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Abstract

We develop a simple model to study the coevolution of interaction
structures and action choices in Prisoners�Dilemma games. Agents are
boundedly rational and choose both actions and interaction partners via
payo¤-based imitation. The dynamics of imitation and exclusion yields
polymorphic outcomes under a wide range of parameters. Depending
on the parameters of the model two scenarios can arise. Either there
is �full separation� of defectors and cooperators, i.e. they are found in
two di¤erent, disconnected components. Or there is �marginalization�of
defectors, i.e. connected networks emerge with a center of cooperators
and a periphery of defectors. Simulations con�rm our analytical results
and show that the share of cooperators increases with the speed at which
the network evolves, increases with the radius of interaction and decreases
with the radius of information of agents.
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1 Introduction

1.1 Motivation

We study the implications of the freedom to choose one�s interaction partners
for the emergence of cooperation in social dilemma situations. The paradig-
matic model to analyze such situations is the Prisoners�Dilemma. Individuals
involved in this game may choose either to cooperate or to defect. Defection
is a dominant strategy, but cooperation yields the highest bene�t to the com-
munity. It is a well known fact that the interaction structure can be crucial for
the emergence of cooperation in the Prisoner�s dilemma.1 A question, though,
that has gone largely unanswered is: Which interaction structures are likely to
emerge? Of course this again will a priori depend on the action choices of the
agents. To capture these possible feedback e¤ects we present a model to analyze
the coevolution of interaction structure and behavior.
We consider agents playing the 2 � 2 Prisoners�Dilemma game with their

neighbors in an endogenous network. Agents are boundedly rational and decide
on both action and linking choices by imitating successful behavior among their
neighbors. Imitation is widely recognized to be one of the most important form
of learning in humans.2 However, existing coevolutionary models of imitation in
networks focus exclusively on imitations of actions, assuming a di¤erent learning
rule for linking choice.3 Thus, a distinct feature of our model is that individuals
learn (by imitation) with respect to both of their choices, namely which action
to choose and whom to interact with. More precisely, we propose the following
imitation learning rules.

� Agents choose the action (cooperation or defection) with the highest av-
erage payo¤ in their information neighborhood.

� They search new interaction partners locally using information from the
agents in their information neighborhood. They are willing to create a
link with another node if and only if the average payo¤ of the interaction
neighbors of the node in question is high enough.

� Agents face a �xed capacity constraint. In this way, any existing link may
incur an opportunity cost that, if high enough, will lead to its elimination
and replacement by another.

An important aspect of such a model of local search is the amount of infor-
mation that agents have. Indeed, we distinguish between the radii of interaction
and of information of the agents, each given by a di¤erent parameter. The in-
teraction radius delimits the set of other agents with whom an agent plays the
game. Analogously, the information radius determines the set of agents about

1See for theoretical papers Hamilton (1964), Myerson, Pollock and Swinkels (1991) or
Eshel, Samuelson, Shaked (1998) and Grimm and Mengel (2008) for an experiment. There
are many other papers.

2For an experiment on imitation learning see Apesteguía, Huck and Öchssler (2007).
3The literature is described in Section 1.2.
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which an agent has information. These two sets need not to coincide, allowing
us to cover a wide range of applications. A large information radius (relative to
the interaction radius) can re�ect situations where relevant information travels
easily through the network. Think for instance on the information about one�s
friend�s friends or the gossip in a village about some distant neighbors. Situ-
ations where relevant information is hard to obtain are represented by a small
information radius (relative to the interaction radius). An example might be
the interactions of buyers and sellers in a supply chain. Naturally, the smaller
both radii are, the more important is the network for the outcome of the game
and the learning process.
Given this coevolutionary dynamics, we analyze which states of the sys-

tem are most likely to emerge in the long run. Our main analytical result
shows that polymorphic states, i.e. states where both defectors and cooperators
coexist, are stochastically stable under reasonable assumptions on the payo¤
parameters. The topology of the network in stochastically stable states can be
of two di¤erent types. The �rst scenario, that we call �full separation�occurs
whenever agents hold some information beyond their interaction radius. In this
case defectors and cooperators are found in two disconnected components. One
component consists of cooperators only, the other of only defectors.4 The sec-
ond scenario, that we call �marginalization�occurs if agents only interact with
and hold information about their �rst-order neighbors. Then networks in sto-
chastically stable states can display a unique polymorphic component. In such
a polymorphic component cooperators are found in the center and defectors in
the periphery. The linking dynamics in these cases do not lead to full exclusion
of defectors, but marginalizes them by driving them out to the periphery of
the network. Interestingy such topologies have been found by e.g. Christakis
and Fowler (2008) for networks consisting of smokers and no-smokers. In such
networks smokers are often marginalized.
We then simulate the model to gain insight into the importance of di¤erent

parameters of the model, as well as into the topology of stochastically stable
graphs. Con�rming our analytical result, we �nd that polymorphic states do
emerge. The share of cooperators in such states increases with the relative
speed at which the network evolves (relative to actions). It increases with the
radius of interaction and decreases with the radius of information. Thus, maybe
somewhat counter-intuitively, we �nd that more �anonymity�helps cooperation.
Finally we also �nd that - consistently with empirical �ndings on social networks
- our networks display high clustering coe¢ cients and short average distances.
The paper is organized as follows. In Section 1.2 we relate our paper to the

existing literature. In Section 2 we describe in detail the model, the learning
dynamics and the analytical tools used. In Section 3 we present our main
analytical results. In Section 4 we present some simulation results. In Section
5 we discuss several extensions of the model. Section 6 concludes. The proofs
are relegated to an appendix.

4This contrasts with static models (like Eshel, Samuelson and Shaked (1998) or Mengel
(2007)), where full defection prevails whenever agents hold some information beyond their
interaction radius.

3



1.2 Literature

Eshel, Samuelson and Shaked (1998) have analyzed imitation of behavior when
agents are located on a circle. They found that some cooperation in the Pris-
oners�Dilemma can survive.5 The intuition is that - as agents can only imitate
their interaction neighbors - defectors will end up interacting with defectors and
cooperators with other cooperators. This reveals the social bene�t of coopera-
tion and prevents that cooperators imitate defection. Mengel (2007) and also
Goyal (2007) have shown though that this result is not robust. Firstly it does
not hold if agents are allowed to hold some information beyond their interac-
tion neighbors, secondly it does not extend to general networks and thirdly it is
sensitive to minor changes in the imitation rule. Under the general assumptions
we use in this paper, action imitation alone thus cannot sustain cooperative
outcomes (except for very particular cases). We show that if the network is
endogenous cooperation will survive under many parameter constellations.
In recent years the coevolution of network structure and action choice in

games has received increasing attention. Goyal and Vega-Redondo (2005) as
well as Jackson and Watts (2002) study the coevolution of linking and action
choices in Coordination Games. Both rely on myopic best responses as learning
dynamics. Goyal and Vega-Redondo (2005) assume unilateral linking choice (di-
rected network) and �nd that for high linking costs the e¢ cient action emerges
and for low costs, the risk-dominant action. In Jackson and Watts (2002) link-
ing choice is bilateral (undirected graph) and the results are more ambiguous.
Skyrms and Pemantle (2000) investigate the dynamics of imitation in a stag
hunt game, relying on simulation techniques.
To our knowledge the coevolution of interaction structure and behavior in

the Prisoners�Dilemma has not been studied analytically.6 One reason is of
course that if best response dynamics is used all outcomes will involve full de-
fection, as defection is a dominant strategy in this game. A way to obtain
a non-trivial situation is to study more bounded rational learning dynamics,
such as imitation. There are several simulation works studying cooperation
in endogenous networks. They rely on relatively arbitrary assumptions how-
ever. Biely, Dragosits and Thurner (2007), for example, assume that agents
�nd new partners through recommendation and that only cooperators can form
new links. Hanaki, Peterhansel, Dodds and Watts (2007) assume that while
agents imitate action decisions, linking decisions are made rationally through
myopic cost-bene�t comparisons. Hence, agents display a di¤erent degree of
rationality in their linking and action decisions. As we already mentioned, in
our model both cooperators and defectors use the same decision rules and dis-
play the same degree of rationality in both their decisions. Other simulation
studies include Zimmermann, Eguíluz and San Miguel (2004), Zimmermann
and Eguíluz (2005), Abramson and Kuperman (2001) or Ebel and Bornholdt

5Previously also Nowak, Bonhoe¤er and May (1994) have investigated cooperation in local
interaction models through simulations.

6There are very few works pertaining to the literature on complex networks where partial
results are obtained analytically. See for example Zimmermann and Eguíluz (2005).
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(2002).7 Ule (2005) simulates an interesting model of repeated interaction in
which agents are forward-looking to some degree.
Also related are models of local search like Jackson and Rogers (2007) or

Vázquez (2003) as well as models of preferential attachment (Barabási and Al-
bert (1999)), in which link imitation occurs without taking into account payo¤s
explicitly. In the latter class of models highly connected agents are more likely
to be chosen as new partners. The coevolution of cooperation and network
structure has been studied experimentally by for example Riedl and Ule (2002).

2 The Model

2.1 The Network

There are n agents, indexed by i, playing a bilateral Prisoners�Dilemma game
with their neighbors in a network. The network is endogenous, i.e. players
decide who to form links with. Denote li = (li1; :::lin) the vector of linking
decisions of player i, where lij 2 f0; 1g. A link ij is formed whenever lij lji = 1,
i.e. if and only if both players �wish�to have the link. Let it be a convention
that lii = 0, 8i = 1; ::n: The set of all linking decisions L = fl1; :::lng and
the set of players (nodes) N = f1; :::ng jointly de�ne the network G = (N;L).
Denote � � G a connected component of the network, i.e. a maximal subset
of nodes s.t. 8i; j 2 � there is a path joining them.8 The components � � G
de�ne a partition of the network; no agent can be an element of two di¤erent
components. Finally denote �(i) the component that contains agent i and let
� 2 [1; n] \ N be the number of components of a network.

2.2 Interaction, Information and Search Radius

For any number h 2 N+ we denote Nh
i the set of agents that are within a radius

h of �geodesic� distance to agent i.9 The set of �rst-order neighbors of any
agent i is then denoted N1

i = fj 6= ijlij lji = 1g with cardinality ni. Note that
the relation �j is an element of Nh

i �is symmetric, i.e. j 2 Nh
i , i 2 Nh

j .
Interaction Radius Z. Interactions are not necessarily restricted to an

agent�s �rst-order neighbors. Denote NZ
i the set of agents agent i interacts with

(i.e. plays the bilateral Prisoner�s Dilemma with) or the �interaction neighbor-
hood�of player i. Here Z is an exogenous, �xed parameter. In some applications
one may �nd it unnatural to interact with agents one is not directly linked with,
in others though it seems natural (think of your �friends�friends�). The model
allows for either case.

7Zimmermann, Eguíluz and San Miguel (2004) assume throughout their model that links
between a cooperator and defector can survive but not links between two defectors. This
assumption seems rationalizable only in the context of unilateral link formation.

8A path between i and j is a �nite set of links connecting i and j.
9The geodesic distance between two nodes in a graph is the number of edges on the shortest

path connecting them.
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Information Radius I. The set NZ
i will in general not coincide with the

set of agents i has information about. Denote the latter set - the �information
neighborhood� of agent i - by N I

i : Again I is a �xed, exogenous parameter.
When we say that i has information about j we mean that i knows j�s average
payo¤, degree, action choice and the identity of the other players that j interacts
with. As an illustration consider agents on a line with interaction radius Z = 1
and information radius I = 2.

::::

NI
iz }| {

(i� 2)� (i� 1)| {z }
NZ
i

� i� (i+ 1)| {z }
NZ
i

� (i+ 2)� (i+ 3) :::

Let it be a convention that NZ
i does not contain the player i herself while N I

i

does - i.e. while players do not interact with themselves they have information
about themselves. Of course both N I

i and N
Z
i vary endogenously with changes

in the linking decisions of the agents. Denote nIi (t) (n
Z
i (t)) the cardinality of

the set N I
i (N

Z
i ) at time t.

Search Radius I +Z. Revising their linking choices agents search for new
partners within their search radius I + Z. Note that these are all the agents
they know of, i.e. the agents they have information about (within radius I) as
well as the interaction partners of these agents (within I + Z). N I+Z

i denotes
the correspondent set.
As mentioned before the smaller Z and I the more important is the network

for the outcome of the game and the learning process. As Z and I approach the
diameter of the network, that is, the largest distance between any two nodes,
we approach a global interaction setting.

2.3 The Game

Individuals play a one-shot symmetric 2� 2 game with their interaction neigh-
bors. The set of actions is given by fC;Dg for all players. For each pair of
actions zi; zj 2 fC;Dg the payo¤ �i(zi; zj) that player i earns when playing
action zi against an opponent who plays zj is given by the following matrix.

zinzj C D
C a b
D c d

(1)

We are interested in the case c > a > d > b � 0; i.e. the case where
matrix (1) represents a Prisoners�Dilemma. We assume that all interactions
are bene�cial (b > 0); i.e., irrespective of Z, all links are worthwhile. Goyal and
Vega-Redondo (2005) or Jackson andWatts (2002) have also studied cases where
not all links are worthwhile. In our model this is not a particularly interesting
case to study, as (if b < 0) one would always �nd cooperators and defectors in
di¤erent components and if d < 0 cooperation would obtain trivially. Assume
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also that a > b+c
2 , i.e. that cooperation (C) is e¢ cient. The payo¤s at time t

for player i from playing action zi when the network is G are given by10

�ti(z
t
i ; z

t
j ; G

t) =
X

j2NZ
i (t)

�i(z
t
i ; z

t
j): (2)

When choosing an action through the imitation learning process speci�ed
below, agents are interested in the average payo¤per interaction an action yields
(in their information neighborhood). This seems the appropriate measure as we
assume that agents are myopic and thus choose actions not foreseeing possible
changes in the network. Consequently they are interested in whether an action
performs well in a given interaction irrespective of whether players choosing this
action have many interaction partners or not. Average payo¤s (per interaction)
for player i at time t are given by

�
t

i(z
t
i ; z

t
j ; G

t) =
�ti(z

t
i ; z

t
j ; G

t)

nZi (t)
: (3)

In practice there are a large variety of factors (such as time and resource con-
straints) that limit the �linking capacity� of agents. We summarize such re-
strictions through the following simple assumption.
Assumption 1: No agent can have more than �� 2 [3; n) \ N links.
We assume that �� � 2 to allow a connected network to form. What happens

if �� = 2? In this case all connected graphs are circles or lines and, given the local
nature of the search process, any rewiring of the network will quickly lead to the
creation of triangles (thus it is not a very much appealing case). Assumption 1
can be rationalized through some strictly convex cost-functions for maintaining
links. In the existing literature mostly constant marginal costs for forming links
have been assumed with the consequence that equilibrium graphs were either
complete or empty.11 Our equilibrium networks will be more realistic than
these, but of course still quite stylized. Before starting to describe the learning
dynamics let us introduce some notation.
Sample Payo¤s
Denote �

t
(N I

i ) =
�
nIi (t)

��1P
k2NI

i (t)
�
t

k(�) the average payo¤ per interac-
tion of all agents contained in N I

i at time t: Analogously denote �
t
(NZ

j \N I
i )

the average per interaction payo¤ of all agents in the set NZ
j (t)\N I

i (t) at time t

and �
t
(N I

i (z)) the average payo¤ per interaction enjoyed by all agents in N
I
i (t)

that choose action z. Let it be a convention that �
t
(N I

i (z)) = 0 if cardfj 2
10 In equation (2) agents get the same payo¤ from all their interaction partners. One could

also imagine a situation where - as in the connections model from Jackson and Wolinsky (1996)
- payo¤s are discounted in proportion to the geodesic distance between the two interaction
partners.
11See Goyal and Vega-Redondo (2005) or Jackson and Watts (2002). Jackson and Watts

(2002) also consider a capacity constraint in their model of coevolving network and action
choices in a coordination game. Whereas in their model a player that has reached the con-
straint is simply assumed not to want to form links anymore, he can in our model by severing
other links.
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N I
i (t)jzj = zg = 0: Furthermore denote by �tmin(N1

i ) = minj2N1
i (t)

�(zi; zj), the
minimum payo¤ that player i obtains from any of her �rst-order neighbors.

2.4 Learning Dynamics

At each point in time t = 1; 2; 3:::: the state of the system is given by the vectors
of actions and linking decisions of all agents s(t) = ((zti ; l

t
i))

n
i=1. Denote S the

state space. Agents learn about optimal behavior through imitation. More
precisely in each period t the following happens.

1. � agents are randomly selected to revise their action choice. Each agent i
compares the average per interaction payo¤ in her information neighbor-
hood of the two actions. If and only if �

t�1
(N I

i (:zi)) > �
t�1
(N I

i (zi)) she
changes her action.12 With small probability " she reverses her choice.13

2. � links ij with j 2 N I+Z
i (t� 1) are randomly selected for revision. If the

link ij does not exist (ij =2 Gt�1) i and j are given the possibility to add it.
With probability 1� � the following decision rule is used. If �i(t� 1) < ��
agent i chooses lij = 1. If �i(t�1) = �� agent i compares the average payo¤
of the agents interacting with j that she knows about, �

t�1
(NZ

j \ N I
i ),

to the payo¤ she derives from her �worst� link, �t�1min(N
1
i ). If and only if

�t�1min(N
1
i ) < �

t�1
(NZ

j \ N I
i ), she chooses lij = 1. Agent j goes through

the symmetric process. If and only if lij lji = 1 the link ij is added. In
this case if �i(j)(t� 1) = �� agent i (j) destroys her �worst�link.
With small probably � a randomly chosen link is added or destroyed.
Finally any node exceeding the linking constraint randomly severs one of
her links.

3. The game (1) is played and agents receive the payo¤s.

Note that if Z > 1 the set N I+Z
i nN1

i contains agents that i is already
interacting (i.e. playing) with, even if they are not currently linked with her.
Why would she want to form links with these agents at all? The reason is that
any such agent can give i access to other agents. The payo¤ that other agents
linked to j obtain (�

t�1
(NZ

j \N I
i )) is a proxy for the payo¤ that i can expect

from being linked to j. Of course more complicated decision rules could be
modeled, as depending on the node in question agents might or might not have
more and better information to evaluate whether a link is worthwhile. We chose
to stick to the simple formulation here. In section 5.2 we will discuss this issue
some more.
To �nish this subsection we want to discuss how I and Z a¤ect the two

dimensions of the learning dynamics. Of course the larger I the more infor-
mation agents have. If I � Z is large the information about the payo¤s of the

12The notation :zi is used to indicate the action not chosen by i:
13This is the �imitate the best average�rule often used in the literature (Eshel, Samuelson,

Shaked (1998) or Apesteguía, Huck and Öchssler (2007)).
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two actions will be of a more �global�nature as N I
i (z) will re�ect less the local

topology i faces. Under this condition it is also likely, though, that the two sets
NZ
j and N

Z
j \N I

i coincide i.e. that the information agents have about potential
new partners is more precise. If I � Z is small (maybe even negative) informa-
tion about action payo¤s will strongly re�ect the local topology but information
about potential new partners will be less precise.

2.5 Techniques used in the Analysis

The learning process described in subsection 2.3 gives rise to a �nite Markov
chain, for which the standard techniques apply. Denote P 0(s; s0) the transition
probability for a transition from state s to s0 whenever " = � = 0 and P "(s; s0)
the transition probability of the perturbed Markov process with strictly positive
trembles ("; �). We make the following assumption on noise.
Assumption 2: " = �� for some constant � > 0.14

An absorbing set under P 0 is a minimal subset of states which, once entered
is never left. An absorbing state is a singleton absorbing set, or in other words

De�nition 1 State s is absorbing , P 0(s; s) = 1.

As (given that " > 0) trembles make transitions between any two states
possible, the perturbed Markov process is irreducible and hence ergodic, i.e. it
has a unique stationary distribution denoted �": This distribution summarizes
both the long-run behavior of the process and the time-average of the sample
path independently of the initial conditions.15 The limit invariant distribution
�� = lim"!0 �

" exists and its support fs 2 Sj lim"!0 �
"(s) > 0g is a union of

some absorbing sets of the unperturbed process. The limit invariant distribution
singles out a stable prediction of the unperturbed dynamics (" = 0) in the sense
that for any " > 0 small enough the play approximates that described by �� in
the long run. The states in the support of �� are called stochastically stable
states.

De�nition 2 State s is stochastically stable , ��(s) > 0:

Denote ! the union of one or more absorbing sets and 
 the set of all
absorbing sets. De�ne X(!; !0) the minimal number of mutations (simultaneous
"�trembles) necessary to reach !0 from !.16 The stochastic potential  (s) of a
state s 2 
 is de�ned as the sum of minimal mutations necessary to induce a
(possibly indirect) transition to s from any alternative state s0 2 
; i.e.  (s) =P

s02
X(s
0; s):

Result (Young 1993) State s� is stochastically stable if it has minimal sto-
chastic potential, i.e. if s� 2 argmins2
  (s):

14We assume thus (as e.g. Jackson and Watts (2002)) that " and � tend to zero at the same
rate. This assumption is relaxed in Section 5.1.
15See for example the classical textbook by Karlin and Taylor (1975).
16 It is important to note that these transitions need not be direct (i.e. they can pass through

another absorbing set).
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The intuition behind Young�s result is simple. In the long run the process will
spend most of the time in one of its absorbing states. The stochastic potential
of any state s is a measure of how easy it is to jump from the basin of attraction
of other absorbing states to the basin of attraction of state s by perturbing the
process through mutations.17

3 Analysis

We �rst characterize the set of absorbing states of the dynamic process. We
then provide a characterization of the set of stochastically stable outcomes.

3.1 Absorbing States

Our �rst proposition has three parts. The �rst part places restrictions on the
topology of the networks that can arise in an absorbing state. Due to our
di¤erent assumption on linking constraints these restrictions will be weaker than
those obtained in previous works on the coevolution of behavior and interaction
structure.18 On the other hand we will observe richer and more interesting
network topologies. The second and third part of the proposition characterize
action choices.

Proposition 1 (Absorbing States)

(i) In any absorbing state 8i 2 G : �i < �� ) 8j 2 N I+Z
i nN1

i : �j = ��.

(ii) States where graphs display only monomorphic components and where (i)
holds are absorbing.

(iii) There exists bZ(I) and a set of payo¤ parameters 	(I; Z) 6= ? s.t. 8Z �bZ(I) polymorphic components arise in absorbing states (or sets) whenever
payo¤s are contained in 	(I; Z). In these components the shortest path
between any two cooperators never involves a defector.

Proof. Appendix.
If an agent i is not link constrained either all her potential partners must be

so (or her search set N I+Z
i must be empty). Essentially condition (i) says that

agents will maintain so many links as they can. If this condition holds it is also
quite obvious that states where all agents choose the same action are absorbing,

17Ellison (2000) has shown that the time needed to converge to a stochastically stable state

s is bound by O
�
"�maxs02
X(s0;s)

�
where maxs02
X(s0; s) is the maximum over all states

of the smallest number of mutations needed to reach state s: The resulting wait time can be
quite long, which is a criticism often brought forward to this type of models. Note though
that - as in our model both action imitation and the search for new partners occur on a purely
local level - the speed of convergence is independent of the size of the population.
18The topology most often observed in this literature is the complete graph. See Goyal and

Vega-Redondo (2005) or Jackson and Watts (2002).
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as well as polymorphic states where agents that choose di¤erent actions are
found in di¤erent components of the network.
Part (iii) of Proposition 1 is the most interesting one. It shows that �truly�

polymorphic absorbing states exist, in which cooperators and defectors are in
the same component and interact with each other. The fact that the shortest
path between any two cooperators cannot involve a defector immediately implies
that in all such components the center always consists of cooperators, while
defectors are found at the periphery. (But not all components where this is
the case are part of an absorbing state). In these polymorphic states, thus,
defectors are not fully excluded from interactions with cooperators, but instead
are marginalized at the periphery of the component. The conditions on the
payo¤ parameters ensure that no agent is willing to imitate the other action.
Naturally there must also exist an upper bound on the interaction radius Z for
which such states can be absorbing. If Z is �too�large relative to I peripheral
defectors will interact with �too many� cooperators, increasing their average
payo¤ (and making defection an attractive action to imitate). A special case is
given whenever Z = 1 or I � 2: In these cases (as we show in the appendix)
neighboring defectors must form a clique, i.e. they must all be linked to each
other (see Figure 1).

Fig:1 : Polymorphic Absorbing State Z = I = 1
(darker nodes are defectors)

Why do polymorphic components need to have this particular structure?
This is largely a consequence of local search. First note that any cooperator i
linked to a defector k is always willing to substitute this link for a link with one
of k�s interaction neighbors (irrespective of the action that agent is taking).19 If

19Note that the payo¤ she obtains from the defector �min(N1
i ) = b < �

t
(NZ

j \ NI
i ) no

matter what action j is taking, as j is linked to at least one defector i knows about (namely
her own �rst-order neighbor).
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such a neighbor j 2 N1
k is herself defecting she will want to link with i, if (except

for i) she observes only defectors. In this case �
t
(NZ

i \N I
j ) > �min(N

1
j ). The

link ji will be established and the links ik and jk will be severed. Repeating
the argument it can be shown that any two cooperators connected through a
path of defectors will at some point �nd each other and form a link. But then
defectors will eventually end up in the periphery of the component. Note that
because of the local search process, where agents meet each other explicitly
through common neighbors, all graphs will display a high degree of clustering.

3.2 Stochastically Stable States

Proposition 1 delimits the set of states that can potentially be stochastically
stable, since (as explained in Subsection 2.4) every such state must be absorbing
for the unperturbed dynamics. In the following we will denote !z� the set of
absorbing states where all agents play action z and where the network consists
of � disconnected components. Denote [�2f1;::ng!z� = !z. Analogously !CD� is
the set of all polymorphic absorbing states with � components. Of course we are
ultimately interested in the set of stochastically stable states. Our main result
is Proposition 2.

Proposition 2 (Stochastically Stable States) All stochastically stable states
are contained in !D [ !CD. Furthermore,

(i) there exists a threshold level a�(Z; I; ��) 2 (d; c) s.t. whenever a � a�(�) all
stochastically stable states are polymorphic.

(ii) if I +Z > 2 all stochastically stable states are contained in !D1 [ !CD2 and
if I +Z > 2 and a � a�(�) all stochastically stable states are contained in
!CD2 .

Proof. Appendix.
Stochastically stable states are either polymorphic or characterized by full

defection. If I + Z > 2 monomorphic states are connected and polymorphic
states consist of two monomorphic components. A su¢ cient condition for poly-
morphic states to emerge is that the payo¤ for joint cooperation be high enough.
How high that depends on the number of links �� each node can maintain and
on the information (I) and interaction radii (Z). If in addition I +Z > 2, then
all stochastically stable states will consist of two monomorphic components,
one of defectors and one of cooperators. In these cases there is full exclusion.
If I + Z = 2 on the other hand, graphs in stochastically stable states can be
�truly� polymorphic, displaying a structure where defectors are marginalized,
like that illustrated in Figure 1.
What is the intuition for this result? The tension in the Prisoners�Dilemma

arises from the fact that while defection is a dominant strategy, cooperation pro-
vides the highest bene�t to a community (is e¢ cient). This is all the more so the
higher the payo¤ parameter a 2 (d; c). Cooperation then will emerge as a stable
outcome of the imitation learning process if cooperators interact with increased
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probability among themselves. This reveals the social bene�t of cooperation
and induces other agents to imitate cooperators. The most extreme situation
is a state where cooperators and defectors coexist in two di¤erent components
of the network. Two forces in our model facilitate that the process arrives at
such a situation. Firstly as action imitation occurs among one�s information
neighbors only, defection will spread locally. Secondly as new links are searched
locally (at a radius of I +Z), cooperators can avoid the interaction with defec-
tors in their interaction neighborhood by cutting these links and linking up with
other cooperators. Of course if the defector payo¤s are �too high�cooperators
will easily tend to imitate defectors and cooperative components can easily be
destabilized. But what does �high�mean exactly? This depends of course on
the relative size of the interaction and information radius (Z; I) as well as on
the number of links �� each node can maintain.
The relative size of the information radius I (relative to Z) has a double

e¤ect on the dynamic process. A smaller information radius I (relative to Z)
forces defection to spread more �locally�and thus helps cooperation by forcing
defectors to interact among each other. On the other hand a higher information
radius I (relative to Z) improves the information agents have about potential
partners inside their search radius (I + Z) making it more easy for them to
exclude defectors from bene�cial interactions with cooperators. The density of
the network (i.e. the number of nodes each agent can maintain ��) a¤ects the
size of the agent�s sample (given Z and I) and consequently tends to exacerbate
the e¤ects described before.20

Proposition 2 is proved through a series of Lemmata. We will now state
these Lemmata in turn to get a deeper intuition for our main result. The �rst
Lemma relates to the topology of graphs at any stochastically stable state.

Lemma 1 (Topology) If I + Z > 2, all polymorphic stochastically stable
states will consist of at most two disconnected components and all monomor-
phic stochastically stable states will be connected.

Proof. Appendix.
There is a tendency in the process that leads to large components in stochas-

tically stable states. Note that one linking tremble su¢ ces to connect any two
disconnected components in which agents choose the same actions. But then
any connected (monomorphic) state can be obtained from any other monomor-
phic state through a sequence of �one-trembles.�It is a standard result, that if
a state s is reached from another state s0 via one tremble then s cannot have
higher stochastic potential than s0. It then is a small step to show that - as
some connected components are very unlikely to �break apart�(if I + Z > 2) -
all stochastically stable states must have graphs with few components.
Now we turn our attention to action choices. The �rst result is negative

showing that fully cooperative states are never stochastically stable.

20The e¤ect of parameters I and Z will be illustrated further in our simulations in Section
4.
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Lemma 2 (Instability of Full Cooperation) States s 2 !C , where all agents
cooperate, are not stochastically stable.

Proof. Appendix.
The intuition for Lemma 2 is relatively simple. Starting from a coopera-

tive state s 2 !C assume one player trembles and switches to action D. This
player will have the highest possible payo¤ and will be imitated by some other
agents. The unperturbed process converges to either a polymorphic absorbing
state or a state characterized by full defection. Fully cooperative states are
thus easy to destabilize. On the other hand to reach a state of full coopera-
tion from a polymorphic state or a state of full defection always at least two
trembles are needed. (One to induce the transition and one to induce the last
defector remaining to adopt the cooperative action). While fully cooperative
states are easy to destabilize, the next Lemma shows that this is not the case
for polymorphic states.

Lemma 3 (Polymorphic States - I) 8s 2 !D1 ;9ba(s) 2 (d; c) s.t. whenever
a > ba(s) : 9s0 2 !CD� ; � � 2 with X(s; s0) < X(s0; s):

Proof. Appendix.
Lemma 3 shows that (under some conditions on the payo¤ parameters) for

any state s characterized by full defection there exists a polymorphic state s0

such that s0 is more easily reached from s than vice versa. The intuition is as
follows. Starting from a state of full defection s 2 !D1 simultaneous trembles
of a small number of neighboring nodes can infect part of a component with
cooperation and induce a transition to s0 2 !CD2 ; as all cooperators have incen-
tives to sever their links with defectors and form links among each other. The
reverse transition now is more di¢ cult to achieve, because the linking dynamics
makes it di¢ cult for defectors to �nd new partners. In particular there have to
be either a large number of linking trembles for such a transition to occur or
else a large enough number of action trembles s.t. cooperators might have in-
centives to form links with defectors. Denoting a�(�) = maxs2!D ba(s) Lemmata
1-3 su¢ ce to show part (i) of Proposition 2. Note that the �reverse�to Lemma
3 is not true. In particular 8s0 2 !CD2 there exists a value ba0(s) 2 (d; c) s.t.
whenever a > ba0(s) one cannot �nd a state s 2 !D s.t. X(s0; s) < X(s; s0). At
least two trembles (possibly many more) are needed for the transition s0 ! s
(one action and one linking tremble). But for high enough a the reverse transi-
tion can always also be achieved after two trembles of neighboring agents and
subsequent rewiring of the network.
Lemma 4 shows that states s 2 !CD1 can only be stochastically stable if

I + Z = 2.

Lemma 4 (Polymorphic States - II) If a polymorphic state s 2 !CD1 is
stochastically stable, then there also exists a stochastically stable state
s0 2 !CD2 : If I + Z > 2 states in s 2 !CD1 are not stochastically sta-
ble.
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Proof. Appendix.
Polymorphic states where cooperators and defectors are in disconnected com-

ponents are �at least as stable�as states where they are in the same component.
The intuition is as follows. Starting from any state s 2 !CD1 one linking tremble
can cut o¤ a subcomponent of defectors. The stochastic potential of the result-
ing absorbing state is not higher than that of s: Cutting o¤ subcomponents of
defectors in this way and subsequently linking these components together leads
to a state s0 2 !CD2 . This state (reached via a sequence of single trembles)
cannot have higher stochastic potential than s. If I +Z > 2 this conclusion to-
gether with Lemma 1 imply that cooperators and defectors cannot be linked in
a stochastically stable state. Note though that Lemma 4 does not say anything
about the probability the limiting distribution places on the polymorphic states
in the case where I + Z = 2: In fact - as we illustrate in the next section - we
almost always observe truly polymorphic components.
We have seen that while fully cooperative states will not be observed poly-

morphic states can often occur. The condition needed is that the payo¤ for
joint cooperation is high enough, where the last quali�cation depends on many
parameters of the model. The aim of the next section is thus twofold. Relying
on simulation techniques we illustrate on the one hand how likely outcomes of
the learning process look like, i.e. what the topology of networks and the dis-
tribution of actions will be. On the other hand we develop a better intuition of
how our di¤erent model parameters in�uence these outcomes.

4 Simulation Results

In this section we illustrate and complement the analytical results through sim-
ulations. We explore essentially two aspects. First (under payo¤ parameters
where polymorphic structures are �likely� to emerge) we show the e¤ect of
(�=�), I and Z on the fraction of cooperators denoted by 'c. We address this
question separately for I + Z > 2 and I + Z = 2. The di¤erence between both
cases is that when I+Z > 2, stochastically stable polymorphic states are always
composed of two separate components. If I+Z = 2, there can be stochastically
stable states with polymorphic components, like those illustrated in Figure 1.
Second, we measure the e¤ect of the search radius (I+Z) on the topology of the
network, in particular with respect to average clustering and average distance
within components.
In all the simulations that we report here there are n = 400 nodes. The initial

network is random with n ��2 links and satis�es �i � ��, �� = 4. The initial number
of cooperators is 0:5n (randomly placed on the network). Payo¤ parameters are
chosen such that for any I; Z; (�=�) polymorphic structures are �very likely�to
emerge (c = 1; a = 0:9; d = 0:01; b = 0). We choose � = 1 and � 2 [1; 10] \
N. The combinations of (I; Z) analyzed are f(1; 1) ; (1; 2) ; (1; 3) ; (2; 1) ; (3; 1)g.
Simulations include (small) noises " and � and tmax = 4 � 104. For each case,
we perform 100 realizations of the dynamic process, and for each realization 'c
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is the average of the fractions of cooperators in the last 2� 103 time steps. 21

Result 1 If I +Z = 2; all realizations converge to a network where the largest
component consists of a core of cooperators with defectors lying on the
periphery.22 The parameter � has almost no e¤ect on the fraction of
cooperators (see the table below).23

� Interval for 'c (95%)
1 [0:42; 0:54]
5 [0:41; 0:53]
10 [0:43; 0:55]

The intuition for this result is as follows. If I+Z = 2 imitation of the defec-
tive action will necessarily lead defectors to interact with each other reducing
their average payo¤. The action imitation dynamics itself is able to limit the
spread of defection. Irrespective of the value of � defection in general invades
a small group of agents. The linking dynamics then �locates� these defectors
at the periphery of the network, but naturally exclusion (�) is not necessary in
maintaining higher levels of cooperation.

Result 2 If I + Z > 2 the fraction of cooperators increases with � and tends
to increase with Z and decrease with I.

To illustrate this result, we show in the next table the intervals for 'c and in
Figure 2 the observed distribution of 'c for each sample. Panels (a) - (d) show
the e¤ect of �, while (e) and (f) show the e¤ect of Z and I, respectively.

Interval for 'c (95%)
� I = 1;Z = 2 I = 1;Z = 3 I = 2;Z = 1 I = 3;Z = 1
1 [0:15; 0:32] [0:18; 0:35] [0:02; 0:13] [0:04; 0:15]
5 [0:31; 0:50] [0:42; 0:61] [0:14; 0:31] [0:11; 0:26]
10 [0:40; 0:59] [0:47; 0:66] [0:23; 0:42] [0:19; 0:36]

21 tmax is the total number of timesteps of each simulation. teq is the timestep s.t. the
system approximately equilibrates. We chose tmax = teq + 2000: teq depends on (I; Z). For
small noises v = 10�4 and " = 1

2
10�4, we found by inspection of the time series of 'c, that

teq < 3 � 104. Since this is a very imperfect measure because it is only considering action
convergence, we set tmax = 4� 104 in all cases that we report here. (Note, however, that our
Result 2 is related to action convergence).
22 In Figure 1 we have showed a typical example.

23 Intervals are asymptotic, with 'c 2
�b'c � 1:96q b'c(1�b'c)

100
; b'c + 1:96q b'c(1�b'c)

100

�
. It

should be clear that b'c is the average over 100 realizations�fractions of cooperators (i.e. 100
Monte Carlo (MC) simulations) that in turn are averaged over the last �max � �eq timesteps
in each MC simulation.
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Fig 2: Fraction of Cooperators (Cumulative Distribution)

What is the intuition for this result? If I+Z > 2 higher values of � increase
the fraction of cooperators. Since action imitation in these cases allows for
the infection of �many�agents with defection, exclusion (�) is very e¤ective in
raising the number of cooperators. Consider �rst the cases I = 1 and Z > I
(panels (a), (b), (e)). Cooperation has good chances, as the small information
radius forces defectors to interact with each other after action imitation. On the
other hand though (as Z (and thus Z+ I) is �large�relative to I) the quality of
information about potential new links is relatively bad and the linking dynamics
leads to more �erroneous�new links reducing the e¤ectiveness of the exclusion
mechanism. This is why the e¤ect of � is relatively less important in the case
Z > I compared to the case where I > Z: Now consider the case where Z = 1
and I > Z (panels (c), (d), (f)). Clearly, being informed is not per se good for
cooperation. Indeed, since agents imitate average behavior in this radius, the
higher is I the more probable is that a cooperator imitates defection. On the
other hand if the exclusion mechanism works (high �), the linking dynamics
is more accurate due to the higher quality of information and less �erroneous�
choices are made. Inspecting overall cooperation rates, it can be seen clearly
that the negative e¤ect of I on the action imitation process dominates the
positive e¤ect of I on cooperation through the linking dynamics. The latter
e¤ect though explains that � has a higher �marginal�e¤ect in the cases where
I > Z (compared with I < Z). Next we want to show some results on topology.

Result 3 Graphs obtained display an average clustering coe¢ cient and average
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distances that are both decreasing with I + Z.24

I + Z �c (i) �d (i)
2 0:531 7:6
3 0:237 5:8
4 0:088 4:1

Result 3 con�rms our intuition about some of the topological features of the
components created by the dynamics. Of course, given the homogenous capac-
ity constraint, the degree distribution is approximately degenerate.25 Average
clustering (�c (i)) and average distance ( �d (i)) are both decreasing with the search
radius I + Z. The search radius represents the extent of the locality in linking
dynamics. When I + Z is low, the probability that two �rst neighbors of any
agent i are connected themselves is very high, but since links are concentrated
within a small radius, the average distance between two nodes is large. When
I + Z is high, since each agent has more possible partners, the probability of
choosing a second neighbor decreases (and so does the average clustering). But
on the other hand links with nodes that are relative far away are shortcuts that
reduce average distances. Note that these features are independent of � and on
the particular combination of I and Z.

5 Extensions and Discussion of Assumptions

5.1 Heterogenous Noise

In this subsection we will relax the assumption of homogenous noise (A2) and
consider two alternative assumptions.
A20 : " = � (�)

�0 for some constants � > 0; �0 < 1:

A200 : " = � (�)
�00 for some constants � > 0; �00 > 1:

In particular Assumption 20 seems to us very worthwhile investigating, as
it is a case that is intuitively relevant in many applications. Note also that
whereas an action tremble always is equivalent to one player making a mistake, a
linking tremble will often require two players to simultaneously make a mistake.
So even if each individual player is equally likely to make either mistake, a
linking tremble is still (as noise tends to zero) in�nitely less likely than an
action tremble.26 Our results show that the conclusions from section 3 continue
to hold if and only if the probabilities of linking and action trembles are not too
di¤erent.

Proposition 3 (Rigid Links) Under A2 0 there exists a value � 2 (0; 1) s.t.
whenever �0 < � all stochastically stable states are contained in !CD2 :

24We measure these characteristics on the largest component.
25See Subsection 5.2. for a brief discussion related to this assumption.
26Jackson and Watts (2002) maintain the assumption of homogenous noise throughout the

paper in a context (where as in the present paper) links are bilaterally formed. It would be
interesting to see how (if at all) their results change under the alternative assumptions.
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Proof. Appendix.
If links are (su¢ ciently) more rigid than actions polymorphic states will

always emerge irrespective of the payo¤ parameters. The intuition is as follows.
First note that a change in the assumptions on noise naturally does not a¤ect the
set of absorbing states which is still given by Proposition 1. But if action choices
are a lot more noisy then link choices polymorphic states emerge, as action
experimentation will lead to a higher variation in behavior across agents. The
unperturbed dynamics then stabilizes polymorphic states in which cooperators
and defectors are not linked, because cooperators will always desire to link
with each other. As linking trembles are rare these states - while they are
relatively likely to be reached - are very hard to destabilize. In a sense the
assumption of rigid links reinforces the importance of the network in shaping
long-run outcomes. As linking decisions are subject to relatively less error the
endogenous network can sanction defectors more e¤ectively.
In other applications, for example when interactions are relatively anony-

mous, linking choice might be more noisy than action choice. In this case we
can state the following proposition.

Proposition 4 (Rigid Actions) Under A2 00 there exists a value � 2 (1;1)
s.t. whenever �00 > � all stochastically stable states are contained in !D1 :

Proof. Appendix.
If actions are (su¢ ciently) more rigid than links, full defection will always

emerge irrespective of the payo¤parameters. If link choices are very noisy agents
will relatively often connect to another agents they have no information about.
Of course in this context it is harder for cooperators to protect themselves from
exploitation. Note that in a sense Assumption 200 is closer to a setting in which
links are formed globally without information about the potential interaction
partners. It is quite intuitive that in such a setting defection stands the best
chances for survival.
We have seen that the outcomes of our model can change if alternative

assumptions on the relative importance of noise are used. The assumption of
homogeneous noise is thus not always innocuous. In fact Jackson and Watts
(2002) also conjecture that the results obtained in their model of coevolution of
interaction structure and action choices in a coordination game are sensitive to
these kind of changes.27 In the next subsection we discuss several other aspects
of the model that we think deserve further attention.

5.2 Alternative Assumptions

In this subsection we address in turn a number of variations of the basic model.
Learning about Actions
Let us start with our action imitation rule. We can think of three alternative

ways to formulate payo¤-biased imitation. Firstly agents could copy the most

27Bergin and Lipman (1996) show that stochastic stability is often sensitive to the pertur-
bation technology.
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successful agent in their information radius (instead of focusing on the average
payo¤s of each action).28 We think that our rule is more intuitive though,
as with this rule agents throw away some information that is a priori just as
relevant as the information considered. Note also that this alternative rule
yields di¤erent choices by agent i only whenever there is an agent k 2 N I

i jzk 6=
zi s.t. �

t�1
k > �

t�1
(N I

i (zi)) � �
t�1
(N I

i (:zi)). A second alternative rule
could be to compare the average payo¤ of the alternative action against their
own payo¤. Then agent i would decide di¤erently whenever �

t�1
(N I

i (zi)) �
�
t�1
(N I

i (:zi)) > �
t�1
i . But both conditions are unlikely to occur in our model,

as in both cases one agent (either k or i) has to face very di¤erent conditions from
all other agents in N I

i : Since the local nature of our model implies relatively
homogenous local topologies with high levels of clustering this is unlikely to
happen. A third possibility is that agents consider total instead of average
payo¤s when deciding to choose an action. Such an assumption would tend to
favor cooperative outcomes.29 We do not choose such an assumption though, as
it would imply forward-looking behavior that is absent in our model of myopic
agents. In particular when choosing an action myopic agents take as given the
cardinality of their interaction neighborhood and thus should be interested in
the average payo¤ per interaction. Using total payo¤s though would imply that
they anticipate having more (or less) links in the future as a consequence of
their action choice.30

Learning about Links
Next consider alternative link imitation rules. One possibility is that agents

search for new links globally. Note that as in this case the sets NZ
j \N I

i can be
empty an additional rule is needed to evaluate potential new links. Irrespective
of the speci�c form of such an additional rule, the results with global search could
change. Several simulations we performed show that the process often tends to
full defection in this case.31 The intuition is similar to that of Proposition 4, as
increasing the noise in link formation implies increasing the probability of the
formation of global links. Local search is a crucial element of our model.
Other alternative assumptions pertain to how individuals evaluate potential

new links. One could imagine that any agent i evaluates a link to j through the
average per interaction payo¤ of all agents that are playing the same action as
herself.32 We conjecture that such a rule would not change much qualitatively,
but outcomes might be more cooperative, as mutually cooperative links will
never be cut in order to form another new link. With the current rule though

28This assumption is often used in simulations. See Abramson and Kuperman (2001) or
Hanaki et. al (2007) among others.
29Hanaki et al. (2007) for example use total payo¤s as a criterium.
30Note, however, that given the homogenous linking constraint, near the long run both

rules (total payo¤s versus average payo¤ per interaction) should not yield very much dif-
ferent outcomes. (Something that would occur if agents could have an heterogenous degree
distribution).
31The results of these simulations are available upon request.
32Note that again as

n
h 2 NZ

j \NI
i jah = ai

o
can be empty an additional rule is needed

for this case.
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this is possible if the candidate node is linked to many successful defectors.
At last, we want to address the question of how to evaluate �worst links.�In

our model, �t�1min(N
1
i ) corresponds to the minimum payo¤ that player i obtains

from any of her �rst-order neighbors. If Z = 1 this seems the only reasonable
rule. Yet if Z > 1 other rules could be possible, as agents can have additional
information they might want to use. As all such rules (except for extremely
complicated ones) have severe (conceptual) drawbacks we decided to use the
most simple one.
Heterogenous Capacity Constraint
Another variation could be to allow for less degenerate degree distributions.

The homogeneous linking constraint allows us to obtain analytical results while
maintaining the spirit of the network analysis. Alternatively one could for ex-
ample assume that the capacity constraint of agent i (��i) is a random variable
with discrete uniform distribution of support [1; �] \ N. If E (��i) � �� (where
�� is our homogenous capacity constraint) absorbing states should not change
much. The reason is that agents focus on average (per interaction) payo¤s when
deciding on new links or actions.

6 Conclusions

We develop a simple model to study the coevolution of interaction structures
and action choices in Prisoners�Dilemma games. Agents are boundedly rational
and choose both actions and interaction partners through payo¤-based imita-
tion. We �nd that polymorphic states evolve under a wide range of parameters.
Whenever agents hold some information beyond their interaction partners de-
fectors and cooperators will never interact in stochastically stable states, i.e.
they are found in disconnected components. Otherwise graphs in stochastically
stable states can consist of a core of cooperators with defectors lying on the
periphery of the component. Simulating the model con�rms our analytical re-
sult that polymorphic states tend to emerge. The share of cooperators in such
states increases with the speed at which the network evolves, decreases with the
radius of information and increases with the radius of interaction. Consistently
with empirical �ndings on social networks, the networks we obtain display high
clustering coe¢ cients and short average distances. Two directions of further
research seem promising to us. On the one hand it would be interesting to
incorporate more realistic degree distributions in analytical models, that study
the coevolution of interaction structures and behavior. Yet it seems a di¢ cult
task to obtain analytical results in such settings. Also of some interest is how
(if at all) predictions of existing models that have analyzed coordination games
with best response dynamics change when more bounded rational learning rules
(like our imitation rule) are used.
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A Appendix: Proofs.

Proof of Proposition 1:
Proof. (i) If �i < �� potential partners for i have to be link constrained, i.e.
8j 2 N I+Z

i nN1
i : �j = ��: Else i and j would form a link. (ii) States with

monomorphic components only, where (i) holds, are absorbing, as no agent has
�possibilities to imitate,�as cardN I

i (:zi) = 0. (iii) We �rst consider incentives
to change links and show that in any absorbing state there cannot exist two
cooperators i and i0 separated by a path of defectors of any length. If i0 2 N I+Z

i ,
i and i0 will form a link. If not, cooperator i will form a link with defector
j0 at distance of at most I + Z. This link ij0 will be formed because the
cooperator is always willing to severe a link with a defector. On the other
hand defector j0 (connected to i through some path of defectors) is willing to
form a link with i, whenever NZ

i \ N I
j0 contains only defectors, as in this case

�t�1min(N
1
j0) = d < �

t�1
(NZ

i \N I
j0). Repeating this argument it can be seen that

the distance between i and i0 gets shorter and shorter until �nally i0 2 N I+Z
i :

But then i and i0 will link and all mixed links will eventually be cut. It follows
analogously that each defector j must lie at a distance of at most I + Z from
cooperator i.
Next we show that such states are indeed absorbing under the conditions in

Proposition 1 (iii). A su¢ cient condition is that defectors form a clique (i.e.
are all linked with each other). If either I � 2 or Z = 1 this is also a necessary
condition. We start with linking deviations. Assume that either I = 1 or Z = 1
and that there is only one cooperator i linked to some of a set of defectors. Any
defector at a distance of at most I + Z has incentives to link to cooperator i.
If I = 1, defectors observe only defectors interacting with cooperator i. But
then �t�1min(N

1
j ) = d < �

t�1
(NZ

i \ N I
j ). If I > 1, any defector may observe in

addition cooperators other than i, but since Z = 1 these cooperators interact
only with cooperators and again �t�1min(N

1
j ) = d < �

t�1
(NZ

i \ N I
j ). Thus new

links might be formed. This rewiring can be part of a recurrent set if and only
if N I+Z

i remains unchanged. It follows that the set of defectors must form a
clique. Now assume I > 1 and Z > 1. Again cooperator i has incentives to
sever any of her mixed links. The incentives of i�s potential partners depend on
how many cooperators interact with the defectors they observe. To characterize
all structures in this case is impossible without further assumptions.
Finally consider agents�incentives to change actions. Assume that x defec-

tors form a clique and that there is only one cooperator i linked with them.33

We show that there exists a threshold for the interaction radius, bZ(I) such that
if Z < bZ(I) there always exist values of the payo¤ parameters for which such
33Of course x � 2 has to hold.
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an action pro�le is absorbing. To simplify the exposition we normalize c = 1
and b = 0. It should be clear that if i does not want to change action, then no
other cooperator h has incentives to do so. For cooperator i and any defector j
in the clique,

�i
�
N I
i (D)

�
= �j(N

I
j (D)) = �j =

nZj � (x� 1) + (x� 1) d
nZj

:

Action choices are absorbing if and only if �i
�
N I
i (C)

�
� �j � �j(N

I
j (C)).

Now we show that for each I, there exists bZ(I) s.t. if Z � bZ(I), it is al-
ways possible to �nd payo¤ parameters such that the previous inequality is

true. First of all note that �j =
nZj �(x�1)+(x�1)d

nZj
is monotonously increasing

in both Z and d: The sample payo¤s �i
�
N I
i (C)

�
and �j(N I

j (C)) are increas-
ing in a: If Z < I an increase in Z has two e¤ects. On the one hand each
cooperator in the sets N I

i and N
I
j interacts with more cooperators increasing

the sample payo¤. But on the other hand, more cooperators interact with
defectors lowering the sample payo¤s. The net e¤ect depends on the precise
structure of the component. Consider �rst the case where Z is small, in par-
ticular where Z = 1: Then limd!0�j =

1
x �

1
2 . On the other hand, for any

a > 1
2 : �i

�
N I
i (C)

�
=
( ���x�� )a+'i(I)a

'i(I)+1
and �j(N I

j (C)) =
( ���x�� )a+'j(I)a

'j(I)+1
, where

'i (I) > 'j (I) are, respectively, the number of cooperators h 6= i contained in
N I
i and N

I
j . Then whenever a >

1
x

��
���x ,

�i
�
N I
i (C)

�
> �j(N

I
j (C)) > �j (d! 0) � 1

x
:

On the other hand for Z very large,

�j (d! 0)! 1 > �i
�
N I
i (C)

�
� �j(N I

j (C))! a:

Consequently there exists a threshold value bZ(I), such that if Z < bZ there
always exists payo¤ parameters for which there are no incentives to imitate
actions.34

s�trees
For most of the following proofs we will rely on the graph-theoretic tech-

niques developed by Freidlin and Wentzell (1984).35 They can be summarized
as follows. For any state s an s�tree is a directed network on the set of ab-
sorbing states 
, whose root is s and such that there is a unique directed path
joining any other s0 2 
 to s: For each arrow s0 ! s00 in any given s�tree the
�cost�of the arrow is de�ned as the minimum number of simultaneous trembles
necessary to reach s00 from s0. The cost of the tree is obtained by adding up the
costs of all its arrows and the stochastic potential of a state s is de�ned as the
minimum cost across all s�trees.
34Note also that �j (d! a) =

(x�1)a+1
x

> a > �j(N
I
j (C)) (no intersection).

35See also Young (1993, 1998).
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Proof of Lemma 1:
Proof. Let G0 denote the set of graphs consisting of at most two disconnected
components. Let G1 be the set of graphs one tremble away from some network
in G0: De�ne G2 to be graphs not in G0[G1 that are one tremble away from G1:
For � > 2 let G� denote graphs not in Gj for any j < �; that are one tremble
from G��1: Note that these exhaust all graphs that could be part of absorbing
sets. Consider an absorbing state graph G 2 G� ; � > 0: Transitions from G
to some G0 2 G��1 can occur after just one tremble, as it is always possible
that two players i and h; with �(i) 6= �(h) and zi = zh form a link by mistake.
This implies that for any s with G 2 G� ; there exists s0 with G0 2 G��1 s.t.
 (s0) �  (s): (Starting from an s�tree one can always redirect an arrow from
s to a state s0 which is one tremble away). Thus to complete the proof we show
(i) that the stochastic potential of states with a graph in G0 is smaller than that
of states with a graph in G1 and (ii) that the stochastic potential of connected
monomorphic states is smaller than that of monomorphic states where graphs
consist of two disconnected components. Start with an absorbing state s with
G 2 G1 and �nd a state s0 with graph G0 2 G0: We know that X(s; s0) = 1
and of course X(s0; s) � 1: We will now see in which cases strict inequality
obtains. Consider �rst the transition through which s0 is reached from s: For
this transition a link ih is formed by mistake between i and h s.t. �(i) 6= �(h)
and zi = zh: If now i and h have neighbors, say j and k, that are not linking
constrained, then, whenever I + Z > 2; (at least) the link jk will be formed
before an absorbing state is reached. But then at least two trembles are needed
for the transition s0 ! s and consequently X(s0; s) > 1: Note that such two
states s0 and s can always be found. What happens if for two states s with
G 2 G1 and s0 with graph G0 2 G0 we have that X(s0; s) = 1? First note that
for any s0 a state s00 with G00 2 G0 can be found such that a) X(s00; s) > 1
and b) s0 can be reached from s00 via a series of �one-trembles.�But then we
have that  (s0) �  (s00). Focus thus on states s0 with graph G0 2 G0 where
X(s0; s) > 1 and X(s0; s) = 1 for some state s with G 2 G1: Then starting from
a minimal s�tree, add an arrow s! s0: Consider the old path s0 ! s and take
the �rst s000 on that path (this could be s0) such that the arrow pointing away
from s000 involves at least two trembles. Cut this arrow. Note that such a state
s000 must exist because at some point (at least) two links have to be severed to
separate the component of players.36 (In e¤ect, s000 must have a graph in G0
and to separate the component at least two trembles will be needed: any two
agents i and h such that in s : �(i) 6= �(h) who cut a link starting from s0 will
be in each other�s search radius and thus for s000 to be absorbing either have to
form a link (but then s0 = s000) or either of them has to form a link with another
agent). Then starting from an s�tree we have created an s0�tree, by cutting
an arrow with a �cost�exceeding two and adding an arrow with a cost of one.
Consequently we have shown that for any s with G 2 G1 there exists a state
s000 with graph G000 2 G0 s.t.  (s000) <  (s): The argument can be repeated

36Note that if starting from s0 the component is separated at least two trembles are needed
and thus s0 = s000:
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starting from a monomorphic state s with two disconnected components. This
completes the proof.
Proof of Lemma 2:

Proof. It follows from Lemma 1 that if stochastically stable states that involve
full cooperation exist at least one of them has to be connected, i.e. has to be
contained in the set !C1 . We will now show that for any s 2 !C1 there exists
an alternative state in !CD that has strictly less stochastic potential. For any
s 2 !D consider the state s0 2 !CD reached via one tremble from s in the
following way. Assume one player i trembles and switches to action D: Then
for all agents j 2 N I

i the average payo¤ of action D will exceed that of action
C: Assume � agents selected from that set switch to action D and that the
subgraph containing these agents is cut o¤ (through rewiring of cooperating
neighbors who prefer being linked to a cooperator) only after �D > �� agents in
total (including the mutant) have switched to D: Note that irrespective of the
payo¤ parameters and of I and Z this is always possible. State s0 contains thus
two disconnected components, one consisting of �D > �� defectors and one of
n��D cooperators. The reverse transition (s0 ! s) will need at least 2 trembles,
as one link tremble has to occur to merge the two components and in addition at
least one of the defectors has to tremble to switch to cooperation. (Note again
that any single (non-isolated) defector will have a higher per interaction payo¤
than cooperators). Next take a minimal s� tree and add the arrow s ! s0 at
a cost of X(s; s0) = 1: Then consider the path s0 ! s: If there is no other state
on this path, cut the arrow s0 ! s. This yields an s0�tree with  (s0) <  (s): If
there is a state s00 2 !C on this path, then we know that X(s0; s00) � 2 (because
a single cooperator in a component of defectors will never be imitated). We can
cut the arrow s0 ! s00 and have constructed again an s0�tree with  (s0) <  (s):
If s00 2 !CD then we know that X(s00; s) � 2 by the same argument as above.
Cutting the arrow s00 ! s leaves us with a s00�tree that has  (s00) <  (s): This
completes the proof.
Distance between graphs
Before stating the next proof let us introduce the following metric. De�ne

y(G;G0) =
P

ij
j(lij lji)�(l0ij l0ji)j

2 to be the distance between the graphs G and
G0 associated with states s and s0 respectively. The distance y(G;G0) between
two graphs simply measures the number of links that di¤er between the two
graphs.37 Furthermore denote �Zi (t) the share of agents j; k 2 NZ

i at time t
that are Z -th order neighbors themselves. �Zi (t) is a measure of local clustering
in i�s interaction neighborhood.
Proof of Lemma 3:

Proof. (i) Starting from a state s 2 !D1 we construct a state s0 2 !CD2 as
follows. Assume that d�Ce agents (where �C 2 R) tremble and switch to action
C at time t:We want to consider the action choice of a defector k linked with a
cooperator i: Assume that all other cooperators are (1st�; 2nd� ....Zth�order)
neighbors of i; i.e. are all interacting with i. The sample payo¤ of cooperation
that agent k observes is given by �

t
(N I

k (C)) = b + (a � b)h(�C ; n
Z ; �Zi (t))

37This metric has been used previously by Goyal and Vega-Redondo (2005).
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where h(�) is an increasing function of clustering and of �C . On the other hand
the sample payo¤ of defection that agent k observes is given by �

t
(N I

k (D)) =

d+ (c� d)g(�C ; nZ ; �Zi (t)) where g(�) is a decreasing function of clustering and
of �C . Denote the value of �C that solves �

t
(N I

k (C)) = �
t
(N I

k (D)) by �
�
C :

This value is in general a complicated expression but note that (@��C=@a) < 0.
Now whenever agent k has incentives to switch to cooperation (i.e. whenever
�
t
(N I

k (C)) > �
t
(N I

k (D))) then xC � nZ+1��C agents can be infected through
the ensuing operation of the unperturbed action dynamics alone.
Through the operation of the unperturbed linking dynamics, all cooperators

will sever their remaining links with defectors and form links among each other.
(Note that this is possible because xC + �C � �� + 1 so these agents can always
at least form the complete component. Furthermore they have incentives to do
so, as �tmin(N

1
h) = b < �

t
(NZ

j \ N I
h) for any pair of cooperating agents j; h.

Note also that by construction all these agents are in each other�s search set).
(ii) Consider the reverse transition from s0 2 !CD2 to s 2 !D1 . Essentially

such a transition can occur in two ways. Either the cooperative component
�C(s0) is �rst infected by defection and then the graph is rewired to obtain state
s. (In this case the transition is indirect, i.e. passes through other absorbing
states among which at least one is in !D2 .) Or �rst a su¢ cient number of linking
trembles has to occur s.t. the ensuing operation of the unperturbed dynamics
permits infecting all agents with defection while rewiring the graph. (In this
case the transition is direct).
Consider the �rst type of transition. For this transition �Act:D action trem-

bles are needed to infect the cooperative component and then �LinkD (y(G;G0))
linking trembles are needed to rewire the graph. Now note that while X(s0; s) =
�Act:D +�LinkD (y(G;G0)) is strictly increasing with the payo¤parameter a 2 (d; c);
X(s; s0) is decreasing in a. Consequently there exists ba1(s) s.t. X(s0; s) >
X(s; s0) holds whenever a > ba1(s): Now consider the second type of transition.
First note that a cooperating agent i 2 �C(s0) linked to a defector j 2 �D(s0)
(after a linking tremble) has incentives to switch to defection if and only if

a <
nIi (

C
D )[z

i
Dd+ (1� ziD)c]� ziCb

1� ziC
, (4)

where the factor nIi (
C
D ) gives the ratio of cooperators and defectors in the set

N I
i and z

i
D (z

i
C) is the share of defectors these defectors (cooperators) interact

with on average. Note also that whenever (4) fails no links will be formed
between neighbors h of i and neighbors k of j; unless h has a neighbor who is
playing defection. (If h does not have a defector neighbor, then �tmin(N

1
h) =

a > �
t
(NZ

k \N I
h) if either j =2 NZ

k \N I
h or i 2 NZ

k \N I
h : But if i =2 NZ

k \N I
h

i.e. if NZ
k \ N I

h \ �C(s0) = ? then a failure of (4) implies �tmin(N
1
h) = a >

�
t
(NZ

k \ N I
h)). The number of trembles needed to induce such a transition is

thus strictly increasing with the payo¤ parameter a. Consequently there exists
a threshold level ba2(s) such that whenever a > ba2(s), X(s0; s) > X(s; s0): Thus
whenever a > ba(s) = maxfba1(�);ba2(�)g we have that X(s; s0) < X(s0; s). This
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completes the proof.
Proof of Lemma 4:

Proof. Starting from any polymorphic absorbing state s 2 !CD1 with � sub-
graphs of defectors one linking tremble su¢ ces to reach the absorbing state s0

where one component contains � � 1 subgraphs and there is a second compo-
nent of defectors. (Simply cut the (only) link between the cooperating core and
the cooperator that sustains a subgraph of defectors). But then  (s0) �  (s):
(Starting from a minimal s�tree simply add the arrow s! s0 and cut the �rst
arrow leaving s0 on the path (s0; :::; s)). Repeating this argument it should be
clear that there exists a state s00 consisting of a cooperator-component and �
defector components with  (s00) �  (s). But then any two of these defector
components can be linked via one tremble, implying that there exists a state
s000 2 !CD2 such that  (s000) �  (s00) �  (s): Now whenever I + Z > 2 a
transition from any state siv with two defector components and one cooperator
component to a state s000 2 !CD2 can always be constructed such that after one
linking tremble two more agents that are under the linking constraint observe
each other and want form a link. Consequently y(G(siv); G(s000)) � 2. But
then starting from a minimal siv�tree adding the arrow siv ! s000 and cutting
the arrow from the last state on the path (s000; ::::siv) yields an s000�tree with
 (s000) <  (siv) �  (s00) �  (s):
Proof of Proposition 2:

Proof. Lemma 2 shows that fully cooperative states are not stochastically
stable. (i) Take any two states s 2 !D1 and s0 2 !CD2 with X(s; s0) < X(s0; s)
(such states always exist if a > ba as we have seen in Lemma 3). Starting
from a minimal s�tree consider the path from s0 to s. Denote this path by
(s0; :::; s). We know from the proof of Lemma 3 that no state on this path will
be contained in !C or !CD (with the exception of the state s0). a) If (s0; :::; s) =
(s0; s) i.e. if the transition from s0 to s is direct we can infer immediately that
 (s0) <  (s). (Just redirect the arrow s0 ! s: This yields an s0�tree with
 (s0) =  (s) + [X(s; s0)�X(s0; s)] <  (s)). b) Next assume that there exists
a state s00 2 (s0; :::; s) with s00 2 !D2 : Note that X(s00; s) > X(s; s0) always holds
under the assumption that a > a�(�), as can be read from the proof of Lemma
3. But if X(s00; s) > X(s; s0) we can �nd an s00�tree with  (s00) <  (s) simply
adding the arrow s ! s0 and deleting the arrow s00 ! s: Thus s cannot be
stochastically stable. On the other hand it follows from Lemma 1 that states
in !D� where � > 1 cannot be stochastically stable either. (c) Furthermore it
follows from the proof of Lemma 3 that whenever the path (s0; :::; s) in a minimal
s�tree contains a state s000 2 !D1 ; it also contains a state s00 2 !D2 : But we have
already seen that in this case s is not stochastically stable. Consequently all
stochastically stable states are contained in !CD� where � � 2. (ii) follows
directly from Lemma 1 and Lemma 4.
Proof of Proposition 3:

Proof. First note that Lemma 1 still holds and thus all monomorphic stochas-
tically stable states have to be connected. Now starting from any state s 2 !D1
construct an alternative state s0 2 !CD2 as follows. Assume that starting from
s a tremble by ��C agents occurs that is imitated by x agents s.t. subsequently
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��C + x � �� + 1 cooperating agents exist that are all in each other�s search sets.
These agents will prefer to form links with each other and to sever their links
with defectors. The unperturbed dynamics converges to a polymorphic state.
Now if �0 < � � (��C)

�1 2 (0; 1), this is in�nitely more likely to occur (in the
limit as " ! 0) as a single linking tremble. Now take any minimal s�tree and
add the arrow s! s0: On the path from s0 to s (in the old tree) there has to be
a state s00 from which a linking tremble has to occur to reach s: Cut the arrow
leaving from s00: The resulting tree is an s00�tree where s00 has less stochastic
potential then s:38 Now s00 can either be polymorphic what completes the proof
(in fact s00 can coincide with s0) or it can be monomorphic (with s00 2 !D2 ) but
then neither s nor s00 can be stochastically stable because of Lemma 1. Now
together with Lemma 2 this implies that all stochastically stable states have to
be in !CD2 :
Proof of Proposition 4:

Proof. Again observe that Lemma 1 still holds. Starting from any polymorphic
state s 2 !CD2 - where no defectors and cooperators are linked - construct an
alternative state s0 2 !D1 as follows. Assume that starting from s a linking
tremble by 2��L agents occurs (�

�
L from each component) that form a link with

each other. Take ��L to be big enough s.t. the unperturbed dynamics afterwards
converges to a monomorphic state. Now if �00 > � � 2��L > 1 this is in�nitely
more likely to occur (in the limit as � ! 0) than a single action tremble. Now
take any minimal s�tree and add the arrow s ! s0: On the path from s0 to s
(in the old tree) there has to be a monomorphic state s00 from which an action
tremble has to occur to reach s (it can well be that s00 coincides with s0). Cut
the arrow leaving from s00. The resulting tree is an s00�tree where s00 has less
stochastic potential then s: Now together with Lemma 1, Lemma 2 and Lemma
4 this implies that all stochastically stable states have to be in !D1 .

38Of course now as the probabilities of the two kinds of trembles are not of the same order,
one cannot just sum the number of trembles to obtain the stochastic potential but one has
to weight them with their respective probabilities (where less likely trembles have a higher
weight).
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