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Abstract

Standard economic models of groundwater management impose restrictive assumptions re-

garding perfect transmissivity (i.e., the aquifer behaves as a bathtub), no external effects of

groundwater stocks, observability of individual extraction rates, and/or homogenous agents.

In this article, we derive regulatory mechanisms for inducing the socially optimal extraction

path in Markov perfect equilibrium for aquifers in which these assumptions do not hold. In

spite of the complexity of the underlying system, we identify an interesting case in which a

simple linear mechanism achieves the social optimum. To illustrate potential problems that

can arise by erroneously imposing simplifying assumptions, we conduct a simulation based

on data from the Indian state of Andhra Pradesh.
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1 Introduction

Over the past four decades a large economic literature has analyzed optimal aquifer man-

agement. An important assumption used in much of this work is that an aquifer behaves

like a one-dimensional, single-cell “bathtub.” In a single-cell model, water flows to the low-

est point instantaneously and the water table is level throughout. Despite this assumption’s

mathematical convenience, aquifers are not underground caves filled with water, but rather

saturated materials such as porous rock. As a result, transmissivity (horizontal flow) is lower

than in a single-cell model and the water table elevation can vary across space.1

In a single-cell model, spatial considerations are unimportant. With limited transmis-

sivity, however, location matters. Cones of depression develop around individual wells, and

the impact of extraction on other users depends on the distance and geology between them.

Water-extracting agents are not uniformly located on the land overlying the water reserves.

Instead, they tend to be found in discrete clusters. Thus, a modeling assumption ignoring

these effects can be expected to yield results of questionable validity, exaggerating the ef-

fects of an agent’s extraction on distant users while understating effects on his immediate

neighbors.

Here, we analyze the implications of relaxing this restriction. Instead of a single-cell, we

use a multi-cell approximation similar to that commonly used in hydrological models such

as MODFLOW (Harbaugh, 2005). Unsurprisingly, the more realistic dynamics come at a

significant computational cost. Although we derive a mechanism that induces the socially

optimal extraction path in Markov-perfect equilibrium for a general aquifer, it is likely to be

too complicated to be implementable in practice. We are able to identify a class of aquifers,

however, for which the social optimum can be induced through a remarkably simple linear

1See Brozović et al. (2006) for a thorough discussion of these issues.
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pricing scheme. We conduct an illustrative simulation based on Indian aquifer data that

suggests that a policy based on a false single-cell assumption can have significant adverse

welfare impacts, even in the simple case.

Policy prescriptions incorrectly based on a single-cell model are clearly economically

inefficient. One may suppose that this loss in efficiency may not be too problematic since the

error would be on the side of being too cautious; after all, a bathtub assumption would tend

to exaggerate the externalities generated by any user. This intuition is not necessarily true,

however, if users are not homogeneous or are not uniformly spread through the aquifer. In

our simulations we provide and discuss a simple example showing that an erroneous bathtub

assumption may actually lead to overextraction for some or all users.

Literature abandoning the single-cell model in favor of more realistic dynamics has

avoided strategic interaction among agents (Zeitouni and Dinar, 1997; Chakravorty and

Umetsu, 2003; Brozović et al., 2010), and/or has assumed identical agents (Khalatbari, 1977;

Eswaran and Lewis, 1984; Dasgupta, 2001; van der Ploeg, 2011).2

Our work incorporates another element overlooked in the previous literature: stock exter-

nalities. Groundwater extraction does not necessarily take place in environmental or political-

economic isolation. The level of the groundwater stock may have costs felt beyond the users

themselves. Environmental impacts may include effects on nearby wetlands, land subsidence,

or saltwater intrusion in coastal areas. Political effects (our focus) may be felt if farmers’

variable pumping costs are borne by the state. For example, it is common in many devel-

oping countries for agricultural electricity, the primary variable input to extraction, to be

provided either for free or with a lump-sum tariff. India represents a salient example of the

above policies and their complex (and at times controversial) economic and environmental

effects (see World Bank, 2001; Dubash, 2007; Shah, 2008).3 In general, the lower the water

2Assuming homogeneous agents greatly simplifies the analysis. All agents behave symmetrically, extract-
ing the same amount of water in each period. Thus, if water tables levels are identical across space at time
0, there are no horizontal flows and hydrology is unimportant.

3Shah et al. (2007) estimate that annual Indian irrigation electricity costs are about $US 4 billion, relative
to $US 29 billion to $36 billion of associated agricultural production.
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table, the more energy is required to extract the water. A stock externality is thus generated

to the extent that electricity costs are borne by the state rather than users.

We advance the literature by developing a spatially complex model of groundwater ex-

traction addressing the above considerations.4 Within this setting, we derive competitive

equilibrium and socially-optimal extraction paths and investigate a class of policy instru-

ments with relatively low informational requirements regarding user behavior. Specifically,

since continuous monitoring of agent extraction rates is likely to be infeasible, we only allow

governmental transfers to be made on the stock of the resource. In this sense, the regula-

tory problem is similar to that of dynamic non-point source pollution problems (e.g., Xepa-

padeas, 1992; Karp, 2005). In contrast to these earlier steady state analyses, however, we

derive mechanisms that exactly induce the socially optimal extraction path in Markov-perfect

equilibrium.5

As exceedingly complex instruments are unlikely to be appealing in practice, we initially

restrict attention to simple linear additive mechanisms (a linear transfer based on a user’s

water table depth). For an interesting class of aquifers (those for which exhaustion is not

a concern in the finite time frame being considered and for which the users bear negligible

extraction costs) imposing such severe restrictions on policy instruments does not reduce

social welfare. This positive result holds regardless of the number and spatial configuration

of extracting agents as well as the spatial and physical characteristics of the aquifer (number

of cells, connectivity).

We then show how the two characteristics of fully externalized state effects and inex-

haustibility are crucial to ensuring the Markov-perfection of the linear mechanism. If either

condition does not hold, the optimal transfer becomes more complicated, being a second-

degree polynomial function of not only the user’s water table depth, but that of every other

4Our results are still subject to such common simplifying assumptions as perfectly rational agents and
commonly known deterministic hydrology.

5Game theoretic groundwater models using the bathtub model and identical users (e.g., Rubio and
Casino, 2003) also have derived Markov perfect equilibrium paths that lead to the socially optimal steady
state, without identifying paths that are optimal at each moment in time along the way.
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user as well.

To illustrate the importance of allowing for spatial considerations we conduct comparative

simulations based on aquifer characteristics in the Indian state of Andhra Pradesh. In a

simple two-player game we derive the socially optimal extraction path and exhibit the linear

transfer schemes that induce it in equilibrium. We further investigate the policy implications

of improperly using a bathtub model and of failing to allow for agent heterogeneity. Our

findings suggest that substantial welfare loss may result from implementing policy that is

predicated on incorrect physical and technological assumptions.

The paper is organized as follows. In the next two sections we introduce our model and

analyze the socially optimal solution. In section four, we first show how the linear mech-

anism induces the social optimum with zero equilibrium transfers for the special case of

an inexhaustible aquifer with fully externalized extraction costs. We then derive the opti-

mal mechanism for the more general (and complicated) case in which one or both of these

conditions is violated. In section five we conduct a numerical simulation applying our theo-

retical results for the linear mechanism to a simple groundwater game set in rural India. We

conclude with a discussion of results and useful extensions. All proofs are presented in the

Appendix.

2 Hydrological Model

We model the aquifer as a common property resource not characterized by open access

(the number and location of agents is fixed over time). The aquifer consists of N discrete

interconnected cells, indexed by n = 1, 2, ..., N , each with a single user.6

Let xn(t) ∈ <+ denote elevation at time t for cell n. The extraction rate at time t for

agent n is qn(t) and is restricted to lie in the interval [0, q̄], with q̄ representing the (finite)

6For expository reasons, in this section we limit attention to one agent per cell, so the two terms are
interchangeable. In such cases, it is theoretically possible to infer the pumping schedules of agents from
the evolution of the water tables. Under the more general setting described in Footnote 10, however, such
inference is not possible.
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maximum technically feasible instantaneous extraction. The uniform rate of recharge is r,

and an is the surface area of user n’s land multiplied by the storativity coefficient of user n’s

micro-watershed (which depends on unspecified geological factors).7 Parameter cmn ∈ [0,∞]

denotes the transmissivity between aquifer cells, a measure of the “connectivity” between the

agents. It summarizes characteristics such as geological properties, saturated thickness of the

intervening subsurface material, and distance between cells.8 The term cmn[xm − xn] is the

water flux between agent m and n’s micro-watersheds.9 Departing from the one-dimensional

bathtub model, the water tables follow the set of differential equations (a dot indicates a

derivative with respect to time):

an · ẋn = r − qn +
N∑
m=1

cmn[xm − xn]. (1)

Variations of these dynamics appear in Eswaran and Lewis (1984); Khalatbari (1977);

Zeitouni and Dinar (1997).10

Solving the system of differential equations (1) yields water table levels at time t, as

functions of initial conditions, xn(0), and the extraction history qn(s) for 0 ≤ s ≤ t. Since

the general solution is notationally unwieldy, we focus our discussion on the relatively simple

example of two adjacent cells, indexed by n and m. For this case, letting cn ≡ cmn/an =

cnm/an, agent n’s water table level at time t is:

xn(t) =
1

a1 + a2

{
xn(0)

[
an + ame−[c1+c2]t

]
+ xm(0)am

[
1− e−[c1+c2]t

]
+ (2)∫ t

0

[
[r − qn(s)]

[
1 +

am
an

e[c1+c2][s−t]
]

+ [r − qm(s)]
[
1− e[c1+c2][s−t]]] ds

}
.

7Our analysis extends to cases where recharge rates are different and may depend linearly on water
tables.

8For non-adjacent cells cmn = 0, while cmn =∞ for users in the same cell (as described in Footnote 10).
We define cnn ≡ 0.

9Using water balance and connectivity between individual cells with uniform recharge rates to model
flows is a version of the finite difference discretization used in hydrological models such as MODFLOW that
are commonly used to simulate aquifers with complex geometry and boundary conditions (Harbaugh, 2005).

10More generally, with multiple users per cell, Eq.(1) would read an ·ẋn = r−
∑
k∈An

qk+
∑N
m=1 cmn[xm−

xn], where An denotes the set of agents occupying cell n.
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Lemma 1 states that these dynamics nest the extreme cases of unconnected cells and a

single-cell bathtub if the extraction rate is bounded and does not change too quickly.

Lemma 1 Suppose N = 2 and let qn(t; c) and xn(t; c) denote the extraction rate and water

table at time t as functions of connectivity, c. If extraction paths qn(t) are bounded and

differentiable with bounded derivatives, water table dynamics defined by Eq. (1): (i) approach

the isolated cells case, ẋn = r−qn(t;0)
an

as c → 0; and (ii) approach the single-cell case, ẋn =

2r−q1(t;∞)−q2(t;∞)
a1+a2

as c→∞.

3 Social Optimum

We assume that each agent’s gross (of energy costs) restricted profit function, hn(qn(t)),

is concave in extraction.11 The social planner maximizes the net benefit of water extrac-

tion: the discounted (at rate δ > 0) sum of agent profit less energy cost, D(q(t),x(t)) =∑N
n=1 d(qn(t), xn(t)). Here, q(t) ≡ (q1(t), q2(t), ..., qN(t))′,x(t) ≡ (x1(t), x2(t), ..., xN(t))′, and

d(qn(t), xn(t)) represents the standard energy cost function

d(qn(t), xn(t)) = qn[ω1 + ω2[x̄− xn]]. (3)

For notational convenience, cost parameters ω1 ≥ 0 and ω2 ≥ 0, and ground level, x̄, are

assumed to be identical across users.

Initial conditions are x0 ≡ (x01, x02, ..., x0N)′. The terminal time is T , and the “scrap

value” of the aquifer is −DT (x(T )). The social planner’s optimal control problem is

max
q(t)∈[0,q̄]

∫ T

0

e−δt

[
N∑
n=1

hn(qn(t))−D(q(t),x(t))

]
dt− e−δTDT (x(T ))

subject to: Eq. (1);

x ≥ 0; x(0) = x0. (4)

11To maintain tractability in Section 4.2, we adopt a common convention in the groundwater literature (see
Gisser and Sánchez, 1980; Rubio and Casino, 2003, among many others), restricting attention to quadratic
functions.
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We restrict attention to cases in which the social optimum does not involve exhaustion of the

resource for any agent before time T . Letting λ(t) ≡ (λ1(t), λ2(t), ..., λN(t))′ denote costate

variables, the current-value Hamiltonian is

H(q(t),x(t),λ(t), t) =
N∑
n=1

hn(qn(t))−D(q(t),x(t)) (5)

+
N∑
n=1

λn(t)

an

[
r − qn(t) +

N∑
m=1

cmn[xm(t)− xn(t)]

]
.

The necessary conditions for an interior solution are

dhn(qn(t))

dqn
− ∂D(q(t),x(t))

∂qn
− λn(t)

an
= 0. (6)

Optimal conditions for the co-state variables yield the following differential equations

λ̇n(t) =

[
δ +

N∑
m=1

cmn
an

]
λn(t)−

N∑
m=1

cmn
am

λm(t) +
∂D(q(t),x(t))

∂xn
. (7)

Transversality conditions λn(T ) = −∂DT (xn(T ))/∂xn imply

dhn(qn(T ))

dqn
=
∂D(q(T ),x(T ))

∂qn
+
∂DT (x(T ))

∂xn
, (8)

providing terminal conditions for extraction rates and water table levels.

Conditions (6), (7), and (8) are necessary and sufficient for a strictly interior optimum

in which the aquifer is not exhausted (see Sethi and Thompson, 2000). Differentiating Eq.

(6) with respect to t yields,

λ̇n(t)

an
=

d2hn(qn(t))

dq2
n

q̇n(t)−
N∑
m=1

∂2D(q(t),x(t))

∂qn∂qm
q̇m(t)−

N∑
m=1

∂2D(q(t),x(t))

∂qn∂xm
ẋm(t). (9)

Substituting Eqs. (6) and (9) into (7), and rewriting the stock dynamics given by Eq. (1), we

obtain N2 differential equations involving q(t) and x(t). This system, together with initial

conditions on the water stocks and terminal conditions on the extraction rates, specifies the

socially optimal extraction and water stock paths 〈qSO(t),xSO(t)〉.
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One way to achieve the social optimum would be for the government to mandate water

extraction by each user. Of course, governments rarely have such sweeping power, or even the

ability to monitor individual extraction decisions. In the next section, we derive decentralized

pricing schemes based on aquifer depth (rather than individual extraction rates) that induce

users to undertake the socially optimal extraction path in Markov perfect equilibrium.

We model the solution under two different assumptions regarding the size of the aquifer

and extraction costs. First, we assume that the aquifer is sufficiently large that it cannot

physically be exhausted before time T , and that all extraction costs are external to the users.

Under this framework, the government can use a simple pricing scheme for each user that is

a linear function of the water level in only that user’s cell.

We next relax the assumption of inexhaustibility. The solution to this problem is more

complex, with the pricing scheme becoming a second-degree polynomial function of the water

levels in all cells. Finally, we allow for some extraction costs to be internalized by the agents

in an exhaustible aquifer. The resulting polynomial pricing scheme is qualitatively similar to

that of the exhaustible case with no internalized extraction costs.

4 Optimal Pricing Mechanisms

In this section, we suppose the regulator does not have resources to monitor agents’ extrac-

tion decisions, but can costlessly monitor the state variables x(t). This scenario is analogous

to a dynamic nonpoint source stock pollution problem in which the regulator can monitor

ambient pollution levels but not individual emissions (e.g., Xepapadeas, 1992). The regula-

tor’s problem is how to design a pricing scheme based only upon water table depth that can

induce users to undertake socially optimal extraction in Markov perfect equilibrium.

A mechanism φ(x(t), t) ≡ (φ1(x1(t), t), φ2(x2(t), t), ..., φN(xN(t), t))′ is a vector of agent-

specific transfers that depend upon the water table level in a user’s cell. Such a mechanism

induces a differential game between the users. A user’s instantaneous profit is hn(qn(t)) −

µd(qn(t), xn(t)) +φn(xn(t), t), where µ indicates the proportion of energy costs borne by the

9



user.12 Given a strategy profile q∗m(x(t), t) chosen by users m 6= n, user n chooses his strategy

to solve:

max
qn(t)∈[0,q̄]

∫ T

0

{hn(qn(t))− µd(qn(t), xn(t)) + φn(xn(t), t)} e−δtdt+ φn(xn(T ), T )e−δT

subject to: anẋn(t) = r − qn(t) +
N∑
m=1

cmn[xm(t)− xn(t)];

amẋm(t) = r − q∗m(x(t), t) +
N∑
`=1

c`m[x`(t)− xm(t)] for all m 6= n;

x ≥ 0; x(0) = x0. (10)

Let X(x0, t) be the set of all water table depths that can possibly be attained by time t

starting from initial condition x0, given the restriction that extraction rates lie in the interval

[0, q̄]. An open-loop strategy is one in which users pre-commit to an entire extraction path at

the beginning of the game, and so is not a function of current state variables. With a slight

abuse of notation, let q∗(t) denote a strategy that depends only on time, not the vector of

state variable, x. Formally, a strategy q∗n(x(t), t) is open-loop, if q∗n(x(t), t) = q∗n(t) for all

x(t) ∈ X(x0, t) ⊆ <N+ . An open-loop Nash equilibrium (defined below) is relatively simple

to compute for this game.

Definition 1 A vector q∗(t) of open-loop strategies where q∗n(t) : [0, T ] 7→ [0, q̄], is an open-

loop Nash equilibrium if, for each n = 1, 2, ..., N an optimal control path qn(t) of the maxi-

mization problem given by (10) exists and is given by qn(t) = q∗n(t).

In general, open-loop Nash equilibria are restrictive since they do not allow users to adapt

strategies to changes in the state vector. This equilibrium concept is typically justifiable only

if the state vector is unobservable over time, rendering moot the ability to adapt.

Markovian equilibrium is a more flexible concept. A user choosing a Markov strategy

conditions his current extraction only on the value of the current state variable (not otherwise

12The analysis easily extends to the case in which each user bears a different proportion of extraction
costs.
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on the game’s previous history).13

Definition 2 Let x(t) ∈ X(x0, t) for all t ∈ [0, T ]. A vector q∗(x(t), t) of Markovian strate-

gies, where q∗n(x(t), t) : X(x0, t) × [0, T ] 7→ [0, q̄], is a Markovian-Nash equilibrium if, for

each n = 1, 2, ..., N an optimal control path qn(t) of the maximization problem given by (10)

exists and is given by qn(t) = q∗n(x(t), t).

On its own, Markovian-Nash equilibrium does not provide much analytical advantage over

open-loop equilibrium since all open loop equilibria are also (but not necessarily the only)

Markovian-Nash equilibria (Dockner et al., 2000). Although Markovian-Nash equilibrium

strategies are time consistent (in the sense that no user would have an incentive to unilaterally

deviate from his strategy on the equilibrium path), they may not be credible. The lack of

credibility arises due to the fact that if one user deviates, he may rationally expect other

users to deviate as well in reaction to his deviation. The Markovian-Nash equilibrium concept

does not rule out cases in which a user may profitably deviate from the equilibrium path

due to his rational expectation of how his deviation will cause other players to update their

strategies.

A Markov-perfect equilibrium is a Markovian-Nash equilibrium that avoids the above

concerns. It is not vulnerable to the credibility problem since equilibrium strategies are

defined over every possible sub-game, even those off the equilibrium path.

Definition 3 A Markov-perfect equilibrium is a subgame-perfect Markovian-Nash equilib-

rium.

Identifying a Markov-perfect equilibrium typically requires the solution of a complex

system of Hamilton-Jacobi-Bellman equations. In the first case below, however, we show if

extraction costs are purely external to the user and the state non-negativity constraint does

not bind in any feasible subgame then the game has a structure that simplifies calculation

13See Chapter 4 of Dockner et al. (2000) for a detailed discussion of the role of informational assumptions
in the determination of equilibrium strategies.
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of Markov-perfect equilibria. Specifically, it is a linear state game (as defined by Dockner

et al., 2000) since (a) its objective functionals and state dynamics are linear in the state, and

(b) there are no cross terms of the sort qnxn involving control and state variables. Dockner

et al. (2000) (pp. 187-89) show that all open-loop Nash equilibria of linear state games are

Markov-perfect.

To take advantage of this equivalence result in Section 4.1, we must make additional

assumptions on our model primitives regarding the possibility of aquifer exhaustion. The

reason for this is straightforward considering the nature of open loop equilibria. For an

open-loop equilibrium to be Markov-perfect, strategies must be optimal for each player in

every possible subgame, even off the equilibrium path. If a strategy involves extraction larger

than natural recharge, it cannot be feasible (and thus cannot be optimal) in subgames for

which the aquifer is exhausted.

In Section 4.1, we consider cases in which users do not incur extraction costs and it is

not possible to exhaust the aquifer before time T . To ensure the latter, we assume that the

range of initial water-table levels x0 is such that no cell in the aquifer is exhausted by time

T even if all players extracted at the maximum possible rate q̄ throughout the entire time

horizon T . In our previous notation, this implies that we only consider a set of initial water

tables X0 such that

x0 ∈ X0 ⇐⇒ X(x0, t) ⊆ <N++ for all t ∈ [0, T ]. (11)

lmplicit variations on this assumption are prevalent in the groundwater economics lit-

erature. A water-table non-negativity constraint is typically not explicitly imposed (Gisser

and Sánchez, 1980; Fisher and Rubio, 1997; Zeitouni and Dinar, 1997; Roseta-Palma and

Xepapadeas, 2004; Aggarwal and Narayan, 2004; Brozović et al., 2006, among others), or is

modeled asymptotically allowing for finite (or even steady-state) violation at some param-

eter values (e.g., Rubio and Casino, 2003). Other studies either impose structure on model

primitives that precludes socially optimal corner solutions (Negri, 1989), or deal with static

water-table levels (Chakravorty and Umetsu, 2003).
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In Section 4.2, we allow users to incur a positive fraction of their extraction costs and

allow the aquifer to be exhausted. Unlike Section 4.1, we do not assume that initial water

table levels are sufficiently high so as to prevent exhaustion. We therefore explicitly model

a non-negativity constraint on x. Either one of these conditions complicates the analysis

by ruling out the linear-state game equilibrium equivalence result of Dockner et al. (2000);

instead we employ standard dynamic programming techniques.

4.1 No resource exhaustion by T and no internal extraction cost

We first consider a case in which the user does not bear any extraction costs and the resource

cannot become exhausted by time period T . Formally, we assume µ = 0 and that the initial

water table x0 belongs to X0 as defined in Eq. (11). The externalization of extraction costs is

similar to the stylized facts in countries such as India that do not impose tariffs on variable

electricity usage.14 In Theorem 1 below, we show that in spite of the complexity of the

problem, the regulator can induce the socially optimal path in Markov perfect equilibrium

with a surprisingly simple linear transfer mechanism. We define the linear mechanism as

φL(x(t), t), such that

φLn(x(t), t) =

 βn(t)[xn(t)− xSOn (t)] for t < T

βTn [xn(t)− xSOn (t)] for t = T.
(12)

Mechanism (12) is a simple instance of well-studied nonpoint source pollution control policies

(e.g., Segerson, 1988; Xepapadeas, 1992; Athanassoglou, 2010). As exhaustion is not possible,

the non-negativity constraint x ≥ 0 is trivially satisfied and therefore need not be imposed.

The following theorem states that the linear mechanism φL(x(t), t) can induce any extraction

path in Markov-perfect equilibrium.

14We abstract from the cost of drilling boreholes of different depths. For analysis of the problem of choosing
strategic drilling strategies, see Aggarwal and Narayan (2004).
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Theorem 1 Let
{
q̂n(t) : t ∈ [0, T ]

}
, be an arbitrary continuously differentiable feasible

extraction path satisfying dhn(q̂n(t))
dqn

<∞, and qφ
L

n (t) be the unique Markov-perfect equilibrium

in open-loop strategies that is induced by linear-state mechanism φL. If qφ
L

n (t) is everywhere

interior, then there exists a unique mechanism, φL, such that qφ
L

n (t) = q̂n(t) for all t ∈ [0, T ]

and n = 1, 2, ..., N .

Although the general proof is stated in the Appendix, it is easiest to interpret the theorem

for the simpler two-user case. We first note that a linear mechanism φL(x(t), t) induces a

differential game (10) that has a unique Markov-perfect equilibrium in open loop strategies

qφ
L
(t).

To obtain this result, let λn(t) = (λ1n, λ2n)′ denote the costate variables for user n

corresponding to the water tables of the two cells. For an open-loop Nash equilibrium, the

current-value Hamiltonian of user n is:

Hn(qn(t),x(t),λn(t), t) = hn(qn) + βn(t)[xn(t)− xSOn (t)] + (13)

λnn(t) [r − qn(t) + cmn[xm(t)− xn(t)]]

an
+
λmn(t) [r − qm(t) + cmn[xn(t)− xm(t)]]

am
,

for m,n = 1, 2 and m 6= n. The necessary conditions for an interior solution are:15

dhn(qφ
L

n (t))

dqn
=

λnn(t)

an
(14)

λ̇nn(t) = [δ + cn]λnn(t)− cmλmn(t)− βn(t) (15)

λ̇mn(t) = [δ + cm]λmn(t)− cnλnn(t), (16)

with transversality conditions

λnn(T ) = βTn , λmn(T ) = 0. (17)

Since Hn(·) is jointly concave in qn(t) and x(t), these conditions are also sufficient.

15Recall our earlier notation for the two-user case cmn

an
≡ cn.
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Eqs. (15) and (16) are a linear system of ordinary differential equations. Imposing the

transversality condition yields the unique solution for user n:

λnn(t) =

∫ T

t

βn(s)eδ[t−s]
an + ame[c1+c2][t−s]

a1 + a2

ds+ βTn eδ[t−T ]an + ame[c1+c2][t−T ]

a1 + a2

, (18)

λmn(t) =

∫ T

t

βn(s)eδ[t−s]
[
1− e[c1+c2][t−s]] am
a1 + a2

ds+
βTn eδ[t−T ]

[
1− e[c1+c2][t−T ]

]
am

a1 + a2

.(19)

To understand the intuition behind this result, note that the state dynamics described

in Eq. (2) can be used to derive the shadow value of a unit of water table height for user n

at time t given a mechanism φL(x(t), t). Specifically, Eq. (2) implies for s ∈ (t, T ) and for

n,m = 1, 2 with n 6= m,

xn(s) =
1

a1 + a2

{
xn(t)

[
an + ame[c1+c2][t−s]]+ xm(t)am

[
1− e[c1+c2][t−s]]+ (20)∫ s

t

[
[r − qn(z)]

[
1 +

am
an

e[c1+c2][z−s]
]

+ [r − qm(z)]
[
1− e[c1+c2][z−s]]] dz

}
.

The change in the future path of the water table in cell n resulting from a change in the

water level in time t is therefore

∂

∂xn(t)

[∫ T

t

xn(s)ds

]
=

∫ T

t

[
an + ame[c1+c2][t−s]

a1 + a2

]
ds. (21)

From Eq. (12), the price of each unit of water table height, xn(s), at time s is βn(s),

and the price associated with the terminal height xTn at time T is βTn . The shadow price, or

present discounted value (at time t) of the stream of losses incurred from a marginal drop

in the water table at time t, is then the right hand side of Eq. (18). To convert the shadow

value from a marginal change in water table height, x, to a marginal change in volume, q, it

is necessary to divide by the area, an, thus obtaining the right hand side of Eq. (14).

For an isolated aquifer (cmn = 0), the term [an +am]e[c1+c2][t−s]/[a1 +a2] reduces to unity,

i.e., the full impact of extraction is on xn. For the bathtub case (cmn → ∞), it reduces to

an/[a1 + a2]; the impact is proportional to the user’s relative share of the aquifer.

15



Having characterized the unique Markov-perfect equilibrium induced by a linear mecha-

nism, φLn(·), we now show that this type of mechanism can induce an arbitrary feasible and

continuously differentiable extraction path over [0, T ].

More formally, let
{
q̂n(t) : t ∈ [0, T ]

}
, be any continuously differentiable feasible extrac-

tion path satisfying dhn(q̂n(t))/dqn < ∞, and qφ
L

n (t) be the unique Markov-perfect equilib-

rium in open-loop strategies that is induced by linear-state mechanism φL. If qφ
L

n (t) is every-

where interior, we can show that there exists a unique mechanism such that qφ
L

n (t) = q̂n(t)

for all t ∈ [0, T ] and n = 1, 2.

To this end, since hn(·) is strictly concave, it is sufficient to show that for any q̂n(t), terms

βn(t) and βTn of mechanism φLn can be chosen such that, for all t ∈ [0, T ],

dhn(q̂n(t))

dqn
=

∫ T
t
βn(s)eδ[t−s] an+ame[c1+c2][t−s]

a1+a2
ds+ βTn eδ[t−T ] an+ame[c1+c2][t−T ]

a1+a2

an
. (22)

Set

βTn = andhn(q̂n(T ))/dqn, (23)

ensuring that Eq. (22) is satisfied for t = T . Eq. (22) becomes

∫ T

t

βn(s)eδ[t−s]
an + ame[c1+c2][t−s]

a1 + a2

ds = an
dhn(q̂n(t))

dqn
− βTn eδ[t−T ]an + ame[c1+c2][t−T ]

a1 + a2

. (24)

Performing the change of variable z = T − t, we have

−
∫ z

0

βn(T − s)eδ[s−z]an + ame[c1+c2][s−z]

a1 + a2

ds = an
dhn(q̂n(T − z))

dqn
− (25)

βTn e−δz
an + ame−[c1+c2]z

a1 + a2

.

Eq. (25) is a linear Volterra equation of the first kind with a kernel containing exponential

functions (the general solution is derived in Polyanin and Manzhirov, 2008, p. 17). For our

16



case, letting

g(z) = −an
dhn(q̂n(T − z))

dqn
+ βTn e−δz

an + ame−[c1+c2]z

a1 + a2

, (26)

the solution to (25) is given by

βn(T − z) = e−δz
d

dz

{
e
−an[c1+c2]z

a1+a2

∫ z

0

d

ds

[
g(s)e[δ+c1+c2]s

]
e

am[c1+c2]s
a1+a2 ds

}
. (27)

The differentiability of hn(·) and q̂n(·) ensures that Eq. (27) is well-defined. Repeating this

argument for user m and collecting the βn(·), βm(·) functions and βTn , β
T
m constants establishes

the desired result.

To summarize, first, the linear mechanism causes each user to attach a shadow price

to the water table level of his cell at each moment in time (which otherwise would have

been zero). Second, the regulator can parametrize a linear mechanism to induce any feasible

extraction path (that is continuously differentiable and results in finite first derivatives of

the restricted profit functions) in Markov-perfect equilibrium. Finally, if the socially optimal

path satisfies these conditions then the regulator can induce it with some linear mechanism.

Moreover, inspection of Eq. (12) shows that in equilibrium no transfers take place. That is

to say, the threat of linear transfers is sufficient to induce socially optimal behavior.16

In practical terms, Theorem 1 suggests that eliminating the simplifying single-cell bathtub

assumption may not result in a hopelessly complex regulatory structure. On the contrary,

even if an arbitrary number of users act strategically in a manner consistent with Markov

perfection, and the regulator cannot observe their behavior directly, and they occupy an

arbitrary number of cells with differing hydrology, the socially optimal extraction rate can

be induced by a dynamic linear price path for the difference between a user’s observed water

table depth and the socially optimal one.

It is important to note that the linearity of the price mechanism does not depend on

the underlying hydrology, but the value of the price itself does. In particular, the price path

16We assume that the users do not doubt the regulator’s capacity to follow through on this threat.
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for each user (defined for the two-user case in Eq. (27)) depends upon the hydrological

connectivity between himself and all other users. Thus, the mechanism would not be easy to

calculate, but once the prices were derived it would be relatively simple to implement.

This simplicity rests on the fact that together the two restrictions of inexhaustibility

and no internalized extraction cost imply that an individual user need not take other user

behavior into account when determining his equilibrium strategy. For the two-player case, this

result can be most clearly seen in Eqs. (14) and (18). By Eq. (14), each user sets his marginal

benefit of extraction equal to λnn. Eq. (18) indicates that λnn is a function of hydrological

characteristics and the regulator’s price instruments βn(t). In sum, each user’s equilibrium

strategy is unaffected by that of his neighbors. Eqs. (23), (27), and (12) reflect this fact,

implying that the instrument’s optimal values depend only upon user n’s marginal profit

from a unit of extraction and hydrological characteristics, not other users’ state variables.

In contrast, as shown in Section 4.2 it is likely to be much more difficult to implement

a mechanism that induces the social optimum for aquifers that do not satisfy either the

inexhaustibility no internal extraction cost assumptions.

While it is obvious that the social welfare induced by the optimal multi-cell mechanism

can be no lower than that induced if a regulator were to erroneously believe that an aquifer

were a bathtub, the theoretical structure of the linear mechanism does not provide any

unambiguous information regarding the direction or magnitude of the distortions in prices

or extraction rates that a mistaken regulator might cause; these effects may vary by the

specific characteristics of the hydrology and users. In section 5 we conduct a numerical

simulation to illustrate how a regulator might clarify these issues.

4.2 Resource may be exhausted by T and/or some internal ex-

traction cost

The Markov-perfection of the equilibrium induced by the linear mechanism rests on two

critical assumptions. First, that the users bear no extraction cost (µ = 0), and second
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that the aquifer cannot be exhausted before time T . Although these conditions may hold

approximately for some aquifers in parts of countries such as India that do not charge

marginal electricity rates, they are unlikely to apply in general.

In this section, we analyze the effects of relaxing these two assumptions. It is clear that

open loop strategies involving extraction strictly greater than recharge in a time period in

which exhaustion is possible cannot form a Markov-perfect equilibrium (since such extraction

would not be feasible in all possible subgames). One can, however, utilize the Hamilton-

Jacobi-Bellman dynamic programming approach to derive a mechanism that induces the

social optimum in Markov perfect equilibrium. We derive the general case covering any

degree of internalization of extraction costs (i.e., µ ∈ [0, 1]), thus addressing the positive

extraction case in passing.

For the sake of algebraic tractability, we explicitly employ the quadratic restricted profit

function, specifying it as17

hn(qn) = −α1

2
q2
n + α2qn, α1, α2 > 0. (28)

As before, the regulator’s goal is to solve Eq. (4).18 Similarly, given a general mechanism

φ, the users play the differential game described in Eq. (10). The key differences with the

previous section are that for this game µ ≥ 0 and we explicitly account for the state non-

negativity constraint x ≥ 0.

Before deriving equilibrium behavior and characterizing the optimal mechanism, we show

that the social optimum itself admits a representation amenable to the Hamilton-Jacobi-

Bellman approach. Specifically, we need to show that socially optimal extraction functions

are polynomial in x.

Let V SO(x, t) denote the socially optimal value function, defined by the solution to (4)

17To simplify notation, here we assign each user an identical restricted profit function. In the numerical
simulations in the next section we relax this assumption.

18For convenience, we assume that DT ≡ 0 and that (while it is feasible) it is never socially optimal to
exhaust the aquifer, regardless of initial water table levels.
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at time t. The corresponding Hamilton-Jacobi-Bellman equation is

δV SO(x, t)− ∂

∂t
V SO(x, t) = max

q∈[0,q̄]

{ N∑
n=1

−α1

2
q2
n + α2qn − d(qn(t)), xn(t))

+
N∑
n=1

∂
∂xn

V SO(x, t)

an

[
r − qn +

N∑
m=1

cmn[xm − xn]
]]}

.

V SO(x, T ) = 0 (29)

The following Lemma establishes that the extraction strategies solving this problem,

qSOn (x, t), are in fact polynomial (specifically, linear) in x.

Lemma 2 Suppose Eq. (28) holds and that DT ≡ 0 and let qSO(x, t) denote the solution to

(4). There exist some time-dependent functions
{
kn(t)

}N
n=1

and
{
kmn(t)

}N
m,n=1

such that

qSOn (x, t) =
N∑
m=1

knm(t)xm + kn(t), n = 1, 2, ..., N. (30)

We now derive a mechanism that induces socially optimal extraction in Markov-perfect

equilibrium. Let Vn(x, t) denote the value function of user n at state x and time t. Given a

mechanism φ, the Hamilton-Jacobi-Bellman equation for user n, assuming that other users

m 6= n use their socially optimal strategies qSOm (x, t) given by Eq. (55) is

δVn(x, t)− ∂

∂t
Vn(x, t) = max

qn∈[0,q̄]

{
−α1q

2
n

2
+ α2qn − µqn[ω1 + ω2[x̄− xn]] + φn(x, t) (31)

+
∂
∂xn

Vn(x, t)

an

[
r − qn +

N∑
m=1

cmn[xm − xn]
]]

+
∑
m 6=n

∂
∂xm

Vn(x, t)

am

[
r − qSOm (x, t) +

N∑
`=1

c`m[x` − xm]
]]}

, t < T ;

Vn(x, T ) = φn(x, T ). (32)

The following theorem shows that the family of second degree polynomial mechanisms

induces the socially optimal extraction path in Markov-perfect equilibrium. In particular,
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consider mechanisms φP (x(t), t) =
(
φP1 (x, t), φP2 (x, t), ..., φPN(x, t)

)′
, where:

φPn (x, t) =


[
x− xSO(t)

] ′fn(t) + 1
2
[x− xSO(t)]′Fn(t)[x− xSO(t)], t < T.[

x− xSO(T )
]′

fT
n + 1

2
[x− xSO(T )]′FT

n [x− xSO(T )], t = T
(33)

in which (a) fn(t) and fT
n are N -dimensional vectors and Fn(t) and FT

n (t) are N × N -

dimensional matrices. The structure of mechanism φP (x(t), t) is similar to that of policies

designed for dynamic nonpoint-source pollution control (Xepapadeas, 1992; Athanassoglou,

2010).

Theorem 2 There exists a (possibly non-unique) second-degree polynomial mechanism sat-

isfying (33) that induces the socially optimal extraction strategy qSO(x, t) in Markov-perfect

equilibrium.

In contrast to the simple linear transfer obtained in the previous section, the optimal mech-

anism is a polynomial function of the water table level in a user’s cell and the water tables

of all other cells.

Note that the optimal mechanism whose existence is proved in Theorem 2 is a function of

the state variables of all users. This structure reflects the fact that relaxing the restriction of

either inexhaustibility or no internalization of extraction costs creates a strategic interaction

amongst the users that was not present in the case analyzed in Section 4.1. For cases in

which the users bear some extraction cost, their equilibrium strategies obviously depend on

the strategies of other users; user n’s profit depends on the value of his state variable, which

in turn depends on the value of the user m’s state variable. Thus, the optimal mechanism

characterized by Eq. (33) must also be a function of other users’ state variables in order to

incorporate this effect.

A similar situation arises if the non-negativity constraint may bind, even if all other

extraction costs are external. Effectively, a binding non-negativity constraint increases the

marginal extraction cost in a non-continuous way from zero to infinity for all extraction

above the natural recharge rate. As in the case with extraction costs partly internalized, the
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possibility of a binding non-negativity constraint ensures that user n’s equilibrium extraction

path is a function of userm’s state variable even absent government intervention. The optimal

policy takes this interaction into account by making transfers dependent on all state variables.

5 Numerical Simulations

In this section, we numerically simulate the differential game (10) for two agricultural users

in a rural setting in semi–arid tropical India. In these regions, agricultural production was

traditionally constrained by precipitation variations during the wet monsoon season. The

advent of inexpensive pump technology in the 1970s coupled with subsidized electricity now

allows year-round production (Shah, 2008; Reddy, 2005).

Table 1 lists the parameters used in the simulation.19 We calculate monetary units in

2005 U.S. dollars, using the average annual exchange rate of 44 Rupees per dollar. Farmers

are adjacent landholders with one hectare plots. They share a watershed that receives no

recharge through lateral subsurface inflows over the boundary. As in the theoretical model,

a hydraulic connection between the adjacent landholdings allows water to flow across this

interface depending on the individual water table elevations. We assume homogeneous and

isotropic aquifer properties and choose parameter values representative of subsurface prop-

erties of weathered crystalline rock found in large parts of peninsular India. We suppose

constant characteristic values for the hydraulic transmissivity c. For both farmers, initial

drawdown levels are at 20 meters below ground surface.

The agro-economic parameters are representative of small landholders growing paddy rice

in two seasons per year. Each farmer pumps water from one borehole located on his plot.

We specify restricted profit (net returns to land) as a quadratic function of water input for

users n = 1, 2:20

hn(qn) = θn
[
α1qn + α2q

2
n

]
. (34)

19See Raj (2004) for data on climate and groundwater, Shiferaw et al. (2008) for crop and agricultural
production specific data, and World Bank (2001) plus references therein for energy data.

20This specification implicitly assumes rainfed agricultural production is infeasible.
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Parameter Description Value Unit
A landholding size 1 ha
S effective porosity 0.01 n.a.
c seasonal transmissivity 6 m2

x̄− xn(t) drawdown 20 m
r seasonal recharge 0.04 m
δ discount rate 0.05 n.a.
θ1 productivity scaling factor 1 n.a.
θ2 productivity scaling factor 0.9 n.a.
α1 technological parameter 0.08 US$ / m3

α2 technological parameter −6.2× 10−6 US$ / m6

ω1 energy cost parameter 2.3× 10−3 US$ / m3

ω2 energy cost parameter 2.3× 10−4 US$ / m4

Table 1: Simulation parameter values

Panel a of Figure 1 illustrates restricted profit functions for both farmers. Farmer 1 is more

technically efficient in the sense that he can attain any feasible profit using less water than

farmer 2.

Social costs reflect typical expenses for the state related to provision of rural energy and

are presumed to be the same for both farmers. We continue to assume the standard energy

cost function specified in Eq. (3). We set the terminal time cost to DT (x(T )) = 0.

5.1 Socially optimal mechanism

Initial simulation results are shown in Figure 1.21 Socially optimal (SO) pumping rates

decline over time (Panel b in Figure 1). Privately optimal (PO) pumping rates, representing

the outcome of the unregulated status quo, are constant throughout the optimization period

since extraction costs are not internalized by the users.22 Panel c indicates the mechanism

price path necessary to induce socially optimal extraction; terminal prices are $24.50 and

21For all computations we use Matlab (2010b). We solve the system of differential equations as a non-
linear programming problem using the control vector parameterization concept by utilizing the DOTcvp
toolbox (Hirmajer et al., 2008). We utilize the fmincon function as part of Matlab’s optimization toolbox in
combination with DOTcvp to obtain the socially optimal solution, with a seasonal discrete time-step over
10 years.

22The privately optimal solution is characterized by Eq. (14) with λnn = 0, i.e., users set their pumping
rates such that the marginal profit from extraction is equal to zero in each moment in time.
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Figure 2: Difference in optimal extraction and mechanism prices between bathtub (BT) and
multi-cell (Cell) assumption

$23.86 for users 1 and 2, respectively. Panel e illustrates the impact of the conservationist

optimal policy on the resource supply. Note that since socially optimal extraction is lower

for user 2, drawdown is lower and water flows from cell 2 to cell 1, whereas in the privately

optimal equilibrium there are no transboundary flows since drawdown is equal.

The lower extraction rate hurts farmer profit relative to the private optimum as indicated

in panel e. Of course, as shown in panel f, the net welfare result is positive; in general the

societal savings in extraction costs outweigh the loss in farm profit. The optimal policy does

have a negative net impact in the first few time periods, however.

5.2 Role of spatial and economic complexity

In this section we discuss welfare loss from making two kinds of mistakes in implementing

the optimal mechanism: (i) incorrectly assuming that the underlying aquifer is a bathtub,
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or; (ii) incorrectly assuming that users are homogeneous.

Under assumption (i), the regulator solves for the socially optimal extraction path as-

suming incorrectly that the aquifer has infinite transmissivity. In particular, she solves the

optimal control problem given by Expression (4) with state dynamics given by Lemma 1.

Then, she plugs the derived extraction path into Eq. (27), assuming that c1 = c2 = ∞, to

obtain the mechanism charges. Implementation of this mechanism results in the equilibrium

characterized by Eqs. (14), (18), and (19) induced by the incorrect prices.

Unsurprisingly, Figure 3 shows that aquifer dynamics have a major effect on optimal

policy when transmissivity is low, a feature commonly found in hard rock or well consol-

idated sedimentary formations. The graph depicts percentage welfare loss (with regard to

the social optimum) as a function of actual field transmissivity values c. The range over

which c is varied (0.3 to 2×104 m2/season) corresponds to field situations as reported in Raj

(2004). The negative impact increases the less the aquifer resembles a bathtub in reality. As

transmissivity increases, the bathtub assumption results in less welfare loss and eventually

becomes innocuous.

We now address the issue of whether an incorrect bathtub assumption would lead a

regulator to err on the side of over-conserving the resource.23 It seems plausible that it would

be the case since the effect of one user’s extraction on other users’ costs is maximized in a

single cell relative to an aquifer with multiple cells with limited connectivity. Nonetheless,

we provide a simple counter-example illustrating why this conjecture is not necessarily true.

Panel a of Figure 2 compares the optimal extraction paths under the two connectivity

scenarios. For user 2, the conjecture is correct; the bathtub extraction path is more conser-

vative. For user 1, however, the opposite is true. Essentially, by believing that the aquifer is

a bathtub, the regulator underestimates the true cost to user 1 of accessing the water in cell

2, thus over-prescribing his extraction rate relative to the actual optimum. Thus, in aquifers

with heterogeneous users, an erroneous bathtub assumption can lead to over-extraction for

23We thank an anonymous referee for raising this question.
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Figure 3: Percent social welfare loss from incorrect “bathtub” assumption.

some users.

This reasoning readily extends to cases in which users are not evenly distributed across an

aquifer. As a simple example, consider a two-cell aquifer with only one user in the first cell. If

the regulator mistakenly believed that the aquifer was a bathtub she would under-estimate

the cost to the user of accessing the water in the second cell, thus prescribing excessive

extraction relative to the true optimum.

Panel b indicates the effect of an incorrect bathtub assumption on mechanism prices.

Until the final period the charges are higher under a bathtub for both users. In the last

period (not shown on graph), however, the bathtub prices are lower for user 1 are lower

($24.18), for a net effect of increasing extraction. For user 2, the last period charges are

higher under the bathtub assumption ($24.16).

Regarding assumption (ii), economic heterogeneity is defined as the ratio between the

value of the two profit functions in Eq. (34). In our calculations, we take θ1 as given and

vary θ2 from 0.1 to 1. The regulator’s mistake is now the following. First, she solves for

the socially optimal extraction path assuming incorrectly that the two users have identical
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Figure 4: Percent social welfare loss from incorrect farm homogeneity assumption.

profit functions. That is, she solves the optimal control problem given by Expression (4)

supposing that θ2 = 1 in the objective function. Then, she plugs the derived extraction path

into Eq. (27) to obtain the mechanism charges. Implementation of this mechanism results in

the equilibrium characterized by Eqs. (14), (18), and (19) induced by the prices calculated

based upon the incorrect θ2.

Figure 4 depicts percentage welfare loss (with regard to the social optimum) as a function

of actual heterogeneity. The simulation suggests that adverse welfare impacts increase with

user heterogeneity, potentially reaching high levels.

6 Conclusion

Previous literature on strategic behavior among users of an aquifer has abstracted from the

complicating factors of imperfect transmissivity in groundwater flows and user heterogeneity.

This paper provides a step forward by presenting an analytical framework for dealing with

both these issues. We divide aquifers into two classes. The first class cannot physically be

exhausted in the finite period of interest and users do not bear any costs of extraction. The

second class can be exhausted and/or has users that bear some extraction cost.
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Unlike previous work, we present a mechanism for inducing a socially optimal extraction

path in Markov perfect equilibrium. In spite of the underlying complexity of the system, and

the government’s inability to monitor individual user extraction, the optimal mechanism for

the first class of aquifers is quite simple: a dynamic linear price based upon the height of a

user’s (potentially shared) local water table. This result holds irrespective of the aquifer’s

physical characteristics (number of cells, transmissivity) as well as the number and spatial

configuration of extracting users. The optimal mechanism we derive for the second class of

aquifers is more complicated. It is a polynomial function of not only an individual user’s

local water table, but the water table for all users.

The intuition behind the qualitative difference between the two mechanisms is straight-

forward. In the first case, an individual user’s strategy is independent of the actions of his

neighbors. This independence is due to the fact that the user does not bear extraction costs.

Thus, his welfare is independent of all state variables. In the second case, this is not true. A

user’s welfare is dependent on his neighbor’s actions through their effects on his state vari-

able. The state variable affects his welfare directly if he internalizes some extraction costs. It

also affects his welfare if he bears no explicit extraction costs, but the aquifer is exhaustible.

In that case, if his cell becomes exhausted the marginal extraction cost implicitly rises from

zero to infinity.

Although the theoretical results indicate how to design policies that take into account a

heterogeneous aquifer, they cannot indicate the potential amount of gains relative to policies

prescribed by an overly simple alternative model. Fortunately, our multi-cell approach has

the additional advantage of lending itself well to numerical modeling methods commonly

used in the hydrology literature. We conduct a number of simulations using aquifer char-

acteristics in India that suggest that there may be substantial efficiency losses from models

that erroneously either assume an incorrect bathtub hydrology, or that all users are identical.

We also show that, in addition to being inefficient, an incorrect bathtub model can lead

to over-extraction of the resource. This counter-intuitive result is due to the fact that a
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bathtub model in effect underestimates the cost of accessing water in other cells, while over-

estimating the external cost imposed on neighboring users. Over-extraction can occur if the

first effect dominates.

Apart from the economic efficiency issues analyzed here, our model has potential appli-

cations in distributional analysis. The importance of accounting for spatial complexity and

heterogeneous users increases further if equity is considered. In developing countries, agri-

culture is often characterized by large land holdings of relatively wealthy owners and small

tracts worked by poorer households. Distributional welfare analysis in such settings requires

a model of water extraction that approximates actual water table dynamics while allowing

for strategic behavior among heterogeneous users. Our model provides an analytical frame-

work that can use such characteristics in numerical simulations to evaluate different policy

scenarios.

Like any modeling exercise, the approach developed here relies on a set of simplifying

assumptions that suggest both caveats and potentially fruitful courses of future research.

Although our policy does not rely on monitoring individual extraction rates of users sharing a

micro-watershed, it does assume costless continuous monitoring of deterministic water table

levels. An interesting avenue of research would be to determine the welfare implications

arising from imperfect monitoring in both space and time (e.g., if the regulator can only

check water table levels at a subset of locations at discrete intervals) and accounting for

stochastic flows.

Appendix

Proof of Lemma 1. (i) Letting limc→0 qn(t; 0) = qn(t; 0), the dynamics of an unconnected

aquifer are

d

dt

[
lim
c→0

xn(t; c)
]

= lim
c→0

d

dt
[xn(t; c)] =

r − qn(t; 0)

an
, for all t ∈ [0, T ]. (35)

Taking limits as c→ 0, Eqs. (1) and (2) arrive at this expression.
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(ii) Letting limc→∞ qn(t; c) = qn(t;∞), the dynamics of a single-cell aquifer are

d

dt

[
lim
c→∞

xn(t; c)
]

= lim
c→∞

d

dt
[xn(t; c)] =

2r − q1(t;∞)− q2(t;∞)

a1 + a2

, for all t ∈ [0, T ]. (36)

Consider the water table equations xn(t, c) given by Eq. (2). Since the function qn(t, c) is

bounded, the Bounded Convergence Theorem (see Rudin, 1976) implies that the integral of

the limit is equal to the limit of the integral. Taking the limit as c→∞ in Eq. (2) yields:

lim
c→∞

xn(t; c) =
anxn(0) + amxm(0) + 2rt−

∫ t
0
q1(s;∞) + q2(s;∞)ds

a1 + a2

. (37)

Differentiating with respect to t,

d

dt

[
lim
c→∞

xn(t; c)
]

=
2r − q1(t;∞)− q2(t;∞)

a1 + a2

. (38)

Substituting xn(t; c) and xm(t; c) from Eq. (2) into user n’s dynamics yields:

anẋn(t; c) = r − qn(t; c) + c
a1+a2

{
e−[c1+c2]t

[
xm(0)am

[
1 + an

am

]
− xn(0)an

[
1 + am

an

]]
+∫ t

0

e[c1+c2][s−t]
[
r
[
an
am
− am

an

]
+ qn(s; c)

[
1 + am

an

]
− qm(s; c)

[
1 + an

am

]]
ds

}
= r

[
2an
a1+a2

− a2n−a2m
[a1+a2]2

e−[c1+c2]t
]

−qn(t; c) + c
a1+a2

{
e−[c1+c2]t

[
xm(0)am

[
1 + an

am

]
− xn(0)an

[
1 + am

an

]]
+

∫ t

0

e[c1+c2][s−t]
[
qn(s; c)

[
1 + am

an

]
− qm(s; c)

[
1 + an

am

]]
ds

}
= r

[
2an
a1+a2

− a2n−a2m
[a1+a2]2

e−[c1+c2]t
]

(39)

−qn(t; c) + c
a1+a2

e−[c1+c2]t
[
xm(0)am

[
1 + an

am

]
− xn(0)an

[
1 + am

an

]]
+ am
a1+a2

[
qn(t; c)− e−[c1+c2]tqn(0; c)−

∫ t

0

e[c1+c2][s−t] d
ds

[qn(s; c)]ds

]
− an
a1+a2

[
qm(t; c)− e−[c1+c2]tqn(0; c)−

∫ t

0

e[c1+c2][s−t] d
ds

[qm(s; c)]ds

]
.

Taking the limit of this expression as c→∞ and applying the Bounded Convergence The-
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orem yields the desired result.

Proof of Theorem 1. We wish to find φL such that

dhn(q̂n(t))

dqn
=
λφ

L

nn (t)

an
, for all t ∈ [0, T ]. (40)

where the vector of co-state variables λφ
L

n =
(
λφ

L

1n (t), λφ
L

2n (t), ..., λφ
L

Nn(t))′ solves the following

system of differential equations with terminal conditions:

λ̇φ
L

n = A · λφL

n (t) + bn(t)

λφ
L

nn (T ) = βTn , λφ
L

mn(T ) = 0 for all m 6= n. (41)

Here A ∈ <N×N and bn ∈ <N are defined such that

Ann = δ +
1

an

N∑
m=1

cmn; (42)

Amn = −cmn
an

, m 6= n; (43)

bnn(t) = −βn(t), and bmn = 0, m 6= n. (44)

A general solution for the system of linear differential equations given by Eqs. (41) can be

found in Chapter 2.3.4 of Coddington and Carlson (1997):

λφn (t) = Λn(t)ξ + Λn(t)

∫ t

0

[
Λn(s)

]−1
bn(s)ds, t ∈ [0, T ], (45)

where ξ ∈ <n and Λn(t) is a basis for the solutions to the homogeneous counterpart of

system (41). Performing the change of variable z = T − t, choosing Λn so that Λn(z) = I at

z = 0, and setting ξ to a vector ξβ
T
n such that the transversality conditions in Eqs. (41) are

satisfied,24 yields the following unique solution of system (41)

λφ
L

n (z) = Λn(z)ξβ
T
n −Λn(z)

∫ z

0

[
Λn(s)

]−1
bn(T − s)ds, z ∈ [0, T ]. (46)

24Since the matrix Λn has full rank, ξβ
T
n exists and is uniquely determined.
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Denote row m of matrix Λn by Λmn. The restriction of vector (46) to coordinate n obtains

λφ
L

nn (z) = Λnn(z)ξβ
T
n −

∫ z

0

[
Λn(z)

[
Λn(s)

]−1
]
nn
βn(T − s)ds, t ∈ [0, T ], z ∈ [0, T ].(47)

Using Eq. (47), we obtain the following Volterra integral equation of the first kind

−an
[

dhn(q̂n(T − z))

dqn

]
+ Λnn(z)ξβ

T
n = (48)∫ z

0

[
Λn(z)

[
Λn(s)

]−1
]
nn
βn(T − s)ds, for all z ∈ [0, T ].

We set βTn so that Eq. (49) is satisfied for z = 0. The integral equation’s kernel

Θ(z, s) =

[
Λn(z)

[
Λn(s)

]−1
]
nn

(49)

is such that Θ(z, z) = 1. This fact, in combination with our differentiability assumptions,

implies that Eq. (49) may be reduced to the following equivalent Volterra integral equation

of the second kind

d

dz

[
−an

[
dhn(q̂n(T − z))

dqn

]
+ Λnn(z)ξβ

T
n

]
= (50)

βn(T − z) +

∫ z

0

d

dz
Θ(z, s)βn(T − s)ds, z ∈ [0, T ].

Our continuity and differentiability assumptions ensure that Theorem 2.1.1 in Burton (2005)

applies and integral equation (50) has a unique solution. Repeating the argument for all users

establishes the result.

Proof of Lemma 2. Assuming no corner solutions for the social optimum, first-order con-

ditions on qn imply:

qSOn (x, t) =
1

α1

[
α2 − ω1 − ω2

[
x− xn

]
−

∂
∂xn

V SO(x, t)

an

]
. (51)

Substituting (51) into the Hamilton-Jacobi-Bellman equation (29) yields, after some alge-
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braic manipulation

δV SO(x, t)− ∂

∂t
V SO(x, t) =

N∑
n=1

(
α2 − ω1 − ω2

[
x− xn

]
−

∂
∂xn

V SO(x,t)

an

)2

2α1

+ (52)

N∑
n=1

∂
∂xn

V SO(x, t)

an

[
r − 1

α1

[
[α2 − ω1 − ω2

[
x− xn

]
−

∂
∂xn

V SO(x, t)

an

]
+

N∑
m=1

cmn[xm − xn]
]]

;

V SO(x, T ) = 0. (53)

By inspection, it is possible to see that a value function of the form

V SO(x, t) = KSO(t) +
N∑
n=1

KSO
n (t)xn +

N∑
n=1

N∑
m=1

KSO
mn(t)xm, (54)

satisfying KSO(T ) = KSO
n (T ) = KSO

mn(T ) = 0, solves the Hamilton-Jacobi-Bellman equation

(53). Finding precise expressions for the time-dependent functions KSO, KSO
n , KSO

mn is concep-

tually straightforward (it is the solution of a system of linear differential equations), though

computationally cumbersome. In light of Eq. (51), optimal extraction strategies satisfy

qSOn (x, t) =
1

α1

[
α2 − ω1 − ω2

[
x− xn

]
− KSO

nn (t)xn +
∑N

m=1K
SO
mn(t)xn +KSO

n (t)

an

]
,

n = 1, 2, ..., N (55)

and thus are linear in the state. We suppose that model primitives are such the linear strategy

qSO does not violate the non-negativity constraint x ≥ 0.

Proof of Theorem 2. The following argument is based on results in Athanassoglou (2010).

In contrast to the analysis of Theorem 1, we consider the Hamilton-Jacobi-Bellman sufficient

conditions for a Markov perfect equilibrium, which appear in Theorem 4.4 of Dockner et al.

(2000).

For qSOn (x, t) to be the argmax of the right hand side of Eq. (31) requires

∂
∂xn

Vn(x, t)

an
= −α1q

SO
n (x, t) + α2 − µ [ω1 − ω2 [x− xn]] , (56)
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with qSOn (x(t), t) linear in x. We conjecture that Vn satisfies

Vn(x, t) = Kn(t) +
N∑
m=1

Kmn(t)xm +
N∑
`=1

N∑
m=1

K`mn(t)x`xm, (57)

for some time-dependent functions K`mn, Kmn that are consistent with the optimality re-

quirement given by Eq. (56). Substituting Eq. (57) into the Hamilton-Jacobi-Bellman equa-

tions (31) yields

N∑
`=1

N∑
m=1

[
δK`mn(t)− d

dt
K`mn(t)

]
x`xm +

N∑
m=1

[
δKmn(t)− d

dt
Kmn(t)

]
xm + δKn(t)− d

dt
Kn(t)

=
−α1q

SO
n (x, t)2

2
+ (α2 − µω1)qSOn (x, t)− µω2q

SO
n (x, t)(x− xn) + φn(x, t)

+
[
− α1q

SO
n (x, t) + α2 − µω1 − µω2

[
x− xn

]][
r − qSOn (x, t) +

N∑
m=1

cmn[xm − xn]
]]

+
∑
m 6=n

Kmmn(t)xm+
∑N

`=1K`mn(t)x`+Kmn(t)]

am

[
r − qSOm (x, t) +

N∑
`=1

c`m[x` − xm]
]]
, t < T ; (58)

N∑
`=1

N∑
m=1

K`mn(T )x`xm +
N∑
m=1

Kmn(T )xm +Kn(T ) = φn(x, T ), t = T. (59)

To simplify Hamilton-Jacobi-Bellman conditions (58), let gn(x, t) and gTn (x) denote the fol-

lowing functions

gn(x, t) =
N∑
`=1

N∑
m=1

[
δK`mn(t)− d

dt
K`mn(t)

]
x`xm +

N∑
m=1

[
δKmn(t)− d

dt
Kmn(t)

]
xm − (60){

−α1q
SO
n (x, t)2

2
+ [α2 − µω1]qSOn (x, t)− µω2q

SO
n (x, t)[x0 − xn] +

[
− α1q

SO
n (x, t) + α2 − µω1 − µω2

[
x− xn

]][
r − qSOn (x, t) +

N∑
m=1

cmn[xm − xn]
]]

+

∑
m6=n

Kmmn(t)xm+
∑N

`=1K`mn(t)x`+Kmn(t)

am

[
r − qSOn (x, t) +

N∑
`=1

c`m[x` − xm]
]]}

, t < T ;

gTn (x) =
N∑
`=1

N∑
m=1

K`mn(T )x`xm +
N∑
m=1

Kmn(T )xm. (61)

Using Eqs. (60) and (61), the Hamilton-Jacobi-Bellman conditions given by (58) and (59)
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may be rewritten as

gn(x, t) + δKn(t)− d

dt
Kn(t) = φn(x, t), t < T

gTn (x) +Kn(T ) = φn(x, T ). (62)

Given Eq. (51) and the linear structure of the optimal extraction strategies, the func-

tions gn(x, t) are second-degree polynomials in x. Thus, they equal their Taylor expansions,

with respect to x, about any point. Consider then the polynomial mechanism φP,SO =

(φP,SO1 , φP,SO2 , ..., φP,SON )′ given by the non-constant part of the Taylor expansion of gn(x, t)

and gTn (x), about points (xSO(t), t) and (xSO(T ), T ) respectively (recall that xSO(t) denotes

the water-table path corresponding to qSO). Letting ∇xf(x,y) and ∇2
xxf(x,y) respectively

denote the vector of partial derivatives and matrix of second partial derivatives of f with

respect to x evaluated at (x,y), we obtain:

φP,SOn (x, t) =



[
x− xSO(t)

] ′∇xgn(xSO(t), t)

+1
2
[x− xSO(t)]′∇2

xxgn(xSO(t), t)[x− xSO(t)] t < T[
x− xSO(T )

]′∇xg
T
n (xSO(T ))

+1
2
[x− xSO(T )]′∇2

xxg
T
n (xSO(T ))[x− xSO(T )] t = T.

(63)

The specification of mechanism (63) in combination with Taylor’s theorem implies that

gn(x, t) = φP,SOn (x, t) + gn(xSO(t), t), for all (x, t), t < T ; (64)

gTn (x) = φP,SOn (x, T ) + gTn (xSO(T )), for all x. (65)

Thus, applying the mechanism (63) reduces Eq. (62) to the following ordinary differential

equation and terminal condition

δKn(t) =
d

dt
Kn(t)− gn(xSO(t), t), t < T ; (66)

Kn(T ) = −gTn (xSO(T )), (67)
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which has a unique solution Kn(t). Substituting this into the value function given by Eq. (58),

repeating this argument for users m 6= n, and invoking Theorem 4.4 in Dockner et al. (2000)

establishes that qSO is induced in Markov perfect equilibrium.

A second-degree polynomial mechanism that induces the socially optimal extraction strat-

egy qSO in Markov perfect equilibrium may not be unique since functions Klmn and Kmn of

Eq. (57) are not uniquely defined. Instead, they are only required to be consistent with Eq.

(56) for every user. Different (appropriate) choices of Klmn and Kmn may lead to different

specifications of gn and Kn and, consequently, different equilibrium mechanisms for inducing

qSO.
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