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Abstract
We conduct a general analysis of the effects of inequality aversion on decisions by homo-

geneous players in static and dynamic games. We distinguish between direct and indirect
effects of inequality aversion. Direct effects are present when a player changes his action to
affect disutility caused by inequality. Indirect effects occur when the own action is changed
to affect other players’ actions. We provide necessary and sufficient conditions for the occur-
rence of either effect. Moreover, we examine the direction of the effects. Whereas indirect
effects induce players to internalize externalities they impose on others, direct effects act in
the opposite direction.
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1 Introduction

In response to a vast amount of experimental and empirical evidence, economists have con-

cluded that people are not only driven by selfish motives, but also care for the well-being

of others. Formal theories have been developed to model such other-regarding preferences,

with the theory of inequality aversion perhaps the most well known (Fehr and Schmidt, 1999;

Bolton and Ockenfels, 2000). According to this theory, players compare their payoffs with

those of other players and dislike payoff inequality.

With a formal theory of inequality aversion at hand, research has started to examine how

players’ behavior in economic settings is affected by inequality aversion. However, attention

has typically been focused on specific model types and analysis has been conducted on a

case-by-case basis. For instance, Fehr and Schmidt (1999) analyze inequality-averse players’

behavior in a variety of simple games (like the ultimatum game). Grund and Sliwka (2005)

consider a tournament model with inequality-averse contestants. A dynamic team production

model with inequality-averse players is dealt with in Mohnen et al. (2008).1 Neilson and Stowe

(2010) consider a model in which two inequality-averse agents are hired by a principal and

offered piece-rate contracts.2

While the studies have provided important insights into the implications of inequality

aversion in specific situations, it is still unclear under which circumstances inequality aversion

affects players’ behavior in general and in which direction the corresponding effects act. To

deal with these issues, a general treatment of inequality aversion and its impact on players’

behavior is necessary. The current paper provides such a general treatment by analyzing the

effects caused by inequality aversion in static and dynamic games with homogeneous players.

Inequality aversion can have direct and indirect effects on a player’s behavior. We say

1See also Rey-Biel (2008).
2Neilson and Stowe (2010) assume that each agent cares for the payoff of the other agent, but not for

the principal’s payoff. This kind of behavior is denoted as horizontal inequality aversion. Other models on

horizontal inequality aversion include Kragl and Schmid (2009), Bartling and von Siemens (2010 ), Ederer

and Patacconi (2010), von Siemens (2011), and Bartling (2011). For models on vertical inequality aversion

between principal and agent see Itoh (2004), Dur and Glazer (2008), and Englmaier and Wambach (2010).
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that there are direct effects of inequality aversion if an inequality-averse player behaves dif-

ferently to a selfish one to reduce the disutility he suffers from inequality. We refer to indirect

effects of inequality aversion if a player changes his decision to affect another player’s ac-

tion. Against this background the paper addresses two problems. First, we determine under

which circumstances direct and indirect effects of inequality aversion are present. Second, we

analyze the direction in which these effects act.

To isolate the single effects, we begin by considering a static model with simultaneous

actions in which, by definition, inequality aversion can have only direct effects (because a

player cannot react to the observation of a specific action by another player). We provide a

necessary and sufficient condition for the occurrence of such direct effects. We then turn to

a dynamic model in which the same game as before is played twice. We modify the model

assumptions such that direct effects of inequality aversion are eliminated (taking into account

the condition derived before) and only indirect effects can play a role. Again, we provide

a necessary and a sufficient condition for the presence of such effects. In both models, the

conditions indicate that inequality aversion can only affect behavior if there are externalities,

i.e., if a player’s action has an effect on another player’s payoff. Interestingly, we find that

direct and indirect effects act in opposite directions. Whereas indirect effects induce players

to internalize the externalities they impose on others, direct effects cause players to reduce

their actions when there are positive externalities and to increase them when externalities

are negative. The reason is as follows. Direct effects aim at reducing disutility caused by

inequality. Since players suffer more strongly from disadvantageous than from advantageous

inequality (according to the theory of inequality aversion), players aspire to be better off

than others. They achieve this aim by reducing actions that benefit others and increasing

actions that lead to negative externalities. Indirect effects, by contrast, aim at affecting the

actions of other players later in the game. If a player internalizes the externality imposed

on others in the first period, he creates inequality by increasing other players’ payoff in the

first period. In doing so, he induces other players to change their second-period actions to

reduce the inequality generated in the first period. This change in other players’ actions is
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beneficial to the considered player.

At the beginning of this section, we have outlined several models that have analyzed the

effects of inequality aversion on players’ actions in specific economic settings. The current

model is able to replicate all the effects that have been highlighted in these papers. Fehr and

Schmidt (1999) as well as Mohnen et al. (2008) consider dynamic models in which players im-

pose positive externalities on each other. Fehr and Schmidt (1999) find that proposers in the

ultimatum game offer a higher amount of money to receivers, whereas Mohnen et al. (2008)

show that team members increase their effort above the level that a selfish person would

choose. Both observations are reminiscent of our finding that players internalize externalities

they impose on others because of indirect effects of inequality aversion.3 Grund and Sliwka

(2005) find that inequality-averse participants in a (static) tournament choose higher effort

than selfish ones do. This reflects our finding on direct effects of inequality aversion that

induce players to increase their actions when externalities are negative. Neilson and Stowe

(2010) find that decisions of selfish and inequality-averse agents do not differ if agents are

offered a piece-rate contract and use their total payoff (i.e., wage payment minus effort costs)

to determine inequality costs. This is in line with the current paper’s finding that positive

or negative externalities are necessary to observe any effects of inequality aversion. To sum

up, one virtue of our paper is that it can reproduce the findings of many previous papers in

a single model. The results of the current paper, however, go beyond that of the previous

literature, because it allows for all kinds of externalities and both, direct and indirect effects

of inequality aversion. It is therefore able to predict behavior in a variety of economic sit-

uations that have not been analyzed before. To give an example, consider two employees

who work together in a firm for two periods and who receive compensation which depends

on relative performance, i.e., an employee’s compensation increases in his own performance,

but decreases in the performance of the other employee. In the example, we have a dynamic

3Note that the ultimatum game is a sequential game, whereas we consider a repeated game. While the

structure of the two kinds of games is thus different, the effects of inequality aversion on players’ behavior

are very similar.
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situation with negative externalities and expect inequality-averse employees to lower their

actions (e.g., efforts) and hence their performance because of the indirect effects of inequality

aversion. Such kind of behavior can be interpreted as a collusion against the firm owner,

a phenomenon that has been outlined as one of the main problems of relative-performance

evaluation schemes,4 but that can be explained with selfish players only in the context of

an infinitely repeated game. A final virtue of the paper is the relatively general technology

(i.e., the functional forms) that we consider. In this respect, previous studies – which often

assume specific functional forms – are generalized as well.

The remainder of the paper is organized as follows. Section 2 presents the static model,

while Section 3 contains the dynamic model. Section 4 concludes the paper. All proofs are

relegated to the Appendix.

2 The static model

2.1 Model description and notation

Consider a situation with two players (i = 1, 2), each of whom chooses some action xi ∈

[xl, xh] ⊂ R (xh > xl) to produce some output f (xi) which accrues to player i himself.

f : [xl, xh] → R is an increasing and concave C2 function. By choosing action xi, player

i also affects the payoff of player j (j = 1, 2, j 6= i). In particular, the payoff of player j

is reduced by e (xi). e : [xl, xh] → R is assumed to be linear and e′ := e′(x) denotes the

constant first derivative of e. Depending on whether e′ > 0, e′ = 0, or e′ < 0, players impose

negative externalities, no externality or positive externalities on each other. Furthermore,

choice of action xi entails a cost for player i that (in monetary terms) is described by c (xi).

c : [xl, xh] → R is an increasing and convex C2 function. We assume that f (xi) − c (xi)

is strictly concave, i.e., f is strictly concave or c is strictly convex. Finally, the payoff

of player i is also affected by an individual random term, denoted by εi ∈ [εl, εh] ⊂ R

(εh > εl), where ε1 and ε2 are identically distributed. To sum up, a player’s payoff is given

4See Dye (1984).
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by ui = f (xi)− e (xj)− c (xi) + εi. Moreover, a player’s utility is vi = ui−αG (uj − ui). The

function G (·) accounts for a player’s disutility from inequality.5 Following Englmaier and

Wambach (2010), we suppose that G is a C2 function satisfying G (0) = 0 and sgn (G′ (u)) =

sgn(u), as well as G′′ (u) > 0 for all u. The parameter α ≥ 0 measures the strength of the

inequality aversion of the players. If α = 0, we have the standard model in which relative

comparisons do not matter. For α > 0, the players are inequality averse. Previous studies

have argued that players suffer more strongly from disadvantageous than from advantageous

inequality. To account for this, we assume G (u) > G (−u) and G′ (u) > |G′ (−u)| for all

u > 0. Furthermore, we assume αG′(u) > −1 for all u, which characterizes the fact that a

player never suffers from advantageous inequality to such an extent that he wants to ”burn

money” to make the situation more even.

We search for a Nash equilibrium of the game and assume that the players choose their

actions to maximize expected utility. In this respect, we presume that the model parameters

are such that an interior solution to the players’ maximization problems always exists.

Before we turn to the model solution, we briefly address the model with selfish players

(i.e., α = 0) as a benchmark case. Here the optimal action xs maximizes a player’s expected

payoff. Because of our assumptions regarding the functions, we can use a first-order approach

to characterize the solution; hence, we have f ′ (xs) = c′ (xs). Note that xs is independent

of e. Since a selfish player does not care about the payoff of the other player, he does not

internalize the externality that he imposes on that player.

5Note that our specification of disutility from inequality differs somewhat from the original specification

in Fehr and Schmidt (1999), who assume it to be piecewise linear. By considering a disutility function that

is twice continuously differentiable, we do not need to introduce messy case distinctions and are able to

characterize optimal actions just by the respective first-order conditions.
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2.2 Solution to the model

We define H (x) := f (x) + e (x)− c (x) and εji := εj − εi ∈ [εl − εh, εh − εl] ⊂ R and denote

the expectation operator by E[·]. Then expected utility of player i can be written as

E [vi] = f (xi)− e (xj)− c (xi) + E [εi]− αE[G (H (xj)−H (xi) + εji)].

The optimal actions are chosen such that expected utility is maximized (while taking

the other player’s equilibrium action into account). Under the assumptions imposed, we

can again use a first-order approach to characterize the optimal solution. This means that

optimal actions are characterized by the following pair of first-order conditions.

f ′ (x∗1)− c′ (x∗1) + αH ′ (x∗1)E[G′ (H (x∗2)−H (x∗1) + ε21)] = 0,

f ′ (x∗2)− c′ (x∗2) + αH ′ (x∗2)E[G′ (H (x∗1)−H (x∗2) + ε12)] = 0,

or, alternatively,

H ′ (x∗1) (1 + αE[G′ (H (x∗2)−H (x∗1) + ε21)]) = e′, (1)

H ′ (x∗2) (1 + αE[G′ (H (x∗1)−H (x∗2) + ε12)]) = e′. (2)

The next lemma shows that there is no asymmetric equilibrium.

Lemma 1 In equilibrium we have x∗1 = x∗2 =: x∗.

Because equilibrium is symmetric, the optimality conditions can be significantly simpli-

fied:

H ′ (x∗) (1 + αE[G′ (εji)]) = e′. (3)

Our first objective in this section is to analyze whether inequality aversion has direct

effects on players’ decisions (recall that indirect effects of inequality aversion cannot arise in

the static model since players are not able to react to the observation of a specific action of the

co-player). The following proposition gives a sufficient and necessary condition for inequality

aversion not to affect decisions. In this context, P [·] denotes the probability operator.
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Proposition 1 Let α > 0. Then x∗ = xs if and only if εji is degenerate (i.e., P [εji = 0] = 1)

or there are no externalities (i.e., e′ = 0).

As noted above, an inequality-averse player suffers more strongly from disadvantageous

than from advantageous inequality. His optimal action is thus determined by a trade-off

between two effects. On one hand, he wants to maximize his payoff; on the other hand, he

wants to reduce the probability of suffering disadvantageous inequality. Since the second effect

is absent for selfish players, selfish and inequality-averse players typically choose different

actions. As Proposition 1 indicates, however, there are two exceptions. First, when there

are no externalities, the action that maximizes a player’s payoff also minimizes his risk of

receiving a lower payoff than that of the other player. Then there is no trade-off between

the two effects and an inequality-averse player chooses xs as well. Second, if there is no

uncertainty in the sense that P [εji = 0] = 1, then there is no inequality in equilibrium. In

this case, the second effect disappears and again inequality-averse players choose the payoff-

maximizing action.

Although there are only two situations in which inequality-averse players and selfish

players make the same decisions, it is not hard to find real-world examples that match these

situations. For instance, consider two employees who work together in a firm and suppose

that each employee chooses some effort to produce output that accrues to the firm. Typically,

there are three possible types of compensation. Employees could be paid individually, on the

basis of team output or on the basis of relative performance. If they are paid individually

(i.e., on the basis of their own output only), then there are obviously no externalities. If

pay depends on aggregate output only, employees receive the same compensation and there

is no inequality in equilibrium (as long as both employees receive the same wage contract).

Finally, consider relative performance pay in the sense that an employee’s compensation

increases with his own output, but decreases as a function of the other employee’s output.

Moreover, let ε1 and ε2 be perfectly positively correlated. Then in equilibrium there is again

no inequality. In all these cases, the conditions of Proposition 1 apply and optimal actions
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of inequality-averse employees and selfish employees are the same.

Having seen the circumstances under which inequality aversion has direct effects on play-

ers’ behavior, we now analyze the direction in which these effects act.

Proposition 2 Let α > 0 and P [εji = 0] < 1. Then sgn(x∗ − xs) = sgn(e′).

As Proposition 2 indicates, direct effects of inequality aversion do not induce players to

internalize externalities to a greater degree than that of selfish players. On the contrary, if

there are negative externalities (i.e., e′ > 0), inequality-averse players choose even higher

actions than selfish players, while they choose lower actions in the case of positive exter-

nalities. This is because inequality-averse players want to reduce the risk of suffering from

disadvantageous inequality. Accordingly, they decide to ”hurt” the co-player more strongly

than a selfish player would want to do.

3 The dynamic model

In this section, we consider a model in which the same game as in the previous section is

played twice. To focus on the indirect effects of inequality aversion, we eliminate direct effects

by assuming that payoffs are deterministic (Proposition 1). We index the period by t = 1, 2

and denote actions by xit, payoffs by uit = f (xit) − e (xjt) − c (xit) and overall utility by

vi = ui1 + ui2 − αG (uj1 + uj2 − ui1 − ui2).6 All other assumptions are the same as in the

previous section. We use subgame-perfect equilibrium as the solution concept.

3.1 The second period

The model is solved by backward induction and we start by analyzing actions in period 2. We

define ∆U := u11−u21. Derivation of the optimality conditions is very similar to the analysis

6Implicit in this specification is that players compare their total payoffs and each player dislikes obtaining

a different total payoff than the coplayer. Note that the qualitative model results hold under alternative

assumptions as well. All that is required is missing additive separability of overall utility in ui1 − uj1 and

ui2 − uj2 which in turn implies interrelation across periods. See also Oechssler (2011).
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in Section 2 and the optimal second-period actions satisfy the following two conditions:

H ′ (x∗12) [1 + αG′ (H (x∗22)−H (x∗12)−∆U)] = e′, (4)

H ′ (x∗22) [1 + αG′ (H (x∗12)−H (x∗22) + ∆U)] = e′. (5)

Inspection of these conditions yields Lemma 2.

Lemma 2 Let α > 0.

(i) sgn (H (x∗22)−H (x∗12)−∆U) = sgn (H (x∗12)−H (x∗22)) .

(ii) ∆U > 0⇒ H (x∗22)−H (x∗12) ∈ (0,∆U) ,

∆U = 0⇒ H (x∗22)−H (x∗12) = 0,

∆U < 0⇒ H (x∗22)−H (x∗12) ∈ (∆U, 0) .

(iii) x∗11 = x∗21 ⇒ x∗12 = x∗22.

If there is inequality in the first period in the sense that u11 6= u21, Lemma 2 indicates

how the players deal with this inequality in the second period. In particular, it shows that

the player suffering from disadvantageous inequality after the first period chooses a different

action in the second period than his co-player. In this way, the initial inequality is reduced but

it does not completely disappear. These observations are important for the analysis of the first

period, because they imply that first-period and second-period actions are interconnected.

As a result, there may be indirect effects of inequality aversion and a player may want to

change his first-period action to affect the other player’s second-period action in a favorable

way.

3.2 The first period

According to (4) and (5) the optimal second-period actions depend on ∆U and thus on x11

and x21, respectively. This dependence is analyzed in more detail in the following. Using the
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definitions

Φ1 (x11, x21, x12, x22) := H ′ (x12) [1 + αG′ (H (x22)−H (x12)− (H (x11)−H (x21)))]− e′

Φ2 (x11, x21, x12, x22) := H ′ (x22) [1 + αG′ (H (x12)−H (x22) + (H (x11)−H (x21)))]− e′

and considering ∆U = H (x∗11)−H (x∗21) in the case of optimal first-period actions, (4) and

(5) immediately lead to:

Φ1 (x∗11, x
∗
21, x

∗
12, x

∗
22) = Φ2 (x∗11, x

∗
21, x

∗
12, x

∗
22) = 0.

Note that (Φ1,Φ2) is a C1 function. To analyze player reactions in the second period

we use the implicit-function theorem, for which the essential requirement is examined in the

following lemma.

Lemma 3

det

 ∂Φ1

∂x12

∂Φ1

∂x22

∂Φ2

∂x12

∂Φ2

∂x22


∣∣∣∣∣∣∣
(x∗11,x∗21,x∗12,x∗22)

> 0.

Using this lemma, we can apply the implicit-function theorem, according to which there

exist C1 functions x∗12 and x∗22 defined in a neighborhood of (x∗11, x
∗
21) so that for all (x11, x21)

in this neighborhood we have Φi (x11, x21, x
∗
12 (x11, x21) , x∗22 (x11, x21)) = 0 and ∂x∗12

∂x11

∂x∗12
∂x21

∂x∗22
∂x11

∂x∗22
∂x21

 = −

 ∂Φ1

∂x12

∂Φ1

∂x22

∂Φ2

∂x12

∂Φ2

∂x22


−1 ∂Φ1

∂x11

∂Φ1

∂x21

∂Φ2

∂x11

∂Φ2

∂x21

 . (6)

Against this background we can analyze the optimal behavior of the players in the first

period. On the basis of the first-period action (x11, x21) of the two players and using the

abbreviation x∗i2 = x∗i2 (x11, x21), the overall utility of player i can be written as:

vi (x11, x21) = H (xi1) +H (x∗i2)− (e (xi1) + e (x∗i2))

−
(
e (xj1) + e

(
x∗j2

))
− αG

(
H
(
x∗j2

)
−H (x∗i2) +H (xj1)−H (xi1)

)
.
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Differentiating vi with respect to xi1 and considering (4) and (5), we obtain:

dvi (x11, x21)

dxi1

= H ′ (xi1) +H ′ (x∗i2)
∂x∗i2
∂xi1

− e′ − e′ ∂x
∗
i2

∂xi1

− e′
∂x∗j2

∂xi1

−αG′
(
H
(
x∗j2

)
−H (x∗i2) +H (xj1)−H (xi1)

)
·
(
H ′
(
x∗j2

) ∂x∗j2

∂xi1

−H ′ (x∗i2)
∂x∗i2
∂xi1

−H ′ (xi1)

)
= H ′ (xi1)

[
1 + αG′

(
H
(
x∗j2

)
−H (x∗i2) +H (xj1)−H (xi1)

)]
− e′

−
∂x∗j2

∂xi1

·
[
e′ +H ′

(
x∗j2

)
αG′

(
H
(
x∗j2

)
−H (x∗i2) +H (xj1)−H (xi1)

)]
. (7)

Again, a symmetric equilibrium in which both players choose the same action always

exists. Without imposing further structure on the model, however, it is not possible to rule

out asymmetric equilibria. The following lemma gives a sufficient condition under which

asymmetric equilibria do not exist.

Lemma 4 Let H ′′′ (x)H ′ (x) ≥ 2 (H ′′ (x))2 for all x ∈ [xl, xh]. Then, in equilibrium we have

x∗11 = x∗21 =: x1∗ and x∗12 = x∗22 =: x2∗.

For example, the functions f(x) = ln(x), c(x) = x2 and e(x) = 10x (i.e., H(x) =

ln(x)− x2 + 10x) fulfill the condition specified in Lemma 4 with xl > 0, xl → 0, and xh = 1.

Referring to the lemma, we focus on symmetric equilibria in the following. A symmetric

equilibrium is characterized by the condition ∂vi/∂xi1 (x1∗, x1∗) = 0. Considering

G′
(
H
(
x∗j2

(
x1∗, x1∗))−H (x∗i2 (x1∗, x1∗))+H

(
x1∗)−H (x1∗)) = G′ (0) = 0

and according to (7) condition ∂vi/∂xi1 (x1∗, x1∗) = 0 simplifies to

H ′
(
x1∗)− e′ − ∂x∗j2

∂xi1

(
x1∗, x1∗) e′ = 0. (8)

Condition (8) helps us to determine under which circumstances inequality aversion has indi-

rect effects on players’ behavior.

Proposition 3 Let α > 0. Then we have x1∗ = xs if and only if there are no externalities

(i.e., e′ = 0). It is always the case that x2∗ = xs.
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Proposition 3 states that indirect effects of inequality aversion are present even if output is

deterministic and there is no inequality in equilibrium. Indirect effects of inequality aversion

result from the interrelation of actions across periods. Because of this interrelation, a player

changes his first-period action to affect the other player’s second-period action in a favorable

manner. Note, however, that indirect effects disappear when there are no externalities be-

cause a player has no effect on the other player’s payoff in this case. Hence, a player is not

interested in changing his co-player’s action.

In the following we investigate in which direction the indirect effects of inequality aversion

act.

Proposition 4 Let α > 0. Then sgn(xs − x∗1) = sgn(e′).

From Proposition 4 we observe that indirect effects of inequality aversion act in the

opposite direction compared to direct effects. Because of indirect effects, a player internalizes

the externality he imposes on the other player; in other words, a player increases his action

in the case of positive externalities, while he decreases his action otherwise. The aim of this

behavior is to create inequality by increasing the other player’s payoff in the first period.

This induces the other player to change his second-period action to increase the payoff of the

first player and to reduce the inequality generated in the first period.

Note that in equilibrium both players have the same incentive to change the first-period

action and inequality actually does not occur. Still, a player would not want to deviate to xs

because he would then be ”punished” by his co-player in the second period. In this respect,

the result is similar to the main result in the career-concerns model of Holmström (1999).

In this model, players change their actions to pretend to have certain characteristics (e.g.,

high ability). The market, however, anticipates players’ behavior and correctly infers their

characteristics. Although players cannot fool the market in equilibrium, they do not want to

deviate from equilibrium actions because they would then affect market perceptions of their

characteristics in an unfavorable way.
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4 Conclusion

The current paper has provided a general analysis of direct and indirect effects caused by

inequality aversion on decisions by homogeneous players in static and dynamic games. We

determined necessary and sufficient conditions for which direct and indirect effects play a

role. Moreover, we observed that direct and indirect effects act in opposite directions when

they are present. Indirect effects cause players to internalize the externalities they impose

on others, while direct effects cause players to decrease their actions when there are positive

externalities and to increase them when externalities are negative.

A possible extension of the analysis would be to consider heterogeneous players. If het-

erogeneity is introduced, there is typically inequality in equilibrium. Therefore, there are

fewer situations in which inequality aversion does not affect behavior. For instance, even if

output is deterministic (and there are no direct effects of inequality aversion when players

are homogeneous), heterogeneous players would adapt their decisions to take the inequality

generated by their different characteristics into account. While the introduction of hetero-

geneity thus leads to additional effects, the direct and indirect effects we have highlighted in

this paper should continue to be of importance.
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Appendix

Proof of Lemma 1. Obviously, the left-hand sides (LHS) of (1) and (2) are the same.

Assume first e′ ≥ 0 implying H ′ (x∗i ) ≥ 0 since 1 + αG′ > 0 by assumption. Because of the

strict concavity of H, we have H ′ (x) > H ′ (x∗1) ≥ 0 for all x < x∗1. Consequently, x∗1 > x∗2

immediately leads to H ′ (x∗1) < H ′ (x∗2) and H (x∗1) > H (x∗2). This in turn implies

E[G′ (H (x∗2)−H (x∗1) + ε21)] < E[G′ (H (x∗1)−H (x∗2) + ε12)]

and thus the LHS of (1) to be strictly smaller than the LHS of (2) which contradicts the

optimality of x∗1 and x∗2. An analogous argument shows that we cannot have x∗1 < x∗2.

Assume second e′ < 0 which is equivalent to H ′ (x∗i ) < 0. In this case x∗1 > x∗2 leads to

H ′ (x∗1) < H ′ (x∗2) < 0 and H (x∗1) < H (x∗2). It follows that

E[G′ (H (x∗2)−H (x∗1) + ε21)] > E[G′ (H (x∗1)−H (x∗2) + ε12)]

implying the LHS of (1) to be strictly smaller than the LHS of (2) which again contradicts the

optimality of x∗1 and x∗2. Analogously, it can be shown that x∗1 < x∗2 leads to a contradiction.

Proof of Proposition 1. (i) Suppose x∗ = xs which implies f ′ (x∗) = c′ (x∗) and condition

(3) becomes

e′ (1 + αE[G′ (εji)]) = e′ ⇔ e′αE[G′ (εji)] = 0.

This condition can only be fulfilled if e′ = 0 or E[G′ (εji)] = 0. The latter condition can be

transformed as follows:

0 = E[G′ (εji)] = P [εji > 0]E[G′ (εji) |εji > 0] + P [εji < 0]E[G′ (εji) |εji < 0].

Because εji is symmetrically distributed around zero and G′ (|εji|) > |G′ (− |εji|)| for εji 6= 0,

the latter equation immediately leads to P [εji > 0] = P [εji < 0] = 0.

(ii) The assumption P [εji = 0] = 1 corresponds to P [εji > 0] = P [εji < 0] = 0 and (under

consideration of the last equation in the first part of the proof) leads to E[G′ (εji)] = 0.
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Against this background condition (3) becomes H ′ (x∗) = e′ ⇔ f ′ (x∗) − c′ (x∗) = 0, hence

x∗ = xs.

Under the assumption of e′ = 0 condition (3) becomes

(f ′ (x∗)− c′ (x∗)) (1 + αE[G′ (εji)]) = 0 ⇔ f ′ (x∗)− c′ (x∗) = 0 ⇔ x∗ = xs

since 1 + αG′ > 0.

Proof of Proposition 2. As already mentioned and according to (3) we have sgn(H ′(x∗)) =

sgn(e′). The assumptions on G imply that αE[G′ (εji)] > 0 if P [εji = 0] < 1. Thus, (3) leads

to |H ′(x∗)| < |e′| = |H ′(xs)|. This in turn means that 0 < H ′(x∗) < H ′(xs) if e′ > 0 and

0 > H ′(x∗) > H ′(xs) if e′ < 0. Since H ′′ < 0 the statement of the proposition is proven.

Proof of Lemma 2. Conditions (4) and (5) indicate that sgn(e′) = sgn(H ′ (x∗i2)) since

1 + αG′ > 0 by assumption. Note further that H is strictly concave. We also obtain from

(4) and (5)

H ′ (x∗12) [1 + αG′ (H (x∗22)−H (x∗12)−∆U)] = H ′ (x∗22) [1 + αG′ (H (x∗12)−H (x∗22) + ∆U)] ,

which is equivalent to

H ′ (x∗22)−H ′ (x∗12)

H ′ (x∗12)
(9)

= α
G′ (H (x∗22)−H (x∗12)−∆U)−G′ (− (H (x∗22)−H (x∗12)−∆U))

1 + αG′ (− (H (x∗22)−H (x∗12)−∆U))
.

(i) In consequence of the properties of G, we immediately have

sgn (H (x∗22)−H (x∗12)−∆U) = sgn (G′ (H (x∗22)−H (x∗12)−∆U)) .

Condition (9) leads to

sgn (G′ (H (x∗22)−H (x∗12)−∆U)) = sgn (H ′ (x∗22)−H ′ (x∗12)) sgn (H ′ (x∗12)) .

Since H ′′ < 0, we also get

sgn (H ′ (x∗22)−H ′ (x∗12)) sgn (H ′ (x∗12))

= sgn (x∗12 − x∗22) sgn (H ′ (x∗12)) = sgn (H (x∗12)−H (x∗22))
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and thus the statement of part (i).

(ii) Let ∆U > 0. Because of (i) we cannot have H (x∗22) − H (x∗12) ≥ ∆U . Hence, we must

have H (x∗22)−H (x∗12) < ∆U and, again because of (i), H (x∗12)−H (x∗22) < 0. The proof is

very similar for the cases ∆U = 0 and ∆U < 0 and therefore omitted.

(iii) From the second line of part (ii) identity x∗11 = x∗21 immediately implies H(x∗12) = H(x∗22).

Since sgn(H ′ (x∗12)) = sgn(H ′ (x∗22)) and H ′′ < 0, function H is injective in the relevant range

and consequently x∗12 = x∗22.

Proof of Lemma 3. The determinant can be written as

det

(
∂Φ1

∂x12

∂Φ1

∂x22

∂Φ2

∂x12

∂Φ2

∂x22

)∣∣∣∣
(x∗11,x∗21,x∗12,x∗22)

= [H ′′ (x∗12) [1 + αG′ (H (x∗22)−H (x∗12)− (H (x∗11)−H (x∗21)))]

− (H ′ (x∗12))
2
αG′′ (H (x∗22)−H (x∗12)− (H (x∗11)−H (x∗21)))]

· [H ′′ (x∗22) [1 + αG′ (H (x∗12)−H (x∗22)− (H (x∗21)−H (x∗11)))]

− (H ′ (x∗22))
2
αG′′ (H (x∗12)−H (x∗22)− (H (x∗21)−H (x∗11)))]

−H ′ (x∗12)H ′ (x∗22)αG′′ (H (x∗22)−H (x∗12)− (H (x∗11)−H (x∗21)))

·H ′ (x∗12)H ′ (x∗22)αG′′ (H (x∗12)−H (x∗22)− (H (x∗21)−H (x∗11))) .

The expression can be simplified into

H ′′ (x∗12) [1 + αG′ (H (x∗22)−H (x∗12)− (H (x∗11)−H (x∗21)))]

·H ′′ (x∗22) [1 + αG′ (H (x∗12)−H (x∗22)− (H (x∗21)−H (x∗11)))]

−H ′′ (x∗12) [1 + αG′ (H (x∗22)−H (x∗12)− (H (x∗11)−H (x∗21)))]

· (H ′ (x∗22))
2
αG′′ (H (x∗12)−H (x∗22)− (H (x∗21)−H (x∗11)))

− (H ′ (x∗12))
2
αG′′ (H (x∗22)−H (x∗12)− (H (x∗11)−H (x∗21)))

·H ′′ (x∗22) [1 + αG′ (H (x∗12)−H (x∗22)− (H (x∗21)−H (x∗11)))] .

This expression is strictly positive since H ′′ < 0 and 1 + αG′, G′′ > 0.

Proof of Lemma 4. Because of Lemma 2 it suffices to show that x∗11 = x∗21. Suppose

that (x∗11, x
∗
12, x

∗
21, x

∗
22) with x∗11 6= x∗21 is an equilibrium. Furthermore, assume without loss
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of generality that H (x∗11) < H (x∗21). If player 2 deviates from x∗21, we immediately have a

contradiction against the equilibrium assumption. Thus, we assume player 2 not to deviate.

Against this background we analyze a deviation of player 1 from x∗11 to x∗21 implying both

players also to choose the same action in period 2, i.e., x∗12 = x∗22 =: x2∗. Note from (4) and

(5) that x2∗ is characterized by H ′ (x2∗) = e′ (since G′ (0) = 0), hence x2∗ = xs. Consequently,

the first player’s utility changes by

∆v1 := v1 (x∗21, xs, x
∗
21, xs)− v1 (x∗11, x

∗
12, x

∗
21, x

∗
22)

= [H (x∗21)− 2e (x∗21) +H (xs)− 2e (xs)]

−[H (x∗11)− e (x∗11)− e (x∗21) +H (x∗12)− e (x∗12)− e (x∗22)

−αG (H (x∗21) +H (x∗22)−H (x∗11)−H (x∗12))]

= e (x∗11)− e (x∗21) +H (x∗21) +H (xs)− 2e (xs)−H (x∗11)

−H (x∗12) + e (x∗12) + e (x∗22) + αG (H (x∗21) +H (x∗22)−H (x∗11)−H (x∗12)) .

Since player 2 does not deviate from x∗21 to x∗11, the corresponding second player’s utility

change is not allowed to be positive, i.e.

∆v2 := v2 (x∗11, xs, x
∗
11, xs)− v2 (x∗11, x

∗
12, x

∗
21, x

∗
22)

= [H (x∗11)− 2e (x∗11) +H (xs)− 2e (xs)]

−[H (x∗21)− e (x∗21)− e (x∗11) +H (x∗22)− e (x∗22)− e (x∗12)

−αG (H (x∗11) +H (x∗12)−H (x∗21)−H (x∗22))] ≤ 0

⇔ e (x∗11)− e (x∗21) ≥ H (x∗11) +H (xs)− 2e (xs)−H (x∗21)−H (x∗22)

+ e (x∗22) + e (x∗12) + αG (H (x∗11) +H (x∗12)−H (x∗21)−H (x∗22)) .

The latter inequality and H (x∗21) +H (x∗22)−H (x∗11)−H (x∗12) > 0 (according to Lemma 2)
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lead to

∆v1 > H (x∗11) +H (xs)− 2e (xs)−H (x∗21)−H (x∗22) + e (x∗22) + e (x∗12)

+H (x∗21) +H (xs)− 2e (xs)−H (x∗11)−H (x∗12) + e (x∗12) + e (x∗22)

= 2 (f (xs)− c (xs))− (f (x∗12)− c (x∗12))− (f (x∗22)− c (x∗22))

+ e (x∗12) + e (x∗22)− 2e (xs) .

Since xs maximizes f (x)− c (x), the deviation of player 1 would be profitable if e (x∗12)−

e (xs) ≥ e (xs)− e (x∗22).

We now demonstrate that the latter condition is fulfilled if H ′′′ (x)H ′ (x) ≥ 2 (H ′′ (x))2.

H (x∗21)+H (x∗22)−H (x∗11)−H (x∗12) > 0 implies G′ (H (x∗21) +H (x∗22)−H (x∗11)−H (x∗12)) >

0 and G′ (−H (x∗21)−H (x∗22) +H (x∗11) +H (x∗12)) < 0. We first deal with the case e′ > 0.

Then from (4), (5), and the definition of xs as well as H ′′ < 0 it follows

0 < H ′ (x∗12) < H ′ (xs) < H ′ (x∗22) ⇔ x∗12 > xs > x∗22.

Equations (4) and (5) also imply

1

H ′ (x∗12)
− 1

H ′ (xs)

=
α

e′
G′ (H (x∗21) +H (x∗22)−H (x∗11)−H (x∗12))

> −α
e′
G′ (−H (x∗21)−H (x∗22) +H (x∗11) +H (x∗12)) =

1

H ′ (xs)
− 1

H ′ (x∗22)
.

The inequality between the second and third line results from the properties of G. As a result

of the mean value theorem there exist y1 ∈ (xs, x
∗
12) and y2 ∈ (x∗22, xs) such that

(x∗12 − xs)

(
1

H ′(y1)

)′
> (xs − x∗22)

(
1

H ′(y2)

)′
.

Furthermore, the function (1/H ′)′ is decreasing since

(1/H ′)′′ = −H
′′′H ′ − 2 (H ′′)2

(H ′)3 ,

H ′′′ (x)H ′ (x) ≥ 2 (H ′′ (x))2, and H ′ (x) > 0. As a result, we obtain from the latter inequality

(observe that y1 > y2)

(x∗12 − xs) > (xs − x∗22)
e′>0⇔ e (x∗12)− e (xs) > e (xs)− e (x∗22) .
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In the second case e′ < 0 we obtain

0 > H ′ (x∗12) > H ′ (xs) > H ′ (x∗22) ⇔ x∗12 < xs < x∗22

and

1

H ′ (xs)
− 1

H ′ (x∗12)

= −α
e′
G′ (H (x∗21) +H (x∗22)−H (x∗11)−H (x∗12))

>
α

e′
G′ (−H (x∗21)−H (x∗22) +H (x∗11) +H (x∗12)) =

1

H ′ (x∗22)
− 1

H ′ (xs)
.

The renewed application of the mean value theorem leads to the existence of y1 ∈ (x∗12, xs)

and y2 ∈ (xs, x
∗
22) such that

(xs − x∗12)

(
1

H ′(y1)

)′
> (x∗22 − xs)

(
1

H ′(y2)

)′
.

Note that H ′(x) < 0 for all x ∈ [x∗12, x
∗
22] and in particular for all x ∈ [y1, y2]. Together

with the condition H ′′′ (x)H ′ (x) ≥ 2 (H ′′ (x))2, this implies that (1/H ′)′ is increasing in the

relevant range so that we obtain (observe now that y1 < y2)

(xs − x∗12) > (x∗22 − xs)
e′<0⇔ e (x∗12)− e (xs) > e (xs)− e (x∗22) .

In the third case e′ = 0 we obtain x∗12 = xs = x∗22, and the condition e (x∗12) − e (xs) ≥

e (xs)− e (x∗22) is obviously fulfilled.

Finally, we demonstrate that in equilibrium we cannot have x∗11 6= x∗21 and H (x∗11) =

H (x∗21). If both conditions would hold, we would either have (i) f (x∗11)− c (x∗11) > f (x∗21)−

c (x∗21) or (ii) f (x∗11)− c (x∗11) < f (x∗21)− c (x∗21). If in case (i) player 2 would deviate to x∗11,

he would increase his first-period payoff, while we would still have ∆U = 0, and the second-

period solution as well as inequality costs would not be affected. Hence, player 2 would find

it profitable to deviate. Similarly, in case (ii) player 1 would benefit from deviating to x∗21.

Proof of Proposition 3. From the analysis of Section 2 (Proposition 1) it is obvious

that x2∗ = xs because we have a symmetric equilibrium (so that ∆U = 0) and direct effects
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of inequality aversion have been eliminated by the assumption that output is deterministic.

Thus, we are able to focus on x1∗.

(i) If x1∗ = xs, we know that H ′ (x1∗)−e′ = f ′ (x1∗)− c′ (x1∗) = 0. Condition (8) becomes

∂x∗j2/∂xi1 (x1∗, x1∗) e′ = 0. It remains to show that ∂x∗j2/∂xi1 (x1∗, x1∗) 6= 0 for e′ 6= 0.

Without loss of generality we show this statement for the case i = 1 and j = 2. From (6)

and Cramer’s rule, we obtain in the symmetric solution

∂x∗22

∂x11

=

det

 ∂Φ1

∂x12
− ∂Φ1

∂x11

∂Φ2

∂x12
− ∂Φ2

∂x11


det

 ∂Φ1

∂x12

∂Φ1

∂x22

∂Φ2

∂x12

∂Φ2

∂x22


=

−H ′ (x1∗)H ′ (x2∗)αG′′ (0)

H ′′ (x2∗)− 2 (H ′ (x2∗))2 αG′′ (0)
(10)

since in the symmetric equilibrium we have

det

 ∂Φ1

∂x12

∂Φ1

∂x22

∂Φ2

∂x12

∂Φ2

∂x22


= [H ′′

(
x2∗)− (H ′ (x2∗))2

αG′′ (0)]2 −
[(
H ′
(
x2∗))2

αG′′ (0)
]2

=
(
H ′′
(
x2∗))2 − 2H ′′

(
x2∗) (H ′ (x2∗))2

αG′′ (0)

and

det

 ∂Φ1

∂x12
− ∂Φ1

∂x11

∂Φ2

∂x12
− ∂Φ2

∂x11


= −

[
H ′′
(
x2∗)− (H ′ (x2∗))2

αG′′ (0)
]
H ′
(
x1∗)H ′ (x2∗)αG′′ (0)

−
(
H ′
(
x2∗))2

αG′′ (0)H ′
(
x1∗)H ′ (x2∗)αG′′ (0)

= −H ′
(
x1∗)H ′ (x2∗)αG′′ (0)H ′′

(
x2∗) .

Note that the denominator of the fraction in (10) is strictly negative and G′′(0) > 0.

Hence, we just need to verify that H ′ (x1∗) , H ′ (x2∗) 6= 0 for e′ 6= 0. From the second-period

optimality conditions it is straightforward to see that in the symmetric equilibrium we have

H ′ (x2∗) = e′, thus we can focus on x1∗. Rewriting (8) under consideration of (10), we obtain

H ′
(
x1∗)− e′ + H ′ (x1∗)H ′ (x2∗)αG′′ (0)

H ′′ (x2∗)− 2 (H ′ (x2∗))2 αG′′ (0)
e′ = 0.
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Because of H ′ (x2∗) = e′ the condition is equivalent to

H ′
(
x1∗)− e′ + H ′ (x1∗)αG′′ (0)

H′′(x2∗)

(e′)2
− 2αG′′ (0)

= 0

⇔ H ′
(
x1∗)(H ′′ (x2∗)

(e′)2 − αG′′ (0)

)
= e′

(
H ′′ (x2∗)

(e′)2 − 2αG′′ (0)

)
.

Since the terms in parentheses are strictly negative, H ′ (x1∗) and e′ have the same sign.

(ii) Suppose that e′ = 0. Then condition (8) becomes

f ′
(
x1∗)− c′ (x1∗) = 0

which in turn implies x1∗ = xs.

Proof of Proposition 4. Because of (8) and under consideration of H ′ (x2∗) − e′ = 0 we

obtain

H ′
(
x1∗)−e′−∂x∗j2

∂xi1

(
x1∗, x1∗) e′ = H ′

(
x2∗)−e′ ⇔ H ′

(
x1∗)−H ′ (x2∗) =

∂x∗j2

∂xi1

(
x1∗, x1∗) e′.

Since H ′′ < 0 the statement of the proposition is shown if ∂x∗j2/∂xi1 (x1∗, x1∗) > 0. Again

we verify this for the case i = 1 and j = 2. From the proof of Proposition 3 we know that

sgn (H ′ (x∗1)) = sgn (H ′ (x∗2)) (since both, H ′ (x∗1) and H ′ (x∗2), have the same sign as e′).

∂x∗22/∂x11 (x1∗, x1∗) > 0 then follows immediately from (10).
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