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One method of solution of an optimum investment
portfolio problem for risky assets

Alexander MILNIKOV
Mikheil MAMISTVALOV

Abstract:The problem for choice of an optimum investment portfolio is
considered. The square-law form of risk is presented as two-multiple convolution
of covariant tensor of the covariance matrix and contravariant vector of weights.
By means of reduction of covariance matrix to the diagonal form, the problem by
definition of optimum structure of a portfolio is solved: simple expressions for a
minimum of visk and optimum distribution of the weights providing this minimum
are received.

Keywords: tensor, convolution, invariants, risky assets, portfolio,
covariance matrix, contravariant vector, optimum structural potentials, relative
optimum structural potentials

The primary goal in the theory of a choice of an optimum
investment portfolio can be reduced to a multidimensional problem of
minimization of a quadratic form with constraints [ 1, 2]. Here the basic role
covariance matrix g; plays. It reflects a set of relationships among n shares.
The vector of weights w, characterizing distribution of invested means,
should satisfy equation 2 w =1

In this case the mentioned problem of minimization looks as follows.

It is required to minimize the quadratic form representing a square
of'total risk of the given portfolio.

c’= gijwiwj (1)
with constraint
D w—1=0 )

Thus, the decision of the formulated problem will allow defining
such distribution of weights of an investment portfolio, which minimizes
risk. The received distribution we refer as optimum structure of a portfolio.
We underline, that we do not consider shares with zero risk.
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Itis known, that g being a covariance matrix, is positively defined
symmetric matrix, therefore its eigen values are always non negative, and
eigen vectors orthogonal [3,4]. We will consider it as bivalent covariant
metric tensor, then total risk (is more exact, its square) of n shares, written
down in the form of (1), is possible to be considered as double convolution
of metric tensor g with contravariant vector of weights w.

If (1) is a convolution, it is invariant. The last means that total risk
does not depend on system of coordinates that allows restating a problem of
calculating the diagonal form of tensor g;. We will define the diagonal form
of tensor g, for what we are calculating its eigen values and corresponding
eigen vectors. Thanks to simmetricity and positive definiteness of g; it's not

difficult to do it. We will refer eigen values as °,(i=1,2, ..., n), that is they

are represented in the form of squares of positive numbers that is possible
thanks to mentioned property of eigen values of positively defined
symmetric matrixes. Among eigen values can be multiple ones, that
essentially changes nothing. It is easy to define also eigen vectors,
corresponding to their eigen values. If we normalize them and write down
decomposition of already normalized eigen vectors according to the
vectors of current basis, we will receive matrix p’;, where the top index
indicates the number of coordinate of eigen vector (number of a line in
matrix P), and bottom - vector's number. The matrix p', can be considered
as the operator of transition from old basis to new one. As new basis is
orthonormal than the transition matrix (it consists of coordinates of these
vectors) appears to be the own orthogonal matrix (P*P' = E u |P| = 1).
Coordinates of contravariant vectors are transformed, as it is known, by
means of a matrix transposed and inverse to R. However, considering the
orthogonality of P, we have (P')" = P, that is in our case contarvariant and
covariant vectors are transformed by means of the same matrix. Notice that
this matrix represents also bivalent, but mixed tensor (once covariant - the
bottom index and once contravariant the-top index), that allows to consider
P as the operator of n-dimensional space.

In the new basis the matrix of tensor g will have a diagonal form:

gD P =& = { om G)

Proceeding from the aforesaid, the coordinates u' of contarvariant
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vector of weights w in new basis

u' = piw’ )
It's obvious that we also have inverse transformation
w' = p/u’ (5)
Thus we have received the transformed initial problem of optimization:
to minimize
o’=p’ @) (6),
atrestriction

izn:pl;jui—lzo (™,

i=l j=1
which after aregrouping will become
Zuin,i/—lzo (8).
=1

=l =
Itis easy to write down Lagrange function of a problem (5) - (6)

o.2) = 2y 2 (Y’ pi ~1=0)

i=l =l

Whence we have
Mzzuizui_xzpljj =0 1
Ou j=1 (8)
and
0d(u,N) N i
———==>u ) p/-1=0 )
o Z ]Z‘ ‘ (8.
From (8')
Ay p!
y = (9)

piTh
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And substituting in (8°) it is received

1
A=———r
QY (10)
2
=2
Let's enter notations
g, = ipl/ (111)
and /7
n 2 2
. ()
i=1 Mi

Substituting (10) in (9) and using (11") and (11°), we have for optimum
weights

J
20 le  w (12)

i
op

2 2
el; el &

. <.
where ' = _’2
W,

Now itis possible to calculate a minimum of risk

D 1
O nin = M (t)" = — (13)

Using transformation (5), it is possible to write down optimum structure for
initial variables

; STt

Wop = piil ? (14)
Considering, that in similar notations the first the top index
changes, it is visible that constant €, is the sum of elements of i-th column
of transposed matrix P, or the sum of elements of i-th line of matrix P, that is

the sum of co-ordinates of i-th eigen vector of covariance matrixes g.

As these constants completely define optimum structure of an
investment portfolio it is possible to name them optimum structural
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potentials of a portfolio, constants 7 - relative optimum structural potentials
(they are expressed in terms of variances p’, ), and constant & which is
inverse to the minimum risk, -the maximum risk.
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