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Abstract. The estimation of expected security returns is one of the major tasks for the practical imple-
mentation of the Markowitz portfolio optimization. Against this background, in 1992 Black and Litter-
man developed an approach based on (theoretically established) expected equili-brium returns which 
accounts for subjective investors’ views as well. In contrast to historical estimated returns, which lead 
to extreme asset weights within the Markowitz optimization, the Black-Litterman model generally re-
sults in balanced portfolio weights. However, the existence of investors’ views is crucial for the Black-
Litterman model and with absent views no active portfolio management is possible. Moreover, prob-
lems with the implementation of the model arise, as analysts’ forecasts are typically not available in 
the way they are needed for the Black-Litterman-approach. In this context we present how analysts’ 
dividend forecasts can be used to determine an a-priori-estimation of the expected returns and how 
they can be integrated into the Black-Litterman model. For this purpose, confidences of the investors’ 
views are determined from the number of analysts’ forecasts as well as from a Monte-Carlo simulation. 
After introducing our two methods of view generation, we examine the effects of the Black-Litterman 
approach on portfolio weights in an empirical study. Finally, the perfor-mance of the Black-Litterman 
model is compared to alternative portfolio allocation strategies in an out-of-sample study. 
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The main problem of Markowitz’ [1952, 1959] portfolio theory is the estimation of the required 

parameters: expected values, variances and covariances of individual asset returns. The input para-

meters are estimated and the optimization procedure assumes that they are true values of return 

moments. However, future returns are random variables and their true values differ from their ex-

pected values. Extreme short sale positions often result from optimization algorithms or, if portfolio 

weights are bounded between zero and one, only few assets will be incorporated into the optimal 

portfolio. If the parameters have been estimated correctly, the resulting portfolio weights obviously 

lead to the highest preference level. However, if the parameters deviate from the forecast, the poorly 

diversified portfolio could achieve a poor preference level, if the chosen assets develop suboptimal-

ly. Furthermore, the optimal weight vector is very sensitive towards input parameters. Marginal 

changes in expected returns can result in large variations of portfolio weights. Regarding changes in 

variances and covariances, the sensitivity of weights is not as pronounced as with changes in ex-

pected returns (Best and Grauer [1991], Chopra and Ziemba [1993]).  

To mitigate these problems, Black and Litterman [1992] have developed a procedure that com-

bines equilibrium expected returns with prior beliefs of investors. By applying their model more 

balanced portfolios result and only those asset weights vary from the associated market weights for 

which views are proposed. Due to the intuitive portfolio composition the Black-Litterman model 

has been widely accepted in practice, and further developments and specifications have been sug-

gested in the literature.  

Satchell and Scowcroft [2000] and Qian and Gorman [2001] extend the approach of Black-

Litterman to the second moments of distribution – variances and covariances of asset returns. 

Meucci [2006], Beach and Orlov [2007], and Martellini and Ziemann [2007] include non-normally 

distributed returns and consider fat tails, which is essential for hedge funds and derivatives. The 

literature emphasizes that establishing an investor’s view for the Black-Litterman model is rather 

difficult. For instance, several authors employ factor models for setting up subjective views. Faboz-

zi, Focardi, and Kolm [2006] combine equilibrium returns with a cross sectional momentum strate-
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gy for application of the Black-Litterman model. Jones, Lim, and Zangari [2007] use Fama and 

French’s [1992] factors HML and SMB and the momentum factor of Carhart [1997] to assess 

views. The potential disadvantage of applying a factor model is that identified relations of past data 

are projected into the future. For adequate views the assumption of a stable dependency between 

returns and selected factors has to be satisfied. Furthermore, most authors simply implement the 

historical confidence matrix of views, see, for example Herold [2003], Qian and Gorman [2001]. 

We detach ourselves from the past and utilize analysts’ forecasts, as they are geared to the future 

per se. The literature of valuation models for the derivation of implied equity returns based on ana-

lysts’ forecasts has made a rapid development during the last years. We implement such a model 

because an application of analysts’ forecasts to the Black-Litterman model appears to be promising. 

Some contributions to the implementation of specific analysts’ views in the Black-Litterman ap-

proach already exist, but analysts typically do not make predictions in the way they are presented in 

the literature. Herold [2003] is an exception. He utilizes qualitative forecasts to construct portfolios 

with the Black-Litterman model. In the framework of active portfolio management, the optimal 

portfolio is chosen such that it reaches a given tracking error. However, portfolio composition is 

based on a single analyst’s forecast and not on a number of analysts’ forecasts. Beyond that Herold 

[2003] employs historical confidences, as noted before.  

If, furthermore, institutional investors are only familiar with particular market segments like 

“Stocks US”, but have no expertise in “Stocks Europe”, applying the Black-Litterman model would 

restrict them to hold the market in European stocks.1 Private investors possibly have no views at all. 

They should implement the market portfolio, too – the application of the Black-Litterman model 

would be dispensable in this case. To benefit from the expertise of analysts and deviate from the 

market portfolio in rather unfamiliar market segments, we describe two possibilities of how views 

can be quantified for being used with the Black-Litterman procedure. We resort to the number of 

analysts’ forecasts and a Monte-Carlo simulation for the generation of prior beliefs by implement-
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ing a future-oriented valuation model. In our empirical examination, the out-of-sample performance 

of the methods is compared to several benchmark portfolios. 

REVIEW OF THE BLACK-LITTERMAN MODEL 

In their model, Black and Litterman [1992] combine equilibrium expected returns with investor 

views in order to calculate a new vector of expected returns BL ,P  which is then integrated into the 

Markowitz optimization. The purpose of optimization with these new input parameters is to gain 

relatively balanced portfolios without the implementation of long-only constraints or other restric-

tions.  

It is assumed that return vector r of N assets is multivariate normally distributed with N 1�  ex-

pected return vector P  and N N�  variance-covariance matrix 6 : � �r N ,P 6∼ . Variance-

covariance matrix 6  is supposed to be known.2 The vector of expected returns is a random vector 

that follows a multivariate normal distribution with known parameters , and3 W 6 : � �N , .P 3 W6∼  

The variance-covariance matrix of expected returns is chosen to be a multiple of the variance-

covariance matrix of returns r with scaling factor 0W ! . This factor is not predetermined in the ap-

proach of Black-Litterman. Since uncertainty in expected returns is smaller than uncertainty in re-

turns, Black-Litterman propose to implement a small W . 3  is the N 1�  equilibrium expected return 

vector and serves as a neutral reference point. Black and Litterman use the market portfolio as a 

starting point for expected returns.3 Thereby, the expected returns of the market portfolio are calcu-

lated via a reverse optimization. By maximizing the assumed preference function of an investor 

2
P P X ' X ' X

2 2
O OI  P � V  P � 6

 
(1) 

where PP  is the expected portfolio return, 2
PV  the portfolio variance, and O  the risk aversion para-

meter, the optimal weight vector X is determined by 

11X � 6 P
O  

(2) 
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Solving this equation for the expected return vector ,P   

X3 � P  O º6 º  (3) 

is obtained. Thus, the vector of equilibrium returns 3  is a multiple of the product of variance-

covariance matrix 6  and asset weight vector X. The optimal asset weights jx  are given through the 

proportion of market capitalizations. Finally, the only missing component for the calculation of 3  

by using equation (3) is risk aversion O . Taking the capital asset pricing model (CAPM) as a basis, 

the risk aversion parameter is determined as the market price of risk.4  

As an additional opinion, investors can express k views or prior beliefs about returns in the fol-

lowing form: 

� �Q P , N 0, P � H H :∼  (4) 

where Q is a k 1�  vector of k forecast return expectations and P is a known k N�  pick matrix of 

views. The k 1�  error term H  follows a multivariate normal distribution with expected value zero 

and variance-covariance matrix :  – the view confidence matrix. Following Black and Litterman 

[1992], :  is a diagonal matrix, thus, views are independent. Entry ssZ  on the diagonal identifies 

the investor’s confidence concerning the respective view: the bigger the entry, the less certain the 

investor is in view s. The beliefs can be indicated absolute as well as relative and there is no need 

for a view for every asset.  

Applying the Bayesian rule to the equilibrium and investor’s beliefs, Black-Litterman obtain 

the following expected return vector  

� � � �1
BL P ' P P ' Q P�P  3 � W6 6 W � : � 3  (5) 

In the literature, an alternative but equivalent notation is often used  

� � � �
11 11 1

BL P ' P P ' Q
�� �� �⎡ ⎤ ⎡ ⎤P  W6 � : º W6 3 � :⎣ ⎦ ⎣ ⎦  (6) 

Note that this expected return is a matrix weighted combination of equilibrium return vector 3  and 

investor’s views Q.  
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Problems with the Application of the Black-Litterman Model 

As described above, the Black-Litterman model requires own views about return expectations 

of the investment horizon. The setting up of equation (4) could, for example, be deduced from the 

investor’s beliefs (a) and (b): 

(a) The investor is sure that the expected return of asset 1 will amount to 20 %.  

(b) With a probability of 70 %, the investor believes that the difference of the expected returns 

of asset 1 and an equally weighted portfolio of assets 3 and 4 will amount to 5 % to 7 %. 

For an investment horizon of four stocks, these views are set up according to (4): 

1

2 1

3 2

4

5

0.2 1 0 0 0
0.06 1 0 0.5 0.5

0 0 0
with N ,

0 0 9.317 10�

P⎛ ⎞
⎜ ⎟P H⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟ º � ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟P H� �⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟P⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
H ⎜ ⎟⎜ ⎟ ⎜ ⎟º⎝ ⎠ ⎝ ⎠⎝ ⎠
∼

 (7) 

The view confidence is expressed through a probability that has to be converted to a variance. The 

more certain an investor is concerning his belief, the smaller is the variance at the respective posi-

tion in matrix : . In reality analysts do not typically make predictions in the manner presented in 

the example, implying this possibility of employing forecasts for the application of the Black-

Litterman model not to be given. Thus, private investors, who possibly do not have any information 

about stocks, would only realize the market portfolio. Moreover, institutional investors, who have 

no prior beliefs in certain market segments, would, by application of the Black-Litterman Model, 

hold the market portfolio in these particular fields, too, which turns the Black-Litterman model to 

be dispensable. 

In order to make use of analysts’ expertise for the formulation of views and thereby utilize fu-

ture expectations in contrast to historical estimations, we describe methods to generate beliefs ac-

cording to (a) and (b) for the Black-Litterman model with the help of analysts‘ dividend forecasts. 
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Moreover, our methods afford the possibility of diverging from the market portfolio in less conver-

sant segments. 

 

THE USE OF ANALYSTS’ FORECASTS 

Determining Views from the Number of Analysts’ Forecasts 

Historical expected equity returns have proved to be poor estimators for future returns.5 Due to 

the necessity of finding better estimators for future returns, the literature on determination of im-

plied equity returns on the basis of valuation models has rapidly developed during the last years. 

There are many empirical examinations of valuation models (e.g., dividend discount model, dis-

counted cash flow model, residual income model, Ohlson and Jüttner-Nauroth [2005] model), 

which are based on analyst forecasts concerning several parameters, and the models achieve good 

results in comparison to historical estimations.6 In the following, views based on the dividend dis-

count model according to Williams [1938] and Gordon [1959, 1966] will be derived. Views can be 

deduced in almost the same manner on the basis of other valuation models. 

In the dividend discount model, the expected stock return (t )
iP  of company i is calculated at a 

given point in time t on the basis of the market value of equity ( t )
iEK  as the internal interest rate for 

the time series of expected dividend payments. Predominantly, a two-phase model is used. In the 

first phase of duration T, detailed estimations of the dividends (t)
iD̂  of company i are available. For 

the remaining time, a constant growth rate � �t
ig  of dividends is assumed: 

� �

� �

( t ) ( t T) tT
(t ) i i i
i ( t ) ( t ) t ( t ) T

1 i i i i

ˆ ˆD D (1 g )EK
(1 ) ( g ) (1 )

�W �

W
W 

º � �
� P P � º � P∑  (8) 

Every month t, the following financial data concerning the expected dividends are provided: mean 

(t )
iD̂ �W , standard deviation � �t

D,i ,�WV  highest and lowest estimation � �t
i,hiD �W  and � �t

i,loD ,�W  and the number 

� �t
iNE �W  of analysts’ dividend forecasts (t )

iD �W . These data are available for the next three years 
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1, 2, 3W   for every stock i. Furthermore, analysts estimate the long term growth of earnings � �t
ig .  

The highest � �t
i ,hig  and lowest � �t

i,log  estimate is also available.7 By application of these growth rates 

we assume a constant dividend payout ratio, since dividend and earnings growth are equal in this 

case. Now the question arises how the confidence interval and the confidence probability of the 

views can be determined using data of analysts’ forecasts at hand. 

In validity tests for the evaluation of calculated expected returns from the above mentioned 

valuation models, a regression of different risk factors (e.g. beta, debt-equity ratio, market capitali-

zation, information risk) on expected returns is often carried out.8 Thereby, a certain relation be-

tween a specified risk factor and the expected returns is assumed and it is analyzed, whether this 

relation can be proved. Concerning the information risk, it is supposed that a larger amount of in-

formation available on a company reduces its cost of capital. As a measure for the information risk, 

Botosan and Plumlee [2005], for example, choose the distance between lowest and highest forecast 

of a stock. They emphasize that this distance reflects the uncertainty of forecasts. Brennan, Jega-

deesh, and Swaminathan [1993] point out that prices of companies with larger analyst coverage 

react to market information more quickly. Gebhardt, Lee, and Swaminathan [2001] implement these 

examination results by also taking the number of analysts’ forecasts as a measure for the informa-

tion risk – the more analysts’ forecasts at hand, the lower the cost of equity capital. In this contribu-

tion, we also assume that the uncertainty of analysts’ forecasts is larger for fewer analysts’ forecasts 

and vice versa.  

In the following, the number of analysts’ forecasts will be linked to the view confidence. In or-

der to generate the return interval (t )
i,loP  and (t )

i,hiP  of analysts’ views, such as in the example, we 

compute these returns per point in time t and stock i by solving (9) and (10) implicitly for all other 

variables given: 

(t ) (t 3)3
i,lo i,lo i,lo(t )

i ( t ) (t ) ( t ) 3
1 i,lo i,lo i,lo i,lo

D D (1 g )
EK

(1 ) ( g ) (1 )

�W �

W
W 

º �
 �

� P P � º � P∑  (9) 
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(t ) ( t 3)3
i,hi i,hi i,hi( t )

i ( t ) ( t ) ( t ) 3
1 i,hi i,hi i,hi i,hi

D D (1 g )
EK

(1 ) ( g ) (1 )

�W �

W
W 

º �
 �

� P P � º � P∑  (10) 

The entries of view confidence matrix NE:  are calculated with the help of the number of analysts‘ 

forecasts � �t 3
iNE .�  For each stock i, point in time t and prediction variable (t 1) (t 2)

i iD ,D ,� �  and ( t 3)
iD ,�  

there is a number of analysts who have made forecasts. Thus, for stock A in month t, there are mean 

dividend forecasts (t 1) (t 2) (t 3)
A A A

ˆ ˆ ˆD , D , D� � �  for the first, second, and third forthcoming year, and for each 

of these forecasts, we have the number of analysts making these forecasts at hand: 

(t 1) (t 2) (t 3)
A A ANE , NE , NE� � � . Abarbanell and Bernard [2000] and Courteau, Kao, and Richardson 

[2001] measure a strong influence of the terminal value of the dividend discount model on the esti-

mation of expected return. Due to the great importance of the last term in (8), the number of ana-

lysts’ forecasts for the last (third) year is taken as a basis for the calculation of the confidence prob-

ability. As a starting point, the maximum number of analysts’ forecasts that are given over the 

whole period of time in question for every single stock is marked with a confidence probability of 

100 %.9 Thus, if the maximum number of forecasts given for stock A is 40 and 40 analysts make 

forecasts for the third year of stock A at one point in time, the confidence probability for the partic-

ular interval is 100 %. If no forecast was made for the third year of one asset at one point in time, 

the confidence probability would be 0 %. The confidence probability is then linearly interpolated 

between 0 % and 100 % based on the number of analysts’ forecasts for the third forthcoming year 

for every stock at every point in time. The confidence matrix determined this way is denoted by 

NE.:  Consequently, forecasts according to (4) are: 



 

9 
 

(t) (t )
1,lo 1,hi

1 1(t ) ( t )
2,lo 2,hi

2 2

N N(t ) (t )
N,lo N,hi

NE,11

NE,22

NE,N

2 1 0 0
0 1 0

2

0 0 1

2
0 00

0 00
with N ,

0 00

⎛ ⎞P � P
⎜ ⎟
⎜ ⎟ P H⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟P � P ⎜ ⎟ ⎜ ⎟⎜ ⎟ P H⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ º �⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ P H⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠P � P⎜ ⎟⎜ ⎟
⎝ ⎠

Z⎛ ⎞
⎜ ⎟ Z⎜ ⎟H
⎜ ⎟
⎜ ⎟ Z⎝ ⎠

"
"

# ## # % #
#

"

"
"

∼
# # % ##

" N

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (11) 

In this case, view matrix P is an identity matrix, as an absolute forecast is available for every stock. 

Equation (5) is then simplified and the respective Black-Litterman return is denoted by  

� � � �1
BL,NE NE Q�P  3 � W6 6W � : � 3  (12) 

If analysts’ forecasts are missing for some stocks in the portfolio, these can be ignored in the view 

matrix without further ado. At last, we get market weights as optimal weights for assets without 

views. 

Determining Views by a Monte-Carlo Simulation  

View confidence matrix :  can also be determined by directly converting standard deviations 

of analysts’ dividend forecasts into standard deviations for investors’ expected returns. To this end, 

a Monte-Carlo simulation is carried out in order to compute the standard deviation of expected re-

turns. For stock i at time t the number S = 1.000 of random variables are drawn in the following 

way: expected dividends (t 1)
i,sD �  are drawn from a normal distribution with mean (t 1)

iD̂ �  and standard 

deviation (t 1)
D,i :�V  � �( t ) ( t ) ( t )

i,s i D,i
ˆD N D , , 1, 2, 3�W �W �WV W  ∼ . However, growth rates � �t

i,sg  are drawn from a 

uniform distribution on the interval � � � �t t
i,lo i,hi[g ,g ]. 10 Mean (t )

iD̂ �W  and standard deviation (t )
D,i

�WV  of ex-

pected dividends as well as growth rates � �t
i,log  and � �t

i,hig  are provided for example by Thomson Fi-

nancial datastream.  
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Based on one respective simulated data set s: � �( t 1) ( t 2) ( t 3) t
i,s i,s i,s i,sD , D ,D ,g� � � , an expected return is nu-

merically computed by solving the following equation for (t)
i,sP : 

� �

� �

( t ) ( t 3) t3
i,s i,s i,s( t )

i ( t ) ( t ) t ( t ) 3
1 i,s i,s i,s i,s

D D (1 g )
EK

(1 ) ( g ) (1 )

�W �

W
W 

º �
 �

� P P � º � P∑  (13) 

After the simulations, we get S expected returns, from which the variance of expected returns of 

stock i at time t is determined: 

� � � �� �
� � � �

2S
t t

MC,ii i,s i,s
s 1

S
t t

i,s i,s
s 1

1 ˆ
S 1

1ˆwith
S

 

 

Z  P � P
�

P  P

∑

∑  
(14) 

Finally, the variances are inserted into the diagonal of matrix MC: , and the Black-Litterman model 

can be applied to calculate the respective expected return vector BL,MCP . 

 

ADDITIONAL MODELS FOR THE ESTIMATION OF VIEW CONFI-

DENCES  

Historical Variance-Covariance Matrix 

A further possibility of determining the view confidence matrix :  is to use the historical va-

riance-covariance matrix of the specified views. Here, it is assumed that relations of stocks in the 

past are also valid for the future. In this case view confidence matrix :  is calculated in the follow-

ing way: 

� �hist diag P P':  6  (15) 

If we look at a certain view portfolio, that is, a certain row k from view matrix kP  and at first mul-

tiply it by variance-covariance matrix 6  and then by column vector '
kP , we get the portfolio va-

riance of the view portfolio 

hist ,kk k kP P 'Z  6  (16) 
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Since in our approach the view matrix P is an identity matrix, the confidence matrix is simplified to: 

� �hist diag:  6  (17) 

We denote the corresponding Black-Litterman return (BL-return) with BL,hist .P  

Implementation of He and Litterman [1999] 

A different implementation is proposed by He and Litterman [1999]. The elements of view 

confidence matrix :  for view k kkZ  are defined such that they equal the historical variances of 

view k multiplied by scaling factor W : 

� �HL,kk k k/ diag P P 'Z W  6  (18) 

This definition has the advantage that parameter W  does not need to be specified in the equation for 

calculating the expected returns according to Black-Litterman (6). However, doing so we make an 

implicit assumption regarding the relation between confidence matrix HL:  and parameter W . Sub-

sequently, the entries in matrix HL:  will be much smaller than those in confidence matrix hist: , 

since parameter W  is less than one. Hence, using the respective BL-return BL,HLP , investors’ views 

are given more importance. 

 

EMPIRICAL EXAMINATION  

Examination of Methods 

In the following, the Black-Litterman model is applied to real capital market data. For this pur-

pose, monthly data from 12/01/1993 to 01/01/2008 of all stocks of HDAX and DAX100, respec-

tively, are available. The data is extracted from the Thomson Reuters Datastream database. Since 

DAX100 has been replaced by HDAX not until 03/24/2003, it will form the basis of our empirical 

examination in the beginning. Insofar, we are considering 100 stocks until 03/24/2003 and 110 

stocks afterwards. Only stocks that are included in the index (either DAX100 before April 2003 or 



 

12 
 

HDAX from April 2003 on) at a specified point in time are considered in the optimization at this 

time. Furthermore, we examine whether all data are available for the estimation of input parameters 

for the Markowitz optimization – for example, stock returns of the last 36 points in time for estima-

tion of historically expected returns. If, however, not all data that are required for the empirical ex-

amination are available, the respective stock is not used in the optimization for this point in time. 

This procedure allows for an optimization that, at a certain point in time, contains a stock which is 

no longer in the index after this point in time – thus, a survivorship bias does not exist. The number 

of stocks which are optimized over time varies between 31 and 59.  

The period of portfolio optimization starts on 01/01/1997. The preceding data are, for example, 

used for the calculation of the variance-covariance matrix or the historical mean value of realized 

returns.11 Variance-covariance matrix 6  is calculated according to the Single-Index-Model.12  

The maximum number of analysts’ forecasts for the whole period among all stocks amounts to 

45, the minimum number to two.13 Exhibit 1 presents an overview of input parameters for the calcu-

lation of the expected Black-Litterman returns BL,NEP  of ten stocks on 12/01/2007.14 For the pur-

pose of clarity, only ten of 54 respective stocks from the optimization are depicted below.  

Furthermore, the assumption of a higher number of analysts’ forecasts involving a higher con-

fidence implies that a higher number of analysts’ forecasts also results in a lower standard devia-

tion. The first chart shows return differences i,hi i,loP � P , which enter the calculation of view stan-

dard deviations (see Appendix). The higher the return difference, the higher the view standard devi-

ation. The second chart shows view confidence probabilities based on the number of analysts’ esti-

mates. A higher number of estimates involves a higher confidence probability of the view. Further-

more, a higher confidence probability leads to a smaller standard deviation, which is displayed in 

the third chart. Stock 7 has the lowest standard deviation, which results from the low return differ-

ence of 7,hiP  and 7,loP  and a high confidence probability of 71 %. In contrast, stock 10 has the high-

est standard deviation, primarily as a consequence of a high return difference since the confidence 
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probability is moderate. The fourth chart in Exhibit 1 shows equilibrium returns i3 , mean returns 

from the dividend forecasts � �i,mi i,hi i,loQ / 2� P  P � P , and the expected BL-return BL,NEP , which is 

calculated from the previous returns according to (5). There is evidence that expected BL-returns by 

trend are closer to the expected returns from analysts’ dividend forecasts. Stock 10 features a rela-

tively high standard deviation 10Z , which is also reflected in the higher deviation between the inves-

tors’ view return Q and BL-return BL,NEP . 

Exhibit 1 about here 

In Exhibit 2 confidences iZ  are compared between the two introduced approaches. Black bars 

represent standard deviations on the basis of the number of analysts’ forecasts i,NEZ  and white bars 

display standard deviations calculated with Monte-Carlo simulation i,MCZ . The latter ones are clear-

ly smaller. As noted before, views with lower standard deviations are assigned a higher weight in 

the calculation of the expected BL-return, thereby the resulting weights deviate stronger from mar-

ket weights.  

Exhibit 2 about here 

As expected, optimal portfolio weights from the Monte-Carlo simulation BL,MCP , which are de-

picted in Exhibit 3, are always larger compared to weights from the optimization with BL,NEP  when 

comparing their absolute values. 

Exhibit 3 about here 

Exhibit 3 gives an overview of the resulting portfolio weights of all introduced Black-Litterman 

approaches for the ten shares on 12/01/2007. In absolute values, weights of the pure dividend dis-

count model (white bars) are highest except for few values. Moreover, weights of the He-Litterman 

approach are closer to weights of the dividend discount model compared to weights of the historical 

BL-approach, as expected.  

In order to assess all approaches, the performance of the four different methods for the deter-

mination of confidence matrix :  and thereby calculation of BL-returns (number of analysts’ fore-
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casts (NE), Monte-Carlo simulation (MC), historical variance-covariance matrix (hist) , He-

Litterman (HL)) is compared to several benchmark strategies in the following section.  

Out-of-Sample Performance Study 

In a rolling optimization procedure, monthly out-of-sample returns and the resulting perfor-

mances are calculated from 02/01/1997 to 01/01/2008.15 We assume that at a specific time t only 

past and current data of times t s, , t, with s 0� !…  are known. Based on this information, the ex-

pected returns for time t and the optimal portfolios and benchmark portfolios for the following nine 

strategies are determined subsequently: expected returns of the dividend discount model miP , BL-

returns BL,NEP , BL,MC ,P  BL,hist ,P  BL,HL ,P  historical expected returns histP , and a portfolio composed 

according to a Bayesian estimator.16 The market portfolio and the equally weighted portfolio also 

serve as a benchmark. 

Expected BL-returns are calculated at each point in time t with current information and ana-

lysts’ forecasts of time t, as mentioned before. Subsequently, weight vectors are determined with 

these expected returns and the resulting portfolio compositions are kept fixed for one month from t 

to t+1. At time t+1, the actual stock returns of this month (period from t to t+1) are multiplied by 

the specified weight vectors to obtain the portfolio return of every strategy for this month. The risk-

less interest rate is subtracted from this value, in order to identify real excess out-of-sample portfo-

lio returns for the period from t to t+1. We choose prevalent performance measures to compare and 

assess the different strategies: Sharpe ratio, Jensen’s alpha, Treynor ratio, and certainty equivalent 

from (1).  

The optimizations are accomplished with different restrictions, unconstrained as well as con-

strained. However, risky asset weights greater than one are allowed. The portion which is invested 

in the riskless asset amounts to N
0 ii 1

x 1 x
 

 �∑  in both optimizations. A negative 0x  indicates a 

debt position in the riskless interest rate. We analyze several parameter constellations for the risk 

aversion parameter O  and the scaling factor W  for the Black-Litterman model and apply common 
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risk aversions from 0.5 to 3.5 in steps of 0.3 (11 values). In order to establish small values for W , we 

choose W  from 0.01 to 0.46 in steps of 0.05 (10 values). Thereby, 110 parameter constellations re-

sult. The results of the unconstrained optimization with 0.21W   and 2O   are presented in Exhibit 

4.  

Exhibit 4 about here 

Three BL-approaches achieve the highest Sharpe ratios. Of these, the introduced Black-

Litterman approach – BL,NEP  – leads to the highest Sharpe ratio with 27.03 % by far. No strategy 

attains a negative Sharpe ratio, this means that the realized portfolio return on average achieves at 

least the riskless interest rate.17 According to the certainty equivalent, the He-Litterman BL-

approach outperforms all other strategies and the historical implementation of Black-Litterman 

comes second. If the strategies are arranged on the basis of Jensen’s alpha, the pure historical port-

folio outperforms all other strategies and the pure dividend strategy is ranked second. However, 

only Jensen’s alpha of the second strategy is significantly greater than zero at 1 % significance lev-

el. The respective Jensen’s alpha for the pure dividend discount model and the He-Litterman im-

plementation of the Black-Litterman model are greater than zero at 10 % significance level. Ac-

cording to the Treynor ratio, the portfolio with historical expected returns attains the greatest risk 

premium per accepted systematic risk. The BL-approach with the number of analysts’ forecasts is 

again on rank two, above the pure dividend approach. 

Exhibit 5 about here 

Exhibit 5 shows the significances of the Sharpe (upper diagonal) and Treynor (lower diagonal) 

measure according to the test of Jobson and Korkie [1981].18 As we can see, particularly measures 

of Black-Litterman approaches and the pure dividend discount model differ significantly from each 

other in comparison to measures of other strategies. Most likely, this is due to the fact that the first 

five strategies focus on the future, while the other strategies rely on historical data or neither past 

nor future data. Again Strategy 2 outperforms other strategies at a 5 % significance level.  

Exhibit 6 about here 
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Exhibit 4 shows the performance of strategies for a specified parameter constellation. Of 

course, with modified parameter constellations the results could be different. For this reason, Exhi-

bit 6 contains direct comparisons of how many times strategy A wins against strategy B for all poss-

ible 110 parameter constellations according to the Sharpe ratio. The table has to be read in the fol-

lowing way: the strategy of a certain row wins against the strategy in a certain column in x out of 

110 parameter constellations. Thus the BL-approach with the number of analysts’ forecasts wins in 

all parameter constellations against all other strategies. The BL-approach with a Monte-Carlo simu-

lation is the second best approach, as it wins in more than half of all constellations against other 

strategies (except for strategy 2). In 59 of 110 parameter constellations, it achieves a better perfor-

mance than the BL-approach according to He-Litterman. The pure historical strategy performs 

worst for all parameter constellations. The Bayesian and market portfolio follow directly. The per-

formances of the nine strategies with long-only constraints for the former specified parameter con-

stellation are presented in Exhibit 7. 

Exhibit 7 about here 

With short-sale restriction lower Sharpe ratios are achieved on average. As expected, all per-

formance measures are distributed in a smaller interval. Our application of the BL-approach with 

number of analysts’ estimates again outperforms all other strategies according to the Sharpe ratio. 

Two other Black-Litterman applications (strategy 3 and 4) come second and third. The historical 

implementation of the Black-Litterman model reaches the highest certainty equivalent. Regarding 

Jensen’s alpha and the Treynor ratio again the pure historical strategy performs best. Interestingly, 

this strategy performs worst according to the certainty equivalent. As can be seen in Exhibit 8 there 

are not as many significant outperformances according to the Sharpe and Treynor ratio as without 

short sale constraints.  

Exhibit 8 about here 

Exhibit 9 shows comparisons of the strategies for all parameter constellations for the optimiza-

tion with long-only constraints. Again, on average our application of the Black-Litterman model 
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with the number of analysts’ forecasts ( BL,NEP ) performs best. In 100 of 110 constellations this 

strategy attains a higher Sharpe ratio than the historical BL-approach, which is the second best ap-

proach. All in all, the BL-approach with the historical variance-covariance matrix comes second 

and the BL-approach according to He-Litterman is ranked on position three. Thus, the good perfor-

mance of the Black-Litterman approaches is confirmed for constrained optimization.  

Exhibit 9 about here 

CONCLUSION 

For the application of the Black-Litterman model, own views about the expected returns of as-

sets are necessary in order to deviate from market weights. If there are no views, the procedure does 

not provide an opportunity for active portfolio management. Furthermore, analysts do not make 

forecasts in the way they are required for the implementation of the Black-Litterman model. In this 

contribution, views for the Black-Litterman model are generated on the basis of a future-oriented 

valuation model – in our case the dividend discount model – with the help of analysts’ forecasts. 

We examine four possibilities to compute expected returns with the Black-Litterman model. Two of 

these methods are described and examined for the first time. Confidences in specified views are 

determined firstly on the basis of number of analysts’ forecasts and secondly by applying a Monte-

Carlo simulation on the basis of distribution of analysts’ forecasts. Thus, we contribute to the litera-

ture on a quantitative forecast model for the application of the Black-Litterman approach.  

The effect of different views on portfolio weights was analyzed. In our out-of-sample analysis 

over a period of 132 months, performance measures of the described Black-Litterman approaches 

and several benchmark portfolios were calculated with real capital market data.  

Our implementation of the Black-Litterman model based on the number of analysts’ forecasts 

outperforms all other strategies regarding the Sharpe ratio, in both constrained and unconstrained 

case. Furthermore, all applications of Black-Litterman achieve good rankings in all performance 

measures. Thus, we recommend using the Black-Litterman model and give valuable advice on how 

to implement it.  
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ENDNOTES 
1 See Fabozzi, Focardi, and Kolm [2006], p. 29. 
2 Cf. Black and Litterman [1992], p. 43. 
3 Strictly speaking a proxy for the market portfolio is chosen, as the market portfolio could not be 
reproduced. See Roll [1977]. For the selection of an adequate reference return, Black and Litterman 
also discuss historical expected returns of the individual securities, equal expected returns within 
the asset classes as well as risk adjusted expected returns. However, they arrive at the conclusion 
that market returns in contrast to the other strategies generate the most balanced and intuitive port-
folios. 
4 See Fabozzi, Focardi, and Kolm [2006], pp. 29. 
5 See Elton [1999], Jorion [1986].  
6 See for instance Botosan and Plumlee [2005], Courteau, Kao, and Richardson [2001], Francis, 
Olsson, and Oswald [2000], Gebhardt, Lee, and Swaminathan [2001], Gode and Mohanram [2003], 
Easton [2004], Daske, Gebhardt, and Klein [2006].  
7 The data are from providers of financial data – in our case Thomson Reuters Datastream. 
8 See Botosan and Plumlee [2005], Gebhardt, Lee, and Swaminathan [2001].  
9 The maximum number is determined for each stock separately. 
10 For robustness, we also tested more simulation runs but the results were stable.  
11 The variance-covariance matrix is calculated on the basis of the last 36 points in time (three 
years) in every point in time. For the computation of the historical means 36 months are used, too.  
12 Although a historical variance-covariance matrix on the basis of the last 36 monthly returns could 
be calculated, the number of shares in the optimization exceeds 36. Thus, the resulting variance-
covariance matrix would not be invertible and the optimization could not be applied. Furthermore 
the estimation error for the estimation of the variance-covariance matrix within the single index 
model is lower up to a time period of five years compared to the historical variance-covariance ma-
trix. See Briner and Connor [2008], p. 12.  
13 If there is only one analyst forecast, the stock is not contained in the optimization, as there is no 
standard deviation of the estimations. 
14 For the exhibits 1 to 3 W is set to 0.21 and O to 2.  
15 The first optimization already proceeds on 01/01/1997. The optimized portfolios are kept fixed 
for one month and the first excess return is determined on 02/01/1997. 
16 Since some estimators require independent and identically distributed returns, we tested the re-
turns for normality, stationarity, and autocorrelation. Returns which not satisfy the assumptions are 
removed from the database. 
17 The riskless interest rate is represented through the interest rate of government bonds with a ma-
turity of one year. The data are available in the internet at http://www.bundesbank.de/statistik/-
statistik_zinsen.php#geldmarkt.  
18 The test was rectified by Cadsby [1986] and Memmel [2003].  



 

19 
 

REFERENCES 

Abarbanell, J., V. Bernard. “Is the US Stock Market Myopic?” Journal of Accounting Research, 
Vol. 38, No. 2 (2000), pp. 221-242. 
Beach, S. L., A. G. Orlov. “An Application of the Black-Litterman Model with EGARCH-M-
Derived Views for International Portfolio Management.” Financial Markets and Portfolio Manage-
ment, Vol. 21, No. 2 (2007), pp. 147-166.  
Best, M., R. Grauer. “On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset 
Means: Some Analytical and Computational Results.” Review of Financial Studies, Vol. 4, No. 2 
(1991), pp. 315-342.  
Black, F., R. Litterman, (1992): “Global Portfolio Optimization.” Financial Analysts’ Journal, Vol. 
48, No. 5 (1992), pp. 28-43. 
Briner, B. G., G. Connor. “How Much Structure is Best? A Comparison of Market Model, Factor 
Model and Unstructured Equity Covariance Matrices.” The Journal of Risk, Vol. 10 (2008), pp. 3-
30.  
Botosan, C. A., M. A. Plumlee. “Assessing Alternative Proxies for the Expected Risk Premium.” 
The Accounting Review, Vol. 80, No. 1 (2005), pp. 21-54. 
Brennan, M. J., N. Jegadeesh, B. Swaminathan. “Investment Analysis and the Adjustment of Stock 
Prices to Common Information.” The Review of Financial Studies, Vol. 6, No. 4 (1993), pp. 799-
824. 
Cadsby, C. B. “Performance Hypothesis Testing with the Sharpe and Treynor Measures: A Com-
ment.” The Journal of Finance, Vol. 41, No. 5 (1986), pp. 1175-1176.  
Carhart, M. “On the Persistence in Mutual Fund Performance.” The Journal of Finance, Vol. 52, 
No. 1 (1997), pp. 57-82. 
Chopra, V. K., W. T. Ziemba. “The Effect of Errors in Means, Variances, and Covariances on Op-
timal Portfolio Choice.” The Journal of Portfolio Management, Vol. 19, No. 2 (1993), pp. 6-11.  
Courteau, L., J. L. Kao, G. D. Richardson. “Equity Valuation Employing the Ideal Versus Ad Hoc 
Terminal Value Expressions.” Contemporary Accounting Research, Vol. 18, No. 4 (2001), pp. 625-
662. 
Daske, H., G. Gebhardt, S. Klein. “Estimating the Expected Cost of Equity Capital Using Analysts' 
Consensus Forecasts.” Schmalenbach Business Review, Vol. 58 (2006), pp. 2-36. 
Easton, P. D. “PE Ratios, PEG Ratios, and Estimating the Implied Expected Rate of Return on Eq-
uity Capital.” The Accounting Review, Vol. 79, No. 1 (2004), pp. 73-96. 
Elton, J. E. “Expected Return, Realized Return, and Asset Pricing Tests.” Journal of Finance, Vol. 
54, No. 4 (1999), pp. 1199-1220.  
Fabozzi, F. J., S. M. Focardi, P. N. Kolm. “Incorporating Trading Strategies in the Black-Litterman 
Framework.” The Journal of Trading, Vol. 1, No. 2 (2006), pp. 28-37. 
Fama, E. F., K. R. French. “The Cross-Section of Expected Stock Returns.” The Journal of Finance, 
Vol. 47, No. 2 (1992), pp. 427-465.  
Francis, J., P. Olsson, D. R. Oswald. “Comparing the Accuracy and Explainability of Dividend, 
Free Cash Flow, and Abnormal Earnings Equity Value Estimates.” Journal of Accounting Research, 
Vol. 38, No. 1 (2000), pp. 45-70. 



 

20 
 

Gebhardt, W. R., C. M. C. Lee, B. Swaminathan. “Toward an Implied Cost of Capital.” Journal of 
Accounting Research, Vol. 39, No. 1 (2001), pp. 135-176. 
Gode, D., P. Mohanram. “Inferring the Cost of Capital Using the Ohlson-Juettner Model.” Review 
of Accounting Studies, Vol. 8, No. 4 (2003), pp. 399-432. 
Gordon, M. J. “Dividends, Earnings, and Stock Prices.” Review of Economics and Statistics, Vol. 
41, No. 2 (1959), pp. 99-105. 
Gordon, M. J. The Investment, Financing and Valuation of the Corporation, 2nd ed. Homewood: 
Irwin, 1966. 
He, G., R. Litterman. “The Intuition behind Black-Litterman Model Portfolios.” Investment Man-
agement Research Paper, Goldman Sachs, 1999.  
Herold, U. “Portfolio Construction with Qualitative Forecasts.” The Journal of Portfolio Manage-
ment, Vol. 30, No. 1 (2003), pp. 61-72. 
Jobson, J. D., B. M. Korkie. “Performance Hypothesis Testing with the Sharpe and Treynor Meas-
ure.” The Journal of Finance, Vol. 36, No. 1 (1981), pp. 889-908.  
Jones, R., T. Lim, P. J. Zangari. “Equity Portfolio Management - The Black-Litterman Model for 
Structured Equity Portfolios.” The Journal of Portfolio Management, Vol. 33, No. 2 (2007), pp. 24-
33.  
Jorion, P. “Bayes-Stein Estimation for Portfolio Analysis.” Journal of Financial and Quantitative 
Analysis, Vol. 21, No. 3 (1986), pp. 279-292. 
Markowitz, H. M. “Portfolio Selection.” Journal of Finance, Vol. 7, No. 1 (1952), pp. 77-91. 
Markowitz, H. M. Portfolio Selection, New York: Wiley, 1959. 
Martellini, L., V. Ziemann. “Extending Black-Litterman Analysis Beyond the Mean-Variance 
Framework.” The Journal of Portfolio Management, Vol. 33, No. 4 (2007), S. 33-44. 
Memmel, C. “Performance Hypothesis Testing with the Sharpe Ratio.” Finance Letters, Vol. 1, No. 
1 (2003), pp. 21-23.  
Meucci, A. “Beyond Black-Litterman: Views on Non-Normal Markets.” Risk, Vol. 19 (2006), pp. 
87-92. 
Ohlson, J. A., B. E. Juettner-Nauroth. “Expected EPS and EPS Growth as Determinants of Value.” 
Review of Accounting Studies, Vol. 10, No. 2-3 (2005), pp. 349-366. 
Qian, E., S. Gorman. “Conditional Distribution in Portfolio Theory.” Financial Analysts’ Journal, 
Vol. 57, No. 2 (2001), pp. 44-51. 
Roll, R. “A Critique of the Asset Pricing Theory’s Tests.” Journal of Financial Economics, Vol. 4, 
No. 2 (1977), pp. 129–176. 
Satchell, S., A. Scowcroft. “A Demystification of the Black-Litterman Model: Managing Quantita-
tive and Traditional Portfolio Construction.” The Journal of Asset Management, Vol. 1, No. 2 
(2000), pp. 138-150. 
Williams, J. B. (1938): The Theory of Investment Value, Cambridge: Harvard Univ Press. 
 



 

1 
 

EXHIBITS 

 

Exhibit 1 
Overview of Inputs for the Black-Litterman Approach with Number of Analysts’ Forecasts 

 

 
Exhibit 2 
Standard Deviations of Analysts’ Views 
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Exhibit 3 
Overview of Portfolio Weights of Different Implementations of Black-Litterman 
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Exhibit 4  
Performances of the Strategies in the Unconstrained Optimization with W ���� and O=2 
# Strategy Sharpe-Ratio Rank Rank Rank Treynor-Ratio Rank
1 Dividend Discount Model 0.2117 4  - 0.1642 8 0.0742 * 2 0.0282 3
2 BL: Number of Estimates 0.2703 1  - 0.0120 5 0.0625 *** 4 0.0350 2
3 BL: Historical 0.1411 6 0.0076 2 0.0037 7 0.0141 7
4 BL: He-Litterman 0.2203 3 0.0081 1 0.0243 * 5 0.0222 5
5 BL: Monte-Carlo 0.2209 2  - 0.1377 7 0.0695 3 0.0276 4
6 Historical 0.1031 9  - 1.6341 9 0.1107 1 0.0490 1
7 Bayes 0.1297 8  - 0.0746 6 0.0242 6 0.0203 6
8 Market 0.1402 7 0.0042 4 0.0000 9 0.0095 9
9 Equally Weighted 0.1742 5 0.0070 3 0.0026 8 0.0128 8

* 10 % significance, ** 5 % significance, *** 1 % significance

Certainty Equivalent Jensen's Alpha

 
 
Exhibit 5 
Significance of the Sharpe and Treynor Ratio in the Unconstrained Optimization with W ���� and O=2 
# Strategy 1 2 3 4 5 6 7 8 9
1 Dividend Discount Model  - *

2 BL: Number of Estimates  - * **

3 BL: Historical  - 
4 BL: He-Litterman **  - 
5 BL: Monte-Carlo  - 
6 Historical  - 
7 Bayes  - 
8 Market * ** * *  - 
9 Equally Weighted * ** *  - 

* 10 % significance, ** 5 % significance, *** 1 % significance  
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Exhibit 6 
Comparison of all Parameter Constellations in the Unconstrained Optimization 

#      wins against 1 2 3 4 5 6 7 8 9
1 Dividend Discount Model  - 0 95 0 0 110 110 110 110
2 BL: Number of Estimates 110  - 110 110 110 110 110 110 110
3 BL: Historical 15 0  - 5 5 71 63 61 47
4 BL: He-Litterman 110 0 105  - 51 110 110 110 110
5 BL: Monte-Carlo 110 0 105 59  - 110 110 110 110
6 Historical 0 0 39 0 0  - 0 0 0
7 Bayes 0 0 47 0 0 110  - 0 0
8 Market 0 0 49 0 0 110 110  - 0
9 Equally Weighted 0 0 63 0 0 110 110 110  - 

� �
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Exhibit 7 
Performances of the Strategies in the Constrained Optimization with W ���� and O=2 

# Strategy Sharpe-Ratio Rank Rank Rank Treynor-Ratio Rank
1 Dividend Discount Model 0.1658 7  - 0.0561 8 0.0614 * 2 0.0212 4
2 BL: Number of Estimates 0.2085 1 0.0010 5 0.0533 ** 3 0.0226 2
3 BL: Historical 0.1951 2 0.0119 1 0.0251 6 0.0180 7
4 BL: He-Litterman 0.1784 3 0.0029 4 0.0408 * 5 0.0202 6
5 BL: Monte-Carlo 0.1716 6  - 0.0471 7 0.0056 7 0.0222 3
6 Historical 0.1756 4  - 0.2514 9 0.0934 * 1 0.0234 1
7 Bayes 0.0403 9  - 0.0418 6 0.0448 4 0.0206 5
8 Market 0.1402 8 0.0042 3 0.0000 9 0.0095 9
9 Equally Weighted 0.1742 5 0.0070 2 0.0026 8 0.0128 8

* 10 % significance, ** 5 % significance, *** 1 % significance

Certainty Equivalent Jensen's Alpha

 
Exhibit 8 
Significance of the Sharpe and Treynor Ratio in the Unconstrained Optimization with W ���� and O=2 

# Strategy 1 2 3 4 5 6 7 8 9
1 Dividend Discount Model  - 
2 BL: Number of Estimates  - *

3 BL: Historical  - 
4 BL: He-Litterman  - 
5 BL: Monte-Carlo  - 
6 Historical  - 
7 Bayes  - 
8 Market * *  - 
9 Equally Weighted  - 

* 10 % significance, ** 5 % significance, *** 1 % significance  
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Exhibit 9 
Comparison of all Parameter Constellations in the Constrained Optimization 

#      wins against 1 2 3 4 5 6 7 8 9
1 Dividend Discount Model  - 0 12 0 11 0 110 110 0
2 BL: Number of Estimates 110  - 100 110 110 110 110 110 110
3 BL: Historical 98 10  - 91 98 93 110 110 94
4 BL: He-Litterman 110 0 19  - 110 110 110 110 110
5 BL: Monte-Carlo 99 0 12 0  - 0 110 110 0
6 Historical 110 0 17 0 110  - 110 110 110
7 Bayes 0 0 0 0 0 0  - 0 0
8 Market 0 0 0 0 0 0 110  - 0
9 Equally Weighted 110 0 16 0 110 0 110 110  - 

� �

 
 
 
 




