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Abstract 

Catastrophe bonds (cat bonds) often use index triggers, such as, for instance, 
parametric descriptions of a catastrophe. This implies the problem of the so-called basis risk, 
resulting from the fact that, in contrast to traditional reinsurance, this kind of coverage cannot 
be a perfect hedge for the primary’s insured portfolio. On the other hand, cat bonds offer 
some very attractive economic features: Besides their usefulness as a solution to the problems 
of moral hazard and default risk, an important advantage of cat bonds can be seen in 
presumably lower risk premiums compared to (re)insurance products. Cat bonds are only 
weakly correlated with market risk, implying that in perfect financial markets these securities 
could be traded at a price including just small risk premiums. Furthermore, there is empirical 
evidence that risk aversion of reinsurers is an important reason for high reinsurance prices. In 
this paper we introduce a simple model that enables us to analyze cat bonds and reinsurance 
as substitutional risk management tools in a standard insurance demand theory environment. 
We concentrate on the problem of basis risk versus reinsurers’ risk aversion and show that the 
availability of cat bonds affects the structure of an optimal reinsurance contract as well as the 
reinsurance budget. Primarily, reinsurance is substituted by index-linked coverage for large 
losses. 
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1. Introduction 

Damages inflicted by natural catastrophes in recent years have accounted for economic losses of 

a size heretofore unknown.3 The estimated loss potential of some catastrophe scenarios seemingly 

shows the capacity limits of traditional insurance markets. For instance, estimations of insured 

losses after a major earthquake in the San Francisco area amount to approximately $100 billion; 

on the other hand, balance sheets of the U.S. property liability insurance industry show a 

cumulative surplus of about $300 billion,4 which, of course, is available not only for catastrophic 

risks.  

These “capacity gaps” in the industry5 have been at the heart of many discussions among 

insurance economists and practitioners in the recent past, largely aimed at the development of 

possible solution strategies involving the financial markets. Contributions can be expected, if, for 

example, the issuance of marketable insurance-linked securities was able to attract additional 

capacity from investors who are not otherwise related to the insurance industry. In practice, 

rudiments of this kind can be observed in various forms since 1992, even though they have yet to 

reach a significant market share.6 

To summarize these arguments, the existence of insurance-linked securitization is often 

explained by its ability to (partly) close the capacity gap of the insurance supply, especially in 

terms of reinsurance.7 This line of reasoning is, however, not entirely convincing. Additional risk 

financing capacity could also be generated through extending capital funds held by the insurance 

industry or through market entries in the insurance markets. The latter, in fact, could be observed 

during the 1990s following hurricane Andrew: Immediately after this event reinsurers were very 

reluctant and in particular the Lloyd’s reinsurance market went through a heavy crisis, leading to 

                                                 

3  As the dramatic recent events have sadly shown, there are certain risks of man-made disasters that can incur even 
worse economic and insured losses than extreme natural catastrophes. 

4  See e.g. Cholnoky, Zief, Werner, and Bradistilov (1998) or Cummins, Doherty, and Lo (1999). 
5  For an approach to measure the (re)insurance markets' capacity for covering catastrophe risks see Cummins, 

Doherty, and Lo (1999). 
6  See Swiss Re (1999). 
7  See e.g. Kielholz and Durrer (1997), Cholnoky, Zief, Werner, and Bradistilov (1998).  
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a decline in the supply of catastrophe coverage.8 Nevertheless, the available reinsurance capacity 

definitely increased over the next few years as more capital flowed into the industry.9 

In order to explain the relevance of insurance-linked securities, we therefore have to 

consider their special features.10 In comparison to traditional reinsurance cover, insurance risk 

securitization has to include elements that provide specific advantages for covering certain risks. 

They have to be analyzed in detail to enhance the understanding of these securities’ importance 

and possible usefulness. Our paper is an endeavor to shed light on the specific advantages and 

disadvantages of a certain type of insurance securitization, namely the issuance of catastrophe 

bonds (or cat bonds, for short).  

                                                

A cat bond is a contract between an issuer and an investor. The investor puts up an 

amount of cash at the beginning of the coverage period; this is held in escrow until either a pre-

specified triggering event occurs or the coverage period ends. The issuer offers a certain coupon 

payment exceeding the risk-free rate at the end of the period, provided that the event does not 

occur, and returns both principal and interest to the investor. Otherwise, if the event happens, the 

investor will receive no coupon payment, and some or all of the principal may go to the issuer.11  

Three different types of triggering events are usually distinguished: First, the event can be 

defined directly upon a primary insurer’s actual losses. A second possibility is to use aggregate 

loss data like an industry loss index. Third, the event can be described by a set of technical 

parameters (parametric trigger), for example an earthquake’s Richter scale reading and location 

etc. In the following we will concentrate on cat bonds with the latter two types of trigger 

mechanisms which will also be referred to as indexed cat bonds. 

 

8  See Swiss Re (1998), p. 14. 
9  In particular, reinsurers located in the Bermudas were a major source for additional capacity provided during this 

period. Companies specialized in natural catastrophe reinsurance were set up and the Bermudas quickly became a 
very important market. For example, the global market share of the Bermuda reinsurance market developed from 
0% to 5% between 1992 and 1997. Apparently, being specialized in natural catastrophe risk, it benefited from 
increased premiums in this segment and also from relatively lower natural catastrophe losses between 1995 and 
1997 (Swiss Re, 1998, pp. 12-21). 

10  See also Jaffee and Russel (1997), who argue that the insurance industry's problems in covering catastrophe risks 
are caused by the institutional framework, since it limits the incentives for holding sufficiently large amounts of 
liquid capital, which would be needed to spread such risks over time. 

11  For the structure of recent cat bonds see Doherty (1997a), for the case of non-indexed cat bonds see also Bantwal 
and Kunreuther (2000). 
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Compared to traditional reinsurance, indexed cat bonds exhibit highly imperfect risk 

allocation, since they are based on stochastic variables which are not identical with the losses to 

be covered. To be of any use they have to be correlated with those losses, but usually cannot be a 

perfect hedge. Thus a buyer of index-linked coverage always has to face the so-called basis risk. 

On the other hand, index-linked coverage comes with certain attractive features. First, it is 

a tool to reduce moral hazard. While in the case of traditional (re)insurance the insured is, more 

or less, usually in a position to influence the loss distribution, the pay-off from a cat bond can be 

based on an underlying stochastic which cannot be controlled or heavily influenced by the 

buyer.12 Furthermore, in contrast to catastrophe reinsurance contracts, cat bonds are not subject to 

default risk. While a catastrophic event could influence a reinsurer’s ability to compensate the 

primary, this problem can be avoided by cat bonds: The issuer of a cat bond hedges loss 

payments without credit risk since his or her obligation to pay interest and/or principal to the 

investors is forgiven when the bond is triggered.  

Probably the most important advantage of cat bonds can be seen in the potentially lower 

prices in comparison to insurance or reinsurance products. Especially in the area of catastrophe 

reinsurance the premiums entail substantial loadings.13 According to catastrophe reinsurance data 

presented by Froot (2001), for example, the average ratio of premiums to expected losses 

between 1989 and 1998 was higher than 4. Obviously prices went up dramatically after Hurricane 

Andrew, and the data suggests a cyclical development of premiums triggered by large 

catastrophic events.14 

Cat bonds on the other hand have no or only modest costs of acquisition, monitoring and 

loss adjustment,15 which are usually quite considerable in insurance markets. Furthermore, cat 

bonds are only weakly correlated with market risk, implying that in perfect financial markets 

these securities could be traded at a price including just small risk premiums,16 whereas a very 

                                                 

12  For a detailed discussion of the moral hazard aspect see Doherty and Richter (2002). 
13  See Froot and O’Connell (1999), p. 200, Doherty (1997b), p. 714. 
14  See Froot (2001), p. 8. 
15  In particular, in this context one has to mention the advantage of a parametric trigger, that the parameters can be 

determined very quickly which ensures a rather rapid timing of payments. 
16  See e.g. Litzenberger, Beaglehole, and Reynolds (1996) or Lewis and Davis (1998). It has to be mentioned, 

however, that the low correlation argument seems to be of limited validity for major catastrophes. 
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convincing rationale for the high cost of catastrophe reinsurance is the reinsurers’ risk aversion. 

Strong evidence for this can be seen in the observation that prices seem to be the greater the 

higher the reinsurance layers.17 

It might be argued, however, that the profitability of insurance-linked securities traded on 

financial markets so far significantly exceeded the risk free rate. A plausible explanation for this 

is that high returns were necessary to attract investors to this new kind of transactions. One can 

expect that, with an increasing degree of standardization and an increasing market share the 

interest rate of indexed cat bonds will decrease. Moreover, a considerable share of the cat bonds 

that have been traded in the past has been using triggers defined upon individual actual losses. 

For these products which are not the focus of this paper, the necessity of monitoring due to moral 

hazard is a reason for substantially higher prices.18 

Due to the importance of risk aversion as a determinant of catastrophe reinsurance rates 

and therefore as a reason of potentially lower prices of index-linked coverage, our analysis will 

concentrate on this point respectively on the trade-off between a reinsurer’s risk aversion and a 

cat bond’s basis risk. For this purpose we consider the case of a primary insurer facing a 

catastrophic risk that endangers its insured portfolio. The primary can buy traditional reinsurance 

as well as coverage provided by the issuance of an indexed cat bond.  

This paper is related to Doherty and Richter (2002), who also introduce a model to 

formally address the attractiveness of a joint use of insurance and index-linked coverage. The 

authors consider the case that insurance can be used to insure the basis risk, which means the 

policyholder can purchase a separate policy – called gap insurance – to cover the difference 

between the index-linked coverage and the actual loss. So, the reinsurance contract is, in contrast 

to our model, defined in a way that the indemnity directly depends on the realization of basis risk. 

The analysis concentrates mainly on the trade-off between basis risk and moral hazard. Using 

mean variance to describe the primary’s preferences, and assuming a risk-neutral reinsurer, it is 

shown that combining the two hedging tools might extend the possibility set and by that means 

lead to efficiency gains. 

                                                 

17  See Froot (1997), p. 5, or Froot (2001), p. 7. 
18  See Cummins, Lalonde, and Phillips (2000), p. 38. 
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Our paper is organized as follows: In section 2 we introduce our model. The impact of a 

change in basis risk on the demand for index-linked coverage as well as the reservation price for 

cat bonds is discussed in section 3, under the assumption that no reinsurance coverage is 

available. The optimal risk management mix, including the issuance of indexed cat bonds as well 

as the demand for reinsurance, is the topic of section 4. In section 5 we summarize and discuss 

our results. 

2. The model 

Cat bonds are – as was mentioned above – an imperfect hedging tool, implying basis risk for the 

primary insurer. It seems suitable to measure the basis risk by the covariance of the primary’s 

actual losses and the index, and then to use a mean variance approach to analyze the demand for 

index-linked coverage. This kind of analysis, however, has certain disadvantages: First, 

catastrophe risk, as considered here, is usually represented by considerably skew distributions for 

which mean variance is problematic. Furthermore, most of the literature on insurance demand 

theory, which this paper is aimed to link with, is based on expected utility analysis. Therefore, we 

introduce a different approach to measure basis risk, that enables us to study the interaction 

between cat bonds and reinsurance in a simple expected utility model. 

We consider a risk averse primary insurer19 that faces stochastic losses X from an insured 

portfolio.20 It can purchase index-linked coverage A, which would be triggered with probability 

p . Since this kind of product is usually defined discretely, we concentrate – without major loss 

of generality – on the simple case of a stochastic variable with only the two possible outcomes 0 

                                                 

19 While risk aversion is widely accepted with respect to the decision-behavior of individuals, firms are often 
considered as risk neutral. A typical rationale offered for the risk neutrality assumption is that the shareholders 
hold well-diversified portfolios and will thus aim to maximize the expected profit of the firm (see e.g. Doherty 
1985, p. 465, Shavell 1987, p. 189, or Milgrom and Roberts 1992, p. 187). However, it is well-known that, due to 
certain information asymmetries between stockholders and the management, a manager’s income should depend 
on the firm’s profit. The individual manager cannot perfectly diversify his or her profit-dependent income. 
Therefore, even if stockholders act risk neutral because of diversification opportunities, some of the most 
influential decision-makers will exhibit risk aversion, in particular if they are confronted with the possibility of 
large losses (see among others Greenwald and Stiglitz 1990, Dionne and Doherty 1993 or Nell and Richter 2002).  

20  In the model, the explanation for the primary’s demand for hedging tools is its risk aversion. Naturally, there are 
possible additional motives for corporate demand for hedging tools, such as the wish to avoid or reduce costs of 
financial distress and bankruptcy costs (see e.g. Mayers and Smith 1982). 
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and A. The primary receives the payment if an exogenous trigger variable Y which is correlated 

with X reaches a certain level y . 

The correlation between X and Y is expressed by means of the conditional probabilities 

(1)  }{:)( xXyYPxp =≥=  

(if a certain outcome is not specified we also write p(X)). 

With these definitions clearly: )]([ XpEp = . ][⋅E  denotes the expectation with regard to 

the distribution of X.  

An intuitive way to develop an idea about adequate assumptions regarding the function 

p(x) is to look at extreme cases: If, on the one hand, the conditional trigger probability p(x) does 

not depend on x ( px ≡)(p ), the index-linked coverage turns out to be completely useless in 

terms of risk allocation. The primary cannot reduce the risk from its portfolio by issuing a cat 

bond. So it would simply worsen its situation by buying additional risk. 

On the other hand, consider the following problem: Without any further restrictions, 

construct an index-linked product with two possible outcomes that is optimal in terms of risk 

allocation. This product would have to be designed in such a way that the payment A is triggered 

with probability  for losses up to a certain level, but that it is triggered with certainty if X 

reaches or exceeds this level. This is due to the feature of decreasing marginal utility, which 

characterizes a risk averse decision-maker’s von Neumann-Morgenstern utility function.

0)( =xp

21A 

situation like this, however, is conceivable only if the coverage can be tied directly to X. But then 

the product would suffer exactly the same moral hazard problems as traditional reinsurance. 

Since we want to concentrate on instruments that eliminate especially these problems by 

connecting the coverage to an exogenous index, the situation mentioned above can just be seen as 

a limiting case for our analysis.  

To be useful as a hedging tool, a cat bond which is based upon an exogenous index, must 

not be completely independent of X. It will, however, in general not be an optimal risk allocation 

device in the sense defined above. To keep our argument as general as possible, we assume that 

                                                 

21 Note that even in this case there would still be a considerable degree of basis risk. For small losses the primary 
would not receive any pay-off from the cat bond, while in case of losses exceeding the critical level there would in 
general be a gap between actual losses and the payment A from the index product. 
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p(x) vanishes for sufficiently small x, and that 1)( =xp

1x

 for sufficiently large losses, and finally 

that there is an area where the trigger probability is strictly between 0 and 1 and increasing. To 

formalize this, we say that potential levels of loss  and  (2x 21 xx < ) exist such that22 

(2)  

.1)(
1)(0

0)(

2

21

1

xxxp
xxxxp

xxxp

≥=
<<<<

≤=
  

The intuition behind this is as follows: If the primary is only hit by a very small amount of 

losses from its portfolio, it is highly unlikely that a triggering event occurred. Given, the 

primary’s actual losses are even below , the likelihood that the cat bond was triggered, is equal 

to 0. The conditional trigger probability increases in the amount of actual losses between  and 

, and finally, our assumptions mean that extremely high individual losses would only be 

observed if also a triggering event happens. In the model this translates to: Given the information 

that the primary’s individual losses exceed , the probability of a triggering event is equal to 

1.

1x

1x

2x

2x
23  

The function p(x) is assumed to be differentiable with: 

(3)  21for0)( xxxxp <<>′ . 

3. The demand for cat bonds 

Before the simultaneous use of both risk management tools will be analyzed, it makes sense to 

consider them separately. The optimal demand for reinsurance, on the one hand, has been 

discussed extensively in literature.24 Since, on the other hand, the demand for index-linked 

coverage has not yet been studied comprehensively in economic models, comparable results are  

                                                 

22 In comparison with the ideal situation mentioned earlier, basis risk is increased, since in addition to the fact that 
the index-linked coverage is an incomplete fit with respect to the extent of losses, there is – in the interval (x1, x2) 
– the uncertainty regarding whether it is triggered or not. 

23  will usually be related to the triggering level of the index, 2x y , in the following way: The higher the level of the 
index has to be to trigger the index-linked coverage, the lower, all other things equal, is the likelihood that, when a 
given extent of actual losses (x) is observed, the index product is triggered, too. And the higher is the level of 
actual losses for which the primary can actually be certain to receive the payment from the cat bond. 

24  See e.g. Borch (1960), Raviv (1979). 
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not available for this instrument. The quality of reinsurance as a hedging device is completely 

determined by the extent of coverage and its price. In the case of cat bonds an additional 

component has to be taken into account, which is the connection between the stochastic variable 

the trigger is defined upon, and the individual losses. This connection is expressed by the 

function p(x) in our model. We will therefore start by analyzing the demand for index-linked 

coverage for different shapes of p(x). We especially want to investigate the impact of a change in 

basis risk. After that, the question will be addressed, under which conditions a cat bond would be 

issued at all. Given the degree of basis risk, this leads to determining the price at which the 

demand for index-linked coverage ceases.  

As was mentioned earlier, cat bonds are often considered as only weakly correlated with 

market risk implying that the price of such securities should include only small risk premiums. 

But, as market data show, cat bonds which have been issued offered a substantial premium above 

the risk free rate25 – probably to attract investors to this new kind of investment. Furthermore, for 

the few deals that have taken place, transaction costs obviously have been quite high. One can 

expect, however, that the cost of issuance will significantly decrease as the market gets more 

experienced in this field and the degree of standardization of such products increases.  

For our analysis, we assume that the price of index-linked coverage is )1( ≥⋅⋅ mApm , 

where the proportional loading (m) reflects the issuance costs. 

The optimal index-linked coverage in this framework is a solution to the following 

optimization problem: 

(4) 
,0..

)]())(1()()([max 1111

≥

⋅⋅−−⋅−++⋅⋅−−⋅

Ats

ApmXWuXpAApmXWuXpE
A  

where  is the initial wealth, and  denotes the (three times continuously differentiable) 

primary’s utility function (u , 

1W 1u

001 >′ 1 <′′u ). As a first order condition for an interior solution we 

get 

                                                 

25  See e.g. Bantwal and Kunreuther (2000). 
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(5) 
)].()([)1(

)]())(1[(

11

11

AApmXWuXpEpm

ApmXWuXpEpm

+⋅⋅−−′⋅⋅⋅−=

⋅⋅−−′⋅−⋅⋅
 

To analyze the impact of a change, namely a reduction, in basis risk on the optimal 

coverage, we examine the consequences of ceteris paribus varying the function p(x) towards the 

above-mentioned situation where the index-linked coverage can be tied directly to X. We 

consider a mean preserving transformation of the conditional trigger probability function that 

shifts the probability weight to higher values of x. More precisely, we keep the unconditional 

trigger probability p  constant and consider the effect of replacing p(x) by a function )(~ xp  with 

the properties (2), (3), and 

(6) ,)]([)](~[ pXpEXpE ==  

and 

(7) 33 )()(~and)()(~ xxxpxpxxxpxp ≥∀≥≤∀≤  

for an . Conditions (6) and (7) characterize a mean preserving spread with a single 

crossing property.

3x ),( 21 xx∈

26 To exclude trivial cases we assume  

(8) 0)}()(~:{ >≠= xpxpxXP .  

The idea behind this is that in our setting a product with the same unconditional trigger 

probability, one that is less likely to be triggered for low levels of actual losses but more likely to 

be triggered for higher losses, means a better fit to the primary’s portfolio. 

Proposition 1 

If the optimal amount of index-linked coverage is positive, it will be strictly increased by a 

reduction in basis risk as defined in (6), (7), and (8). 

Proof: see appendix. 

All other things equal, the primary will buy the more index-linked coverage the better it 

fits for compensating the losses from its original risk, i.e. the better the hedge is.  

                                                 

26  See Rothschild and Stiglitz (1970). 
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An interesting point is that the more index-linked coverage is purchased the riskier p(X) is 

in the sense of Rothschild and Stiglitz. The reason for this is that because of the positive 

correlation between actual losses and index-linked coverage the quality of the hedge increases. 

Next, we want to look at the conditions under which index-linked products are purchased. 

First, consider the above-mentioned case that in contrast to our assumptions p(x) is independent 

of x. Such a cat bond cannot be attractive because (for ) 1≥m

(9)     )]([)1()]([)1( 1111 AApmXWuEpmpApmXWuEppm +⋅⋅−−′⋅⋅−⋅>⋅⋅−−′⋅−⋅⋅  

for any , implying . Under these circumstances, a positive amount of index-linked 

coverage can only be optimal for m . The following proposition generalizes this result.  

0>A 0=A

1<

Proposition 2 

Under the assumptions of section 2,   
)]([

)]()([0
11

11

XWuEp
XWuXpEmA

−′⋅
−′⋅

<⇔> .  

Proof: see appendix. 

The condition, given in proposition 2, is quite plausible: In particular, since 

(10) )]([)]()([)](),([ 111111 XWuEpXWuXpEXWuXpCOV −′⋅−−′⋅=−′ , 

it means that a mean preserving transformation of p(x) which increases the covariance between 

the conditional trigger probability and the marginal utility in the uninsured situation, enlarges the 

price the primary is willing to pay for index-linked coverage.  

In the following we will assume that the price of index-linked coverage is not 

prohibitively high, and that it remains attractive even when reinsurance is available as an 

additional risk management tool. We will therefore assume the optimal amount of coverage from 

the cat bond to be positive, as we are particularly interested in the impact the index-linked 

coverage has on optimal reinsurance contracting. 
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4. The optimal risk management mix 

We now turn to the analysis of a simultaneous decision on index-linked coverage and 

reinsurance. As mentioned, we assume that the reinsurer is risk averse. The reinsurance premium 

is denoted by P, I(x) denotes the indemnity function and  the concave (and three times 

continuously differentiable) reinsurer’s utility function. 

2u

As a point of reference, let us first introduce the optimization problem for the case when 

only reinsurance is available. We derive a Pareto-optimal solution according to:27 

(11) 
,0)(..

))](([))](([max 2211),(

xxIts

XIPWuEXIPXWuE
PI

∀≥

−+⋅β++−−⋅α
⋅  

where α  and β  are positive constants, and W  is the reinsurer’s initial wealth. 2

Let  and )(0 ⋅∗I *P  denote the solution of (11). As was shown by Raviv (1979),  has 

the following properties:

)(0 ⋅∗I
28 

(12) 
.0for0,)(0

,0)0(

0
0

0

>><<

=
∗

∗

∗

x
dx
dI

xxI

I
 

Now, consider the optimal risk management mix according to 

(13) 

.0)(,0..

))](([))](())(1(

))(()([max

*
22

*
11

*
11),(

xxIAts

XIPWuEXIPApmXWuXp

XIAPApmXWuXpE
AI

∀≥≥

−+⋅β++−⋅⋅−−⋅−+

++−⋅⋅−−⋅⋅α
⋅

 

Thus, for a moment we assume the same reinsurance budget for this case as for the 

situation with cat bonds, which enables us to concentrate on the implications the availability of 

index-linked coverage has on the structure of an ideal reinsurance contract. We will analyze the 

impact on the budget spent on reinsurance later. 

                                                 

27  See e.g. Arrow (1963), pp. 972-973, Raiffa (1970), pp. 196-205, Rees (1985), pp. 21-22. 
28  See Raviv (1979), Theorem 1 (p. 87) and Theorem 3 (p. 90). 
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Using the Euler-Lagrange equation the following first order conditions for an interior 

solution of problem (13) can be derived: 

(14)     
xxIPWuxIPApmxWuxp

xIAPApmxWuxp

∀−+′⋅β=+−⋅⋅−−′⋅−⋅α+

++−⋅⋅−−′⋅⋅α

))(())(())(1(

))(()(
*

22
*

11

*
11  

or 

(15)

,
))((

))(())(1())(()(
*

22

*
11

*
11 x

xIPWu
xIPApmxWuxpxIAPApmxWuxp

∀
α
β

=
−+′

+−⋅⋅−−′⋅−+++−⋅⋅−−′⋅

 

showing the well-known result, that in a Pareto-optimum the marginal rate of substitution is 

constant.  

 Let  denote the optimal indemnity function from (13). The following results can be 

derived.  

)(⋅∗
II

Proposition 3 

(a) For sufficiently large levels of losses x  is smaller than . In particular, )(xI I
∗ )(0 xI ∗ 1)( =xp

)(0 xI ∗>

 

implies . For sufficiently small x, particularly where , . )()( 0 xIxI I
∗∗ < 0) =x(p )(xI I

∗

(b) If the primary is prudent (u )01 >′′′
29,  for x with )()( 0 xIxI I

∗∗ > pmxp ⋅≤)( . 

Proof: see appendix. 

That the optimal reinsurance indemnity for small losses is larger in a situation where 

index-linked coverage is available, compared to the model without cat bonds, can be explained 

quite easily: for small x the effect prevails, that the cost of the index-linked product increases the 

marginal utility of the reinsurance coverage. 

                                                 

29 The concept of prudence, first proposed by Kimball (1990), is commonly used in insurance demand theory (see 
e.g. Eeckhoudt and Kimball 1992, or Gollier 1996). Prudence, e.g. is a necessary condition for constant absolute 
risk aversion (CARA) respectively decreasing absolute risk aversion (DARA). 



 13

To find out more about the optimal indemnity function we consider the slope of  

where . Applying the implicit function theorem to (14) we get  

)(xI I
∗

0)( >∗ xI I

(16) 

)()())(1()()(
)]()([)(

)()())(1()()(
)())(1()()()(

211

11

211

11

CBA

BA

CBA

BAI

WuWuxpWuxp
WuWuxp

WuWuxpWuxp
WuxpWuxp

dx
xdI

′′⋅β+′′⋅−⋅α+′′⋅⋅α
′−′⋅′⋅α

−

′′⋅β+′′⋅−⋅α+′′⋅⋅α
′′⋅−⋅α+′′⋅⋅α

=
∗

 

(where )(: *
1 xIAPApmxW IA

∗++−⋅⋅−−=W , )(: *
1 xIPApmxW IB

∗+−⋅⋅−−=W ,  

and W ). )(: *
2 xIPW IC

∗−+=

The first expression in (16) is positive and smaller than 1, the second is negative only if 

 and , otherwise it equals zero. Note that the optimal indemnity function can be 

decreasing, especially if the function p(x) is very steep. According to Proposition 3, the optimal 

policy in the case with cat bonds does not include a deductible. Nevertheless, since the indemnity 

function can be strictly decreasing, the non-negativity constraint might be binding for some larger 

level of loss. We will show later that under certain additional conditions this cannot occur (see 

proposition 5). 

0>A 0)( >′ xp

Concerning the comparison of the optimal indemnity functions for the cases with, and 

respectively without cat bonds, an interesting result can be derived for a certain class of utility 

functions: 

Proposition 4 

If the primary’s and the reinsurer’s preferences are represented by CARA utility functions with 

risk aversion coefficients a (primary) and b (reinsurer), the slope of the optimal indemnity 

function in a market with cat bonds is given by 

(17)  
))](1()([)(

]1[)()(
xpexpba

exp
ba

a
dx

x
Aa

Aa
I

−+⋅⋅+
−⋅′

−
+

=
⋅−

⋅−∗dI  

as long as .  and  are parallel for 0)( >∗ xI I )(xI I
∗ )(0 xI ∗ ),0[ 1xx∈  and (if ) for 

. Elsewhere  is less steep than . 

0)( >∗ xI I

),[ 2 ∞∈ xx )(xI
∗I )(0 xI ∗
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The connection between the optimal indemnity functions is given by: 

(18)  
ba

xpexpApm
ba

axIx
Aa

+
−+⋅

+⋅⋅⋅
+

+=
⋅−

∗ ))](1()(ln[)() 0I I
∗ ( . 

Proof: see appendix. 

From (18), one can see that, for CARA utility functions, the difference between  

and  is 

)(xI I
∗

)(0 xI ∗

(19)  Apm
ba

axIxI I ⋅⋅⋅
+

=− ∗∗ )()( 0  

where , and  0)( =xp

(20)  Apm
ba

axIxI I ⋅⋅−⋅
+

=− ∗∗ )1()()( 0  

for . 1)( =xp

 
Fig. 1 

Given the reinsurance budget, the existence of catastrophe index-linked securities affects 

the structure of the reinsurance demand: The index-linked product replaces reinsurance for large 

losses, whereas the reinsurance indemnity for smaller losses is increased. This confirms the 
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assessment often stated by insurance practitioners, that cat bonds are mainly useful for covering 

extremely large losses. 

So far, we considered the optimal reinsurance contract for the case with index-linked 

coverage, assuming the premium to be the amount that would be spent in a market without cat 

bonds. The following proposition now states that the demand for cat bonds reduces the 

reinsurance budget. The optimal reinsurance contract, given the premium *P , entails a non-

stochastic indemnity component. In other words, a certain fraction of that budget would in any 

case be transferred back to the primary.  

Proposition 5 

If the primary is prudent and if xAxp ≤⋅)(  for all x, the indemnity function , as derived 

from (13), includes a positive amount that is paid to the primary with probability one, meaning 

the de facto reinsurance budget is lower when cat bonds are available, compared to a market 

without index-linked coverage.  

)(xI I
∗

Proof: see appendix. 

In the proof it is shown that  (which, according to proposition 3, is positive) is the 

minimum value of the optimal indemnity function. This means that the reinsurance contract can 

be replaced by a normalized contract with indemnity function  and 

premium , leaving the two parties with exactly the same situation as . 

So, under certain conditions the introduction of cat bonds reduces the budget that is actually spent 

on reinsurance.  

)0(∗II

0)0()(:)(ˆ ≥−= ∗∗∗
III IxIxI

),(xI I
∗)0(:ˆ * ∗−= IIPP *P

The condition used in the proposition, xAxp ≤⋅)(  for all x, can be seen as a purely 

technical condition in the sense that, if the optimal solution has this property, it is also 

characterized by the other features stated in the proposition. It could, on the other hand, also be 

introduced as an additional constraint in the optimization problem (13). This constraint could be 

interpreted fairly easily. Clearly, xAxp ≤⋅)(  is fulfilled in particular whenever the actual loss 

exceeds the potential cat bond payment. Typical insurance demand theory models incorporate 

upper bounds that limit the indemnity by the level of loss. But this would obviously not be a 

useful assumption in our context. Considering the structure of the cat bond, however, it seems to 

be a straightforward approach to limit the expected payment from the bond, given x. 
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According to the results of this section the introduction of cat bonds changes the structure 

of the optimal reinsurance contract and reduces reinsurance demand. Our analysis shows that 

index-linked coverage primarily substitutes reinsurance for large losses, since both effects 

enhance each other in this area. For lower levels of loss, the structural effect is working in the 

opposite direction as, ceteris paribus, the premium for the index-linked product increases the 

marginal utility of reinsurance payments.  

5. Conclusion 

In this paper we consider two important alternatives a primary insurer has for covering 

catastrophic risks: contracting reinsurance or buying index-linked coverage. We investigate the 

optimal mix of these instruments. It is shown that there are strong interdependencies, because 

both means influence each other heavily with respect to their efficiency. 

Clearly, the demand for cat bonds can only be explained by imperfections in the 

reinsurance market, since cat bonds always result in a basis risk for the primary insurer. 

Concentrating on the implicit cost of reinsurance caused by the reinsurer’s risk aversion, we 

analyze the impact of the introduction of catastrophe index-linked coverage on optimal 

reinsurance. First, we focus on the structure of the optimal contract, keeping the reinsurance 

budget constant. Under this assumption it is shown that coverage is reduced for large losses and 

increased for lower losses. A further result is that, under certain conditions, the reinsurance 

demand in total is reduced: The optimal contract derived for the same budget that would be spent 

in a market without cat bonds, pays back a certain fraction of the premium to the primary in any 

case. This means the budget that is de facto spent on reinsurance decreases when index-linked 

coverage is available. 

Summarizing these results, our findings indicate that index-linked coverage acts as 

substitute for reinsurance, primarily replacing coverage for large losses with a high trigger 

probability.  

This paper is, to the best of our knowledge, the first one analyzing the interdependencies 

between the demand for reinsurance and index-linked securities in an expected utility approach. 

Naturally, many aspects must be left for future research: Further insight about the demand for 

index-linked coverage could probably be derived in a model where the trigger level y  is an 

additional decision variable. Moreover, the inclusion of transaction costs might also be an 
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interesting extension, since the influence of insurance-linked securities on the optimal deductible 

could be examined in that framework. Finally, since reinsurance contracts are subject to 

substantial problems of moral hazard and default risk, it would be important to take these aspects 

into account. 
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Appendix 

Proposition 1 

If the optimal amount of index-linked coverage is positive, it will be strictly increased by a 

reduction in basis risk as defined in (6), (7), and (8). 

Proof:  

(5) can be reformulated as 

(21)  
)}].()()1{()([

)]([

1111

11

ApmXWupmAApmXWupmXpE
ApmXWuEpm

⋅⋅−−′⋅⋅++⋅⋅−−′⋅⋅−⋅=
⋅⋅−−′⋅⋅

 

If – starting from an optimal solution – the trigger probability function is transformed 

according to (6), (7), and (8), the marginal utility levels for large amounts of losses are 

weighed more heavily. Since 1u′  is strictly decreasing, we get: 

(22)   
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and therefore 

(23)  
)].()(~[)1(
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In order to fulfill condition (5) again after the variation of )(⋅p , A has to be increased. 

QED 

 

Proposition 2 

Under the assumptions of section 2,   
)]([

)]()([0
11

11

XWuEp
XWuXpEmA

−′⋅
−′⋅

<⇔> .  

Proof: 

(4) leads to  if and only if 0=A
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(24) )]()([)1()]())(1[( 1111 XWuXpEpmXWuXpEpm −′⋅⋅⋅−≥−′⋅−⋅⋅ . 

This can be restated as 

(25)  
)]()([
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respectively 

(26)  )]()([)]([ 1111 XWuXpEXWuEpm −′⋅≥−′⋅⋅ , 

and finally 

(27)  
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QED 

 

Proposition 3 

(a) For sufficiently large levels of losses x  is smaller than . In particular, )(xI I
∗ )(0 xI ∗ 1)( =xp

)(0 xI ∗>

 

implies . For sufficiently small x, particularly where , . )()( 0 xIxI I
∗∗ < 0) =x(p )(xI I

∗

(b) If the primary is prudent ( u ),  for x with 01 >′′′ )()( 0 xIxI I
∗∗ > pmxp ⋅≤)( . 

Proof: 

*
II  is defined as an optimal reinsurance indemnity function according to 

(28) 
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yielding the first order conditions (14) and (15). 

)(0 ⋅∗I  is the solution of: 
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 (29)   
.0)(..

))](([))](([max *
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−+⋅β++−−⋅α
⋅

The optimal indemnity function with regard to (29) is defined by  

(30)  . xxIPWuxIPxWu ∀−+′⋅β=+−−′⋅α ))(())(( *
22

*
11

For a given level of losses x )  will be smaller than , if the left hand side of (14) 

is smaller than the left hand side of (30), both evaluated at . This condition is 

obviously fulfilled for sufficiently large values of x, respectively p(x). 

(xI I
∗ )(0 xI ∗

)(0 xI ∗

For values of x with , the left hand side in (14) is  0)( =xp

(31)  ))(( *
11 xIPApmxWu +−⋅⋅−−′⋅α .  

This expression (for ) exceeds α , such that . 0>A ))(( *
11 xIPxWu +−−′⋅ )()( 0 xIxI I

∗∗ >

In the case of a prudent primary, we can derive the result  for x with )()( 0 xIxI I
∗∗ >

pmxp ⋅≤)(  from the convexity of 1u′ : 
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QED 
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Proposition 4 

If the primary’s and the reinsurer’s preferences are represented by CARA utility functions with 

risk aversion coefficients a (primary) and b (reinsurer), the slope of the optimal indemnity 

function in a market with cat bonds is given by 

(17)  
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The connection between the optimal indemnity functions is given by: 

(18)  
ba

xpexpApm
ba

axIx
Aa

+
−+⋅

+⋅⋅⋅
+

+=
⋅−

∗ ))](1()(ln[)() 0I I
∗ ( . 

Proof:  

If index-linked coverage is not available or not attractive, as a well-known result from the 

theory of optimal risk-sharing we get that  is a linear function:)(0 xI ∗  30 

(33)  
ba

a
dx
dI

+
=

∗
0  

Now consider again the indemnity function for the situation with index-linked coverage. 

Dealing with constant absolute risk aversion, we can, without loss of generality, use the 

utility functions Wae
a

W ⋅−⋅−=
1)(1u  and Wbe

b
Wu ⋅−⋅−=

1)(2 .31 For this specific case (16) 

is of the form 

                                                 

30 See e.g. Arrow (1963). The fundamental work on the features of Pareto-optimal risk-sharing rules goes back to 
Borch (1960). See also Wilson (1968), Borch (1968), Raviv (1979) or Bühlmann and Jewell (1979). 

31  See e.g. Pratt (1964), or Bamberg and Spremann (1981). 
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From (14) follows 
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such that (34) can be simplified to 
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By comparing (33) and (36) we see that  and  are parallel if  vanishes. 

This is the case for  and 
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To prove (18), note first that from integrating (36) we get 
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Since the second expression on the right hand side in (37) equals zero for 0=x  and 

because , the constant can be found as . Now, consider conditions (14) and 

(30). For  and under the assumptions of the proposition, (14) leads to 
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 QED 

Proposition 5 

If the primary is prudent and if xAxp ≤⋅)(  for any x, the indemnity function , as derived 

from (13), includes a positive amount that is paid to the primary with probability one, meaning 

the de facto reinsurance budget is lower when cat bonds are available, compared to a market 

without index-linked coverage.  

)(xI I
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Proof: 

From proposition 3 we know that  is positive. In the following we will show that 

 for any x. 
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which contradicts (42).                

QED 
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