(1)
n is identified for the purpose of non-

parametric volatility estimation. Having calculated the series of standard deviation estimates σ̂(1)(1), . . . , σ̂(1)(t0),
we estimate the innovation series ε̂1, . . . , ε̂t0 and fit the asymmetric Pearson VII density fV IIm+,c+,m−,c− to nonnegative
and absolutes of negative innovations.66 That way, we use the distribution of Xt0 as a forecast of Xt0+1. Afterwards,
we develop with the new returns, their volatility estimates and the fixed innovation parametrization the distributions
of X251, . . . , X500 successively.

We obtain an optimal one-sided bandwidth h
CV(1)
n = 36 days. This differs slightly from the optimum on the full

sample because of the impact of random innovations in the quite small series. The one-sided annualized, estimated
volatilities of the price process are shown in figure 15. The in-sample estimates are grey depicted, while the later
pointwise estimators of the out-of-sample part are printed in black. The optimal Pearson VII parameters for estimated
innovations {ε̂t}t=1,...,250 in terms of one-sided volatilities and returns are m+ = 5.6299, c+ = 2.9038 and m− =

7.1976, c− = 3.2758. They define the right and the left tail of the asymmetric Pearson VII density fV IIm+,c+,m−,c− , that
are presented in figure 16 relative to the histogram of innovations.

We observe a pretty good approximation of the (scaled) innovation frequencies by the Pearson VII densities (black
line) on both sides. Moreover, the illustration presents a comparison to a standardized Gaussian density (in grey):

65Alternatively one could recalibrate the model every day or fixed period out-of-sample, to incorporate new parameter information.
66Even though we have assumed a symmetric Pearson VII distribution, the random innovations cause different optimal parameters m+, c+ vs.

m−, c− on both sides following the method of moments.
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Figure 15: One-sided nonparametric volatility estimates σ̂1(t) in the price process (49) with a CV-optimal bandwidth
of 36 days. In-sample estimates are grey, out-of-sample volatilities are black depicted.

Figure 16: Pearson VII fit of negative and nonnegative innovations by the density fV II5.63,2.90,7.20,3.28. The bottom
graphs compare the asymmetric Pearson VII (black) and the standard normal density (grey).

Deviations from the normal densities are to be seen in the middle of the distribution and in the tails, where we
can conclude that extreme Pearson VII quantiles differ significantly from normal quantiles.67 There are only slight
differences of the left and right distribution fit of innovations due to the simulation setup.

It should be attended, that in general a trade-off between the smoothness of volatility estimates and the innovation’s
distribution is observed: The bigger the bandwidth in nonparametric volatility estimation the smoother is the volatility
graph and the more heavy-tailed are the innovations.68

To measure the modelling performance we apply the Kupiec test to shortfall rates of the out-of-sample part. The
two-sided hypothesis test is an extension of a binomial test for the likelihood of N shortfalls in a sample of size
n, where the true shortfall probability is hypothetical H0 : p = α for an (1 − α) VaR-level. Based on a normal

67Concerning the left-sided fit, we see that lower confidence levels (in terms of maximum losses), as 95%, may have Pearson quantiles that are
absolutely smaller than the normal (−1.5850 Pearson vs. −1.6449 Gaussian), but for extreme shortfall levels, as 99.5%, Pearson overtakes the
Gaussian quantiles (−2.6961 vs. −2.5758).

68That is the reason why the Pearson VII fit of innovations may fail for good volatility estimates with small bandwidths. Then the normal
distribution may be conservative for the task of extreme quantile approximation.
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approximation, Kupiec (1995) developed approximate 95% confidence regions of failure rates. The log-likelihood-
ratio

LRp = −2 ln
[
(1− p)n−NpN

]
+ 2 ln

[(
1− N

n

)n−N (
N

n

)N]
(50)

is χ2
1 distributed under H0. Thus, the risk measure respectively H0 is rejected on a 5% level of significance if

LRp > 3.84. This test is widely used by financial risk managers to evaluate their risk models, even the penalty
zones of the Basel II committee are based on this methodology (see e.g. Jorion (2006)). The Kupiec test is used by
scientists as well to support return models, e.g. in Choi and Nam (2008).

Primarily, we use Kupiec backtesting for the non-stationary modelling of the price process (49) to evaluate the
forecasted daily returns in terms of certain quantiles. We focus on the loss tail and deduce a relative 1-day Value at
Risk V aR1−α,1d(t) for the next day’s return Xt+1 corresponding to the regression model (20):

V aR1−α,1d(t) = X̄t + σ̂(1)(t)um,c;α(1) = X̄t + σ̂(1)(t) γt2m−1;α(1) , γ =
c√

2m− 1
, (51)

where um,c;α(1) and t2m−1;α(1) with α(1) = 2α are the quantiles of the left-side Pearson VII fit and the corresponding
Student-t expression. This forecast for a maximum loss, that is not exceeded in (t, t + 1] with probability 1 − α,
is compared to the realized next days return Xt+1. A shortfall is observed if Xt+1 ≤ V aR1−α,1d(t). The number
of shortfalls in the out-of-sample period is accumulated and evaluated with the Kupiec test statistic LRp. Figure 17
summarizes for a 99% confidence level of maximum losses. The non-stationary forecasts experienced 5 exceedances
over the VaR threshold, which deviates slightly from the expected number of shortfalls, but is within the allowed range
of {1, . . . , 6} for the 5% level of significance. The model is accepted by the Kupiec test.

Figure 17: Kupiec backtesting of forecasted V aR99%,1d(t) against realized returns Xt+1 (out-of-sample) in the non-
stationary model.

Furthermore, model acceptance was shown for all possible confidence levels greater-than-or-equal 80%. Most
exceedances occured generally, when the volatility was at a low and started again to increase. The example was chosen
with quite extreme volatility changes and short periods of the oscillation. Nevertheless the non-stationary approach
works. It could be supposed that a parametric VaR based on a long-term standard deviation is advantaged since it
covers more periods of the recuring volatility structure. That is why we backtest the basic risk model, introduced in
section 2.1, the same way and compare both model performances. Figure 18 gives the number of exceedances for the
different approaches. The basic risk model, based on a 250-day standard deviation (fourth column), seems to benefit
from the higher average volatility: Less exceedances occur for the most confidence levels and the number of shortfalls
is closer to the expectation for levels from 95% to 99.5%. But this VaR-model is too conservative, it is rejected on
weaker levels where certain exceedances are required. Based on a window adjusted to the bandwidth of the one-sided
NWE (right column) the parametric VaR-model passes the weaker but fails some higher confidence levels.69

69The basic risk models, based on standard deviations over 50 days and 36 days, respectively, show on the given confidence levels the same
number of exceedances.
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Figure 18: Kupiec test results for the non-stationary model and two types of the basic risk model (different horizons
of standard deviations) on several confidence levels. Rejections on a 5% level of significance are grey highlighted.

Concluding, the simulation experiment proved that the non-stationary model is not only of theoretical quality.
Moreover, it was able to capture simulated return dynamics and to provide satisfactory distributional forecasts as well.
Finally, this approach outperformed the basic risk model.

4.2 Empirical studies
In the previous paragraphs we got the confirmation to apply the non-stationary model (20) to real financial time series.
The idea of mapping exposures by appropriate benchmarks, introduced within the unfavourable ’basic risk model’ in
section 2.1, is still promising. We take on the benchmark indices for equity-, interest rate-, credit spread- and cur-
rency exposures, that were established in table 1. Returns are determined in the ’preferred conception’. The following
studies implement the full non-stationary model univariately to each of the benchmark return series and evaluate the
model fit.

A) Our special focus is spent again to the representative examples EquNA (MSCI TR Gross North America equity
index), RateUSD (USD swap rate annual, 5 year), CredSta (synthetic BM to model global govt. to swap spread) and
CurrUSD (ECB Euro Exchange Rate as EUR/USD) of the four exposure types. Their non-stationary modelling is
illustrated in figures 19 to 22, following the steps from section 3. After demeaning the log- or diff-returns (top graph),
the volatility of the series is estimated nonparametrically. The symmetric, two-sided NWE (21) and the historical,
one-sided NWE (22) are presented in the course of time (middle graph).70 The bottom graphs present the fit of the
asymmetric Pearson VII distribution to the residuals, estimated as ratio of demeaned returns and volatility estimators.
We distinguish again between the two- and one-sided approach regarding their data input. The tables in each figure
report on the corresponding Pearson VII moment estimators and the optimal bandwidths from cross validation.

The EquNA example reflects the development of one of the major stock markets in the period from 1999 to 2006,
with a negative highlight in the burst of the ’I.T. bubble’ in the early new millennium. First significant peaks in stock
returns appear in March 2000, markets were deflating with full speed in the years 2001 and 2002. The nonparametric
volatility estimates immediately react on sequences of extreme log-returns, reaching volatility levels that are more
than the double of the long-term average. The one-sided NWE has a certain delay to the both-sided equivalent, but it
similarly detects phases of high and low volatility. On the other hand, the empirical standard deviation needs a long
until the extreme changes get an impact on the average of 258 centered squared returns. After that financial crisis,
the standard deviation declines very slowly while the market volatility was on a low level since summer 2003. The
peaked nonparametric volatility graphs are consequence of quite small optimal bandwidths (hCVopt = 24, h

CV(1)

opt = 30)
from cross validation. The estimators alone catch the market dynamics excellent and the residuals are not as heavy
tailed as one may assume. Indeed the Pearson VII fit of innovations fails, since the kurtosis of estimated innovations is
lower than 3. In figure 19 alternatively a standard Gaussian density is compared to the histogram of innovations, that
sufficiently approximates here and might be adequate in combination with the ’heavy-tailed’ volatility estimates.

70The volatility series starts at March 1, 1999 to initialize the estimators with two months of past returns. That reduces boundary effects on the
left interval end, but does not eliminate them completely if the bandwidth is greater than 40 days. Moreover, boundary corruptions occur on the
series’ end for the two-sided volatility estimator.
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For the following examples the Pearson VII innovation fit works and we can present the full non-stationary imple-
mentation (20). The US 5-year swap rates (figure 20) show three phases, with low volatilities in the first and the last
two years. Shocks in interest rates accompany the financial and economic crises from 2001 to 2004, where the 5-year
swaps declined from more than 7% to a low of 2.5% p.a. as a consequence of the FED policies to reanimate US econ-
omy with low funding rates. Those shocks increased the volatility level from about 60bp (based on diff-returns of rates
expressed in bp) to about 180bp p.a. Here, the optimal one-sided bandwidth was adjusted manually to h

CV(1)

opt = 120,
since the CV-function was almost constant for bandwidths greater than 100 with minima in the ranges [115, 145] and
[185, 200].71 The Pearson VII fit of innovations reflects the asymmetry of the return distribution, where the right tail
(that is the loss tail for fixed income values) is heavier, as to be seen on the lower Student’s df 2m− 1.

The CredSta series (figure 21) fluctuated strongly from summer 1999 to spring 2000, decreasing finally from a
swap spread of −35bp to −65bp. The volatility estimators start up to a level of 74bp annualized volatility, which is
more than three times the full sample average. A second maximum is arrived in September 2001 where a flight into
the save haven of treasuries after the 9/11 terrorist attacks temporarily slashed the rates. Single peaks in the years
2004 and 2005 cause a sawtooth structure in the one-sided NWE, i.e. a rapid increase and a quite smooth decline
(similar to an exponential). The Pearson VII fit of innovations works well, the credit changes turn out to be very heavy
tailed, especially in the right tail, expressed by low optimal values of m· and c·. The return distribution is leptokurtic
and right skewed, i.e. extreme credit losses due to sudden spread expansions are considered with the non-stationary
approach.

The last example is the exchange rate EUR to USD in figure 22. For the two-sided volatility estimation the optimal
bandwidth has to be manually adjusted (hCVopt = 100) with respect to other horizons, other currencies and the one-sided
equivalent. The annualized volatilities evolve most time in a range from 8% to 15%, but clusters of higher returns are
detected by the NWEs during the years 2000 and 2001. The Pearson VII approximation of the residuals leads to an
asymmetric distribution, that is heavier on the left side which is the loss tail of the EUR-investor.

Finally, we extend this analysis to all benchmark return series from 1999 to 2006. Figure 23 reports on the
optimal bandwidths for nonparametric volatility estimation and on the Pearson VII parametrization (if existent) of the
estimated residuals. The first lines of the table show the two-sided implementation. The one-sided parametrization,
based on historical data only, is shown below. As highlighted grey in the tableau, some bandwidth optimizations fail
due to a plane (or slowly declining) shape of the CV-function, that inhibits detecting a global minimum. Generally,
the bandwidths were restricted to 200 days for reasons of heteroscedasticity and boundary effects, especially for the
subsequent smaller samples. Manual bandwidth adjustments had to be conducted to the minor of series. We derived
these optima by studying the CV-function, considering similar benchmarks, other time horizons or the opposite (one-/
two-sided) appropriate optima. Consequently, we did not smooth by eyes, but rather decided on quantitative criteria.

Several innovation series in figure 23 are not heavier than a normal distribution and the Pearson VII fit fails since
their kurtosis is lower than 3. Due to the separate approximation of negative and nonnegative innovations there are
examples where at least one tail can be modelled as Pearson distributed rv. We observe slightly more successes in
the one-sided innovation modelling. It is noticeable that the Pearson VII method fails many times, when the volatil-
ity estimates are based on small (CV-optimal) bandwidths. We developed the following explanation: The bigger the
bandwidth in nonparametric curve estimation the smoother is the volatility estimate and the more heavy-tailed are
the innovations. Thus, a perfectly calibrated volatility estimator with a small bandwidth may imply an innovation
distribution that is weaker than Gaussian and the Pearson VII fit fails in the non-stationary model. On the other hand,
oversmoothed volatility estimates on the same series could produce heavier tailed innovations and the complete frame-
work holds. Hence, there might be a trade-off between the quality in volatility estimation and a successful Pearson
VII fit of innovations. For instance, Drees and Starica (2002) choose in their S&P 500 example a bandwidth manually,
that is significantly larger than the CV-optimum we derived for that series. In the next step they observed heavy-tailed
innovations and fit them asymmetrically by Pearson VII. As a consequence of our NWEs (with a lower CV-error), our
Pearson VII fit fails for positive innovations since those are no more heavy tailed.

B) In the next step we compare the model fit to the four standard examples with respect to three different time se-
tups: 1. long-term horizon 1999 to 2006, 2. time horizon 1999 to 2000 and 3. time horizon 2005 to 2006. The
periods were chosen to overlap themselves, so that we can compare two models with different information settings in

71The decision on the optimal bandwidth was supported by optima on other swap rates (e.g. RateEUR) and the analogy to the two-sided
bandwidth. Attend to the later remarks.
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Figure 23: Parameters for the non-stationary modelling of benchmark return series from table 1 for the two-sided and
the one-sided implementation. Grey highlighted elements designate manually adjusted bandwidths after CV. Cells
with entry ’n.a.’ instead of Pearson VII parameters identify benchmarks where the innovation fitting failed.

the first and last two years. Figures 24 and 25 present the two-sided and one-sided estimated volatility72 with optimal
bandwidths listed in tables below. We observe significant differences in the bandwidth selection during the three pe-
riods of time. The smoothing parameters in time-horizons 1999-2006 and 2005-2006 and samples EquNA, CredSta
and CurrUSD are still closest to each other. The horizon 1999-2000 shows very different bandwidths concerning most
series. Probably, the extremal returns during the financial crises after the y2k had a strong influence on the automatised
parameter choice. Consequently, the volatility graphs differ from each other in overlapping periods, especially to be
seen in the two-sided implementation for EquNA and CredSta within the first two years as well as for RateUSD on
both two-year periods. Strongest deviations in the one-sided estimators appear on EquNA and RateUSD from 1999 to
2000. All CurrUSD volatility estimates are built on quite large optimal bandwidths,73 so that stronger deviations are
not apparently.

Moreover, the optimal bandwidths for all benchmark indices in the three periods of time are listed in figure 26. The
above developed result carries forward: The time horizon and extremal returns in one subperiod, respectively, have
an important impact on CV-optimal bandwidths and henceforth on nonparametric volatility estimation. Alternatively,
time-varying bandwidths, that are reestimated with a certain frequency, could be reconsidered.

72The first and last two months are not estimated in each two-sided setup to reduce boundary effects. Regarding the one-sided implementation
only the first two months of data need to be excluded. Some estimation boundary errors remain for bandwidths greater than 40 days.

73These are in the both-sided setup twice manually adjusted to 100 days.
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Figure 26: CV-optimal smoothing parameters on several horizons. In each benchmark column the left (grey) number
stands for the two-sided bandwidth while the right is the one-sided. Grey highlighted bandwidths were manually
adjusted after CV, furthermore all are restricted to 200 days. Bandwidths differ much between periods of time.

The smoothness of volatility estimates affects the extent of estimated innovations and their distributional fitting.
Hence, different horizons bring out different Pearson VII approximations of innovations for the same benchmarks.
Figure 27 displays the optimal parametrizations of the four standard examples in the used periods of time. Several
times the Pearson VII fit of innovations fails.74 Again it is to be seen generally, that the smoother the volatility
estimate the heavier tailed are the innovations and the smaller are its parameters m+, c+,m−, c−. Similar effects can
be discovered for the other benchmark classes, too.

Figure 27: Optimal Pearson VII parameters following the method of moments for standard examples on three time
horizons. In each benchmark column the grey coefficients characterize the innovation fit based on the two-sided setup
while the black parameters are for the one-sided modelling. Fitting defaults are labeled as ’n.a.’.

C) We finish this chapter with a forecasting experiment, similar to the simulation setup in section 4.1, part C). Again,
we divide the sample series into an ’in-sample’ part for model calibration and an ’out-of-sample’ part for forecasting
and model evaluation by dint of the Kupiec test. We analyse the daily price series of the MSCI North America
index from 1999-2002. The first two years are treated as in-sample. On its demeaned log-returns R̃1, . . . , R̃516

from 1999 to 2000 the bandwidth h
CV(1)

opt = 63 days was found to be optimally for the nonparametric volatility
estimation, compare figures 25 and 26. After having calculated the one-sided NWEs σ̂(1)(1), . . . , σ̂(1)(516) and the
return residuals ε̂1, . . . , ε̂516, the asymmetric Pearson VII density fV IIm+,c+,m−,c− with m+ = 9.8325, c+ = 3.9547,
m− = 7.1698, c− = 3.4640 fits the random innovations optimally, compare figure 27. In this vein we implement
the regression approach (20) and model the whole return distribution of X256, that is our best prediction for the
distribution of X257. According to the 1-day forecasting, we develop the return series and their volatility estimates
in the out-of-sample part gradually. Figure 28 presents the in-sample calibration in terms of log-returns, left-side
estimated volatilities and the Pearson VII fit of innovations (grey), and already extends the return and volatility series
out-of-sample (black).

74The Pearson VII method works for more than 60% of the 29 benchmark examples regarding all cases of horizons, two-/ one-sided implemen-
tations and separate tail approximations. Due to the number of setups and optimized parameters we do not list all index parametrizations.
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Figure 28: Non-stationary model calibration for the EquNA series from 1999 to 2000 (grey, ’in-sample’) and model
application to the years 2001 and 2002 (black). Top: daily log-returns; middle: nonparametric one-sided volatility
estimation with h

CV(1)

opt = 63; bottom: left and right Pearson VII fit of innovations with density fV II9.83,3.95,7.17,3.46.

Although the optimal EquNA bandwidth differs in the short-term period from the longer optimum, the one-sided
NWE is able to capture the stock market shocks during the years 2001 and 2002 very well. A sequence of extreme
log-returns increases the volatility estimator to a maximum of 39% p.a. in August 2002. The Pearson VII distribution
is leptokurtic and skewed to the left, i.e. extreme losses are more probable than extreme gains.

We assess the quality of the regression model (20) with the Kupiec backtesting, as we compare 1-day forecasted
return distributions and certain quantiles, respectively, to the realized returns. We focus on the loss tail and deduce in
each point of time t ≥ 516 a relative Value at Risk V aR1−α,1d(t) on a confidence level (1 − α) for the next day’s
return Xt+1, applying formula (51). The number of shortfalls, that are points t where Xt+1 ≤ V aR1−α,1d(t), is
accumulated and evaluated with the Kupiec test statistic LRp from (50). Figure 29 summarizes for a 99% confidence
level of maximum losses and a 5% level of significance.

Thereafter the non-stationary implementation of the EquNA return series works excellent. Regarding the 513
observations and the 1% proposed shortfall probability, 5.1 exceedances were expected by the backtesting. Indeed
the VaR forecast was exceeded 5 times and the non-stationary model is accepted by the Kupiec test. Furthermore,
acceptance was derived for all possible confidence levels greater-than-or-equal 80% and with shortfall numbers close
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Figure 29: Kupiec backtesting of forecasted V aR99%,1d(t) vs. realized EquNA returns Xt+1 in the out-of-sample
period 2001-2002 for the non-stationary approach.

to the expected exceedances. Figure 30 gives an overview of widely used confidence levels and compares the non-
stationary model performance to the basic risk model. The latter modelling failed the Kupiec test for certain levels,
since to many exceedance were observed. The regression approach (20) clearly outperformes the classical parametric
VaR-model based on 258-day standard deviations.

Figure 30: Kupiec test results for the non-stationary model and the basic risk model on several confidence levels.
Rejections on a 5% level of significance are grey highlighted.

We applied that setup to a plenty of benchmark indices and time horizons with qualitatively similar results. For
instance, an analogous survey on exchanges rates EUR/USD from January 4, 1999 to March 31, 2008, with the model
being calibrated within the first 6 years using the results from parts A) and B), and being applied to the next 15
months (out-of-sample part) day-to-day, gains a successful real-world approximation, that is supported by Kupiec
backtesting.75 Again this non-stationary implementation outperforms the classical parametric VaR standard.

5 Summary and conclusion
In the first part of the article we introduce a simple parametric Value at Risk approach, as it is used by professional
risk managers in banks and insurances, to measure the maximum loss (to a certain probability) of financial returns or a
whole portfolio. The VaR calculation is based on an exposure conception for assets with appropriate liquid benchmark
indices mapped to it (for equity markets, swap rates of economic areas, credit spreads according to rating classes,
important exchange rates to EUR). The benchmark returns are assumed to be iid normal random variables. We get
granular on that approach by a comprehensive survey of the modelling assumptions, that have to be rejected in the

75This empirical study is available upon request.
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majority of hypothesis tests, especially on an 8-year daily data base. The normality of the return distribution is denied
as well as the serial identity and independence. The latter results query volatility measurement via empirical standard
deviations, in general, and abnegate the time transformation of volatility or VaR to other horizons.

As a consequence a non-stationary, heteroscedastic model for financial returns is developed, based on the ideas of
Herzel et al. (2005) and Drees and Starica (2002). In a regression framework the volatility is thought to be exogenous
to the process of returns, since no explanatory variables are at hand. Instead the evolution of prices contains the
complex market conditions. The vectors of returns are assumed to be independent while having a unconditional
covariance structure that changes smoothly in time. With the help of nonparametric regression on equidistant design
points we estimate the unconditional (co-)variance directly on centered returns (Nadaraya-Watson estimators, NWEs).
Further effort is spent to an accurate modelling of the random residuals. An asymmetric version of the Pearson type VII
distribution, that enables heavy tails, is fitted to the estimated innovations. We specialize on an univariate description.

In a technical article on the same non-stationary approach, Gürtler et al. (2009) prove consistency and asymptotic
normality for the variance estimates we employ. After outlining these results in terms of the symmetric NWE and of the
one-sided NWE, which is based only on recent past data and should be used in forecasting, we deduce requirements for
kernels and appropriate bandwidths. The biweight kernel is established. Cross-validation is adopted for an automatised
bandwidth selection. The task of fitting innovations via Pearson type VII is simplified by providing a method of
moments for parameter estimation and by deriving a connection to the Student-t distribution. By dint of the latter
presentation of residuals (and with t-quantiles tabularised) a factor-based VaR calculation can be implemented in
terms of the regression modell: The univariate V aR1−α(t) of an exposure w(t) can be modelled as the product of
w(t) with a nonparametric estimated volatility σ̂(·)(t) and the Pearson VII innovation α-quantile of its benchmark
return distribution.

That idea is picked up in a simulation setup and for evaluating the quality of empirical studies for daily log-returns
of equities, currencies and diff-returns of interest rates and credit spreads. A Kupiec backtesting confirms the goodness
of VaR forecasts that are compared to the next day’s returns and evaluated by their shortfall rates. In terms of that
backtesting method the non-stationary model clearly outperforms the basic risk model (parametric VaR). Beyond, the
simulation studies document how the fit of volatility estimates to a predefined function is improved by a more and
more refined data base, and that the non-stationary model is able to capture price processes at all. Extensive empirical
studies (for 30 benchmark indices) focus on the practical usage of the nonparametric volatility estimation and its
interaction to the Pearson VII fit of innovations.

We observed and do not conceal, that the bandwidth selection via cross validation can not be automatised at all:
Rarely the method fails due to finding no accurate minimum in the CV-function. But we provide other quantitative
criteria for that choice, so that we avoid smoothing by eyes. Moreover, we observe a trade-off between volatility esti-
mation and Pearson VII innovation fitting: The bigger the bandwidth in nonparametric curve estimation the smoother
is the volatility estimate and the more heavy-tailed will be the innovations. Thus, a perfectly calibrated (small) band-
width may cause that the Pearson VII fit of innovations fails, since the condition of a kurtosis greater than 3 is not
satisfied.76 A failed Pearson VII fit could be compensated conservatively by a Gaussian distribution for innovations.
Another observation is, that the optimal parameters (bandwidths and Pearson VII coefficients) change through time.
Consequently, a time-varying bandwidth, that is reestimated with a certain frequency, could be a task for further
research.

Compared to our main references we think to have developed the following novelties: The non-stationary re-
gression model is applied (univariately) to a variety of financial time series. It is probably used for the first time to
approximate credit spreads and to model diff-returns. Our statistical background for nonparametric volatility estima-
tion are consistency and asymptotic normality results from Gürtler et al. (2009). For the Pearson VII modelling of
random innovations we provide the formula for parameter estimation based on a method of moments. By dint of a
Student-t description of the innovation’s distribution we derive a factor-based VaR-presentation of the non-stationary
approach, that is easy to implement for a daily real-world execution. The modelling performance is successfully
evaluated with the Kupiec backtesting, that furthermore proves an outperformance to the classical, parametric VaR
approach. We hope to have succeeded in the splits between theoretical research and practical application.

We finish with some remarks on similar studies: Beside the successful Kupiec test of the regression model, we
do not explicitly present the check of all singular model assumptions, mainly concerning the innovation modelling.
For that important task we refer back to Drees and Starica (2002), who elaborately proved on a twelve-year S&P 500
return series that the estimated innovations are iid random variables (with similar hypothesis tests as we executed in

76On the other hand suboptimal (too smooth) volatility estimates would enable a complete model implementation.
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the first part to general returns). They proved the goodness of fit of the asymmetric Pearson type VII distribution for
innovations, as they applied a normal transformation of the distribution on realized innovations and normality tests.
Moreover, they compared a Student’s-t GARCH(1, 1) and a GED EGARCH(1, 1) model, fitted to the same data, with
the methods above. They concluded, that the non-stationary return model fits the data significantly better than the
conventional GARCH-type models. Finally, they provided a forecasting analysis with 1-, 20-, and 40-days ahead
(conditional) distributional forecasts (judged by a normal transformation of that distribution with d-day returns) of the
three models, where the non-stationary approach revealed a significantly better performance.

Herzel et al. (2005) showed on a tri-variate example, consisting of the exchange rate EUR/USD, the FTSE 100
index and the 10-year US T-bond rate, that their paradigm describes the changes in the dynamic of the three risk
factors well and delivers good multivariate distributional forecasts. The methods are similar to those of the previous
paragraph. They proved an outperformance of their forecasted distributions against theRiskMetricsTM (JP Morgan)
approach, based on exponential weighted moving average volatilities in a Gaussian return model. They identify the
careful modelling of the extremal behavior of innovations as one factor of success, making their approach ’amenable
for precise VaR calculations’ (Herzel et al. (2005), chapter 8). This is one of the targets, we had on our own agenda.
Last but not least, Mikosch and Starica (2004a) extend the non-stationary, nonparametric framework by including a
time-varying expected return in the univariate case. They develop the statistical theory for estimating the expected
return and volatility consistently. On a S&P 500 daily return series over more than 50 years they give statistical
evidence that the expected return as well as the market price of risk varies significantly through time.

Coming back to the widely used VaR-approach of RiskMetricsTM , Drees and Starica (2002) as well as Herzel
et al. (2005) report on its relationship to the (univariate) non-stationary regression approach. That commercial model,
based on a similar multiplicative setup (with return expectation 0 and normal innovations), works factual with a
volatility estimate that can be interpreted as Nadaraya-Watson estimator with an exponential kernel.77 So, this is a
special case of our volatility estimation (without demeaning returns, but violating some regularity conditions). Because
of our more flexible bandwidth selection and innovation approximation, the non-stationary model is preferred.

Having seen the advantages of the non-stationary model, we can imagine the following fields for future research:
The main task will be to develop an adequate multivariate setup for a broad exposure conception. Instead of a direct
multivariate setup, a risk aggregation in a simulation approach could be fruitful, e.g. with Cholesky decomposition
of correlations, that continues on our univariate factor-based implementation for VaR-purposes. A full nonparametric
setup is conceivable, where the (still restrictive) parametric approach for the innovation’s distribution could be sub-
stituted with a nonparametric kernel density. Following the ideas of Mikosch and Starica (2004a), the inclusion of
a time-dependent expected yield, modelled with kernel regression, may be a further step. Based on the basic belief
that both recent past and future returns are manifestations of the same unspecified, exogenous economic factors, that
evolve smoothly through time, we may use that frame for portfolio optimization in terms of a tactical asset allocation.
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