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Abstract
Most macroeconomic data are uncertain - they are estimates rather
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1 Introduction

Most macroeconomic data are uncertain - they are estimates rather than

perfect measures. Measurement errors may arise because data are based on

incomplete samples or because many variables - for example, in-house soft-

ware investment - are not easily observable. This necessitates the use of

proxies. Without objective measures of data quality, it is difficult to gauge

the potential for measurement errors. One symptom of data uncertainties is

the propensity of statistical agencies to revise their estimates in the light of

new information (larger samples) or methodological advances (better prox-

ies). In the United Kingdom, the National Accounts are subject to a rich

revisions process - staff at the Office for National Statistics (ONS) work

through the implications of any changes to methodology for back data. As

a result, past revisions give an indication of the likely incidence of revisions

in the future and provide a measure of the potential for measurement errors

surrounding the latest published estimates.

In practice, revisions have often appeared large relative to the variation

observed in the published data. For example, the variance of revisions to the

first Quarterly National Accounts estimates of real GDP growth was 0.08

percentage points over the period since 1993; compared with a variance of

0.07 percentage points in the latest estimates of quarterly GDP growth. This

issue is by no means unique to the United Kingdom: see Mitchell (2004) for

a review of work establishing the scale of historical revisions and Öller and

Hansson (2002) for a cross-country comparison.

Uncertainty about the true profile of economic series now and in the past

adds to the challenge of forming a forward-looking assessment of economic

prospects and hence complicates policy formulation. Revisions to the recent

profile of macroeconomic data may affect the forecasts generated by economic

models. Taking published data at face value - ignoring the potential for future

revisions - may result in avoidable forecast errors.

The data-user need not, however, treat uncertain data in such a näıve

way. Indeed, there is some evidence that data-users have allowed for data

uncertainties in interpreting macroeconomic data. In reviewing revisions to
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the United Kingdom’s National Accounts, the Statistics Commission (2004)

concluded that “the main users of the statistics knew that revisions should

be expected, understood the reasons for them, and were able to make some

allowance for them when taking important decisions.” In other words, data-

users appear to be aware that macroeconomic data provide a noisy signal of

the current conjuncture.

One strategy that the data-user might adopt in the face of uncertainty in

estimates of the past is to amend her model estimation strategy to recognise

the imperfect signal in the published official data. For example, Harrison,

Kapetanios, and Yates (2005) suggest that where measurement uncertainties

are present in estimates of the recent past, models that downweigh recent

‘experience’ may have a superior forecasting performance to models in which

all observations are weighted equally. In a similar vein, Jääskelä and Yates

(2005) explore the implications of uncertain data for performance of compet-

ing simple policy rules. The intuition they develop is that the greater the

uncertainty in current data compared to lagged data, the greater the weight

on the lagged data should be.

However, integrating data uncertainty into model estimation strategies

in this way adds to the complexity of model building and interpretation -

the mapping from published official estimates to forecast economic variables

conflates estimation of economic relationships with estimates of the signal

contained in the published data. Such costs may be acute in a practical

policy setting because of policymakers’ preference for picking from a wide

range of models appropriate for analyzing different economic developments;

as described in Bank of England (1999). An alternative strategy is to unbun-

dle the treatment of data uncertainty from estimation of specific forecasting

models - first estimating the ‘true’ value of economic data and then using

those estimates to inform economic modelling and forecasting.

This paper explores that signal extraction problem more formally. As

long as revisions tend to improve data estimates - moving them towards

the truth - the problem boils down to predicting the cumulative impact of

revisions on the latest estimates of current and past activity. In addressing

this problem, our paper contributes to a growing and long-standing literature
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on modelling revisions (or real-time analysis), of which Howrey (1978) was

an early proponent.

1.1 An overview of the literature

One common approach to prediction of revisions is to estimate ‘true’ data

using some form of state space model. One very simple possible setting

would be to assume that: published data are unbiased; measurement errors

are i.i.d; uncertainties are resolved after a single round of revisions; and

that no alternative indicators are available. Then, the solution of the signal

extraction problem is simply a matter of estimating the signal to noise ratio

attaching to the preliminary estimates.

Early papers extended this basic story by allowing for any systematic

biases apparent in previous preliminary estimates. Such biases appear to

have been endemic in National Accounts data in the United Kingdom and

elsewhere, as documented for example in Akritidis (2003), and Garratt and

Vahey (2006). Early papers also allowed for serial correlation across releases

- that is that errors in today’s measure of activity in 1999 might be related

to errors in yesterday’s measure of growth in 1999. However, a number of

features of real-time National Accounts data were left unexplored. Indeed,

in a detailed review of the literature, Jacobs and Van Norden (2006) charge

that the early papers “impose data revision properties that are at odds with

reality”. Recent papers have sought to enrich the representation on a number

of fronts.

Most authors consider only the statistical agency’s estimates as candidate

measures. Ashley, Driver, Hayes, and Jeffery (2005) suggest weighting the

signal extracted from alternative indicators in proportion to past performance

in predicting revisions. Jacobs and Sturm (2006) model competing indicators

more formally in a state space setting. Considering alternative measures in

this way appears consistent with the wide array of indicators monitored by

policymakers, see Lomax (2004), and is the approach pursued in this paper.

Following Howrey (1978), several papers restrict attention to revisions

occurring in the first few quarters after the preliminary release. Assuming
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that estimates become ‘true’ after a few quarters is, however, violated by

the presence of revisions to more mature estimates. Subsequent papers have

explored a variety of approaches to dealing with the uncertainty surrounding

more mature estimates. Some, such as Patterson (1994) and Garratt, Lee,

Mise, and Shields (2005), increase the number of releases in the model so

that estimates are not assumed to become ‘true’ for two or three years. In

the case of the United Kingdom’s National Accounts, however, revisions have

been applied to even more mature estimates. An alternative, followed by Ja-

cobs and Van Norden (2006), is to restrict the model to a few maturities but

allow that measurement errors may be non-zero for the most mature release

modelled. Finally, Kapetanios and Yates (2004) impose an asymptotic struc-

ture on the data revision process - estimating a decay rate for measurement

errors rather than separately identifying the signal to noise ratio for each

maturity. The benefit of modelling the relationship between measurement

errors of differing maturities in this way is that they can capture revisions to

quite mature data relatively parsimoniously.

Many authors allow for serial correlation across releases, see, for exam-

ple, Howrey (1984). Jacobs and Van Norden (2006) argue that spillovers

in measurement errors within any release may be more important; in other

words, that errors in today’s measure of growth in a given past period may

be related to errors in today’s measure of growth in another past period.

Early models assumed measurement errors to be independent of the ‘true’

state. In an influential paper, Mankiw and Shapiro (1986) challenged whether

early estimates should be viewed as ‘noisy’ in this way or whether we might

expect some correlation with the level of activity, which they termed ‘news’.

Ignoring such a correlation could lead models to underweight uncertain data.

Jacobs and Van Norden (2006) propose a model that captures both ‘noise’

and ‘news’ elements.

The model developed in this paper extends the above literature with

respect to a number of features. The set of available measures is expanded

to include alternative indicators while the representation of measurement

errors attaching to the latest official estimates allows for serial correlation,

correlation with the true profile and for revisions to be made to quite mature
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estimates as well as the preliminary data releases. In allowing for mature

data to be revised, we follow Kapetanios and Yates (2004) and assume the

variance of measurement errors decays asymptotically.

The paper is structured as follows. Section 2 represents the signal ex-

traction problem in state space. Section 3 describes the estimation strategy

adopted; focusing on the use of the statistical properties of past revisions

to estimate some parameters of the state space model. We also present the

results of a small simulation exercise and an empirical illustration. Section

4 provides an illustrative example using United Kingdom investment data.

Finally, Section 5 concludes.

2 A State Space Model of Uncertain Data

In this section, we present a state space representation of the signal extrac-

tion problem. Recognising that analysis of the latest official data may be

complemented by business surveys and other indirect measures, we allow for

an array of measures of each macroeconomic variable of interest. Then, for

each variable of interest, the model comprises alternative indicators, a tran-

sition law and separate measurement equations describing the latest official

estimates. The measurement equation is designed to be sufficiently general to

capture the patterns in revisions observed historically for a variety of United

Kingdom National Accounts aggregates.

The model is presented in a vector notation, assuming m variables of

interest. However, we simplify estimation by assuming block diagonality

throughout the model so that the model can be estimated on a variable-by-

variable basis for each of the m elements in turn. One cost of this simplifica-

tion is that estimates of the ‘true’ value of the various elements of National

Accounting identities will not necessarily satisfy the accounting identities. In

practical application of the model, it is relatively trivial to balance estimates

as a post-model step - following Weale (1985) in allocating any accounting

identity residual arising from estimation of the state space model across ele-

ments, to minimise some loss function.
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2.1 The model for the true data

Let the m dimensional vector of variables of interest that are subject to data

uncertainty at time t be denoted by yt, t = 1, . . . , T. The vector yt contains

the unobserved true value of the economic concept of interest.

We assume that the model for the true data yt is given by

yt = µ+

q∑
i=1

Aiyt−i + εt, (1)

where A1, . . . ,Aq are m×m matrices, A(L) = Im−A1L− . . .−AqL
q is a lag

polynomial whose roots are outside the unit circle, µ is a vector of constants,

εt = (ε1t, . . . , εmt)
′ and E(εtε

′
t) = Σε, where we denote the main diagonal of

Σε by σ2
ε = (σ2

ε1
, . . . , σ2

εm)′. We further assume that A1, . . . ,Aq are diagonal,

so that the true value of each variable of interest is related only to its own

historical values.

This representation has a number of limiting features in practical applica-

tion. First, because we assume stationarity of yt, the model is more likely to

be applicable to differenced or detrended macroeconomic data than to their

levels. Second, we assume linearity for yt. Although this may be a restrictive

assumption, it is unclear to what extent we can relax it as assuming one par-

ticular form of non-linearity is likely to be restrictive as well. Finally, because

we assume A1, . . . ,Aq are diagonal, we do not consider transition laws that

exploit prior views of any behavioural relationship between the variables of

interest.

2.2 The statistical agency’s published estimate

Let yt+nt denote a noisy estimate of yt published by the statistical agency at

time t+ n, where n = 1, . . . T − t. The model for these published data is

yt+nt = yt + cn + vt+nt (2)

where cn is the bias in published data of maturity n and vt+nt the measure-

ment error associated with the published estimate of yt made at maturity

n.
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One of the main building blocks of the model we develop is the assump-

tion that revisions improve estimates so that official published data become

better as they become more mature. Reflecting this assumption, both the

bias in the published estimates and the variance of measurement errors are

allowed to vary with the maturity of the estimate - as denoted by the n su-

perscript. Note also that the latest data release (yT−i+1
T−i , . . . ,yTT−1)

′ includes

data points of differing maturities ranging from preliminary estimates of the

most recent past through more mature observations of data points that were

first measured some years previously.

The constant term cn is included in equation (2) to permit consideration

of biases in the statistical agency’s data set. Specifically, we model cn as

cn = c1(1 + λ)n−1, (3)

where c1 is the bias in published data of maturity n = 1 and λ describes the

rate at which bias decays as estimates become more mature (−1 < λ < 0).

This representation assumes that the bias tends monotonically to zero as the

estimates become more mature. It is possible that other specifications for

the bias might fit the revisions history of specific variables better.

We assume that the measurement errors, vt+nt , are distributed normally

with finite variance. We allow serial correlation in vt+nt . Specifically, we

model serial correlation in the errors attaching to the data in any data release

published at t+ n, as

vt+nt =

p∑
i=1

Biv
t+n
t−i + εt+nt , (4)

where B1, . . . ,Bp are m × m matrices, B(L) = I − B1L − . . . − BpL
p is

a matrix lag polynomial whose roots are outside the unit circle and εt+nt =

(εt+n1t , . . . , εt+nmt )′ and E(εt+nt (εt+nt )′) = Σn
ε as we are allowing for heteroscedas-

ticity in measurement errors with respect to n. Equation (4) imposes some

structure on vt+nt because we assume a finite AR model whose parameters

do not depend on maturity. The representation picks up serial correlation

between errors attaching to the various observations within each data release.

We further assume that B1, . . . ,Bp are diagonal, so that the measurement
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errors attaching to published estimates of each of the m variables are treated

independently from the measurement errors of the other variables.

Further, we allow that εt+nt and therefore vt+nt has heteroscedasticity

with respect to n. Specifically, we model the main diagonal of Σn
ε as σ2

εn =

(σ2
εn
1
, . . . , σ2

εn
m

)′, where σ2
εn
i

= E(εt+nit )2. For future reference we also define

σ2
vn

i
= E(vt+nit )2. The model for σ2

εn is given by

σ2
εn = σ2

ε1(1 + δ)n−1, (5)

where σ2
ε1 is the variance of measurement errors at maturity n = 1 and δ

describes the rate at which variance decays as estimates become more mature

(−1 < δ < 0). This representation imposes structure on the variance of mea-

surement errors, because we assume that the variance declines monotonically

to zero as the official published estimates become more mature. A monotonic

decline in measurement error variances is consistent with models of the ac-

cretion of information by the statistical agency, such as that developed in

Kapetanios and Yates (2004). We put forward three reasons for using this

specification. Firstly, this model is parsimonious since it involves only two

parameters. Secondly, δ has an appealing interpretation as a rate at which

revision error variances decline over time. Thirdly, and perhaps most impor-

tantly Kapetanios and Yates (2008) provide empirical evidence in favour of

this specification. In particular, tests of overidentifying restrictions implied

by this specification cannot be rejected for any series in the United Kingdom

National Accounts data.

Over and above any serial correlation in revisions, we allow that mea-

surement errors be correlated with the underlying true state of the economy,

yt. This correlation relates to the degree of ‘news’ and ‘noise’ inherent in

published estimates - addressing the challenge posed by Mankiw and Shapiro

(1986). We specify that εt+nt be correlated with shock εt to the transition

law in equation (1), so that, for any variable of interest

cov(εit, ε
t+n
it ) = ρεεσεiσεn

i
. (6)

In principle, the model in equation (2) could be applied to previous re-

leases as well as the latest estimates. One natural question is whether data-
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users should consider these previous releases as competing measures of the

truth - that is, using yt+n−jt alongside yt+nt as measures of yt. In contrast with

the treatment in much of the antecedent literature, we decide to exclude ear-

lier releases from the set of measures used to estimate ‘true’ activity, see, for

example, Garratt, Lee, Mise, and Shields (2005). The reason for using only

the latest release is pragmatic. In principle, given that empirical work across

a variety of data sets has found that revisions appear to be forecastable, using

earlier releases should be useful. In practice, however, such a model would

be complex. That complexity may be costly in various ways - the model

would be more difficult to understand, more cumbersome to produce and po-

tentially less robust when repeatedly reestimated. Given the importance of

robustness in repeated reestimation, we feel this choice is justified. Further,

by focusing on the latest release we are able to specify a model that is quite

rich in its specification of other aspects of interest, such as heteroscedasticity,

serial correlation and correlation with economic activity.

We note that there are circumstances where using only the latest release

is theoretically optimal. An example of a set of such circumstances is pro-

vided in Appendix A. The model developed in the appendix makes a number

of assumptions that imply a form of rational behaviour on the part of the

statistical agency, which may well not hold in practice. Therefore, we must

stress that such a model is restrictive. For example, it implies that revisions

are not forecastable which contradicts the empirical evidence. Further, our

modelling approach is obviously parametric and therefore has claims to effi-

ciency only if, on top of rationality on the part of the statistical agency, the

specification of the model for the unobserved true variable is correct. On the

other hand, note that the use of such a parametric model for the unobserved

variable can provide benefits as well. Even if the statistical agency is oper-

ating optimally in data collection, our state space model can provide further

benefits by positing a model for yt, since that is not a part of the statistical

agency’s specification. A final point we should note is that previous releases

are used to estimate bias and measurement error parameters as discussed in

Section 3.2.
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2.3 The alternative indicators

In addition to the statistical agency’s published estimate, the data-user can

observe a range of alternative indicators of the variable of interest; such as

private sector business surveys. We denote the set of these indicators by

yst , t = 1, . . . , T . Unlike official published estimates, the alternative indica-

tors need not be direct measures of the underlying variables. For example,

private sector business surveys typically report the proportion of respondents

answering in a particular category rather than providing a direct measure of

growth. We assume the alternative indicators to be linearly related to the

true data

yst = cs + Zsyt + vst . (7)

The error term vst is assumed to be i.i.d with variance Σvs . This, of course,

is more restrictive than the model for the official data. Simple measurement

equations of this form may not be appropriate for all the alternative indi-

cators used in routine conjunctural assessment of economic activity. One

natural extension of the model presented would be to consider the poten-

tial for serial correlation in the measurement errors attaching to alternative

indicators - recognising that business surveys often have a smoother profile

than the related National Accounts variables. In particular, the model does

not exploit any heteroscedasticity or serial correlation in measurement er-

rors associated with the indicators; any correlation between the true state of

the economy and the measurement errors surrounding the alternative indi-

cators; or any correlation between the measurement errors attaching to the

alternative indicators and those attaching to the published estimates.

2.4 The full model and further considerations

To summarise the model, we give its complete state space form for the latest

available release. The model treats the most recent release of data published

by the statistical agency and any alternative indicators as measures of the
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variable of interest. The state space representation of the model is

(
yTt
yst

)
=

(
cn

cs

)
+

(
I . . . 0 I . . . 0

Zs . . . 0 0 . . . 0

)


yt
...

yt−q+1

vTt
...

vTt−p+1


+

(
0
vst

)
,

(8)

yt
yt−1

...
yt−q+1

vTt
vTt−1

...
vTt−p+1


=



µ
0
...
...
...
...
...
0


+



A1 . . . . . . Aq 0 . . . . . . 0
I 0 . . . 0 0 . . . . . . 0
...

. . . . . .
...

...
. . . . . .

...
0 . . . I 0 0 . . . . . . 0
0 . . . . . . 0 B1 . . . . . . Bp

0 . . . . . . 0 I 0 . . . 0
...

. . . . . .
...

...
. . . . . .

...
0 . . . . . . 0 0 . . . I 0





yt−1

yt−2
...

yt−q
vTt−1

vTt−2
...

vTt−p


+



εt
0
...
0
εTt
0
...
0


.

(9)

Having completed the presentation of the model, it is worth linking our

work to the literature that deals with the presence of measurement error

in regression models. A useful summary of the literature can be found in

Cameron and Trivedi (2005). This body of work is of interest as it can

provide solutions to a number of problems caused by the presence of data

revisions. In the context of the following simple regression model

zt = βyt + ut (10)

use of yt+1
t as a proxy for yt can lead to a bias in the OLS estimator of β.

Then, the use of later vintages, yt+nt , n = 2, ..., T − t, as instruments in (10)

can be of use for removing the bias in the estimation of β. One issue of

relevance in this case is to choose if all available vintages should be used

as instruments. The rapidly expanding literature on optimal selection of in-

struments, see, for example, Donald and Newey (2001), suggests useful tools

for this purpose. Our analysis provides an alternative method of addressing

this problem. In our modelling framework, equation (10) becomes a further

measurement equation of the state space model and the overall estimation
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of the resulting model can provide unbiased estimates of β. However, our

current state space formulation is of further interest since on top of giving

estimates for relevant parameters it also gives an alternative and possibly

superior proxy for the unobserved true series, in the form of an estimate for

the state variable. This, can then be used for a variety of purposes including

forecasting.

3 Estimation of the State Space Model

In this section, we discuss the strategy adopted in estimating the model.

Section 3.1 outlines the creation of a real-time database and Section 3.2

discusses the use of real-time data for estimating bias and measurement error

parameters. Section 3.3 summarises the results of a Monte Carlo simulation

exercise aimed at establishing the model’s performance relative to taking

published estimates at face value.

The estimation is performed in two steps: first using the revisions history

to estimate equations (2) through (6); and then, as a second step, estimating

the remaining parameters via maximum likelihood using the Kalman filter.

Approaching estimation in two steps simplifies greatly the estimation of the

model and has the additional benefit of ensuring that the model is identified.

Were all parameters to be estimated in one step, the state space problem rep-

resented by equations (8) and (9) would not always satisfy the identification

conditions described in Harvey (1989).

3.1 Extracting revisions form real-time data

In recent years, a number of real-time data sets have been developed - de-

scribing the evolution of estimates through successive data releases. Using

this real-time data to estimate the parameters in (2) to (6) requires us to first

manipulate the real-time data set to derive a matrix of revisions to published

data of differing maturities.

The real-time data set for each variable of interest is an upper-triangular

data matrix with publication dates ordered horizontally and reference dates
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vertically down. Each column represents a new release of data published

by the statistical agency, and each release includes observations of differing

maturities. By way of illustration, Table 1 shows an extract of the real-

time database for whole economy investment used in the illustrative example

presented in Section 4; and Table 2 shows the maturity of the various obser-

vations.

Table 1 Extract from the real-time database for quarterly growth of whole
economy investment

Release date
2003 Q1 2003 Q2 . . . 2006 Q3 2006 Q4

R
ef

er
en

ce
d
at

e 2002 Q4 -0.15 0.16 . . . 3.51 3.51
2003 Q1 -1.13 . . . -3.18 -3.18

...
. . .

...
...

2006 Q2 1.31 1.21
2006 Q3 1.32

Table 2 Stylised real-time database - maturity of observations

Release date
2003 Q1 2003 Q2 . . . 2006 Q3 2006 Q4

R
ef

er
en

ce
d
at

e 2002 Q4 1 2 . . . 15 16
2003 Q1 1 . . . 14 15

...
. . .

...
...

2006 Q2 1 2
2006 Q3 1

Define the revisions to published estimates of an individual variable be-

tween maturities n and n+ j as

wn,jt = yt+n+j
t − yt+nt . (11)

For estimation purposes, we take revisions over the J quarters subsequent

to each observation to be representative of the uncertainty surrounding that

measure of activity. For example, with J = 24, we evaluate uncertainties
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surrounding data of maturity 1 by considering revisions between the 1st and

25th release; and we evaluate uncertainties surrounding data of maturity 12

by considering revisions between the 12th and 36th release.

If the real-time data set contains W releases of data, and we are interested

in the properties of N maturities, we can construct an N×(W −J) matrix of

revisions WJ , over which to estimate the parameters of equations (2) through

(6). Each column of the matrix WJ contains observations of revisions to

data within a single data release. Each row describes revisions to data of

a specific maturity n. N and J are both choice variables and should be

selected to maximise the efficiency of estimation of the parameters driving

equations (2) to (6). There is a trade-off between setting J sufficiently large

to pick up all measurement uncertainties and retaining sufficient observations

for the estimated mean, variance, and serial correlation of revisions and their

correlation with mature data to be representative. In the remainder of the

paper we arbitrarily set N = J = 20.

3.2 Estimation of bias and measurement error param-
eters

We use the sample of historical revisions in matrix WJ to estimate c1 and

λ quite trivially. Recall that we assume B1, . . . ,Bp to be diagonal. As a

result, the functions can be estimated for individual variables rather than for

the system of all variables of interest. In the remainder of this section, we

therefore consider estimation for a single variable and discard vector notation.

The sample means of revisions of each maturity n = 1 to N are simply the

average of observations in each row of WJ . Denoting the average revision

to data of maturity n by mean(wn,J), the parameters c1 and λ are then

estimated from the moment conditions mean(wn,J) = c1(1+λ)n−1 via GMM,

where −1 < λ < 0.

We cannot use historical revisions to estimate ρεε directly, because neither

εt nor εt+nt are observable. But we can use the historical revisions to form

an approximation of ρyv - denoted ρ∗yv. The manipulation in obtaining ρεε

from ρ∗yv is summarised in Appendix B. We start by estimating ρ∗yv. We can
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readily calculate the correlation between revisions to data of maturity n and

published estimates of maturity J + n, denoted by ρnyv = corr(yt+J+n
t , wn,Jt ).

Averaging across the N maturities in WJ gives an average maturity-invariant

estimate of ρ∗yv. Where the variance of measurement errors decays sufficiently

rapidly, we do not introduce much approximation error by taking this cor-

relation with mature published data as a proxy for the correlation with the

true outcome, yt. We do not apply any correction for this approximation be-

cause derivation of any correction would require untested assumptions about

the relationship between measurement errors across successive releases (such

as those described in Appendix A) which we do not wish to impose on the

model.

The variance-covariance matrix of historical revisions may be used to

jointly estimate both the heteroscedasticity in measurement errors and their

serial correlation. This requires us to first express the variance-covariance

matrix of measurement errors as a function of the parameters in equations

(4) and (5) and then to estimate the parameters consistent with the observed

variance-covariance matrix of revisions.

Assuming for simplicity first-order serial correlation in the measurement

errors, we can easily build-up a full variance-covariance matrix at any point

in time. The variance-covariance matrix of the measurement errors in the

most recent N maturities, will be invariant with respect to t and is given by

V =
σ2
ε1

1− (1 + δ) β2
1

× (12)
1 (1 + δ) β1 · · · (1 + δ)N−1 βN−1

1

(1 + δ) β1 (1 + δ) · · · (1 + δ)N−1 βN−2
1

...
...

. . .
...

(1 + δ)N−1 βN−1
1 (1 + δ)N−1 βN−2

1 · · · (1 + δ)N−1


A sample estimate of the variance-covariance matrix V̂ can be calculated

trivially from the matrix of historical revisions WJ . Taking the variance-

covariance matrix to the data, we can estimate β1, σ
2
ε1 and δ via GMM by

minimising

(vec(V)− vec(V̂))′(vec(V)− vec(V̂)). (13)
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The derivation of the variance-covariance matrix for higher lag-orders re-

quires some further manipulation, as outlined in Appendix B. It is worth

noting here that there exist a interesting special case where the first step es-

timation does not affect the second step ML estimation via the Kalman filter.

This is the case where the number of available vintages, N , tends to infinity.

In this case, the GMM estimation outlined above, results in parameter esti-

mates that are
√
NT consistent whereas the second step ML estimation is

only
√
T consistent implying that the parameters that are estimated in the

first step can be treated as known for the second step and the resulting ap-

proximation error associated with the first step estimation is asymptotically

negligible.

More generally, the fact that more data are used in the first step implies

that the variability of the first step estimates is likely to be lower than that

of the second step estimates. However, the use of a two step estimation

procedure implies that, in practice, the variability of the first step estimates

is not taken into account when the likelihood based second step variance

estimates are obtained. As pointed out above, the advantages of the two

step estimation, in our view, outweigh this disadvantage.

Of course, if the variances of the parameter estimates are of particular

interest, a parametric bootstrap can provide a standard avenue for obtaining

variance estimates that implicitly take into account the variability arising out

of both estimation steps. The parametric bootstrap would have to replicate

both steps of the two-step estimation procedure to capture appropriately the

parameter uncertainty associated with the first step estimation. However,

note that the validity of the bootstrap in this two-step estimation context

has not been formally shown, to the best of our knowledge, in the relevant

literature. Further, use of the bootstrap requires the specification of a model

for all vintages used in the first step GMM estimation, which may be prob-

lematic in practice. For these reasons, we provide standard errors for the

estimated parameters obtained from the second estimation step, using stan-

dard likelihood based inference.
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3.3 Monte Carlo simulations

As a check on the small-sample performance of our estimator, we run a

simple Monte Carlo simulation exercise. The focus of the exercise is on the

performance of the model in fitting the true state, yt, rather than on the

estimation of specific parameters.

The data are generated according to the model described by equations

(8) and (9). It is assumed that the model is of quarterly growth, with only

one release per quarter. We assume only one variable of interest, yt, that

evolves as an AR(1) process. The constant in the true model is set to µ = 0.

For further simplicity we assume cn = c1 = 0. This reduces the complexity

of the model. For the measurement errors we also assume an AR(1) process.

Further, we assume no additional indicators are available. The output of the

model is an estimate of the true state prevailing in each period. The model

is estimated over a sample of length T = 100; corresponding to 25 years of

data. We run 1000 replications in total for each parametrisation and the

results presented are averages over the replicates.

We evaluate the properties of the model across differing assumptions

about the degree of persistence in the transition law and the measurement

errors for the official estimates - assigning the AR coefficients α and β, val-

ues 0.1 and 0.6. We also consider different assumptions about the degree

of correlation between transition shocks and measurement errors - setting

ρεε = −0.5, 0 and 0.5. We set the heteroscedasticity decay parameter to

δ = −0.05; broadly in line with the decay rates found in the revisions his-

tory to United Kingdom National Accounts data since 1993. We have not

explored alternative values. The transition error, εt, and the error of the

measurement error, εt, are assumed to be i.i.d.N(0, 1). The variance of the

measurement error at maturity one is σ2
vT+1

T

= 1 implying that the signal to

noise ratio is also one at maturity one.

We use the simulation results to gauge the degree to which using the

model is superior relative to taking the latest published estimate, yt+nt , at

face value. The metric used is the standard deviation of the difference be-

tween the smoothed estimates of the truth and the unobserved truth across
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replications and relative to the standard deviations of the difference between

the latest published estimate and the unobserved truth. We evaluate this

metric separately for each maturity of the latest data to check whether any

performance gain is restricted to recent maturities.

Figure 1 compares the performance of estimated and published data for

α = 0.6, β = 0.1 and ρεε = 0. The model has a smaller standard deviation of

prediction errors than the published data for all maturities up to 58 quarters.

Thereafter, the measurement errors attaching to the published estimates have

become small enough so that any gains from filtering are more than offset

by parameter uncertainties. Table 3 contains Monte Carlo results for various

combinations of parameters α, β and ρεε. The results show that the model

performs always better than taking published data at face value for the first

18 maturities.

Figure 1 Standard deviation of errors in predicting yt
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Table 3 Gains from filtering (in %) and the earliest maturity at which pub-
lished data outperform filter estimates

Gain at maturity Earliest
ρεε α β 1 9 maturity
0.5 0.1 0.1 47.7 43.6 -a

0.5 0.1 0.6 47.4 41.2 80
0.5 0.6 0.1 51.2 46.4 -a

0.5 0.6 0.6 46.0 39.0 70
0 0.1 0.1 30.3 19.9 52
0 0.1 0.6 31.2 26.1 41
0 0.6 0.1 29.8 25.7 58
0 0.6 0.1 29.2 18.8 42

-0.5 0.1 0.1 12.4 6.0 18
-0.5 0.1 0.6 17.0 10.3 23
-0.5 0.6 0.1 16.5 11.1 26
-0.5 0.6 0.6 9.7 6.3 18

a The filter outperforms the published data at all evaluated ma-
turities.

4 An Illustrative Example

As an illustrative example, we apply the state space model to quarterly

growth of whole-economy investment. The Bank of England’s real-time data

set was described in Castle and Ellis (2002) and includes published estimates

of investment from 1961. The Bank of England’s real-time data set is avail-

able at www.bankofengland.co.uk/statistics/gdpdatabase. As an indicator,

we consider the British Chambers of Commerce’s Quarterly Survey. Specifi-

cally, the balance of service sector respondents reporting an upward change

to investment plans over the past three months. This is an arbitrary choice

made to explore the functioning of the model rather than following from

any assessment of competing indicators. We do not provide such an assess-

ment as part of this example. We restrict estimation to the period 1993 to

2006 because an earlier study of the characteristics of revisions to the United

Kingdom’s National Accounts (Garratt and Vahey (2006)) found evidence of

structural breaks in the variance of revisions to National Accounts aggregates

in the years following the Pickford Report.
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4.1 Estimation results

Table 4 sets out some summary statistics describing the revisions history of

published data of differing maturities - evaluating revisions over a 20-quarter

window as discussed in Section 3.1. Table 5 reports estimated heteroscedas-

ticity, bias, serial correlation and correlation parameters.

Table 4 Quarterly growth of whole economy investment - revisions summary
statistics, 1993Q1 to 2006Q4

Maturity
1 4 8 12 16 20

Mean 0.49 0.32 0.22 0.31 0.03 0.11
p-valuea 0.41 0.23 0.37 0.14 0.76 0.44
Variance 3.09 3.28 2.26 1.65 1.35 1.57
p-valueb - 0.18 0.03 0.00 0.00 0.00
Mean > 0 1.70 1.49 1.25 1.13 0.85 0.96
Mean < 0 -1.21 -1.51 -1.07 -0.85 -0.88 -0.96
Skewness -0.08 -0.55 -0.16 -0.05 -0.74 -0.22
Excess kurtosis -0.67 0.06 -0.06 0.60 1.24 0.77
a p-value of a test that mean revision are zero at each maturity.
b p-value of a test that revisions variance at each maturity is smaller than

revisions variance at maturity one.

The summary statistics suggest that, on average, upward revisions have

been larger magnitude than downward revisions. However, the null hypoth-

esis that mean revisions are zero cannot be rejected at the 5% level for any

maturity. The variance of revisions is 3.09 percentage points for estimates

with a maturity of one quarter. That is similar to the variance of whole-

economy investment growth (3.12 percentage points). For immature data

there is little evidence of heteroscedasticity, but the variance of revisions

does decline quite markedly once data have reached a maturity of 8 quarters.

The null hypothesis that the variance of revisions is equal to that at maturity

1 is rejected at the 5% level for maturities beyond 8 quarters.

The bias was not found to be significant and hence was excluded from the

model. This is not surprising given that Table 4 shows bias to be insignificant

at all maturities. The measurement error variance parameters also map fairly

easily from the summary statistics quoted in Table 4. The variance decay pa-

21



Table 5 Quarterly growth of whole economy investment - Estimated param-
eters

Parameter Standard error
Initial variance σ2

v1 3.584 0.296
Variance decay δ −0.058 0.013
Serial correlation β1 −0.220 0.055
Correlation with data ρ∗yv −0.315 0.162

rameter, δ, suggests a half-life for measurement errors of 12 quarters. There

is significant first order negative serial correlation across revisions: succes-

sive quarters of upward/downward revision are therefore unusual. Revisions

appear to have been negatively correlated with mature estimates, although

the parameter is only significant at the 10% level.

Table 6 reports the parameters estimates from the Kalman filter, while

Table 7 sets out some standard diagnostic tests of the various residuals of

the Kalman filter to give an indication of the degree to which modelling

assumptions are violated in the data set. Higher orders of q were not found to

be statistically significant, therefore the transition equation does not include

an autoregressive component.

Both the prediction errors for the published ONS data and the smoothed

estimates of the errors on the transition equations pass standard tests for

stationarity, homoscedasticity and absence of serial correlation at the 5%

level. Prediction errors are the ‘surprise’ in the observable variables (i.e. of-

ficial published data and alternative indicators) given the information avail-

able about previous time periods. These errors enter into the prediction

error decomposition of the likelihood function. Standard maximum likeli-

hood estimation therefore assumes that these errors are zero-mean, indepen-

dent through time, and normally distributed. If this is not the case, then

the Kalman filter does not provide an optimal estimator of the unobserved

states. The errors surrounding predictions for the indicator variable are less

well-behaved. In particular, there is evidence of significant serial correla-

tion in these residuals. We have assumed that residuals associated with the

indicator variables are i.i.d. This assumption could be relaxed in future work.

We next turn to the estimate of quarterly growth of whole economy in-
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Table 6 Estimated Kalman filter parameters

Parameter Standard error
True data parameters
Constant µ 1.177 0.238
Error variance σ2

ε 3.217 0.673
Indicator parameters
Constant cs 1.177 0.219
Slope Zs 0.369 0.138
Error variance σ2

vs 2.629 0.567

Table 7 Model residual diagnostics
Table reports p-values for all tests except for the ADF tests, where t-statistics is
reported. Entries in bold indicate rejection of the null hypothesis at 5% significance
level.

ε̂t v̂st ε̂Tt
ADF test: no constant or trend -6.114 -2.795 -5.405
ADF test: constant, but no trend -6.054 -2.781 -5.346
ADF test: constant and trend -5.984 -3.439 -5.401

Normality test 0.598 0.921 0.891
Serial correlation test: 1 lag 0.313 0 0.061
Serial correlation test: 4 lags 0.538 0 0.294
ARCH test: 1 lag 0.069 0.006 0.166
ARCH test: 4 lags 0.401 0.064 0.646

vestment - that is, the smoothed backcast. Figure 2 reports the estimates of

quarterly growth of whole economy investment. Following the presentational

convention of the GDP and inflation probability forecasts (more commonly

known as fan charts) presented in the Bank of England’s Inflation Report

each band contains 10% of the distribution of possible outcomes. In this

application, because the normality assumption is not rejected by the data,

the outer (90%) band is equivalent to a ± 1.6 standard error bound.

The central point of the fan chart tracks the statistical agency’s pub-

lished estimates quite closely once those estimates are mature. This follows

from the fact that the heteroscedasticity and bias in measurement errors de-

cline reasonably rapidly. Over the most recent past, the central point differs

more materially. This mainly reflects the higher measurement error variance
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attaching to earlier releases.

Figure 2 Fan chart for quarterly growth of investment and the official es-
timate (solid line). Each band contains 10% of the distribution of possible
outcomes.
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4.2 Real-Time Evaluation of the State Space Model

In this subsection we provide an evaluation of the real-time performance

of the model. For this experiment, the evaluation period starts at s0 =

1998Q1 and terminates at s1 = 2002Q4. That is the model is estimated

and outputs are produced based on samples from 1993Q1 to 1998Q1. The

estimation period is then extended to include observed data for the following

time period, i.e. 1998Q2. This is repeated until 2002Q4, which gives 20

evaluation observations. For each run, we compare the performance of the

smoothed backcast with that of the official published estimates available

at the time the smoothed backcast was formed. Because each official data
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release includes data points of differing maturities, we evaluate backcasting

performance for each maturity from 1 to 24.

In standard forecasting applications, real-time performance is evaluated

on the basis of forecast errors - often using the RMSE as a summary statistic.

Evaluation of backcasts is more complex because we do not have observations

of the ‘truth’ as a basis for evaluation. Instead, we evaluate performance of

backcasting the profile of investment revealed 14 releases after the official data

were published. That is, we compare the value of the smoothed backcast at

time t of maturity n with the data release at time t of maturity n + 14 to

derive an RMSE-type metric

ςn =

√√√√ 1

s1 − s0 + 1

s1∑
t=s0

(ŷt − yt+n+14
t )2.

where ŷt is the smoothed backcast of yt made at maturity n in the case of

the smoothed data and is the published data otherwise.

Figure 3 plots ςn for published data and smoothed backcasts for maturities

1 to 24. The backcasting errors appear smaller than the errors attaching to

the official published estimates.

Table 8 reports the results of Diebold-Mariano tests, SDM , (Diebold and

Mariano (1995)) of the significance of the difference in performance between

backcasts and official published estimates for maturities 1 to 12. Harvey,

Leybourne, and Newbold (1997) have proposed a small-sample correction for

the above test statistic, S∗DM . The table reports the test statistics for the

null hypothesis that the two alternative backcasts are equally good. We also

report probability values for these statistics. Probability values below 0.05

indicate rejection of the null hypothesis in favour of the hypothesis that the

state space model backcast is better than the early release in estimating the

truth. Note that in a number of cases the Diebold-Mariano statistics are

reported as missing. This is because in these cases the estimated variance

of the numerator of the statistic is negative as is possible in small samples.

The results show that the Diebold-Mariano test rejects the null hypothesis

of equal forecasting ability in all available cases. On the other hand the

modified test never rejects. We choose to place more weight on the results
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Figure 3 RMSE for maturities 1 to 24 for smoothed backcast (dashed line)
and published data (solid line)
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of the original, and more widely used, Diebold-Mariano test and conclude

that there is some evidence to suggest that the state space model backcast

is superior to the early release in estimating the truth.

5 Conclusions

We have articulated a state space representation of the signal extraction

problem faced when using uncertain data to form a conjunctural assessment

of economic activity. The model draws on the revisions history to proxy the

uncertainty surrounding the latest published estimates. Therefore it estab-

lishes the extent to which prior views on economic activity should evolve in

light of new data and any other available measures, such as business surveys.

The model produces estimates of the ‘true’ value of the variable of interest,
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Table 8 Diebold-Mariano test results for maturities 1 to 12
n SDM p-value S∗DM p-value
1 −1.694 0.045 −1.600 0.084
2 − − − −
3 −1.775 0.038 −1.315 0.296
4 − − − −
5 − − − −
6 − − − −
7 − − − −
8 − − − −
9 − − − −
10 − − − −
11 −3.452 0.000 −0.597 0.279
12 −1.908 0.028 −0.247 0.404

a backcast, that can be used as a cross-check of the latest published official

data, or even to substitute for those data in any economic applications. Since

we assume that official estimates asymptote to the truth as they become more

mature, our backcasts amount to a prediction of the cumulative impact of

revisions to official estimates.

In using backcasts to predict the cumulative impact of revisions, one

should, however, be alert to a number of caveats. First, we assume that

the revisions history provides a good indication of past uncertainties. This

assumption is likely to be violated where statistical agencies do not revise

back data in light of new information or changes in methodology - in other

words, the model is only applicable where statistical agencies choose to apply

a rich revisions process. Second, we assume that the structures of both

the data generating process (the transition law) and the data production

process (measurement equations) are stable. Finally, the model is founded

on a number of simplifying assumptions. In particular, the model is linear

and stationary; measurement errors are assumed to be normally distributed;

and the driving matrices are diagonal so that we can neither exploit any

behavioural relationship between the variables of interest nor any correlation

in measurement errors across variables.
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A The Role of Early Releases Once More Ma-

ture Estimates Are Available

The model of Section 2 uses the latest published estimates as a measure but

makes no reference to earlier data releases. We do this largely for pragmatic

reasons, but it begs the question: why should the data-user ignore all earlier

published estimates? The focus on the latest release is justified if the statis-

tical agency processes new information effectively so that the information set

driving the latest release encompasses that driving all earlier releases. This

appendix develops this notion. In doing so, we need to model the evolution

of measurement errors across releases.

Consistent with the notation in the main paper, denote the true value

of the variable of interest by yt. The model for the published data is then

yt+nt = cn + yt + vt+nt , where yt+nt is the n-th release of published data for

the truth at time t and cn is a bias term which depends on n. We model

vTt , t = 1, . . . , T − 1 by assuming that it is an AR process over t. We have

B(L)vTt = εTt .

We can also consider the process describing the evolution of εt+it over i -

that is the evolution of errors through successive releases. Recognising that

the statistical agency’s information set grows through time, we can write εt+it

as follows

εt+it = ηt+it + ηt+i+1
t + . . . =

∞∑
j=0

ηt+i+jt .

As maturity increases, the statistical agency receives incremental informa-

tion. That information is used to successively remove bits, ηt+it , of error

from εt+it . As long as the statistical agency does not throw away informa-

tion and new information helps, the variance of the measurement errors will

decline with maturity. We formalise this below.

Assume that ηt+it can be treated as independently, but not identically,

distributed (i.ni.d). By the i.ni.d assumption on ηt+it we then know that

var(εt+it ) =
∑∞

j=0 σ
2
ηi+j where var(ηt+it ) = σ2

ηi .

In the model described in Section 2, we assume that vt+nt has heteroscedas-

ticity with respect to n, with σ2
εn = σ2

ε1(1 + δ)n−1. This exponential decay in
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measurement error variance would be consistent with an exponential decay

in σ2
ηi with maturity - the intuition being that the increments to the sta-

tistical agency’s information set decrease in size as estimates become more

mature. Thus σ2
ηi = σ2

η1(1 + ζ)i−1, where −1 < ζ < 0. To establish the

expectation of yt, we need to determine the covariance between measure-

ment errors of differing releases within this model set-up; that is E(vt+it vt+jt ).

Assuming for simplicity, that vt+it is given by an AR(1) process of the form

vt+it = βvt+it−1 + εt+it . Using standard algebra gives

σ2
vk = E(vt+it vt+jt ) =

σ2
ε1(1 + δ)k−1

1− β2(1 + δ)
(A.1)

where k = max(i, j). The covariance between measurement errors attaching

to differing releases is equal to the variance of the most recent, that is the

least mature release. Given a model for the covariance of revisions across

releases, we can derive an expectation of yt conditional on the entire set of

available releases. Assume we have N available releases of data. Then, in

forming our expectation of yt, we want to find the coefficients that minimise

the mean-square error in the following expectations function

E(yt|yt+1
t , . . . , yt+Nt ) = E(yt|yNt ) = µ+ γ1y

t+1
t + . . .+ γNy

t+N
t .

Using standard results on conditional expectations the γ parameters in this

expression will be given by (var(yNt ))−1 cov(yt,y
N
t ).

In the framework of the model developed in the previous section of this

appendix, it can be shown that the optimal coefficients are zero for all releases

but the most recent. We assume that the underlying shocks (the ηt+jt s) are

uncorrelated with the true data so var(yt) = ιNσ
2
yι
′
N + ΣN

v and cov(yt,yt) =

ιNσ
2
y where ιN is a N × 1 vector of ones, σ2

y is E(yt − E(yt))
2 and ΣN

v =

E(vNt vNt
′
) is the variance-covariance matrix of measurement errors, where

vNt = (vt+1
t , vt+2

t , . . . , vt+Nt ).

We can then use equation (A.1) to build this variance-covariance matrix

as

E(vNt vNt
′
) = ΣN

v =


σ2
v1 σ2

v2 · · · σ2
vN

σ2
v2 σ2

v2 · · · σ2
vN

...
...

. . .
...

σ2
vN σ2

vN · · · σ2
vN

 .
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Putting these elements together
γ1

γ2
...
γN

 = (ιNσ
2
yι
′
N + ΣN

v )−1ιNσ
2
y =


0
0
...
σ2

y

σ2
vN +σ2

y

 . (A.2)

Hence, under the assumptions made above, we can legitimately focus on

just the most recent release of data.

Note that (A.2) is obtained as follows. For n = 2 the result follows from

elementary calculations. Then, the n = 2 result may be used to show that

E(yt|yt+1
t , yt+nt ) = E(yt|yt+nt ).Given this it follows that E(yt|yt+1

t , yt+2
t , yt+nt ) =

E(yt|yt+nt ) if E(yt|yt+2
t , yt+nt ) = E(yt|yt+nt ). But this can be shown by appeal-

ing to the n = 2 result. Proceeding inductively and by repeated use of the

n = 2 result, the general n case is obtained.
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B The Mapping Between ρεε and ρyv

Section 3.2 describes the use of the real-time data set to estimate σ2
v1 , δ and

β1, . . . , βp and the manipulation of these estimates to derive an estimate of

σ2
ε1 . This manipulation is trivial for low orders of p. For p = 1 we have, from

equation (12) σ2
ε1 = σ2

v1(1− (1 + δ)β2
1). For higher orders of p, following the

model of serial correlation in measurement errors described in Section 2, the

model for measurement errors in period t is

vt+nt = β1v
t+n
t−1 + β2v

t+n
t−2 + . . .+ βpv

t+n
t−p + εt+nt . (B.1)

To derive V we need to build up the matrix in p × p blocks. We can do

this by writing equation (B.1) in companion form as vt = Bvt−1 + εt, where

vt = (vt+nt , vt+nt−1 , . . . , v
t+n
t−p )′,εt = (εt+nt , 0, . . . , 0)′ and

B =


β1 β2 . . . βp−1 βp
1 0 . . . 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0

 .

Taking the variance of both sides gives var(vt) = B var(vt−1)B
′ + var(εt).

Recognising from equation (12) that var(vt) = (1+δ) var(vt−1) and using the

identity vec(ABC) = (C′ ⊗A) vec(B), we have vec(var(vt)) = (1 + δ)(B⊗
B) vec(var(vt)) + vec(var(εt)). Rearranging gives vec(var(vt)) = (Ip2 − (1 +

δ)B⊗B)−1 vec(var(εt)). We can then build up the full V matrix in a similar

fashion to equation (12)

V =


Ip (1 + δ)pB · · · (1 + δ)kpBk

(1 + δ)pB (1 + δ)pIp · · · (1 + δ)kpBk−1

...
...

. . .
...

(1 + δ)kpBk (1 + δ)kpBk−1 · · · (1 + δ)kpIp


× (Ik+1 ⊗ var(vt)). (B.2)

Taking the variance-covariance matrix to the data, we can estimate β1, . . . , βp, σ
2
ε1

and δ via GMM by minimising (vec(V)− vec(V̂))′(vec(V)− vec(V̂)).

We can apply a similar set of manipulations to express ρεε as a func-

tion of ρyv, the variance of measurement errors σ2
ε and the parameters of
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the transition law - assuming there is no intertemporal correlation between

εt and εt+nt . We can write the transition equation (1) in companion form

yt = µ+ Ayt−1 + εt, where yt = (yt, . . . , yt−p)
′, εt = (εt, 0, . . . , 0)′ and

A =


α1 α2 . . . αq−1 αq
1 0 . . . 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0

 .

By similar manipulations, we obtain that

vec (var (yt)) = (Iq2 −A⊗A)−1 vec (var (εt)) . (B.3)

The covariance between yt and vt can be written as cov(yt,vt) = cov(εt, εt)+

A cov(yt−1,vt−1)B
′. Recognising that cov(yt−1,vt−1) =

√
(1 + δ) cov(yt,vt)

we can rearrange to obtain

vec(cov(yt,vt)) = (Ipq −
√

(1 + δ)B⊗A)−1 vec(cov(εt, εt)). (B.4)

The first element in the vector on the right-hand side rescales the covari-

ance between yt and vt to the covariance between εt and εt. To uncover the

rescaled correlation we also need to take account of the differences in variance

between the dynamic series and the respective shocks.

Putting (B.3) - (B.4) together reveals the mapping between ρyv and ρεε.

In the case when p = q = 1, it can be shown quite easily that |ρεε| ≥
∣∣ρyv∣∣ .
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