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Abstract

Model risk is a constant danger for financial economists using interest-rate forecasts fo

purposes of monetary policy analysis, portfolio allocations, or risk-management decisions. U

multiple models does not necessarily solve the problem as it greatly increases the work re

and still leaves the question “which model forecast should one use?” Simply put, structural

or regime changes (not to mention possible model misspecifications) make it difficult for

single model to capture all trends in the data and to dominate all alternative approache

address this issue, we examine various techniques forcombiningor averagingalternative models

in the context of forecasting the Canadian term structure of interest rates using both yiel

macroeconomic data. Following Bolder and Liu (2007), we study alternative implementatio

four empirical term structure models: this includes the Diebold and Li (2003) approach and

associated generalizations. The analysis is performed using more than 400 months of data

from January 1973 to July 2007. We examine a number of model-averaging schemes in

frequentist and Bayesian settings, both following the literature in this field (such as de P

Ravazzolo and van Dijk (2007)) in addition to introducing some new combination approa

The forecasts from individual models and combination schemes are evaluated in a num

ways; preliminary results show that model averaging generally assists in mitigating mode

and that simple combination schemes tend to outperform their more complex counterparts

findings carry significant implications for central-banking analysis: a unified approach tow

accounting for model uncertainty can lead to improved forecasts and, consequently,

decisions.

JEL classification: C11, E43, E47
Bank classification: Interest rates; Econometric and statistical methods

Résumé

Le risque de modèle présente un écueil constant pour les économistes financiers qui ap

leurs analyses de la politique monétaire, leurs choix de portefeuille ou leur gestion du risq

des prévisions de taux d’intérêt. Le recours à de multiples modèles de prévision ne réso

nécessairement le problème puisqu’il alourdit grandement les calculs et ne nous dit pas

prévision retenir. En un mot, les changements structurels ou de régime (sans oublier les err

spécification possibles) font qu’il est difficile de représenter toutes les tendances qui se dé

des données à l’aide d’un modèle unique, susceptible de dominer tous les autres. Pour y vo

clair, les auteurs examinent diverses méthodes qui consistent àcombiner, en les pondérant, les

prévisions qu’ils obtiennent au sujet de la structure des taux d’intérêt canadiens à par
iii
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différents modèles estimés au moyen de données relatives aux rendements et aux va

macroéconomiques. Conformément à l’approche de Bolder et Liu (2007), les auteurs ét

plusieurs façons de combiner quatre modèles empiriques de la structure des taux, soit le

de Diebold et Li (2003) et trois généralisations associées. Leur analyse met à contribution p

400 observations mensuelles allant de janvier 1973 à juillet 2007. Un certain nombre

combinaisons examinées relèvent des cadres fréquentiste et bayésien et s’inspirent de la lit

dans ce domaine (p. ex., Pooter, Ravazzolo et van Dijk, 2007), et d’autres sont nouvelle

prévisions tirées des modèles pris isolément et des combinaisons de modèles sont éval

différentes façons. Les résultats préliminaires montrent que le fait de combiner plusieurs m

contribue en règle générale à réduire le risque de modèle, et que les schémas les plus

tendent à donner de meilleures prévisions que les plus complexes. Ces résultats o

conséquences intéressantes du point de vue des banques centrales : une approche unifiée

en compte de l’incertitude des modèles pourrait aboutir à des prévisions améliorées et, pa

des décisions plus éclairées.

Classification JEL : C11, E43, E47
Classification de la Banque : Taux d’intérêt; Méthodes économétriques et statistiques
iv



1 Introduction and motivation

Model risk is a real concern for financial economists using interest-rate forecasts for the pur-
poses of monetary policy analysis, strategic portfolio allocations, or risk-management decisions.
The issue is that one’s analysis is always conditional upon the model selected to describe the
uncertainty in the future evolution of financial variables. Moreover, using an alternative model
can, and does, lead to different results and possibly different decisions. Selecting a single
model is challenging because different models generally perform in varying ways on alternative
dimensions, and it is rare that a single model dominates along all possible dimensions.

One possible solution is the use of multiple models. This has the advantage of diversifying
away, to a certain extent, the model risk inherent in one’s analysis. It does, however, have some
drawbacks. First of all, it is time consuming insofar as one must repeat one’s analysis with
each alternative model. In the event one uses a simulation-based algorithm, for example, this
can also substantially increase one’s computational burden. A second drawback relates to the
interpretation of the results in the context of multiple models. In the event that one employs n
models, there will be n separate sets of results and a need to determine the appropriate weight
to place on these n separate sets of results. The combination of these two drawbacks reduces
the appeal of employing a number of different models.

Perhaps a better approach, that has some theoretical and empirical support, involves com-
bining, or averaging, a number of alternative models to create a single combined model. This is
not a new idea. The concept of model averaging has a relatively long history in the forecasting
literature. Indeed, there is evidence dating back to Bates and Granger (1969) and Newbold
and Granger (1974) suggesting that combination forecasts often outperform individual fore-
casts. Possible reasons for this are that the models may be incomplete, they may employ
different information sets, and they may be biased. Combining forecasts, therefore, acts to off-
set this incompleteness, biasedness, and variation in information sets. Combined forecasts may
also be enhanced by the covariances between individual forecasts. Thus, even if misspecified
models are combined, the combination may, and often will, improve the forecasts (Kapetanios,
Labhard and Price (2006)).

Another motivation for model averaging involves the combination of large sets of data. This
application is particularly relevant in economics, where there is a literature describing man-
agement of large numbers of explanatory variables through factor modelling (see, for example,
Moench (2006) and Stock and Watson (2002)). We can also combine factor-based models
to enrich the set of information used to generate forecasts, as suggested in Koop and Potter
(2003) in a Bayesian framework. There is vast literature on Bayesian model averaging; for a
good tutorial on Bayesian model averaging, see Hoeting et al. (1999). Draper (1995) is also a
useful reference. A number of papers investigate the predictive performance of models com-
bined in a Bayesian setting and find that there are accuracy and economic gains from using
combined forecasts (for example, Andersson and Karlsson (2007), Eklund and Karlsson (2007),
Ravazzolo, van Dijk and Verbeek (2007), and de Pooter, Ravazzolo and van Dijk (2007)).

However, model averaging is not confined to the Bayesian setting. For example, Diebold
and Pauly (1987) and Hendry and Clements (2004) find that combining forecasts adds value
in the presence of structural breaks in the frequentist setting. Kapetanios, Labhard and Price
(2005) use a frequentist information-theoretic approach for model combinations and show that
it can be a powerful alternative to both Bayesian and factor-based methods. Likewise, in a
series of experiments Swanson and Zeng (2001) find that combinations based on the Schwartz
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Information Criterion perform well relative to other combination methods. Simulation results
in Li and Tkacz (2004) suggest that the general practice of combining forecasts, no matter
what combination scheme is employed, can yield lower forecast errors on average.

It appears, therefore, that there is compelling evidence supporting the combination of multi-
ple models as well as a rich literature describing alternative combination algorithms. This paper
attempts to explore the implications for the aforementioned financial economist working with
multiple models of Canadian interest rates. This work asks, and attempts to answer, a simple
question: does model averaging work in this context and, if so, which approach works best and
most consistently? While the model averaging literature finds it origins in Bayesian economet-
rics, our analysis considers both frequentist and Bayesian combination schemes. Moreover, the
principal averaging criterion used in determining how the models should be combined is their
out-of-sampling forecasting performance. Simply put, we generally require that the weight on
a given model should be larger for those models that forecast better out of sample. This is
not uniformly true across the various forecasting algorithms, but it underpins the logic behind
most of the nine combination algorithms examined in this paper.

The rest of the paper is organized in four main parts. In Section 2, we describe the un-
derlying interest-rate models and review their out-of-sample forecasting performance. Next,
in Section 3, we describe the alternative combination schemes. Section 4 evaluates the per-
formance of the different model averaging approaches when applied to Canadian interest-rate
data, and Section 5 concludes.

2 Models

The primary objective of this paper is to investigate whether combined forecasts improve the
accuracy of out-of-sample Canadian interest-rate forecasts. The first step in attaining this
objective is to introduce, describe and compare the individual interest-rate models that we will
be combining. Min and Zellner (1993) point out that if models are biased, combined forecasts
may perform worse than individual models. Consequently, it is critically important to appraise
the models and their forecasts carefully before combining them. The models used in this work
are empirically motivated from previous work in this area. In particular, Bolder (2006) and
Bolder and Liu (2007) investigate a number of models, including affine (see, for example, Dai
and Singleton (2000), Duffie, Filipovic and Schachermayer (2003), Ang and Piazzesi (2003)),
in which pure-discount bond prices are exponential-affine functions1 of the state variables, and
empirical-based (such as those in Bolder and Gusba (2002) and the extension of the Nelson-
Siegel model by Diebold and Li (2003)). The results indicate that forecasts of affine term-
structure models are inferior to those of empirically-motivated models.

Out of these models, we choose those with the best predictive ability, in the hope that
their combinations will further improve term-structure forecasts. The four models examined
in this paper, therefore, are the Nelson-Siegel (NS), Exponential Spline (ES), Fourier Series
(FS) and a state-space approach (SS). It should be stressed that none of these models are
arbitrage-free; in our experience, the probability of generating zero-coupon rate forecasts that
admit arbitrage is very low.2 An attractive feature of the selected models is that they allow us
to easily incorporate macroeconomic factors into our analysis of the term structure, assuming a

1More complex mappings are considered by Leippold and Wu (2000), Cairns (2004), among others.
2If such outcomes occur, there are a number of possible solutions. For example, one could substitute for the

arbitrage forecast the previous forecast or some combination of previous forecasts.

3



unidirectional effect from macroeconomic factors to the term structure. This has a documented
effect of increasing forecasting efficiency. We do not model feedback between macro and yield
factors, since Diebold, Rudebusch and Aruoba (2006) and Ang, Dong and Piazzesi (2007) find
that the causality from macroeconomic factors to yields is much higher than that from yields
to macro factors.

The models have the following basic structure:

Z(t, τ) = G(t, τ)Yt , (1)

Yt = C +
L∑

l=1

FlYt−l + νt , νt ∼ N(0,Ω) .

Here Z(t, τ) denotes the zero-coupon rate at time t for maturity τ , (τ− t) the term to maturity,
and G the mapping from state variables (factors) Y to zero-coupon rates. We model the vector
Yt by a VAR(L) with L = 2, which we find works best for our purposes. For ES and FS
models, Z(t, τ) = − ln (P (t,τ))

τ−t and P (t, τ) =
∑n

k=1 Yk,tgk(τ − t), where P (t, τ) is the price of a
zero-coupon bond at t for maturity τ . In the ES model, gk(τ−t) are orthogonalized exponential
functions; in the FS model, they are trigonometric basis functions (see Bolder and Gusba (2002)
for details).

For all models except SS, we find the factors Yt at each time t by minimizing the square dis-
tance between P (t, τ) above and the observed bond prices. We augment the factors with three
macroeconomic variables—the output gap xt, consumer price inflation πt, and the overnight
rate rt—and collect these to form a time series. This procedure and the estimation of model-
specific parameters for the NS, ES and FS models are given in Bolder and Liu (2007) and the
references therein. In the SS model, we simply regress the vector of zero-coupon rates Zt on the
first three principal components, extracted from the observed term structure up to time t, and
the three contemporaneous macro variables. Note that only the SS model allows for a direct
connection between the macro factors and the zero-coupon rates. In the other three models,
only the term-structure factors determine the yields or bond prices: in the mapping from state
variables to bond prices or zero-coupon rates, the coefficients for macro factors are set to zero.3

2.1 A few words about Bayesian framework

The task of selecting appropriate parameters for the prior distributions is not a trivial one,
and a number of papers discuss this issue (see, for instance, Litterman (1986), Kadiyala and
Karlsson (1997), Raftery, Madigan and Hoeting (1997), Fernandez, Ley and Steel (2001)). We
have tried a variety of specifications, including those in the references above as well as some
calibrated ones. We have found that for our purposes, the g-prior (Zellner (1986)) appears to
produce the most satisfactory results. We estimate the parameters for the g-prior from the
in-sample data. While this may not be the most optimal way to estimate a prior distribution,
and ideally we would like to set aside a part of our data just for this purpose, we are constrained
by the length of the available time series. First, we have to forecast for relatively long horizons
and thus set aside a large proportion of the time series for the out-of-sample testing. Second,
we have to leave some part of the time series to train model combinations. Third, our models
are multidimensional and require a sizeable portion of the data just for estimation. Finally, it

3Using the state-space (Diebold, Rudebusch and Aruoba (2006)) adaptation of the Nelson-Siegel model,
de Pooter, Ravazzolo and van Dijk (2007) account for the effects of macro variables in a similar manner.
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is difficult to have a strong independent (from observed data) prior belief about the behaviour
of parameters in high-dimensional models. For these reasons, we estimate the g-prior and the
posterior distribution using the same in-sample data.

While our models have the general structure of state-space models, there are differences.
We assume that zero-coupon rates Z in observation equations are observed without error for
all models except the SS. To estimate the models in a full Bayesian setup, we could have
introduced an error term in each of these equations and then we would have had to use a filter
to extract the unobserved state variables Y . However, because FS and ES models are highly
nonlinear (and the dimensions of the corresponding factors are high), such a procedure would
be very computationally heavy and may not be optimal.4 Instead of this, we take the state
variables as given (from Bolder (2006)) and estimate the transition VAR(2) equations in the
Bayesian framework for each of the models. This facilitates computations greatly, because we
can use existing analytic results for VAR(L) models. Please see the Appendix for more details
about Bayesian estimation of VAR(L) models.

We use transition equations to determine weights for Bayesian model averaging schemes.
For consistency with the other models, we compute the weights based on the transition equation
of the SS model, even though the observation equation for the SS model is a regression with an
error term. Technically speaking, this approach does not give proper Bayesian posterior model
probabilities for the four models that are competing to explain the observed term structure,
since the data y has to be the same (the same observed zero-coupon rates Z) and the explanatory
variables different depending on the modelMk. In our case, the y data differs for each transition
equation: it is the NS, ES, FS or SS factors. So in effect we are assigning weights to each model
in the forecast combination based on how well the transition equations capture the trends in
the underlying factors of each model. In light of our assumption that observation equations
do not contribute any new information since they have no error term,5 this approach appears
reasonable.

2.2 Forecasts of individual models

In practice, we do not observe zero-coupon rates. We do not even observe prices of pure-
discount bonds. We must use the observed prices of coupon-bearing bonds and some model
for zero-coupon rates to extract the zero-coupon term structure. A number of alternative ap-
proaches for extracting zero-coupon rates from government bond prices are found in Bolder
and Gusba (2002). Figure 1 shows the Canadian term structure of zero-coupon rates from Jan-
uary 1973 to August 2007. As in many industrialized economies, the Canadian term structure
is characterized by periods of high volatile rates in the late 1980s and the 1990s. Moreover,
starting in 2005, the term structure becomes rather flat. Any single model will generally have
difficulties describing and forecasting both volatile and stable periods equally well.

To evaluate the forecasts of the four models, we use monthly data for bond prices for different
tenors and macroeconomic variables (output gap, consumer price inflation, and overnight rate)
from January 1973 to August 2007. This constitutes 416 observations. We take the first 120

4de Pooter, Ravazzolo and van Dijk (2007) discuss issues that arise in the Bayesian inference of affine models,
whose parameters are highly nonlinear, similarly to our models.

5While some may argue that such assumption is not realistic, we feel that it is justified by the tangible
benefits of greatly reduced estimation complexity and computational effort. We think that such benefits would
not be outweighed by the advantages from introducing error into the observation equations to make the already
stylized models more realistic.
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Figure 1: Zero-Coupon Rates from January 1973 to August 2007, extracted from Government
of Canada treasury bill and nominal bond prices using a nine-factor exponential spline model
described in Bolder and Gusba (2002).

points as our initial in-sample estimation data. Once the models are estimated, we make
out-of-sample interest rate forecasts for horizons h = 1, 12, 24, 36 months at time T = 120
(the information set up to time T will be denoted by filtration FT ). Next, for each model
Mk, k = 1, . . . , 4, we evaluate the vector of N tenors of forecasted zero-coupon rates ẐT+h =
E(ZT+h|FT ,Mk) against the actual zero-coupon rates ZT+h, N × 1, extracted from observed
bond prices:

eMk
T+h =

√√√√√√


(
ZT+h − ẐMk

T+h

)′ (
ZT+h − ẐMk

T+h

)
N

 . (2)

A schematic describing the various steps in the determination of these overlapping forecasts is
found in Figure 2.

We subsequently re-estimate each model for each T ∈ [121, 416−h] in-sample points, calcu-
lating the corresponding forecast errors for each model. Figure 3 shows the root mean squared
deviations between the actual and forecasted zero-coupon rates relative to the errors from ran-
dom walk forecasts using a rolling window of 48 observations.6 We include the RMSE for the
random walk model as a reference because, in the term-structure literature, it is frequently used

6The random walk is scaled to one. Consequently, values higher than one imply worse, and lower than one
better, performance than the random walk. We opt for graphs with relative root mean squared forecast errors
as opposed to the commonly reported tables with the same information, because we have found graphs easier to
read.
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Figure 2: Forecasting Interest Rates: This schematic describes the steps involved in generating
rolling interest-rate forecasts, which in this work, act as the principal input for the parametrization of
our model-averaging schemes.

Starting Data:
These data points

{Xt1 , . . . , Xts} are used
for the first forecasts.

Rolling Forecasts:
We continue
to update the

data set and perform
new forecasts.

-

t1 ts

0. Set i = s and k = 1;

1. Formulate EMk

(
Zti+h

|Fti

)
;

2. Observe Zti+h
;

3. Compute εMk
ti+h

= Zti+h
− EMk

(
Zti+h

|Fti

)
;

4. Repeat steps 1-3 for k = 2, . . . , n models;

5. Repeat steps 1-4 for i = s + 1, . . . , T − h observations.

6. Repeat steps 1-5 for h = 1, . . . ,H months.

ts+1 ts+2 tT

as a benchmark model and it is not easy to beat, at least for affine models (see, for example,
Duffee (2002) and Ang and Piazzesi (2003)). Note that the forecasts of the random walk are
just the last observed zero-coupon rates.

From Figure 3, we observe that for all horizons, there are periods when the models outper-
form the random walk, but none of the models seem to outperform the random walk on average
(over the sample period). As one would expect, the forecasting performance of all four models
deteriorates as the forecasting horizon increases. For horizons beyond one month, all models
have difficulties predicting interest rates during the period of high interest rates in the early
1990s. The models also struggle to capture the flat term structure observed in the early 2000s;
however, the FS and the ES models appear to be more successful at this than the NS and the
SS models. While all models perform similarly for the short-term horizon, certain patterns
emerge at longer horizons: the NS and SS models tend to move together, as do the FS and ES
models. This result is confirmed in Figure 4: the correlation between forecast errors from the
NS and SS models is very close to one beyond six months. The correlation between the ES and
FS models is also quite high.

The heterogeneity between the models is a strong motivating factor for model averaging.
In particular, it suggests that there is some potential for combining models to complement the
information carried by each model and thereby produce superior forecasts.

Figure 5 shows the performance of our models estimated in the Bayesian setting relative
to the random walk. Comparing with Figure 3, we see that Bayesian forecasts are virtually
identical to frequentist forecasts. We do not test whether the Bayesian forecasts are statistically
significantly different from the frequentist ones, since we are not comparing frequentist vs.
Bayesian estimation methods. We estimate the models in the Bayesian setting only because we
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Figure 3: Predictive performance for frequentist forecasts relative to random walk.
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Figure 5: Predictive performance for Bayesian forecasts relative to random walk.

need Bayesian forecast distributions to obtain weights for Bayesian model averaging schemes.

3 Model combinations

In this work, we investigate nine alternative model combination schemes, which we denote
C1 − C9. They are Equal Weights, Inverse Error, Simple OLS, Factor OLS, MARS, Predictive
Likelihood, Marginal Model Likelihood, Log Predictive Likelihood, and Log Marginal Model
Likelihood. We refer to the first five schemes as ad-hoc, and the last four as Bayesian.7 Our goal
is to calculate weights for each model Mk, horizon h, and combination Cj : w

Cj

k,h, k = 1, . . . , 4,
j = 1, . . . , 9, h = 1, 12, 24, 36 months. Conceptually, therefore, different model averaging
schemes merely amount to alternative methods for determining the amount of weight (i.e., the
ω’s) to place on each individual forecast.

Models estimated in the frequentist setting produce point forecasts, whereas in the Bayesian
setting we obtain forecast densities. There are two approaches to combine Bayesian forecasts:
the first refers to averaging the individual densities directly (Mitchell and Hall (2005), Hall and
Mitchell (2007), and Kapetanios, Labhard and Price (2005)), while the second to combining
the moments of individual densities (Clyde and George (2004)). For example, as indicated in
the latter article, a natural point prediction at time T for a zero-coupon rate vector h-steps

7The difference between the two types of schemes is that ad-hoc combinations can be applied to forecasts
generated in either frequentist or Bayesian setting, where as Bayesian combination schemes should be applied
to Bayesian forecasts.
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ahead is

ẐT+h = E (ZT+h|FT ) =
4∑

k=1

w
Cj

k,hE(ZT+h|FT ,Mk) =
4∑

k=1

wkẐ
Mk
T+h , (3)

where ẐMk
T+h are the means of individual forecast densities.

3.1 C1: Equal Weights

This is the simplest possible combination scheme. Each individual forecast receives an equal
weight as follows

wC1
k,h =

1
n

. (4)

While Equal Weights combination is very simple, it is a standard benchmark for the evaluation
of alternative model-averaging algorithms precisely because it performs quite well relative to
individual forecasts and more complicated schemes (see, for example, Hendry and Clements
(2004) and Timmermann (2006)).

3.2 C2: Inverse Error

In this combination scheme, we assign higher weights to models whose forecasts perform better
out of sample. We set aside M points from our sample to evaluate the predictive performance
of each model, and then we average the forecast errors over these M points. More specifically,
we estimate the models using T = 120 initial points, make h-step forecasts and evaluate each
model’s performance by calculating the forecast error (2). Then we repeat these steps for each
T ∈ [121, 120 + M − h]. This procedure yields M − h + 1 forecast errors, which we average.
The resulting weights are given by

wC2
k,h =

1/
(∑120+M−h

T=120 eMk
T+h/(M − h + 1)

)
∑4

k=1

[
1/

(∑120+M−h
T=120 eMk

T+h/(M − h + 1)
)] . (5)

This combination scheme is also simple, but it differs from the Equal-Weights approach in that
it requires data. We use M observations to train the weights for this and all subsequent model
combinations depending on the evaluation approach. Indeed, the Equal Weights combination
is the only technique that does not require a training period.

3.3 C3: Simple OLS

Here we combine the forecasts from individual models using simple OLS regression coefficients
as weights. First, we estimate the models and make h-step forecasts for each T ∈ [120, 120 +
M−h]. We treat these M−h+1 forecasts ẐMk

T+h as realizations of four predictor variables, and
for each tenor i ∈ [1, N ], we regress8 the actual zero-coupon rates ZT+h against these individual

8This can be done with or without the intercept β0,h and/or forcing βk,h to add up to one. We have found
(in studies unreported here) that unconstrained regression without an intercept works best in our case.

10



forecasts for the respective tenor i:

ZT+h(i) = β0,h(i) +
4∑

k=1

βk,h(i)ẐMk
T+h(i) . (6)

The weights for the simple OLS scheme are given by

wC3
k,h(i) = βk,h(i) . (7)

This type of combination scheme is very flexible, since the weights are unconstrained. What
this implies is that one can place negative weights on certain forecasts and significant positive
weights on other forecasts. As a consequence of this flexibility, this approach turns out to
be our best-performing combination. Its flexibility is not, however, without a cost since we
find the approach can be sensitive to the training period. We discuss these points later in the
discussion.

3.4 C4: Factor OLS

A drawback of the simple OLS scheme is that we estimate the weights separately for a set of
pre-specified zero-coupon tenors and then interpolate for the remaining tenors. This leads to a
fairly large number of regressions. To reduce the number of parameters, therefore, we construct
a lower-dimensional alternative, which we term the factor OLS scheme.

First, we perform a basic decomposition of the zero-coupon term structure as follows:

Yt(1)︸ ︷︷ ︸
Level

= Zt,15y , Yt(2)︸ ︷︷ ︸
Slope

= Zt,15y − Zt,3m , Yt(3)︸ ︷︷ ︸
Curve

= 2Zt,2y − (Zt,3m + Zt,15y) . (8)

Here 3m, 2y and 15y refer to the 3-month bill, and 2- and 15-year bonds respectively. Clearly,
this approach is motivated by the notions of well-known level, slope and curvature variables
stemming from principal components analysis.

Now we have only three components from which we build the term structure of zero-coupon
yields. To obtain the OLS weights, we regress9 the actual l-th factor YT+h(l), l = 1, 2, 3, on
the factors forecasted by each model, YT+h(l)Mk :

YT+h(l) = β0,h(l) +
4∑

k=1

βk,h(l)Ŷ Mk
T+h(l) . (9)

The weights for the factor OLS scheme are

wC4
k,h(l) = βk,h(l) . (10)

Once we have the combined forecasted factors ŶT+h(l), we invert the decomposition itera-
9As with the simple OLS combination scheme, we can do this with or without an intercept or forcing

the coefficients to add up to one, and we obtain better results for the specification with no intercept and no
restrictions.
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tively as follows:

Zt,15y = Yt(1) , Zt,3m = Yt(1)− Yt(2) , Zt,2y =
Yt(3) + 2Yt(1)− Yt(2)

2
. (11)

The advantage of this averaging approach is that it reduces the number of regressions and
thus estimated parameters. Its disadvantage is that we are forced now to interpolate the entire
curve from on only three points. In some cases, this error with such an approximation may be
substantial.

3.5 C5: MARS

The previous four schemes are relatively straightforward. For the purposes of comparison,
however, we opted to include a more mathematically complex approach to combine the fore-
casts from individual models. The approach we selected is termed Multiple Adaptive Regres-
sion Splines (MARS), which is a function-approximation technique based on the recursive-
partitioning algorithm. The basic idea behind this technique is to define piecewise linear spline
functions on an overlapping partition of the domain (Bolder and Rubin (2007) provide a de-
tailed description of the MARS algorithm). As such, the MARS combination scheme can be
considered an example of a mathematically complicated nonparametric, nonlinear aggregation
of our four alternative models.

The combination is trained on a set of M +h−1 realized zero-coupon rates ZT+h and their
forecasts ẐMk

T+h, T ∈ [120, 120 + M − h], for all tenors, horizons and models. Once trained, we
combine the individual forecasts according to the MARS algorithm. Note that, unlike in the
previous four schemes, we cannot write the combined forecast ẐT+h as a linear combination
of weights wC5

k,h and individual forecasts ẐMk
T+h due to the nonlinearity and complexity of the

MARS scheme.

3.6 C6: Predictive Likelihood

In our Bayesian model averaging schemes, the weights are some version of posterior model
probabilities. Theoretically, the posterior model probabilities P(Mk|Y ) are

P(Mk|Y ) =
p(Y,Mk)∑4
j=1 p(Y,Mj)︸ ︷︷ ︸

p(Y )

(12)

=
p(Y |Mk)P(Mk)∑n
j=1 p(Y |Mj)P(Mj)

.

We think that all of the models are equally likely, so we take prior model probabilities P(Mk) =
1
n .

The quantity p(Y |Mk) is the marginal model likelihood for model Mk, which measures
in-sample fit and fit to prior distribution only. However, out-of-sample forecasting ability
is our main criterion for selecting models and evaluating model combinations (Geweke and
Whiteman (2006) indicate that “a model is as good as its predictions”). This and other
recent papers (for example, Ravazzolo, van Dijk and Verbeek (2007), Eklund and Karlsson
(2007), Andersson and Karlsson (2007)) use predictive likelihood, which is the predictive density
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evaluated at the realized value(s), instead of the marginal model likelihood, to average models in
a Bayesian setting.10 Following this stream of literature to obtain the weights for combination
C6, for each model Mk and horizon h, we (a) formulate EMk

(YT+h|FT ) = Ŷ Mk
T+h; (b) formulate

p (YT |Mk,FT−h); (c) observe YT and evaluate p (YT |Mk,FT−h); and (d) use p (YT |Mk,FT−h)
to combine EMk

(YT+h|FT ).
Substituting the predictive likelihood into (12) in place of the marginal model likelihood,

we obtain the weights for the predictive likelihood combination. Similarly to the previous four
combinations, we calculate the weights for each T ∈ [120, 120+M−h] and average the resulting
M − h + 1 weights to get the fixed weights that will be used to evaluate model combinations
out of sample:

wC6
k,h =

∑120+M−h
T=120

(
p(YT |Mk,FT−h)P4

j=1 p(YT |Mj ,FT−h)

)
M − h + 1

. (13)

Strictly speaking, such weights are not proper posterior model probabilities, but their advantage
is measuring the out-of-sample predictive ability.

3.7 C7: Marginal Model Likelihood

Even though marginal model likelihood evaluates in-sample fit only, we use it as one of our
model combination schemes, since this is the classical Bayesian model averaging approach
(see, for instance, Madigan and Raftery (1994) and Kass and Raftery (1995)). To generate a
combined forecast, we calculate the marginal model likelihood p(YT |Mk) for model Mk using T
in-sample data points. The weight for each model is its posterior probability. Then we average
the weights for each T ∈ [120, 120 + M − h], as with previous model combinations, to obtain
the weights for the marginal model likelihood combination:

wC7
k =

∑120+M−h
T=120

(
p(YT |Mk)P4

j=1 p(YT |Mj)

)
M − h + 1

. (14)

Unlike with weights based on the predictive likelihood, the weights based on the marginal model
likelihood do not depend on the forecasting horizon h (Figure 7).

3.8 C8 and C9: Log Likelihood Weights

It turns out that in practice the weights based on marginal model likelihood or predictive
likelihood vary significantly depending on the estimation period. This is shown in Figures 6
and 7 for observations at T ∈ [120, 120+M−h], M = 120. To obtain a smoother set of weights
based on the marginal model (or predictive) likelihood, we take the logarithms of the marginal
model (predictive) likelihood values and transform them linearly into weights. We want these
weights wk, k = 1, . . . , 4, to satisfy wk ∈ (0, 1),

∑4
k=1 wk = 1, and the relative distance between

the weights should be preserved by the transformation.
10Model averaging based on predictive likelihood methods is not limited to Bayesian framework. Kapetanios,

Labhard and Price (2006) use predictive likelihood, as opposed to the likelihood of observed data, to construct
weights based on information criteria in a frequentist setting.
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Figure 6: Predictive likelihood weights over the training period of 120 points.
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Figure 7: Marginal model likelihood weights over the training period of 120 points.
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One possibility for such transformation is to let a be the lower bound of the interval on
which our observed log likelihoods lie, order the log likelihoods in ascending order, and specify
that log(p(YT |Mi))−a

log(p(YT |Mj))−a = wi,T

wj,T
for i = 1, 2, 3, j = 2, 3, 4, with

∑4
k=1 wk = 1. For marginal model

likelihoods (alternatively, we could have used logs of predictive likelihoods), the set of weights

wk,T =
log (p(YT |Mk))− a∑4

j=1(log (p(YT |Mj))− a)
(15)

solve the linear system and satisfy the desired properties for weights stated above. Now the
only tricky part is to choose a appropriately.11 We take a = log (p(YT |M1))− s, where s is the
standard deviation of the log marginal model (predictive) likelihoods from their mean.

We find that the weights calculated in such a manner are much more stable, as shown
in Figures 8 and 9 for marginal model likelihoods and predictive likelihoods, respectively, for
T ∈ [120, 120 + M − h] and M = 120. Note that in Figure 9 the weights are the same for all
four forecasting horizons, since log marginal model likelihood weights are independent of the
forecasting horizon (the same situation as with marginal model likelihood weights in Figure 7).
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Figure 8: Log predictive likelihood weights over the training period of 120 points.

Finally, we average the weights over the training period. For log marginal model likelihood
combination, the weights are

wC8
k =

∑120+M−h
T=120

(
log(p(YT |Mk))−aP4

j=1(log(p(YT |Mj))−a)

)
M − h + 1

. (16)

11There are many ways to do this. We are not claiming that our suggested method is superior in any way; it
is just a way to measure dispersion in the observed data.
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Figure 9: Log marginal model likelihood weights over the training period of 120 points.

For log predictive likelihood combination, we have

wC9
k,h =

∑120+M−h
T=120

(
log(p(YT |Mk,FT−h))−aP4

j=1(log(p(YT |Mj ,FT−h))−a)

)
M − h + 1

. (17)

4 Evaluating Model-Combination Schemes

We use two methods to evaluate the performance of the nine previously described model com-
binations schemes. We call these approaches dynamic and static model averaging. For both we
require the following ingredients: forecasts from individual models to be combined, a subset of
the data to train the weights for model combinations, and the remainder of the data to evaluate
the out-of-sample forecasts of different model combinations.

We generate individual forecasts for our models ZMk
T+h, k = 1, . . . 4, for T ∈ [120, 416 − h],

as described in Section 2.2, and set these aside. Next we take a subset of these forecasts of
length M to evaluate the predictive ability of the models and use this information to obtain the
weights for model combinations. In Section 3 we refer to this as training the weights. The last
observation used in the training period to evaluate individual forecasts is 120 + M . Starting
at this point T = 120 + M , we can combine the models using their respective weights and
evaluate the out-of-sample predictive ability of the combinations using the remainder of the
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sample. That is, we calculate the forecast error

e
Cj

T+h =

√√√√√√


(
ZT+h − Ẑ

Cj

T+h

)′ (
ZT+h − Ẑ

Cj

T+h

)
N

 (18)

for j = 1, . . . 9 model combinations at points T ∈ [120+M, 416−h]. Schematics with a graphic
description of the dynamic and static forecasting approaches are found in Figures 10 and 11.

The key difference between the two methods for evaluating the combinations is their treat-
ment of the training period. In the dynamic approach, the parameters of the model averaging
scheme are updated gradually as we move forward in time. In this way, the most recent
information regarding the forecasting performance of the models is incorporated in the model-
averaging algorithm. The static approach, however, involves only a single computation of the
model-combination parameters. As we move through time, therefore, the parameters are not
updated to incorporate the most recent forecasting performance. Such evaluation is not the
typical approach used in the forecasting literature, but it nonetheless appropriate for examining
the usefulness of a given model-combination scheme for simulation analysis, where one does not
have the liberty of updating continuously one’s information set. We expect that with a limited
training set, the static forecast combinations should underperform their dynamic counterparts.

4.1 Dynamic model averaging

The idea with dynamic model averaging is to use as much recent information as possible to
train the weights for model combinations. We consequently update the training period as new
information arrives: starting with M = 120, we increase the training period until we run out
of data (the last value for M is 416− h). The steps involved are given in Figure 10.

Figure 12 shows the predictive performance of frequentist combinations (C1 − C5) relative
to the random walk using a rolling window of 48 observations. With the exception of factor
OLS, all combinations beat the random walk on average for one-month horizon. As the horizon
increases, the performance of Inverse Error, Equal Weights and especially MARS combinations
worsens,12 while factor scheme OLS improves significantly. Past the one-month horizon, the
simple OLS scheme outperforms all other frequentist combinations, approaching the random
walk at one- and two-year horizons, and beating the random walk for the entire out-of-sample
evaluation period at the three-year horizon. An interesting result is that the predictive perfor-
mance of Inverse Error and Equal Weights is almost identical in our setting.

Figure 13 shows the performance of the Bayesian model averaging schemes C6 and C7 rela-
tive to the random walk, as well as Equal Weights and simple OLS, for comparison with the
frequentist combinations. We see that our Bayesian schemes do not beat the frequentist ones
in the dynamic-evaluation approach.

Figure 14 compares Bayesian log combinations C8 and C9 to the random walk. Equal Weights
and simple OLS schemes are also displayed for reference. We observe that using weights based
on the logs of marginal model and predictive likelihoods improves the performance of Bayesian
schemes significantly: they beat the random walk and the simple OLS scheme at the one-month
horizon and get close to the Equal Weights combination at longer horizons.

12The MARS result is not surprising: as shown in Sephton (2001), MARS scheme is very promising in-sample,
but its out-of-sample performance is not entirely accurate.
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Figure 10: Dynamic Model Averaging: This schematic describes the steps involved in dynamic
model averaging whereby the parameters for each model-averaging algorithm are updated as new infor-
mation becomes available.

Starting Data:
These data points

{Xt1 , . . . , Xts} are used
for the first forecasts.

Rolling Forecasts:
We continue
to update the

data set and perform
new forecasts.

-

t1 ts ts+1 ts+2 tT

Starting Data:
These data points

{Xt1 , . . . , Xts} are used
for the first forecasts.

Training Data:
Forecasts from

these periods are
used to estimate
model averaging

parameters.

-

-

-

-

t1 ts tm tm+1 tm+2 tT

0. Set i = m, j = 1, and h = 1;

1. Estimate PCj (Mk|Fti) for k = 1, . . . , n;

2. Apply weights to
{

ẐMk
ti+h

, k = 1, . . . , n
}

to form ECj

(
Zti+h

|Fti

)
;

3. Compute ε
Cj

ti+h
= Zti+h

− ECj

(
Zti+h

|Fti

)
;

4. Repeat steps 1-3 for j = 2, . . . , κ model-averaging approaches;

5. Repeat steps 1-4 for i = m + 1, . . . , T − h.

6. Repeat steps 1-5 for h = 2, . . . ,H forecasting horizons.
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Figure 11: Static Model Averaging: This schematic describes the steps involved in static model
averaging whereby the parameters for each model-averaging algorithm are estimated only once with a
fixed set of training data and not updated as new information becomes available.
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(
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)
;

3. Compute ε
Cj

ti+h
= Zti+h

− ECj

(
Zti+h

|Fti

)
;

4. Repeat steps 2-3 for j = 1, . . . , κ model-averaging approaches;

5. Repeat steps 2-4 for i = m + 1, . . . , T − h observations;

6. Repeat steps 2-5 for h = 2, . . . ,H forecasting horizons.
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Figure 12: Dynamic predictive performance for frequentist combinations relative to random
walk.
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Figure 13: Dynamic predictive performance for Bayesian combinations relative to random walk.
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Figure 14: Dynamic predictive performance for Bayesian log combinations relative to random
walk.

4.2 Static model averaging

We may not always be in the position where we can increase the training period as is done
in the dynamic setting.13 So we have to test how well the different combinations perform if
we calculate the weights over a fixed training period and apply these weights to all remaining
individual forecasts out-of-sample, without updating the training period. The steps for static
model averaging are given in Figure 11.

Figures 15-17 show the predictive performance of our nine combinations in the static model
averaging setting. Comparing to the same figures from the dynamic setting, we see that Equal
Weights, Inverse Error, and Bayesian schemes are more robust to the training period than other
combinations–MARS, simple OLS, and factor OLS, in the sense that predictive performance
of the former combinations is quite similar in both dynamic and static settings and thus not
very sensitive to the estimation period. The performance of the latter schemes (particularly
MARS) deteriorates when we estimate the weights over a fixed training period. However, the
performance of the combinations relative to each other is the same in both dynamic and static
settings: Equal Weights and simple OLS are still the best frequentist schemes, and Bayesian
log likelihood schemes are close to the Equal Weights. Finally, for horizons beyond one month,
simple OLS combination beats all other schemes and is only slightly worse than the random
walk at long horizons.

13For instance, as debt managers in a central bank, we may have to use weights calculated over some fixed
period to calculate term-structure forecasts for the purposes of managing a foreign reserves portfolio or debt
issuance for the next couple of years.
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Figure 15: Static predictive performance for frequentist combinations relative to random walk.
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Figure 16: Static predictive performance for Bayesian combinations relative to random walk.
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Figure 17: Static predictive performance for Bayesian log combinations relative to random
walk.

4.3 Best combinations vs. best individual models

Since the objective of this paper is to answer the question of whether there is benefit from
using combinations of models as opposed to a single best-performing model, it makes sense to
address this question directly. From Figure 3, we see that the Nelson-Siegel model performs well
for short horizons, and the Fourier Series model performs well for longer horizons. Figure 18
compares these two models, and the combination schemes that perform best in the static model
averaging setting (Equal Weights, Log Predictive Likelihood, and simple OLS), to the random
walk.

We can make the following observations. All of our best combinations beat the best in-
dividual models at the 1-month horizon on average. As the length of the horizon increases,
Equal Weights and Log Predictive Likelihood schemes outperform the Nelson-Siegel model,
but not the Fourier Series model. On average, the simple OLS combination outperforms both
individual models at all horizons. While it may be tempting to conclude that the simple OLS
combination should be implemented instead of a single model, we are not ready to make this
conclusion. First, simple OLS is unconstrained, which means that the weights can be negative
and they need not sum to one. The idea of assigning negative weights to particular forecasts
may be difficult to accept for policymakers. Consequently, there may be practical obstacles to
implementing this combination scheme. Also, forecasts with unconstrained OLS weights and
no intercept (as is the case in our situation) may be biased, as pointed out in Diebold and
Pauly (1987). Second, some preliminary testing results (not reported here) show that the sim-
ple OLS scheme is sensitive to the subset of data used for the training period and to the length
of the training period, as can be expected with least squares estimation in a relatively small
sample. Further analysis of this particular combination scheme, including hypothesis testing
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Figure 18: Predictive performance of best individual models and best combinations relative to
random walk, static setting.

and forecast error analysis, such as that done in Li and Tkacz (2004), is left for future work.

5 Final Remarks

The main question of this paper is whether or not one can combine multiple interest-rate
models to create a single model that outperforms any one individual model. To this end, nine
alternative model averaging techniques are considered including choices from the frequentist
and Bayesian literature as well as a few new alternatives. These approaches are compared, in
the context of both a dynamic and a static forecasting exercise, with more than thirty years of
monthly Canadian interest-rate and macroeconomic data. We do not conduct hypothesis tests
in this paper, so we do not claim any statistical improvements, but we can still make some
observations regarding the predictive performance of the different model combinations.

The principal observation is that we find evidence of model combinations outperforming the
best individual forecasts over the evaluation period. The degree of outperformance depends,
however, on both the forecasting horizon and the type of model combination. At shorter
forecasting horizons, for example, almost all model combinations outperform the best single
forecast. As the forecasting horizon increases, however, only the simple OLS averaging scheme
consistently outperforms the best single-model forecast. Indeed, the simple OLS approach also
outperforms, on a number of occasions, the rather difficult random-walk forecasting benchmark;
this is something that none of the individual forecasts achieves on a consistent basis. It is also
clear that the simpler model combination approaches tend to outperform their more complex
counterparts. Similarly to our results, Ravazzolo, van Dijk and Verbeek (2007) find that uncon-
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strained OLS combination scheme (like our simple OLS), and combinations with time-varying
weights, outperform more complex schemes. While this is consistent with the evidence in the
literature that simpler schemes dominate their more complex counterparts, Stock and Watson
(2004) note that it is difficult to explain such findings in the context of combining weights in a
stationary environment.

Even though the simple OLS combination scheme generally performs quite well, it does
have the disadvantage of demonstrating some instability with respect to the training period
selected for the determination of the model-combination parameters. We need to investigate
the simple OLS combination further and test its sensitivity to the training period (its length
and the time over which the weights are trained). This type of analysis should also be done
for other combination schemes, such as Log Predictive Likelihood, that have shown promise
in our study. Another interesting direction is to investigate the predictive performance of the
combination of the less stable simple OLS and the very stable, and generally well-performing,
Equal Weights.

One more possibility for further investigation is to consider combinations that are based
on time-varying weights. Ravazzolo, van Dijk and Verbeek (2007) find that time-varying com-
binations perform well in terms of predictive ability as well as in economic sense, based on
the results of an investment exercise. Time-varying weights have the advantage that they may
capture structural breaks by assigning varying weights to the combined models at different
periods. However, we have to be careful about incorporating time-varying weights in the con-
text of funds management, since we may not be at liberty to update the information set in
operational activities.
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Appendix

Here we derive the posterior density, the predictive density and the marginal model likelihood
for a VAR(L) model. Special thanks to Michiel de Pooter and Francesco Ravazzolo for the
results and derivations of posterior and predictive densities for VAR models. For the most
part, in this section we follow their notation and derivations.

5.1 The model

A VAR(L) model can be written as

Y = XΠ + ε , vec(ε) ∼ N(0,Σ⊗ IT ) , (19)

where Y is a T × N matrix of observed data: each row represents an observation of a 1 × N
vector yt, t = 1, . . . , T ; X is a T ×K matrix of explanatory variables; Π is a K × N matrix
of parameters; and each of T 1 × N row vectors εt in the T × N error matrix ε is normally
distributed with mean 0 and N × N variance-covariance matrix Σ. The first column of X is
composed of ones, corresponding to the constants in the parameter matrix Π, and the remaining
columns are lagged values of Y , so K = 1 + LN for a VAR(L) model.

Note that Y and ε are random matrices, and in derivations below we will be using several
matric-variate distributions (their densities and related results are given in Gupta and Nagar
(1999) and Poirier (1995)).

5.2 The likelihood

The likelihood function (data-generating process) for the model in (19) is

p(Y |X, Π,Σ) = (2π)−TN/2|Σ|−T/2|IT |−N/2 exp
(
−1

2
tr

(
Σ−1(Y −XΠ)′I−1

T (Y −XΠ)
))

= (2π)−TN/2|Σ|−T/2 exp
(
−1

2
tr

(
Σ−1(Y −XΠ)′(Y −XΠ)

))
. (20)

This likelihood function is equivalent to the product of T likelihood functions for yt (with each
yt multivariate normal), since we assume that εt are independent from one period to the next.

5.3 The prior

For the model (19), the conjugate priors for parameters Π and Σ have the following form:

p(Π,Σ) = p(Π|Σ)p(Σ) , (21)
vec(Π|Σ) ∼ N(vec(P ),Σ⊗Q) ,

Σ ∼ IW (C, ν) .
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IW denotes Inverted Wishart distribution for Σ:

p(Σ) = c−1
IW · |Σ|−(ν+N+1)/2|C|ν/2 exp

(
−1

2
tr

(
Σ−1C

))
, (22)

cIW = 2νN/2πN(N−1)/4
N∏

n=1

Γ
(

ν + 1− n

2

)
.

The N × N symmetric positive definite matrix C is generally referred to as scale matrix and
the scalar ν ≥ N as degrees of freedom. The distribution of Π|Σ is matric-normal with mean
P and symmetric positive definite variance matrices Σ, N ×N , and Q, K ×K:

p(Π|Σ) = (2π)−KN/2|Σ|−K/2|Q|−N/2 exp
(
−1

2
tr

(
Σ−1(Π− P )′Q−1(Π− P )

))
. (23)

5.4 The posterior

The posterior density of parameter matrices Π and Σ summarizes the information available to
us about them from prior belief and observed data. The joint posterior density of Π and Σ is
a product of likelihood and prior distribution:

p(Π,Σ|Y, X) ∝ p(Y |X, Π,Σ)p(Π,Σ) = p(Y |X, Π,Σ)p(Π|Σ)p(Σ)

∝
exp

(
−1

2tr
(
Σ−1(C + (Y −XΠ)′(Y −XΠ) + (Π− P )′Q−1(Π− P ))

))
|Σ|(T+N+K+ν+1)/2

.

For the joint prior distribution p(Π,Σ), we drop the conditioning on X, assuming that the
parameters are independent from the explanatory variables in the matrix X. However, the
posterior distribution of the parameters does depend on X. To make draws from the joint pos-
terior, it is convenient to derive the marginal posterior p(Σ|Y, X) and the conditional posterior
p(Π|Σ, Y,X), similarly to how we specified the prior distributions.

For derivations that follow, we need the following two results:
Decomposition rule:

(Y −XΠ)′(Y −XΠ) = (Y −XB̂)′(Y −XB̂) + (Π− B̂)′X ′X(Π− B̂) , (24)

where

B̂ = (X ′X)−1X ′Y . (25)

Inverted Wishart integration step:∫
|Σ|−M/2 exp

(
−1

2
tr

(
Σ−1A

))
dΣ = k · |A|−(M−N−1)/2 , (26)

k = 2N(M−N−1)/2πN(N−1)/4
N∏

n=1

Γ
(

M −N − n

2

)
,
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for an integer M and N ×N positive definite symmetric matrix Σ.
The first result can be verified by direct multiplication: on the one hand,

(Y −XΠ)′(Y −XΠ) = Y ′Y − Y ′XΠ−Π′X ′Y + Π′X ′XΠ . (27)

On the other hand,

(Y −XB̂)′(Y −XB̂) + (Π− B̂)′X ′X(Π− B̂)
= (Y −X(X ′X)−1X ′Y ) + (Π− (X ′X)−1X ′Y )′X ′X(Π− (X ′X)−1X ′Y )
= Y ′Y − Y ′X(X ′X)−1X ′Y − Y ′X(X ′X)−1X ′Y + Y ′X(X ′X)−1X ′X(X ′X)−1X ′Y

+Π′X ′XΠ−Π′X ′X(X ′X)−1X ′Y − Y ′X(X ′X)−1X ′XΠ + Y ′X(X ′X)−1X ′X(X ′X)−1X ′Y

= Y ′Y + Π′X ′XΠ−Π′X ′Y − Y ′XΠ . (28)

Comparing the last line above to (27), we see that the decomposition rule has been established.
The Inverted Wishart integration step follows from the fact that the integral of the Inverted

Wishart density (22) equals 1: ∫
p(Σ)dΣ = 1 . (29)

Taking M = ν+N +1, dividing inside the integral by the appropriate constant and multiplying
1 by the same constant produces the desired result in (26).

Our goal is to write the joint posterior density in the form

p(Π,Σ|Y, X) = p(Π|Σ, Y,X)p(Σ|Y, X) . (30)

For this, we rewrite (24) as follows:

p(Π,Σ|Y, X) ∝
exp

(
−1

2tr
(
Σ−1(C + (Y −XΠ)′(Y −XΠ) + (Π− P )′Q−1(Π− P ))

))
|Σ|(T+N+K+ν+1)/2

=
exp

(
−1

2tr
(
Σ−1(C + (W − V Π)′(W − V Π))

))
|Σ|(T+N+K+ν+1)/2

=
exp

(
−1

2tr
(
Σ−1(C + (W − V Π̂)′(W − V Π̂) + (Π− Π̂)′V ′V (Π− Π̂))

))
|Σ|(T+N+K+ν+1)/2

,(31)

where

W =
[

Y

Q−1/2P

]
, V =

[
X

Q−1/2

]
, Π̂ = (V ′V )−1V ′W , (32)

and Q−1/2 is the upper triangular matrix from the Choleski decomposition of the positive
definite symmetric matrix Q = Q−1/2′Q−1/2.

To verify the first equality in (31), we simplify the products in the exponent in the first and
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second line as follows:

(W − V Π)′(W − V Π) =
([

Y ′ P ′Q−1/2′
]
−Π′ [ X ′ Q−1/2′

])
·
([

Y

Q−1/2P

]
−

[
X

Q−1/2

]
Π

)
= Y ′Y + P ′Q−1P − Y ′XΠ− P ′Q−1Π

−Π′X ′Y −Π′Q−1P + Π′X ′XΠ + Π′Q−1Π , (33)

and

(Y −XΠ)′(Y −XΠ) + (Π− P )′Q−1(Π− P ) = Y ′Y − Y ′XΠ−Π′X ′Y + Π′X ′XΠ
+Π′Q−1Π−Π′Q−1P − P ′Q−1Π + P ′Q−1P .(34)

Comparing (33) and (34), we see that they are the same. To establish the second equality in
(31), we use the decomposition rule (24) to verify that

(W − V Π)′(W − V Π) = (W − V Π̂)′(W − V Π̂) + (Π− Π̂)′V ′V (Π− Π̂) , (35)

with Π̂ given in (32).
Now we can separate parts of the last equality in (31) to write the joint posterior density

in the form

p(Π,Σ|Y, X) =
exp

(
−1

2tr
(
Σ−1(C + (W − V Π̂)′(W − V Π̂))

))
|Σ|(N+(T+ν)+1)/2

·
exp

(
−1

2tr
(
Σ−1(Π− Π̂)′V ′V (Π− Π̂)

))
|Σ|K/2

. (36)

Comparing this last line with equation (67) and the formulas for the Inverted Wishart and
the matric-normal densities ((22) and (23), respectively), we see that the marginal posterior
distribution of Σ is Inverted Wishart, and the conditional posterior distribution of Π is matric-
normal. That is,

(Σ|Y, X) ∼ IW (Ĉ, ν̂) , (37)
Ĉ = C + (W − V Π̂)′(W − V Π̂) ,

ν̂ = T + ν ,

and

vec(Π|Σ, Y,X) ∼ N(vec(Π̂),Σ⊗ Q̂) , (38)
Q̂ = (V ′V )−1 ,

and W , V and Π̂ are given in (32).
Note that we could also derive the marginal posterior distribution for Π, p(Π|Y, X) using

the Inverted Wishart integration step (26), but for our purposes, we generate draws from the
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joint posterior (Π,Σ|Y, X) by drawing from p(Σ|Y, X) and then from p(Π|Σ, Y,X), following
(67). Derivations for p(Π|Y, X) are given in de Pooter, Ravazzolo and van Dijk (2007).

At this point, we have enough information to describe our model completely: instead of
the frequentist point estimates of parameters, we have posterior parameter distributions. The
posterior distributions combine information from our prior opinion about parameters and the
information contained about them in the observed data. For example, the posterior scale
matrix Ĉ (37) is a function of the prior scale matrix C and data, Y and X (via V and W ).
The posterior distributions produce explicitly the expected value of the random parameters as
well as their variability.

5.5 Predictive density

We are interested in deriving the predictive density for an h ×N matrix Ỹ of h future values
of 1×N vector Y . We assume that the same model that generates the observed data (19) also
generates Ỹ :

Ỹ = X̃Π + ε , vec(ε) ∼ N(0,Σ⊗ Ih) , (39)

with X̃ an h ×K matrix of explanatory variables, Π the K ×N matrix of parameters, and ε
an h×N matrix of errors.

Conditional on X̃, Π, Σ, as well as Y and X, Ỹ is matric-normally distributed:

vec(Ỹ |Σ, X̃, Y,X) ∼ N(vec(X̃Π),Σ⊗ Ih) ,

p(Ỹ |Σ, X̃, Y,X) = (2π)−hN/2|Σ|−h/2|IT |−N/2 exp
(
−1

2
tr

(
Σ−1(Ỹ − X̃Π)′I−1

T (Ỹ − X̃Π)
))

= (2π)−hN/2|Σ|−h/2 exp
(
−1

2
tr

(
Σ−1(Ỹ − X̃Π)′(Ỹ − X̃Π)

))
. (40)

The marginal predictive density is obtained by integrating out the dependence on Π and Σ:

p(Ỹ |X̃, Y, X) =
∫ ∫

p(Ỹ ,Π,Σ|X̃, Y,X)dΠdΣ (41)

=
∫ ∫

p(Ỹ |Π,Σ, X̃)p(Π,Σ|Y, X)dΠdΣ

=
∫ ∫

p(Ỹ |Π,Σ, X̃)p(Π|Σ, Y,X)p(Σ|Y, X)dΠdΣ

∝
∫ ∫ exp

(
−1

2tr
(
Σ−1(Ĉ + (Π− Π̂)′Q̂−1(Π− Π̂) + (Ỹ − X̃Π)′(Ỹ − X̃Π))

))
|Σ|(K+N+ν̂+1+h)/2

dΠdΣ .

To perform the integration required in the above formula, we follow the steps similar to
those used to simplify the expression for the joint posterior (31). First, note that

(Π− Π̂)′Q̂−1(Π− Π̂) + (Ỹ − X̃Π)′(Ỹ − X̃Π) = (W̃ − Ṽ Π)′(W̃ − Ṽ Π) , (42)
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where

W̃ =
[

Ỹ

Q̂−1/2P̂ i

]
, Ṽ =

[
X̃

Q̂−1/2

]
. (43)

This can be verified by direct multiplication, similarly to the derivations in (33) and (34). Here
Q̂−1/2 is the upper triangular matrix from the Choleski decomposition of the positive definite
symmetric matrix Q̂ = Q̂−1/2′Q̂−1/2.

Second, using the decomposition rule (24), we express (W̃ − Ṽ Π)′(W̃ − Ṽ Π) as follows:

(W̃ − Ṽ Π)′(W̃ − Ṽ Π) = (W̃ − Ṽ Π̄)′(W̃ − Ṽ Π̄) + (Π− Π̄)′Ṽ ′Ṽ (Π− Π̄) , (44)

where

Π̄ = (Ṽ ′Ṽ )−1Ṽ ′W̃ . (45)

The two simplification steps above allow us to write the marginal predictive density as

p(Ỹ |X̃, Y,X) ∝
∫ ∫ exp

(
−1

2tr
(
Σ−1(Ĉ + (Π− Π̂)′Q̂−1(Π− Π̂) + (Ỹ − X̃Π)′(Ỹ − X̃Π))

))
|Σ|(K+N+ν̂+1+h)/2

dΠdΣ

=
∫ ∫ exp

(
−1

2tr
(
Σ−1(Ĉ + (W̃ − Ṽ Π)′(W̃ − Ṽ Π))

))
|Σ|(K+N+ν̂+1+h)/2

dΠdΣ

=
∫ exp

(
−1

2tr
(
Σ−1(Ĉ + (W̃ − Ṽ Π̄)′(W̃ − Ṽ Π̄))

))
|Σ|(N+ν̂+1+h)/2|(Ṽ ′Ṽ )−1|−N/2(2π)−KN/2

·

∫ exp
(
−1

2tr
(
Σ−1(Π− Π̄)′Ṽ ′Ṽ (Π− Π̄)

))
|Σ|K/2|(Ṽ ′Ṽ )−1|N/2(2π)KN/2

dΠ

 dΣ . (46)

The integral with respect to Π equals 1, since it is the integral of matric-normal density.
Using this fact, and the Inverted Wishart integration step (26) with M = N + ν̂ + 1 + h and
A = Ĉ+(W̃− Ṽ Π̄)′(W̃− Ṽ Π̄), the formula for the marginal predictive density simplifies further
to

p(Ỹ |X̃, Y,X) ∝
∫ exp

(
−1

2tr
(
Σ−1(Ĉ + (W̃ − Ṽ Π̄)′(W̃ − Ṽ Π̄))

))
|Σ|(N+ν̂+1+h)/2

dΣ

∝ |Ĉ + (W̃ − Ṽ Π̄)′(W̃ − Ṽ Π̄)|−(ν̂+h)/2 . (47)

Since W̃ , Ṽ and Π̄ are all functions of X̃ and Ỹ , we need to disentangle this last expression
to obtain the formula for the marginal predictive density as a function of Ỹ , X̃ and some
constants. We will show that

Ĉ + (W̃ − Ṽ Π̄)′(W̃ − Ṽ Π̄) = Ĉ + (Ỹ − X̃Π̂)′(Ih − X̃M−1X̃ ′)(Ỹ − X̃Π̂) , (48)
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where

M̃ = (X̃ ′X̃ + X ′X + Q−1) . (49)

This would imply that the marginal predictive density has the form of the matric-t distribution:

p(Ỹ |X̃, Y,X) =
c−1
mt · |Ih − X̃M̃−1X̃ ′|N/2|Ĉ|ν̂/2

|Ĉ + (Ỹ − X̃Π̂)′(Ih − X̃M̃−1X̃ ′)(Ỹ − X̃Π̂)|(ν̂+h)/2
, (50)

cmt =
πhN/2

∏N
i=1 Γ

(
ν̂+1−i

2

)∏N
j=1 Γ

(
ν̂+h+1−j

2

) .

The symmetric positive definite matrices Ĉ, N ×N , and Ih− X̃M̃−1X̃ ′, h× h, are called scale
matrices.

Establishing the relation in (48) is not difficult, only time-consuming. The equality is
verified by plugging in all the variables we substituted for convenience (for example, Π̄), direct
multiplication and simplification. We will not show all the details here, just the main steps.

First, plugging in the expressions for W̃ and Ṽ (43), we show that

(W̃ − Ṽ Π̄)′(W̃ − Ṽ Π̄) = (Ỹ − X̃Π̄)′(Ỹ − X̃Π̄) + (Π̂− Π̄)′Q−1(Π̂− Π̄) . (51)

Second, using (49) and (45), we verify that

Π̄ = M̃−1(X̃ ′Ỹ + X ′XΠ̂ + Q−1Π̂) . (52)

Third, we plug this expression for Π̄ into the left-hand side of equation (48) and multiply
and simplify the two quadratic forms. The resulting rather lengthy expression involves many
terms, which we combine and simplify further. Finally, we multiply and simplify the right-
hand side of equation (48) and compare similar terms in the two expressions. We will see that
they are the same, establishing the required equality and the fact that the marginal predictive
density is matric-t (as given in (50)).

Similarly to the situation with the posterior distribution of parameters, now we have de-
scribed fully the distribution of future outcomes Ỹ . To generate these future outcomes, we can
draw from the normal conditional predictive density (40), having previously generated poste-
rior draws of (Π,Σ). Alternatively, we can draw directly from the matric-t marginal predictive
density (50); this way, when running programs, we do not have to use memory to store posterior
draws of (Π,Σ).

5.5.1 Weights based on predictive likelihood

We used two Bayesian model averaging approaches: the first based on the marginal model
likelihood, and the second based on the predictive likelihood. We obtain the predictive like-
lihood as follows. First we generate individual Bayesian forecast distributions for Y for each
model, using T data points to estimate posterior parameter distributions. Then we split the
data into two parts of length T − h (training sample) and h (evaluation sample), where h is
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the forecast horizon. The first sample is used to estimate the posterior distribution and the
predictive density, and the second is used to evaluate the predictive likelihood.

More specifically, for each model, we estimate the posterior density using T −h data points.
Then, using this posterior distribution, we generate a distribution of forecasted values for time
(T − h) + h = T . At this point we have D draws of forecasted values Y d

T , d = 1, . . . , D.14

Next, for each draw, we evaluate the predictive density by plugging the realized value Y o
T into

either the conditional predictive density (40) or the marginal predictive density (50), and take
the average to get an estimate of the predictive likelihood. Then we use this value to calculate
the model’s weight by substituting the predictive likelihood instead of the marginal model
likelihood into (12).

We use a single realized value (1×N vector YT ) to evaluate the predictive density, following
in Ravazzolo, van Dijk and Verbeek (2007) and de Pooter, Ravazzolo and van Dijk (2007), for
the reasons given in these papers: to test the predictive ability of the model – the probability
of out-of-sample realized values. Andersson and Karlsson (2007) use more than one observed
value of Y from the evaluation sample to obtain predictive likelihood, which results in weights
that rely more on model fit.

5.6 Marginal model likelihood

The marginal model likelihood for model M with parameters Π and Σ is

p(Y |X,M) =
∫ ∫

p(Y, Πi,Σi|X,M)dΠidΣi

=
∫ ∫

p(Y |Πi,Σi, X,M)p(Πi,Σi)dΠidΣi

=
∫ ∫

p(Y |Πi,Σi, X,M)p(Πi|Σi)p(Σi)dΠidΣi . (53)

To derive the formula for the marginal model likelihood, we have to integrate the product of
the likelihood (20) and the prior (21) with respect to the model parameters:

p(Y |X,M) = c ·
∫ ∫

exp
(
−1

2tr
(
Σ−1(C + (Y −XΠ)′(Y −XΠ) + (Π− P )′Q−1(Π− P ))

))
|Σ|(T+N+K+ν+1)/2

dΠdΣ

c =
(2π)−TN/2(2π)−KN/2|Q|−N/2|C|ν/2

2νN/2πN(N−1)/4
∏N

n=1 Γ
(

ν+1−n
2

) . (54)

14We use D = 1000 for the results in this paper. More draws could be used, but we are interested only in the
means of forecast distributions, which do not change enough to warrant the longer computational time.
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Following the derivations in (31), we have:

p(Y |X,M) =
c

(2π)−KN/2|(V ′V )−1|−N/2
·
∫ exp

(
−1

2tr
(
Σ−1(C + (W − V Π̂)′(W − V Π̂))

))
|Σ|K/2

|Σ|(T+N+K+ν+1)/2

·

∫ exp
(
−1

2tr
(
Σ−1(Π− Π̂)′V ′V (Π− Π̂)

))
(2π)KN/2|(V ′V )−1|N/2

dΠ

 dΣ

= c · (2π)KN/2|Q̂|N/2

∫
exp

(
−1

2
tr

(
Σ−1Ĉ

))
|Σ|−(N+ν̂+1)/2dΣ . (55)

Above, we used the decomposition rule (24) and the fact that the integral of the matric-normal
density equals 1. The constants W , V , Π̂ are given in (32), and Ĉ, ν̂, and Q̂ in (37) and (38).

Now we use the Inverted Wishart integration step (26) with M = N + ν̂ + 1 and A = Ĉ to
simplify the expression for p(Y |X,M) further:

p(Y |X,M) = c · (2π)KN/2|Q̂|N/2|Ĉ|−ν̂/22ν̂N/2πN(N−1)/4
N∏

n=1

Γ
(

ν̂ + 1− n

2

)
. (56)

Finally, substituting the constant (from (54)) and simplifying, we obtain the formula for the
marginal model likelihood:

p(Y |X,M) =
∏N

i=1 Γ
(

ν̂+1−i
2

)
πTN/2

∏N
j=1 Γ

(
ν+1−i

2

) · |C|ν/2|Q̂|N/2

|Ĉ|ν̂/2|Q|N/2
. (57)

5.6.1 Weights based on marginal model likelihood

To generate a combined forecast at time T for horizon h, we calculate the marginal model
likelihood for each model (for its transition VAR equation) using T observations in (57). Then
we plug this value into the formula (12) to calculate that model’s posterior probability. The
resulting number is the model’s weight, applied to the mean of the model’s forecast distribution
to obtain the combination forecast for time T + h. The weights based on marginal model
likelihood do not depend on the forecasting horizon h.

5.7 Derivation of g-prior for the VAR(L) model

Let us derive the g-prior for our VAR(L) model (19), adapting the results of Zellner (1986) to
our multidimensional case: we will obtain explicit formulas for parameters P , Q, C and ν.

Before observing the data Y , suppose that we have a hypothetical (imaginary) sample Y0,
generated by

Y0 = X0Π + ε0 , vec(ε0) ∼ N(0,Σ0 ⊗ Iτ ) . (58)

Here Y0 is τ ×N , X0 is a τ ×K matrix of explanatory variables, and Π is a K ×N matrix of
parameters.
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In this conceptual sample Y0, we allow the variance-covariance matrix to differ from that
of our observed data Y :

Σ = gΣ0 , 0 < g < ∞ . (59)

We will need to specify the scaling constant g; Koop and Potter (2003) recommend setting

g =
1
τ

or g =
1

ln(τ)3
, (60)

so for calculations in this paper, we take g = 1
τ .

We proceed by deriving the posterior density p(Π,Σ0|Y0, X0) for our hypothetical sample.
For this, we need to specify the prior p(Π,Σ0) and the likelihood p(Y0|Π,Σ0). We suppose that
the prior distribution is diffuse (see Zellner (1971), for instance):

p(Π,Σ0) ∝ |Σ0|−(N+1)/2 . (61)

The likelihood is

p(Y0|Π,Σ0) ∝ |Σ0|−τ/2 exp
(

1
2
tr

(
Σ−1

0 (Y0 −X0Π)′(Y0 −X0Π)
))

. (62)

Using (59), we rewrite the prior and the likelihood in terms of Σ:

p(Π,Σ) ∝ |Σ|−(N+1)/2 , (63)

and

p(Y0|Π,Σ) ∝ |Σ|−τ/2 exp
(

1
2
tr

(
gΣ−1(Y0 −X0Π)′(Y0 −X0Π)

))
. (64)

Using the decomposition rule (24) and the fact that the posterior is proportional to prior times
likelihood, we have

p(Π,Σ|Y0, X0) ∝ |Σ|−(τ+N+1)/2 exp
(

1
2
tr

(
gΣ−1(Y0 −X0Π)′(Y0 −X0Π)

))
(65)

=
exp

(
1
2tr

(
gΣ−1(Y0 −X0B̂0)′(Y0 −X0B̂0) + gΣ−1(Π− B̂0)′X ′

0X0(Π− B̂0)
))

|Σ|(τ+N+1)/2
,

where

B̂0 = (X ′
0X0)−1X ′

0Y0 . (66)

We want to express equation (65) as a product of the conditional posterior density p(Π|Σ, Y0, X0)
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and the marginal posterior density p(Σ|Y0, X0), so we group terms as follows:

p(Π,Σ|Y0, X0) = p(Π|Σ, Y0, X0)p(Σ|Y0, X0) (67)

∝ |Σ|−K/2 exp
(

1
2
tr

(
Σ−1(Π− B̂0)′(gX ′

0X0)(Π− B̂0)
))

·|Σ|−(τ−K+N+1)/2 exp
(

1
2
tr

(
Σ−1g(Y0 −X0B̂0)′(Y0 −X0B̂0)

))
.

Comparing the two terms with the formulas for the Inverted Wishart density (22) and the
matric-normal density (23), we see that for our hypothetical sample Y0,

(Σ|Y0, X0) ∼ IW (C, ν) , (68)
C = g(Y0 −X0B̂0)′(Y0 −X0B̂0) ,

ν = τ −K ,

and

vec(Π|Σ, Y0, X0) ∼ N(vec(B̂0),Σ⊗Q) , (69)
Q = (gX ′

0X0)−1 ,

with B̂0 given in (66). We take these C, ν, P and Q as the parameters of the prior distribution
for our observed sample Y .

The relatively objective manner in which the actual parameter values are derived (starting
from an uninformative prior and using the hypothetical sample to deduce C, ν, P and Q) is
probably the main advantage of the g-prior. It is also the reason why this prior should be
acceptable to those who feel that Bayesian analysis suffers from the subjectivity entering via
the researcher’s selection of an appropriate prior.
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