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Abstract 

The workhorse DSGE model used for monetary policy evaluation is designed to capture 
business cycle fluctuations in an optimization-based format. It is commonplace to log-
linearize models and express them with variables in deviation-from-steady-state format. 
Structural parameters are either calibrated, or estimated using data pre-filtered to extract 
trends. Such procedures treat past and future trends as fully known by all economic 
agents or, at least, as independent of cyclical behaviour. With such a setup, in a 
forecasting environment it seems natural to add forecasts from DSGE models to trend 
forecasts. While this may be an intuitive starting point, efficiency can be improved in 
multiple dimensions. Ideally, behaviour of trends and cycles should be jointly modeled. 
However, for computational reasons it may not be feasible to do so, particularly with 
medium- or large-scale models. Nevertheless, marginal improvements on the standard 
framework can still be made. First, pre-filtering of data can be amended to incorporate 
structural links between the various trends that are implied by the economic theory on 
which the model is based, improving the efficiency of trend estimates. Second, forecast 
efficiency can be improved by building a forecast model for model-consistent trends. 
Third, decomposition of shocks into permanent and transitory components can be 
endogenized to also be model-consistent. This paper proposes a unified framework for 
introducing these improvements. Application of the methodology validates the existence 
of considerable deviations between trends used for detrending data prior to structural 
parameter estimation and model-consistent estimates of trends, implying the potential for 
efficiency gains in forecasting. Such deviations also provide information on aspects of 
the model that are least coherent with the data, possibly indicating model 
misspecification. Additionally, the framework provides a structure for examining cyclical 
responses to trend shocks, among other extensions. 

JEL classification: E3, E52, C32 
Bank classification: Business fluctuations and cycles; Econometric and statistical 
methods 

Résumé 

Le modèle d’équilibre général dynamique et stochastique (EGDS) généralement employé 
dans l’analyse de la politique monétaire est conçu de manière à rendre compte des 
fluctuations économiques dans une logique d’optimisation. Il est courant de log-linéariser 
le modèle et d’en exprimer les variables en écart par rapport à la situation d’équilibre. Les 
paramètres structurels sont étalonnés ou estimés à l’aide de données préalablement 
filtrées pour en extraire la composante tendancielle, les tendances passées et futures étant 
considérées comme entièrement connues de tous les agents économiques ou, à tout le 
moins, comme indépendantes de la composante cyclique. Dans un contexte prévisionnel 
fondé sur une telle configuration, il apparaît naturel d’ajouter aux prévisions tendancielles 
celles qui sont générées par le modèle EGDS. Ce point de départ intuitif ouvre la voie à la 
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réalisation de gains d’efficacité multidimensionnels. Idéalement, on devrait modéliser 
conjointement les comportements tendanciels et cycliques, mais des contraintes de calcul 
font parfois obstacle, en particulier dans le cas des modèles de moyenne ou de grande 
taille. De légères améliorations peuvent néanmoins être apportées au cadre de base : 
a) par l’intégration, aux critères de filtrage préalable des données, de relations 
structurelles entre les diverses tendances implicites dans la théorie économique sous-
jacente au modèle, pour ainsi accroître l’exactitude des estimations tendancielles; b) par 
l’élaboration d’un modèle destiné à la prévision de tendances conformes au modèle 
EGDS; c) par l’endogénéisation, au sein de celui-ci, de la décomposition des chocs en 
composantes permanente et transitoire. Dans leur étude, les auteurs proposent un cadre 
unifié d’introduction de ces améliorations. Leurs résultats confirment l’existence d’écarts 
importants entre, d’une part, les tendances utilisées pour extraire la composante 
tendancielle des données avant l’estimation des paramètres structurels et, d’autre part, les 
tendances conformes au modèle issues du modèle prévisionnel, ce qui implique que la 
qualité des prévisions peut être améliorée. Ces écarts laissent également soupçonner une 
mauvaise spécification du modèle en indiquant quels aspects de l’ajustement de ce 
dernier laissent le plus à désirer. Par ailleurs, le cadre offre plusieurs possibilités 
d’extension, notamment pour l’étude des réactions cycliques aux chocs tendanciels. 

Classification JEL : E3, E52, C32 
Classification de la Banque : Cycles et fluctuations économiques; Méthodes 
économétriques et statistiques 

 

 



1 Introduction and Motivation

�...for any degree of theoretical coherence, the degree of empirical coherence

should be maximized...� Pagan (2003a)

Recognizing the important insights of the Lucas critique, the standard approach to

monetary policy evaluation, including assessment of �optimal monetary policy�, uses

dynamic stochastic general equilibrium (DSGE) model speci�cations. Such speci�cations

embed optimizing behaviour of economic agents with rational expectations in a stochastic

environment and enable separation of structural parameters of the model economy from

policy responses. In the typical implementation, su¢ cient frictions are added to the

economic structure so that the model simulations are able to replicate key data properties

such as correlations and impulse responses.

In the context of policy evaluation, it is most common to express DSGE models in

a format to only accommodate business cycle �uctuations.1 Log-linearized versions of

the models describe the evolution of the deviation of macro variables from their �steady

states.�Most frequently in these versions, log-linearizations are around steady-state levels

of variables and, if estimated, the corresponding real-world data is usually detrended in a

separate �rst step.2 Trend behaviour is generally not at all addressed in model simulations,

with trends implicitly treated as fully known by all agents or, at least, treated as independent

of the cyclical behaviour.3

DSGE models have become the main policy-analysis tool in many central banks and

some institutions, including the Bank of Canada and the central banks of Norway and

Sweden, have started to use them for forecasting purposes.4 With a shift in the use of

DSGE models from policy evaluation to forecasting, trend behaviour becomes considerably

1See for instance, the calibrated model speci�cations of Woodford (2003).

2Commentary in the paper remains valid for speci�cations where log-linearization is around steady-state
growth rates rather than steady-state level paths.

3An early example is Rotemberg and Woodford (1997).

4See Murchison and Rennison (2006) and Fenton and Murchison (2006) for the Bank of Canada�s
experience.
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more important. For instance, the typical DSGE model may be able to generate a consistent

forecast of the level of activity relative to trend, but there will generally also be interest in

the future trend itself. Trend estimation is also critical in a forecasting context because it

will determine the size of the starting point shocks to be run-o¤ by the model. But trend

behaviour is not as well understood as typically assumed in DSGE environments.

Indeed, although some researchers allow for stochastic trends within their DSGE

models5, it remains quite common to treat trends as exogenous. While deterministic

treatments of trends as in Smets and Wouters (2007) and Dib, Gammoudi, and Moran

(2006) are consistent with independence of trend and cycle and also straightforward to

forecast at any horizon, they are inconsistent with the large empirical literature that

generally supports stochastic trends or, in the very least, deterministic speci�cations with

structural breaks which would generally not be anticipated in real-time.6 Another drawback

of estimating trends using deterministic speci�cations or arbitrary �ltering techniques is that

the decomposition between trend and cyclical shocks is subjective. In reality, structural

shocks will be a combination of unobserved structural trend shocks and unobserved cyclical

disturbances.7 In addition, the standard detrending methodology does not fully exploit

common trend restrictions implied by the economic theory on which the model is based,

introducing ine¢ cient trend estimates. Finally, there is the issue that trends used during

estimation of structural model parameters may not coincide with trends that maximize

consistency of the model with the data. Indeed, when structural parameters are calibrated

5See for instance Edge, Kiley, and Laforte (2006, 2008), who estimate a model that assumes a stochastic
trend process for technology, or Adolfsson et al (2007).

6Nelson and Plosser (1982) found that in a broad collection of macroeconomic data series, the null
hypothesis of a unit root could not be rejected against an alternative of a linear time trend. Models with
structural breaks have become more prevalent following the analysis of Perron (1989), which showed that
when the alternative allowed a break in the trend slope or intercept, many of the �ndings of Nelson and
Plosser could be reversed. In more recent work, Demers (2003) and Lalonde et al. (2003) incorporate
structural breaks into their speci�cations, while Roberts (2001) uses time-varying parameter techniques to
model trend productivity and Laubach and Williams (2003) use stochastic trends in their speci�cation.

7A misspeci�ed trend model may lead to a bad estimation of the trend-gap decomposition at the end of
history, which may in turn result in poor forecast accuracy. For example, Cayen and van Norden (2005) show
that the revisions of real-time estimations of the output gap for Canada can be large and highly persistent,
in particular when potential output is modelled as a deterministic trend.
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or estimated using Bayesian techniques with detrended data, it will generally be the case

that trends used for detrending data will deviate from model-consistent trends, leading to

ine¢ cient forecasts.

Thus, one objective of this paper is to explicitly incorporate trends in DSGE structures.

In the proposed approach, we layer structural trends on the solution of a log-linearized

DSGE model, cast the system in its state-space representation, and perform the stochastic

detrending of the model variables with the Kalman �lter.8 While the methodology allows

for the simultaneous estimation of trends and structural parameters of the DSGE model,

here we take the structural model parameters as given, either from a calibration exercise

or estimated in a �rst step, and focus instead on estimation of variances of permanent and

transitory structural shocks given structural parameters.9 As opposed to the literature that

seeks to modify the DSGE structure so as to allow for one or two stochastic trends in the

model, our starting point is to estimate trends while taking the DSGE structure as given.10

The methodology has several bene�ts. First, it allows for the joint estimation of the

variance of permanent stochastic shocks for multiple series. Second, it provides a structure

to introduce links between the various trends that are implied by the economic theory on

which the DSGE model is based, improving the e¢ ciency of trend estimates. For instance, if

trends in series are treated individually, then permanent shocks to, say, productivity won�t

automatically in�uence other real variables such as consumption. Cross-trend restrictions

can ensure that trends that theory says should move together, will move together in

forecasts and simulations.11 Third, the approach provides a framework for estimating

8Note that the methodology is su¢ ciently general to be applied to other types of forecasting models that
require stationary data, such as VARs.

9Joint estimation of the unobserved trends and unobserved transitory structural shocks is likely to be
plagued with identi�cation problems, an issue that will be discussed in more detail later.

10For instance, Edge, Laubach and Williams (2003) introduce trends in sector-speci�c productivity
processes such that the relative price of investment becomes non-stationary and real investment and
consumption can grow at di¤erent rates. Similarly, Chang, Doh, and Schorfeide (2006) present a model
in which hours worked have a stochastic trend generated by a non-stationary labour-supply shock.

11As another example, with cross-trend restrictions, an exogenous increase in, for example, the commodity
price trend should generally require a decrease in the trend of non-commodity prices if monetary policy is
targeting price stability in the long run.
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model-consistent decompositions of shocks into permanent and transitory components.12

Fourth, the state-space structure provides a forecasting model for model-consistent trends,

leading to greater forecast e¢ ciency. Fifth, exogenous sources of information on future trend

values can easily be incorporated using the state-space structure.13 Finally, the methodology

may also provide information on model misspeci�cation and guidance on means to improve

forecast performance.

One challenge associated with trend estimation is that end-of-sample estimates based on

a one-sided �lter may be revised considerably as additional observations become available

(Orphanides and van Norden (2002)). However, as noted above, an advantage of the

state-space model speci�cation is that it admits use of external information, including

information on future trend values. Such information may help reduce excess sensitivity of

end-of-sample (or real-time) trend estimates.

The next section presents the methodology for joint modeling of trends and cycles in

a DSGE framework. The approach is applied to a small estimated DSGE model from the

literature in section 3. Of course, the main bene�ts of the methodology will accrue to

medium- to large-scale models where multiple variables share common trends. The �nal

section concludes.

2 Methodology

The motivation for this paper is well summarized by the words of Pagan (2003a) that appear

earlier: �for any degree of theoretical coherence, the degree of empirical coherence should be

maximized.�The proposed approach takes a theoretical economic speci�cation as given and

provides an encompassing structure that endogenizes the treatment of trends. The approach

makes explicit the trends that are implicit in the steady states used in the log-linearized

solution of the structural model. The encompassing structure is su¢ ciently general to

12Of course, misspeci�cation of the DSGE model could result in misleading conclusions regarding the
relative importance of the trend versus the cycle.

13For instance, population and workforce projections based on demographic information outside the scope
of a typical macro model could inform projections of trend employment growth.
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incorporate empirical regularities that may be outside the structure of the model, without

compromising the economic structure of the model. This section reviews the speci�cation

and provides examples to illustrate its �exibility.

Estimation of parameters of the trend processes can, in theory, proceed simultaneously

with estimation of structural parameters of the DSGE structure. However, in many

instances, there may be computational reasons to prefer a two-step estimation algorithm,

with trend parameters estimated conditional on �rst-stage estimates of DSGE structural

parameters. As it turns out, in this situation, a Bayesian interpretation suggests that

iteration of the two-stage algorithm is not necessary. This result is reviewed at the end of

the section.

The starting point is the backward-looking solution of a log-linearized DSGE model:

x̂t = Csx̂t�1 +Hsut (1)

where x̂t is an n � 1 vector of stationary variables, and E[utu
0
� ] = G1 for t = � and

0n otherwise. This model solution is assumed to include expressions for observable and

unobservable x̂t.

The n elements of x̂t can be divided into two subsets. One subset of n1 elements

of x̂, includes variables expressed in deviation-from-steady-state (or deviation-from-trend)

format, where the steady states or trends, �t, may be time-varying and the level variable,

x1;t = x̂1;t+�t is observable (possibly with measurement error). De�ning the n1�n selector

matrix S1 of 0s and 1s, x̂1;t = S1x̂t. The remaining n � n1 elements of x̂t, x̂2;t = S2x̂t,

are possibly unobservable, stationary state variables (i.e. variables for which we don�t need

to estimate a trend), where S2 is an n � n1 � n selector matrix. To simplify notation, we

assume x̂2;t are zero mean. Note that S � [S01 S02]
0 satis�es S�1 = S0.

It is useful to de�ne the unobserved nx �structural� components on which the steady

states, �t, of the observable data, x1;t, depend. Let�s call these unobserved structural

components �1;t. For instance, �1;t, may contain the in�ation target series (or perceived

in�ation target series prior to the introduction of explicit numerical price objectives), the

equilibrium real rate, etc. Assume that the n1 observed steady states, �t, can be expressed
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as linear combinations of the nx unobserved structural components, �1;t, as follows:

�t = Q1�1;t (2)

where Q1 is n1 � nx. Thus, for example, �t may contain the steady-state of the nominal

policy rate which, in turn, may be de�ned to be the sum of the in�ation target and the

equilibrium real rate, etc.

An advantage of this formulation is that it is extremely general and may help resolve

inconsistencies between real-world data and the structural model. For instance, models

with a single technology shock will be inconsistent with di¤erent productivity growth rates

across multiple sectors. In such a situation, the format above could be used to represent

productivity trends in di¤erent sectors as the sum of a representative aggregate technology

trend with shocks that hit all sectors (as in the model speci�cation) and sector-speci�c trend

components (outside the scope of the model). Comovements of data as predicted by the

model would inform estimation of the aggregate technology trend, while deviations from

theory would be captured by sector-speci�c trend components.

The unobserved structural components are assumed to evolve according to:

�1;t = T�1;t�1 + v1;t; (3)

with E[v1;tv01;� ] = G2 if t = � and 0 otherwise. As noted by Harvey (1988) and others, this

format is su¢ ciently general to include a variety of ARIMA processes.

All that is required to explicitly introduce trends in the DSGE model is to re-express

the model solution for x̂t replacing deviations, x̂1;t, with variables and steady states:

Sx̂t = SCsS
0
�
S1
S2

�
x̂t�1 + SHsut

= SCsS
0
�
x1;t�1 � �t�1

x̂2;t�1

�
+ SHsut (4)

After replacing the steady states with unobserved structural components of interest and

rearranging, the following expression is obtained:�
x1;t
x̂2;t

�
=

�
Q1�1;t
0n2�1

�
+ SCsS

0
�
x1;t�1
x̂2;t�1

�
� SCsS0

�
Q1�1;t�1
0n2�1

�
+ SHsut (5)
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Note that SCsS0 and SHs are easily partitioned to be conformable with x̂1;t and x̂2;t:

SCsS
0 =

�
S1CsS

0
1 S1CsS

0
2

S2CsS
0
1 S2CsS

0
2

�
SHs =

�
S1Hs
S2Hs

�
(6)

Using this partition and augmenting the system to also include expressions for the evolution

of �1;t, given in (3), one obtains:24 x1;t
x̂2;t
�1;t

35 =

24 S1CsS
0
1 S1CsS

0
2 Q1T � S1CsS01Q1

S2CsS
0
1 S2CsS

0
2 �S2CsS01Q1

0 0 T

3524 x1;t�1
x̂2;t�1
�1;t�1

35
+

24 S1Hs Q1
S2Hs 0
0 I

35� ut
v1;t

�
:

(7)

This system provides the transition (or state) equations in a state-space model.

It is convenient to represent the system using the notation of Hamilton (1994). Thus,

de�ne:

�t =

24 x1;t
x̂2;t
�1;t

35
vt =

24 S1Hs Q1
S2Hs 0
0 I

35� ut
v1;t

�

F =

24 S1CsS
0
1 S1CsS

0
2 Q1T � S1CsS01Q1

S2CsS
0
1 S2CsS

0
2 �S2CsS01Q1

0 0 T

35
Q =

24 S1Hs Q1
S2Hs 0
0 I

35� G1 0
0 G2

�24 S1Hs Q1
S2Hs 0
0 I

350 (8)

Measurement equations that relate the states to observable data, yt, are appended to

complete the system:

yt = H 0�t + wt; (9)

where wt are interpreted as measurement errors. In some cases, elements of yt may

correspond exactly with observable elements of xt� in which case the corresponding
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measurement error will have zero variance and the appropriate column of H will contain

one entry equal to unity and remaining entries equal to zero. In addition, this structure is

su¢ ciently general to incorporate the large information set approach of Boivin and Giannoni

(2006) in which multiple series provide a noisy measure of the true underlying macro concept

implicit in the structural model. Generalizations in which measurement errors wt may follow

an ARMA(p,q) structure are assumed to be captured through elements of x̂2;t. Thus, wt is

assumed to be iid N(0; R). The approach is also �exible enough to accommodate exogenous

sources of information or expert judgment to estimate and project the trends, such as an

o¢ cial in�ation target series or announced government budgets. Alternatively, external

information on past or future trends could come from separate analyses using di¤erent

data sources, an approach incorporated in the extended multivariate �lter described by

Butler (1996).14 The exogenous or external information would be included in yt, with the

properties of the corresponding element of wt indicating how informative this information

is for the unobserved trends.

With this notation, the state-space structure of the system can be seen to satisfy the

format described in Hamilton (1994):

yt = H 0�t + wt

�t+1 = F�t + vt+1

E[vtv
0
� ] = Q for t = � , 0 otherwise

E[wtw
0
� ] = R for t = � , 0 otherwise

E[wtv
0
� ] = 0: (10)

In theory, all parameters of the system, including those relevant for the detrended model

(Cs, Hs, andG1) as well as those for the trends (Q1, T , andG2), can be estimated in one step

using this structure. However, the inability to obtain analytical expressions for Cs in terms

14For instance, a demographic disaggregation of the population can be informative of future employment
trends, as in Barnett (2007).
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of the deep structural parameters may complicate estimation. Alternatively, computational

challenges have generally led researchers to opt for Bayesian approaches to estimating deep

structural parameters. And, in the case where the x̂2;t contain ARMA �structural�shocks,

it may be di¢ cult to separately identify the structural shock processes from the trends.

Given these di¢ culties, which are magni�ed for relatively large-scale models used in

central banks, we proceed instead taking the deep structural parameters of the detrended

model as given and apply (possibly Bayesian) maximum likelihood techniques to estimate

the remaining parameters of the trend processes.15 In this sense, the trends being estimated

are those that are consistent with the model speci�cation for detrended data. Because the

Bayesian estimation procedure implies that the means of the posterior distribution of the

deep structural parameters of the detrended model may be in�uenced by both the priors and

the data, as illustrated earlier, it will not necessarily be the case that the trend estimates

we obtain will equal the original trends used to detrend the data. The larger the di¤erences

between the two trends, the greater the potential for improvement from accounting for these

divergences during forecasting. In addition, an examination of the similarity of the two sets

of trends could be used to determine which model equations are less e¤ective at explaining

historical variation in the data.

A simple example provides intuition why trends used for detrending data in a �rst stage

will generally deviate from model-consistent trends, especially when models are calibrated

or estimated using Bayesian techniques with detrended data. Suppose that in a �rst step,

data, y, is detrended using trend, �, to generate the detrended series, ~y = y � �, which,

without loss of generality, is also assumed to have a sample mean of zero. In the second step,

model parameters are estimated using detrended data. Assume the model is ~y = X� + �,

where � is the parameter to be estimated, X contains the regressors (assumed to have a

sample mean of zero to simplify the analysis for this example), and � are iid N(0; �2) errors.

15This procedure of taking some parameters as given and estimating the remaining ones is not uncommon
in standard DSGE setups. For example, steady-state parameters related to household�s discount rate and
capital depreciation rates are typically calibrated rather than estimated. See for instance the estimated
model of Edge, Kiley, and Laforte (2008). Of course, our format is su¢ ciently general to accommodate
known or calibrated entries in Q1, T , or G2; (to ensure consistency with the long-run elasticities implied by
the DSGE model).
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The least squares estimate of � is �̂ = (X 0X)�1X 0~y. The Bayesian estimate of � with prior

N(b; s2) is ^̂� = wb+ (1� w)�̂ where w = �2=(s2 + �2). In the third step, the trend that is

consistent with the estimated model can be obtained by solving backwards. In the case of

least-squares, the trend consistent with the estimated model (~y = X�̂) is �̂ = y �X�̂ = �,

the trend used to initially detrend the data y.16 By contrast, the trend that is consistent

with the Bayesian-estimated model (~y = X
^̂
�) is ^̂� = y�X ^̂� = �+wX(b� �̂). Thus, unless

the prior mean used during estimation is equal to the least-squares estimate of �, the trend

that is consistent with the Bayesian-estimated model will deviate from the trend used to

estimate the model. In a forecasting environment, it would therefore be ine¢ cient to use

forecasts of � combined with forecasts of ~y constructed using the Bayesian estimates of �.

The same example provides intuition for why there would be no gains to iterating

between Bayesian estimation of model parameters conditional on the latest trend estimates

and estimation of model-consistent trends conditional on the latest structural parameter

estimates. Consider re-estimation of � using model-consistent trends and Bayesian

techniques where the new prior is the posterior from the previous Bayesian estimation,

N(
^̂
�; s2n), and the data is detrended using the model-consistent trends ^̂�. The new Bayesian

estimate of � would be

^̂
�̂ = w1

^̂
� + (1� w1)(X 0X)�1X 0(y � ^̂�)

= w1
^̂
� + (1� w1)(X 0X)�1X 0(X

^̂
�)

=
^̂
�; (11)

which is the same as the initial Bayesian estimate.

3 Application to a Small DSGE Model

The methodology is tested by applying it to a small DSGE model for which Bayesian

estimates of model parameters are available. As a starting point, we use the rational

16 In a multivariate situation, the equality of trends might not hold if variables are univariate detrended
in the �rst step but cross-trend relationships are imposed during estimation of model-consistent trends.
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expectations version of the simple model of Milani (2007).17 An advantage of this approach

is that the model can be taken as given, and trends can be estimated given the raw data

and the DSGE model structure.

The model contains equations for a quasi-di¤erenced output gap (~y), in�ation (�), the

output gap (y), the policy rate (i), an AR(1) demand shock (rnt ), and an AR(1) cost-push

shock (ut). The monetary policy shock (�) is assumed to be white noise.

~yt = Et~yt+1 � (1� ��)�[it � Et�t+1 � rnt ]

�t = (1 + �)�1
�
�t�1 + �p[!yt + [(1� ��)�]�1~yt] + �Et�t+1 + ut

	
yt � (1 + ��2)�1 f~yt + �yt�1 + ��Etyt+1g

it = �it�1 + (1� �)[ ��t +  yyt] + �t; �t � iid(0; �2� )

rnt = �rrnt�1 + v
r
t ; vrt � iid(0; �2r)

ut = �uut�1 + v
u
t ; vut � iid(0; �2u) (12)

The �rst equation is the log-linearized Euler equation for households where � is the

household�s discount factor, � is the habit persistence parameter, and � measures the

intertemporal elasticity of substitution. The second equation is the Phillips curve that

arises from optimal Calvo price-setting with indexation for non-reoptimizing �rms. 

represents the degree of indexation to past in�ation, �p is inversely related to the degree of

price stickiness and ! denotes the elasticity of the marginal disutility of producing output

with respect to an increase in output. The current output gap depends on lagged and

expected output gaps, and on the ex ante real interest rate. Monetary policy is described

by the fourth equation, which is a Taylor rule with partial adjustment, where � is the

interest-rate smoothing term, and  � and  y are the feedback coe¢ cients to in�ation

and the output gap. Milani estimates these structural parameters with likelihood-based

Bayesian methods on U.S. data for output, in�ation, and the nominal interest rate over the

period 1960Q1-2004Q2. In Milani, in�ation is de�ned as the annualized quarterly growth

17We use the RE version of Milani�s model since it is a good representation of a standard monetary DSGE
model from the literature. It should be noted that Milani�s preferred model incorporates low frequency
movements attributable to learning by �rms and consumers, however.
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rate of the GDP implicit price de�ator and the federal funds rate is used as the nominal

interest rate. GDP is detrended using the Congressional Budget O¢ ce�s (CBO) measure

of potential output whereas in�ation and interest rates are simply expressed in deviation

from their sample mean.

In the �rst stage of the estimation of model-consistent trends, the structural parameters

are replaced by their estimated values and the model is reexpressed in its log-linear

backward-looking solution, as in equation (1).18 Parameter estimates, as provided by Milani

(2007) are included in Table 1. Given these parameter estimates, the Cs(5�5) and Hs(5�3)

matrices can be computed. The model is also modi�ed to accommodate low-frequency

components (or trends) in the three observable variables. The trends of in�ation and of

the real interest rates are assumed to follow a random walk. The trend of output is also

assumed to follow a random walk but with a stochastic time-varying growth component, as

in Clark (1987) and Laubach and Williams (2003). The trend speci�cation can be expressed

in terms of the matrices Q1 and T , as in equations (2) and (3). Thus, the �t trends are

assumed to be related to deeper unobserved structural components through the Q1(3� 4)

matrix as follows:

�t =

24 ��t
�yt
�it

35 =
24 1 0 0 0
0 1 0 0
1 0 0 1

35
2664
��1;t
�y1;t
�g1;t
�r1;t

3775 (13)

Here, �� is the trend in�ation rate, �i is the trend in the nominal interest rate, and �y

is the level of potential output. The trends of in�ation and output are uniquely determined

by their structural counterparts (��and �y, respectively), whereas the trend of the nominal

policy rate is given by the sum of the in�ation and real interest rate structural trends, �� and

�r, respectively. The structural trend in potential output growth, �g, does not enter directly

into the de�nitions of the �t trends, but is relevant in the description of the evolution of the

18We use AIM (see Anderson and Moore (1985)) in Troll to compute the solution matrices of the
log-linearized model of Milani. The model we use contains 5 instead of 6 equations as we substitute out the
quasi-di¤erenced output gap.
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structural trends. The evolution of the unobserved structural components �1 is described

by the matrix T (4� 4):

�1;t =

2664
��1;t
�y1;t
�g1;t
�r1;t

3775 =
2664
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

3775
2664
��1;t�1
�y1;t�1
�g1;t�1
�r1;t�1

3775+
2664
v�1;t
vy1;t
vg1;t
vr1;t

3775
(random walk)
(random walk + drift)
(random walk)
(random walk)

(14)

Using time series data for in�ation, interest rates and output, and given the model�s

log-linear solution for Cs andHs, our assumptions on Q1and T , and Milani�s estimates of the

variance of the dynamic u shocks (G1, or ��, �r, and �u in Milani), we estimate the variance

of the permanent v1 shocks (G2) by maximum likelihood and compute the Kalman �lter (we

assume no measurement error, i.e. R=0). Estimates of standard deviations of permanent

structural shocks and standard errors of estimates are provided in the columns labeled

"Trends Only" of Table 2, where standard deviations of transitory shocks are constrained

to equal the posterior mean estimates obtained by Milani (2007). Most parameters are

estimated fairly precisely. The standard deviation of permanent shocks to in�ation is fairly

low at 0.180, meaning that in�ation target shocks are concentrated around their average and

that the trend should be smooth. However, the standard deviation of permanent shocks to

the real interest rate is high at 0.800, especially when compared to the standard deviation

of transitory monetary policy shocks. Although we obtain a sensible estimate of potential

output, we are not able to identify permanent shocks to the level component.19

Figures 1 to 3 report actual and model-consistent trend values for in�ation, output and

real interest rates under various speci�cations.20 The estimated trend of in�ation (labeled

"Trend" in Fig. 1) is smooth and broadly consistent with Kozicki and Tinsley (2005),

gradually increasing during the 1960s and early 1970s before peaking slightly above 5 per

19Maximum likelihood estimates of the standard deviation of the innovations of a variable modelled as a
unit-root are often biased towards 0, owing to the pile-up problem discussed in Stock and Watson (1998).

20The mean of in�ation and real rates is also reported to re�ect the model with constant trends (i.e.
the Milani model). The Kalman �lter can produce a one-sided "�lter" estimate and a two-sided "smooth"
estimate. We report the "�lter" estimate, as it is closer to the trend that would be used in a real-time
forecasting exercice.
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cent in the early 1980s. The in�ation target then starts to decline very slowly towards

2.5 per cent at the end of history. Our �nding of a sizable gap between in�ation and

its model-consistent trend means that the model of Milani is able to explain a substantial

portion of the cyclical variations in in�ation. However, Milani�s rational expectations model

misses the low frequency movements in in�ation. The methodology is e¢ cient in recovering

the model�s implicit trend in the case of output since our estimate of detrended output is

very close to the CBO�s estimate of the output gap that was used by Milani, especially at

the end of the sample (labeled "Gap" in Fig. 2).

As opposed to Laubach and Williams (2003) and Clark and Kozicki (2005), we �nd

that the real interest rate trend (labeled "Trend" in Fig. 3) follows the data very closely,

indicating that real rate movements are dominated by trend variations.21 This leaves only

a small portion of interest rate �uctuations to be explained by the Taylor rule and raises

the possibility that the policy rule in Milani�s model may be misspeci�ed. For instance, the

coe¢ cients in the Taylor rule are �xed throughout the period, which may not be realistic

given monetary policy regime shifts over the sample. In addition, the assumption that

monetary policy shocks are white noise may not be reasonable given persistent interest-rate

deviations from the Taylor rule seen over history.22 The trend estimate of the real rate

probably captures the reaction of the Federal Reserve to exogenous economic events that

are not captured by Milani�s model (such as �nancial market turmoil). Those issues

could explain why our interest rate trend estimate appears to capture high- rather than

low-frequency movements.

Given the possible confusion between persistent transitory shocks and permanent shocks,

we estimate the standard deviation of all shocks simultaneously in hope that it might reduce

21This �nding is in line with the volatile DSGE estimates of the natural rate from Edge, Kiley, and Laforte
(2008) and Neiss and Nelson (2003).

22 In fact, the estimated monetary policy shocks are autocorrelated and skewed if we use the CBO output
gap and assume constant trends for in�ation and nominal interest rates. Rudebusch (2002 and 2006) argues
that empirical evidence on policy gradualism from expectations of future policy rates embedded in the term
structure of interest rates indicates that the amount of policy inertia is likely quite low. English, Nelson and
Sack (2002) estimate a monetary policy rule that incorporates temporary but persistent deviations from the
Taylor rule for reasons other than interest rate smoothing.
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the variance of permanent shocks to the real interest rate (see the columns labeled "Trends

and Transitory" of Table 2).23 However, in this joint estimation exercise, the standard

deviation of all transitory shocks declines, as does the standard deviation of potential

growth shocks. Compensating for these declines, the standard deviations of permanent

shocks to the equilibrium real rate, to the level of potential output, and to the in�ation

target increase. This highlights the di¢ culty to identify cyclical and permanent shocks

simultaneously, particularly in the case of the real interest rate where the variance of the

monetary policy shock converges to zero. Looking at the series labeled "Trend (all)" in

Figures 1 to 3, we can see that this joint estimation approach yields very similar results in

terms of the output gap and the real interest rate trend but generates an in�ation target

series that is more variable.

Because of the inability of the joint estimation to distinguish between monetary policy

shocks and permanent shocks to the real interest rate, we estimate the same set of variances

with the exception of the standard deviation of permanent shocks to the real interest rate,

which we calibrate to the value obtained by Laubach and Williams (2003). The results

are presented in the columns labeled "Trends and Transitory with LW estimates for �r" of

Table 2. The decrease in the standard deviation of permanent shocks to the equilibrium

real rate is compensated by increases in the standard deviations of all the transitory shocks

and of the permanent shocks to the in�ation target. The estimated standard deviation of

the monetary policy shocks is still lower than Milani�s estimate, but it is now signi�cantly

higher than 0. Interestingly, the standard deviations of the other transitory shocks are now

very close to the estimates obtained by Milani. Looking at the series labeled "Trend (LW)"

in Figures 1 to 3, we can see that calibrating �r produces an estimate of the real interest rate

trend that is much more consistent with the literature and the view of policymakers. The

trend of the U.S. real rate is estimated to be close to 2 per cent at the end of history in this

case, implying that the real policy rate was very stimulative in 2004. Under this calibration

we obtain a trend real rate that is more in line with our priors, variances similar to those of

23 In this exercise, although the standard deviation of the transitory shocks was reestimated, the AR
coe¢ cients were not.
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Milani, and the other trends still appear reasonable. While calibrating remains a question

of judgment, relative forecast performance could be used as a criterion for constraining

certain variances.

To the extent that the model�s variables contain low frequency movements, incorporating

stochastic trends should improve forecast accuracy. To assess the implications for forecast

performance of allowing for stochastic trends, we compute forecasts of in�ation, real interest

rates, and the output gap using Milani�s model and our estimates of the variance of

permanent and temporary shocks (i.e. using the "Trends and Transitory" variance estimates

from Table 2).24 Table 3 reports the forecast errors at di¤erent horizons for the version of

the model with constant trends and the one with model-consistent trends. Since we do

not know the data-generating process underlying the measure of potential output used by

Milani, we cannot construct forecasts for the level of GDP. Therefore, we only consider the

forecasting accuracy of CBO�s estimate of the output gap using Milani�s IS curve conditional

on constant and model-consistent trend estimates of in�ation and interest rates (i.e. we use

the output gap directly and constrain the variance of �y and �g to zero in the forecasting

exercise).

First, we notice that allowing the trends to vary over time helps to reduce the root

mean squared forecast errors of in�ation. While the di¤erences are small and statistically

insigni�cant for the one quarter ahead forecast, they become much more important as the

forecasting horizon increases, with the time-varying trend models clearly outperforming the

constant trend model at the 8 quarter horizon. The superiority of the time-varying trends

model is con�rmed by the Diebold-Mariano tests. This result highlights the importance of

accounting for low frequency movements in in�ation in DSGE models. Doing so produces

a measure of detrended in�ation that is more consistent with the DSGE assumption of

stationarity and a measure of trend in�ation that is more consistent with the data. Allowing

for a stochastic time-varying trend soaks up part of the persistence in in�ation that would

24 It is not a pure real-time forecasting exercice since we are not using real-time data and we are not
re-estimating the parameters of the model at each quarter. The mean of in�ation and the nominal interest
rate used at the detrending stage (for the model with constant trends), is updated at each quarter, as would
be the case in a real-time exercice.
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otherwise go into the gap and violate the DSGE assumption. By pinning down the

long-run pro�le for the economy more accurately, our treatment of trends also leads to

an improvement in longer-term forecasts.

The situation is somewhat di¤erent for the forecasts of real interest rates, since none of

the two versions of the model systematically outperforms the other at the 1- and 4-quarter

horizon. Di¤erences in accuracy are more signi�cant for the 8-step ahead forecasts. In this

case, the model with a stochastic real interest rate trend dominates by a strong margin

over the 1976-1985 and 1996-2004 periods while the opposite is true for the 1963-1975 and

1986-1995 periods. Overall, both models seem to perform equally well in a forecasting

environment. The bene�ts of allowing for a time-varying interest rate trend could be small

because deviations of the real interest rate from its mean are relatively close to being

stationary and therefore not inconsistent with the DSGE structure. This result might also

re�ect the possibility that Milani�s monetary policy rule is misspeci�ed, as discussed above.

Nevertheless, allowing for a stochastic interest rate trend produces more accurate forecasts

of in�ation. Indeed, in a separate exercise, we found that in�ation forecast errors were

larger when setting the variance of �r to zero and using demeaned interest rates. We obtain

similar results with respect to forecasts of the output gap.

In this forecasting exercise, we did not calibrate the standard deviation of the permanent

shocks to the real rate of interest, which means that the standard deviation of monetary

policy shocks is 0, as presented in Table 2. When we calibrate this parameter to the

value from Laubach and Williams (2003), the forecasting performance is generally half-way

between the version of the model with constant trend and the one where we freely estimate

this parameter. Forecast performance therefore seems to suggest a small preference for the

version of the model where all variances are freely estimated, but overall we judge that the

"Trend (LW)" estimates are more sensible.25

To determine the source of the forecasting errors, we decompose the 4-step ahead

errors of in�ation and the real interest rate into contributions from the gap component

25Results are available upon request.
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and contributions from the trend (Table 4).26 In the case of in�ation, we notice that the

improvement in forecasting is generally coming from increased accuracy in terms of both

the gap and the trend components. Allowing for a time-varying interest rate trend reduces

the volatility of the interest rate gap and clearly improves gap forecasts. This occurs at the

expense of the accuracy of the trend component, however, which is poorly predicted due to

its high volatility. The relatively signi�cant forecasting errors of the time-varying interest

rate trend could also re�ect the typical end of sample problems of HP �lters, as discussed

in Mise, Kim, and Newbold (2005).27

4 Conclusion

In the DSGE literature it is commonplace to express models with variables in

deviation-from-steady-state format and to estimate or calibrate structural parameters using

data pre-�ltered to extract trends. With such a setup, in a forecasting environment it

seems natural to add forecasts from DSGE models to trend forecasts. While this may

be an intuitive starting point, e¢ ciency can be improved in multiple dimensions. First,

pre-�ltering of data can be amended to incorporate structural links between the various

trends that are implied by the economic theory on which the DSGE model is based,

improving the e¢ ciency of trend estimates. Second, forecast e¢ ciency can be improved

by building a forecast model for model-consistent trends. Third, decomposition of shocks

into permanent and transitory components can be endogenized to also be model-consistent.

In this paper, we propose a uni�ed framework for introducing these improvements.

Application of the methodology to the small DSGE model estimated by Milani (2007)

validates the existence of considerable deviations between trends used for detrending data

26We do not decompose forecast errors of the output gap since they are entirely attributable to the gap
component in the current setup. The forecasting error on the trend component of the constant trend model is
equal to the di¤erence between the rolling mean and the full sample mean. The rolling mean converges to the
sample mean as the rolling window increases, implying that trend forecast errors will mecanically converge
to zero in the constant trend model. The forecasting error on the trend component of the time-varying trend
model is equal to the di¤erence between the rolling Kalman �lter estimate and the �ltered series over the
full sample.

27This problem can be reduced by conditioning the �lter with exogenous sources of information. See for
instance Gosselin and Lalonde (2006).
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prior to structural parameter estimation and model-consistent estimates of trends, implying

the potential for e¢ ciency gains in forecasting, particularly in the case of in�ation. Such

deviations also provide information on aspects of the model that are least coherent with the

data, possibly indicating model misspeci�cation.

Applying the methodology to medium to large scale DSGE models and allowing

permanent shocks to a¤ect the model�s short-run dynamics is left to future research.
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Table 1: Bayesian Estimates of Model Parameters from Milani (2007)
Description Bayesian Estimation

Mean estimate 95% Post. Prob. Int. 95% Prior Prob. Int.
Habits � 0.911 [0.717,0.998] [0.025,0.975]
Discount � 0.9897 [0.971,0.999] [0.973,0.999]
IES ' 3.813 [2.285,6.02] *
Indexation  0.885 [0.812,0.957] [0.025,0.975]
Fcn. price stick. �p 0.001 [0.0001,0.002] [0.0019,0.04]
Elast. mc ! 0.837 [0.01, 1.63] [0.114,1.68]
Int-rate smooth. � 0.89 [0.849,0.93] [0.024,0.946]
Feedback In�. �� 1.433 [1.06,1.81] [1.01,1.99]
Feedback gap �x 0.792 [0.425,1.165] [0.01,0.99]
Autoregr. dem shock �r 0.87 [0.8,0.93] [0.024,0.946]
Autoregr. sup shock �u 0.02 [0.0005,0.07] [0.024,0.946]
MP shock �� 0.933 [0.84,1.04] [0.34,2.81]
Demand shock �r 1.067 [0.89,1.22] [0.34,2.81]
Supply shock �u 1.146 [1.027,1.27] [0.34,2.81]

* Prior is a Gamma with mean 1 and standard deviation 0.71.

Table 2: Estimates of Standard Deviations of Structural Shocks
Description Trends Only Trends and Transitory Trends and Transitory

with LW estimates for �r
Estimate SE Estimate SE Estimate SE

Permanent Shocks
In�ation Target �� 0.180 0.089 0.287 0.084 0.458 0.111
Potential Level �y 0.000 0.415 0.746 0.083 0.429 0.361
Potential Growth �g 0.024 0.013 0.012 0.017 0.023 0.023
Real Rate �r 0.800 0.078 0.933 0.052 0.254 **
Transitory Shocks
MP shock �� 0.933 ** 0.000 0.086 0.716 0.079
Demand shock �r 1.067 ** 0.473 0.101 1.211 0.146
Supply shock �u 1.146 ** 1.088 0.064 1.118 0.067

A ** entry for standard error (SE) in the results indicates that this parameter was

constrained during estimation.
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Table 3: Forecast RMSE at various horizons
1-quarter ahead 4-quarters ahead 8-quarters ahead

Constant Varying Constant Varying Constant Varying
In�ation
1963-1975 1.342 1.319 2.007 1.822 2.619 2.282**
1976-1985 1.458 1.455 1.827 1.766 2.414 2.433
1986-1995 0.838 0.826 0.973 0.841** 1.300 1.123
1996-2004 0.901 0.883 1.100 0.820** 1.572 1.046**
1963-2004 1.190 1.176 1.597 1.452* 2.116 1.898
Real rates
1963-1975 0.939 0.947 1.994 2.129 2.238** 2.586
1976-1985 1.560 1.576 2.483 2.459 3.243 3.107
1986-1995 0.479 0.476 1.295 1.349 1.682* 2.246
1996-2004 0.508 0.474 1.377 1.304 1.868 1.655*
1963-2004 0.987 0.992 1.879 1.917 2.348 2.494
Output gap
1963-1975 1.018 0.988 2.462 2.215** 3.119 2.959
1976-1985 1.057 1.093 2.089 2.471 2.063 2.728
1986-1995 0.536 0.492** 1.493 1.236* 1.415 1.283
1996-2004 0.611 0.588 1.400 1.374 1.573 1.827
1963-2004 0.861 0.851 1.975 1.943 2.253 2.373

Forecast errors for the output gap are calculated using Milani�s IS curve and

model-consistent trend estimates of in�ation and interest rates. * and ** denote statistically

di¤erent forecast errors at the 5 and 10 per cent level based on the Diebold-Mariano test,

respectively.
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Table 4: RMSE decomposition for the 4-step ahead forecasts
1963-1975 1976-1985 1986-1995 1996-2004

Constant Varying Constant Varying Constant Varying Constant Varying
In�ation
Total 2.007 1.822 1.827 1.766 0.973 0.841 1.100 0.820
Gap 2.139 1.432 2.126 1.297 0.820 0.635 1.085 0.718
Trend 1.478 0.509 0.817 0.628 0.390 0.284 0.061 0.230
Real rates
Total 1.994 2.129 2.483 2.459 1.295 1.349 1.377 1.304
Gap 2.333 0.686 2.145 0.647 1.202 0.384 1.382 0.441
Trend 0.822 1.871 1.156 2.293 0.175 1.219 0.087 1.168

We obtain similar results using Theil�s U statistics, which controls for di¤erences in the

variance of the observed series.
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Fig. 1: Inflation
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Fig. 2: Output Gap
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Fig. 3: Real Interest Rates
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