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Sequential sharing rules for river sharing problems

Erik Ansink and Hans-Peter Weikard ∗

Abstract

We analyse the redistribution of a resource among agents who have claims
to the resource and who are ordered linearly. A well known example of
this particular situation is the river sharing problem. We exploit the linear
order of agents to transform the river sharing problem to a sequence of two-
agent river sharing problems. These reduced problems are mathematically
equivalent to bankruptcy problems and can therefore be solved using any
bankruptcy rule. Our proposed class of solutions, that we call sequential
sharing rules, solves the river sharing problem. Our approach extends the
bankruptcy literature to settings with a sequential structure of both the agents
and the resource to be shared. In the paper, we first characterise a class of
sequential sharing rules. Subsequently, we apply sequential sharing rules
based on four classical bankruptcy rules, assess their properties, and compare
them to four alternative solutions to the river sharing problem.

Keywords: river sharing problem, sequential sharing rule, bankruptcy prob-

lem, water allocation

JEL classification: D63, D71, Q25

1 Introduction

In this paper we analyse the redistribution of a resource among agents who have
claims to the resource and who are ordered linearly. Our choice for this particular
situation is motivated by the following two examples.
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The Netherlands. E-mail: erikansink@gmail.com. We thank Carmen Marchiori, Arjan Ruijs, and
Ivan Soraperra for providing comments on earlier versions of this paper. Part of this research was
done while the first author was visiting the Department of Economics at Queen Mary, University
of London.
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The first example is the distribution of intergenerational welfare (Arrow et al.,
2004). The agents are the generations, ordered linearly in time. Each generation is
endowed with certain resources, but also has a claim to inherit part of the resources
of the previous generation. A specific problem of this kind is the climate change
problem, where each generation adds to the stock of greenhouse gasses, but also
makes a claim to previous generations’ mitigation efforts (Dasgupta et al., 1999;
Weikard, 2004; Davidson, 2008).

The second example is the river sharing problem (Ambec and Sprumont, 2002;
Parrachino et al., 2006; Carraro et al., 2007). This is the topic of this paper. In
the river sharing problem, the agents are countries (or water users in general),
ordered linearly along a river. On the territory of each agent tributaries and
rainfall add water to the river. This constitutes the agent’s endowment of river
flow. Each country also has a claim to river water. These claims can be based on
any of a wide range of principles for river sharing (Wolf, 1999). Two common
principles for river sharing are absolute territorial sovereignty (ATS) and absolute
territorial integrity (ATI) (Salman, 2007). ATS prescribes that each agent has the
right to all water on his territory while ATI prescribes that each agent has the right
to all upstream water. Though these extreme principles are not often invoked in
practice, agents’ claims are often larger than their endowments, as illustrated
for instance by Egypt’s large claim to water in the Nile river basin. Agents’
overlapping claims to river water make water a contested resource (Ansink and
Weikard, 2009).

In both examples, redistribution of the resource endowments may be desir-
able, for instance when some agents have large endowments but only small claims
(cf. Bossert and Fleurbaey, 1996). We exploit the linear order of agents to deter-
mine this redistribution using an axiomatic approach. Using two very natural
requirements, the order of agents allows us to transform the river sharing prob-
lem to a sequence of two-agent river sharing problems that we call reduced river
sharing problems. Reduced river sharing problems are mathematically equiva-
lent to bankruptcy problems (Aumann and Maschler, 1985; Young, 1987; Moulin,
2002). Therefore we can use sharing rules from the bankruptcy literature to solve
these reduced river sharing problems. In each of these reduced problems, water
rights are allocated to an agent and the set of his downstream neighbours. As in
bankruptcy problems, our proposed class of solutions—denoted sequential shar-
ing rules—is based on the agents’ claims. Sequential sharing rules are constructed
by the recursive application of a bankruptcy rule to the sequence of reduced river
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sharing problems.
In a bankruptcy problem, a perfectly divisible resource (usually called the es-

tate in this literature) is to be distributed over a set of agents who have overlapping
claims. A solution to a bankruptcy problem is a sharing rule (or alternatively, a
rationing scheme), that is based on the agents’ claims to the resource. Various ax-
iomatic approaches to the construction of such sharing rules have been analysed
(cf. Herrero and Villar, 2001; Thomson, 2003).

In a river sharing problem, agents are ordered linearly, characterised by an
initial resource endowment and a claim to the resource. Claims are exogenous
and may be smaller or larger than an agent’s endowment. As in the bankruptcy
problem, we assume scarcity of the resource. River sharing problems differ from
bankruptcy problems in two ways. First, there is a difference in the position of the
agents. In the standard bankruptcy problem, all agents have equal positions. In a
river sharing problem, agents are ordered linearly, reflecting the direction of river
flow. Therefore, the agents’ claims have a sequential structure, linking the river
sharing problem to bankruptcy problems with a priority order (cf. Moulin, 2000).
Second, there is a difference in the initial state of the resource. In a bankruptcy
problem, the resource is initially completely separated from the agents. In a river
sharing problem, the resource is initially endowed to the agents. This endowment
of resources links our approach to reallocation problems (cf. Fleurbaey, 1994;
Klaus et al., 1997). Both differences play a key role in the construction of the class
of sequential sharing rules.

There are two reasons for solving river sharing problems using bankruptcy
rules.1 First, as indicated above, both types of problems have many common
properties. Because the properties of bankruptcy rules are well understood, these
rules are logical candidates to be applied to river sharing problems too. The
second reason is based on current practices in water allocation. Many two-agent
water rights disputes are solved using variants of bankruptcy rules, for instance
equal sharing or sharing proportional to some objective criterion (for instance
population or the amount of irrigable land, see Wolf, 1999). Often, these solutions
are explicitly proposed by third parties or joint river basin committees, but they
can also be the result of negotiations between the agents. This paper shows the
logical extension of such sharing rules for river sharing problems with more than

1The standard approach to analyse river sharing problems is to apply non-cooperative game-
theoretic models (cf. Carraro et al., 2007; Ansink and Ruijs, 2008). The merit of the axiomatic
approach employed in this paper is to complement, support, and improve our understanding of
the outcomes of these strategic models.
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two agents.
This paper makes two novel contributions. First, our approach extends the

bankruptcy literature to settings with a sequential (or spatial) structure of both the
agents and the resource to be shared.2 Second, we provide axiomatic foundations
for a class of solutions to the river sharing problem that satisfy some attractive
properties.

The paper is organised as follows. In section 2 we introduce the setting of
the river sharing problem. In section 3 the class of sequential sharing rules is
characterised. In section 4 we apply four sequential sharing rules, based on four
classical bankruptcy rules, to a numerical example. In section 5 some properties
of sequential sharing rules are assessed. In section 6 we compare our approach
to four alternative solutions to the river sharing problem. In section 7 we discuss
the results and conclude.

2 The river sharing problem

Consider an ordered set N of n ≥ 2 agents located along a river, with agent 1 the
most upstream and n the most downstream. Agent i is upstream of j whenever
i < j. Denote by Ui = { j ∈ N : j < i} the set of agents upstream of i, and denote by
Di = { j ∈ N : j > i} the set of agents downstream of i. On the territory of i, rainfall
or inflow from tributaries increases total river flow by ei ≥ 0; e = (e1, . . . , en).
River inflow ei can be considered the endowment of i. This does not imply that
agent i has property rights to ei. Rights are assigned as a solution to a river
sharing problem, as discussed below. In addition to river inflow ei, each agent
is characterised by having a claim ci ≥ 0; c = (c1, . . . , cn) to river flow. We do not
impose which portion of an agent’s claim is directed to e1, e2, . . . etc.

This information suffices to define our river sharing problem.

Definition 1 (River sharing problem). A river sharing problem is a triple ω =

〈N, e, c〉, with N an ordered and finite set of agents, e ∈ Rn
+ and c ∈ Rn

+.

To delineate the setting of the river sharing problem, let the total available

2Branzei et al. (2008) also analyse bankruptcy rules in a flow network. In their approach,
however, the flows are cost functions that are used to implement bankruptcy rules in a network
approach.
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Figure 1: The river sharing problem for n = 4; nodes are agents and arrows
indicate water flows.

water on the territory of agent i be denoted by

Ei ≡ ei +
∑
j∈Ui

(e j − x j), (1)

where x = (x1, . . . , xn) is a vector of allocated water rights. This is the sum of river
inflow on the territory of i and any unallocated upstream water. For the river
sharing problem to be relevant, we make the following assumption.

Assumption 1. Agent n claims more than what is available to him: cn > En.

This assumption implies that cn > en, and it assures that there is contested
water throughout the river (see lemma 1, below). Without this assumption,
agent n could satisfy his claim completely and hence there would be no problem.

Denote by Ω the set of relevant river sharing problems that satisfy assump-
tion 1. A sharing rule allocates water rights to each agent.

Definition 2 (Sharing rule). A sharing rule is a mapping F : Ω→ Rn that assigns to
every river sharing problemω ∈ Ω a water rights allocation vector x = (x1, . . . , xn),
x ∈ Rn

+, such that (a)
∑

i∈N xi =
∑

i∈N ei, (b) 0 ≤ x ≤ c, and (c) xi ≤ ei +
∑

j∈Ui
e j ∀i ∈ N.

The allocation of water rights to agent i is Fi(ω) = xi. Requirement (a) of the
sharing rule imposes efficiency: no water rights remain unallocated. Requirement
(b) says that agents receive a non-negative allocation that is bounded by their
claim. Requirement (c) is a feasibility constraint. Figure 1 illustrates a river
sharing problem for n = 4.

3 Characterisation of sequential sharing rules

Solutions from the bankruptcy literature cannot be directly applied to the river
sharing problem, because the resource is distributed over the agents. The linear
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order of agents along the river and the unidirectionality of river flow enable us,
however, to represent the river sharing problem as a sequence of reduced river
sharing problems. These reduced river sharing problems are mathematically
equivalent to bankruptcy problems. In this section we propose two axioms for
a solution to the river sharing problem. They lead to the definition of reduced
river sharing problems and they characterise the class of sequential sharing rules
using this definition.

Only n’s Excess Claim Matters. For each river sharing problem ω = 〈N, e, c〉,
and each related problem ω′ = 〈N, e′, c′〉 such that e′ = (e1, . . . , en−1, e′n) and c′ =

(c1, . . . , cn−1, c′n) with e′n = 0 and c′n = cn − en, we have Fi(ω) = Fi(ω′) ∀i ∈ N.

This property says that allocation of upstream contested water should not
be affected by the part of the claim of agent n that can be satisfied with the
endowment of agent n. In other words, only n’s excess claim cn − en is effective
(by assumption 1, cn − en > 0). This is a mild requirement, because n is not
confronted with any claims from downstream agents. In addition, there is no
alternative use for en than to allocate it to n; endowment en is uncontested. Hence,
it is very natural that en is used to partially satisfy cn.

No Advantageous Downstream Merging. For each river sharing problem ω =

〈N, e, c〉, and each related problem ω′ = 〈N′, e′, c′〉 such that N′ = N \ {n} and
e′ = (e1, . . . , en−2, e′n−1) with c′ = (c1, . . . , cn−2, c′n−1) and e′n−1 = en−1 + en, and c′n−1 =

cn−1 + cn, we have Fi(ω) = Fi(ω′) ∀i < n − 1.

This property pertains to the possibility that agents n − 1 and n consolidate
their claims and endowments and present themselves as a single claimant. The
axiom prescribes that the allocation to upstream agents is not affected by such
behaviour. Note that the axiom is similar in spirit to the No Advantageous Merging
or Splitting axiom (see O’Neill, 1982; Thomson, 2003).

Together, Only n’s Excess Claim Matters and recursive application of No Advan-
tageous Downstream Merging prescribe that downstream river flow is first used to
(partly) satisfy downstream claims. Only claims in excess of downstream river
flow may affect upstream water allocation. Hence, to derive solutions we can use
excess downstream claims, which we denote by cDi :

cDi ≡

∑
j∈Di

(c j − e j). (2)
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Consequently, the corresponding downstream endowments are eDi = 0. Only
n’s Excess Claim Matters and No Advantageous Downstream Merging are a first step
to approach the river sharing problem using bankruptcy rules by assuring that
downstream agents cannot claim something that they already possess.

Using (2), the two axioms lead directly to the representation of a river sharing
problem ω as a sequence (ω1, . . . , ωn) of reduced river sharing problems ωi.

Definition 3 (Reduced river sharing problem). A reduced river sharing problem is
a tripleωi = 〈Ni,Ei,Ci〉, with two agents Ni = {i,Di}, who have claims Ci = {ci, cDi},
to the resource Ei.

Note that, in slight abuse of notation, we denote the second agent in the
reduced river sharing problem by Di. This set of agents is treated as a single
claimant. In each reduced problem ωi, available river flow Ei is distributed
between i and Di. By assumption 1, there is contested water throughout the river,
as stated in the following lemma.

Lemma 1. In each reduced river sharing problem the sum of claims exceeds
available water: Ei < ci + cDi ∀i ∈ N.

Proof. See Appendix.

Lemma 1 assures that a reduced river sharing problem is a river sharing prob-
lem according to definition 1, with two agents and no endowment downstream.
Therefore, a sharing rule assigns to every reduced river sharing problem ωi a
water rights allocation vector x = (xi, xDi), such that xi + xDi = Ei.

A reduced river sharing problem is mathematically equivalent to a bankruptcy
problem.3 Hence, bankruptcy rules can be applied to any reduced river sharing
problem. In order to solve a river sharing problem, a bankruptcy rule is applied
to the sequence (ω1, . . . , ωn) of its reduced problems. Because of (1), however, the
reduced problems and their solutions are dependent on each other. Because E1 =

e1 by definition,ω1 is the only reduced problem whose outcome is independent of
the outcome of other reduced problems. Its solution—allocating x1 to agent 1—
determines E2 which enables the formulation of and a solution to ω2, etc. Hence,
the sequence of reduced problems can be solved recursively in the linear order of
agents along the river. This is summarised in the following proposition.

Proposition 1. For each river sharing problem ω = 〈N, e, c〉 and its corresponding
sequence of reduced river sharing problems (ω1, . . . , ωn), we have Fi(ω) = Fi(ωi) ∀i ∈ N.

3 In the concluding section we will discuss a difference in interpretation.

7



The water rights allocated to each agent are equal for the solution of the river
sharing problem and for the recursive solution of its corresponding sequence of
reduced problems. Given the vectors of claims and endowments, the allocation to
agent i is therefore independent from the number of agents in Di, the distribution
of their claims (ci+1, . . . , cn) and the distribution of their endowments (ei+1, . . . , en);
only the aggregate claims

∑
j∈Di

c j and endowments
∑

j∈Di
e j matter.

Only n’s Excess Claim Matters and No Advantageous Downstream Merging char-
acterise a class of rules that we call sequential sharing rules. Sequential sharing
rules are constructed by the recursive application of a bankruptcy rule to the
sequence of reduced river sharing problems. In the next sections we focus on
four classical bankruptcy rules and assess the properties of their corresponding
sequential sharing rules.

4 Application

In this section we apply four sequential sharing rules, based on four classical
bankruptcy rules, to an illustrative river sharing problem. The four classical rules
are the proportional rule, constrained equal awards, constrained equal losses,
and the Talmud rule (Herrero and Villar, 2001). In our notation for two-agent
problems, the definitions of the four rules are as follows.

Proportional rule (PRO). For allωi = 〈Ni,Ei,Ci〉 ∈ Ω, there exists λ > 0, such that
xPRO

i = λci and xPRO
Di

= λcDi .

PRO assigns each agent a share of the resource in proportion to the agents’
claims.

Constrained equal awards (CEA). For all ωi = 〈Ni,Ei,Ci〉 ∈ Ω, there exists λ > 0,
such that xCEA

i = min{ci, λ} and xCEA
Di

= min{cDi , λ}.

CEA assigns each agent an equal share of the resource, subject to no agent
receiving more than his claim.

Constrained equal losses (CEL). For all ωi = 〈Ni,Ei,Ci〉 ∈ Ω, there exists λ > 0,
such that xCEL

i = max{0, ci − λ} and xCEL
Di

= max{0, cDi − λ}.

CEL assigns each agent a share of the resource such that their losses compared
to their claim are equal, subject to no agent receiving a negative share.
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Talmud rule (TAL). For all ωi = 〈Ni,Ei,Ci〉 ∈ Ω, there exists λ > 0, such that

xTAL
i =

 min
{

1
2 ci, λ

}
if Ei ≤

1
2
(
ci + cDi

)
,

ci −min
{

1
2 ci, λ

}
otherwise,

xTAL
Di

=

 min
{

1
2 cDi , λ

}
if Ei ≤

1
2
(
ci + cDi

)
,

cDi −min
{

1
2 cDi , λ

}
otherwise.

TAL assigns each agent his uncontested share of the resource and divides the
contested part equally.

As discussed in the introduction, many two-agent water rights disputes are
solved using variants of bankruptcy rules. The practice of sharing water propor-
tional to some objective criterion corresponds to the application of PRO in case
that the agents’ claims are based on the same principle for water sharing. CEA
corresponds to equal sharing when claims are sufficiently high, whereas CEL
corresponds to equal sharing when claims are equal. The principles of ATS and
ATI are approximated in situations where the upstream agent has either a very
high or very low claim compared to the downstream agent, for any of these four
classical rules.

To illustrate how a solution to the river sharing problem is calculated, table 1
shows the steps to the solution to a river sharing problem for n = 4 and using PRO.
In this example, the values chosen for e and c illustrate a river sharing problem in
which the major share of river flow originates on the territory of agent 1, while
the largest claim is made by agent 4.

Table 1: Example of the calculation of x using PRO.

i ei ci ⇒ Ei cDi ⇒ xPRO
i xPRO

Di
⇒ pPRO

i

1 80 50 80 90 29 51 0.57
2 10 10 61 90 6 55 0.61
3 10 20 65 80 13 52 0.65
4 10 90 62 - 62 - 0.69

In table 1, the river sharing problem is described by the first three columns
that represent the set of agents N and the vectors e and c. The first reduced
river sharing problem is ω1 = 〈N1,E1,C1〉, with two agents N1 = {1,D1}, who
have claims C1 = {c1, cD1}, to the resource E1. E1 = 80 is calculated using (1) and
cD1 = 90 is calculated using (2). The solution using PRO yields x = (29, 51). This
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solution (i.e. xD1 = 51) is used as input for the second reduced river sharing
problem ω2, etc. The last column of table 1 provides values for pi ≡ xi/ci: the
proportion of agent i’s claim that is allocated to him. This column shows that the
sequential sharing rule based on PRO generates a solution with different values
for pi. In a bankruptcy problem, PRO yields a constant value for pi. This difference
illustrates that taking account of the linear order of agents and their endowments
indeed affects the solution to the river sharing problem.

Table 2 continues on the example given in table 1 by comparing solutions
for three different combinations of claims and endowments of river flow, for the
four rules described above. It illustrates how changes in claims or endowments
affect the different solutions. In case 2 of table 2, c2 increases from 10 to 30
compared with case 1. This increase in claims of agent 2 causes an increase
in x2, as illustrated by PRO (6 → 16), CEA (10 → 25), CEL (0 → 10), and TAL
(5 → 15). This Claims Monotonicity property is further examined in section 5. In
case 3 of table 2, e2 increases from 10 to 30 compared with case 1. This increase
in endowment of agent 2 causes an increase in x for all agents, as illustrated by
PRO ((29, 6, 13, 62) → (33, 8, 16, 73)), and can be verified for the other three rules
too. This Resource Monotonicity property is further examined in section 5.

5 Properties

In this section we assess the properties of sequential sharing rules, focusing on
the four rules introduced in the previous section. We limit ourselves to two
monotonicity properties and two of the characterising properties of the class of
priority rules used by Moulin (2000). When a bankruptcy rule satisfies a property,
this does not necessarily imply that its corresponding sequential sharing rule also
satisfies this property. For some properties, however, the implication does hold.
Some of these are appealing properties for the setting of a river sharing problem,
including the following two monotonicity properties.

Claims Monotonicity. For each river sharing problem ω = 〈N, e, c〉, each i ∈ N,
and each related problem ω′ = 〈N, e, (c′i , c−i)〉 such that c′i > ci, we have Fi(ω′) ≥
Fi(ω).

This property says that that any agent i should not be worse off with a larger
claim.
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Table 2: Comparison of solutions for three different combinations of claims and
endowments of river flow.

i ei ci ⇒ xPRO
i pPRO

i xCEA
i pCEA

i xCEL
i pCEL

i xTAL
i pTAL

i

case 1
1 80 50 29 0.57 40 0.80 20 0.40 25 0.50
2 10 10 6 0.61 10 1.00 0 0.00 5 0.50
3 10 20 13 0.65 20 1.00 10 0.50 10 0.50
4 10 90 62 0.69 40 0.44 80 0.89 70 0.78

case 2
1 80 50 25 0.50 40 0.80 10 0.20 25 0.50
2 10 30 16 0.54 25 0.83 10 0.33 15 0.50
3 10 20 12 0.59 18 0.88 10 0.50 10 0.50
4 10 90 57 0.63 28 0.31 80 0.89 60 0.67

case 3
1 80 50 33 0.67 40 0.80 30 0.60 30 0.60
2 30 10 8 0.77 10 1.00 0 0.00 5 0.50
3 10 20 16 0.79 20 1.00 15 0.75 13 0.63
4 10 90 73 0.81 60 0.67 85 0.94 83 0.92

Resource Monotonicity. For each river sharing problem ω = 〈N, e, c〉, each i ∈ N,
and each related problem ω′ = 〈N, (e′i , e−i), c〉 such that e′i ≥ ei, we have F(ω′) ≥
F(ω).

This property says that no agent should be worse off when some agent has
a larger endowment.4 No agent looses loses regardless of his position along the
river.

Moulin (2000) characterises a class of priority rules for bankruptcy problems
with a priority order, which is related to our approach (see section 6.3). The four
characterising properties that he employs are Upper Composition, Lower Composi-
tion, Scale Invariance, and Consistency. The first two of these are difficult to assess
in the context of a river sharing problem. Scale Invariance and Consistency can be
assessed and we will see that Consistency can be satisfied, while Scale Invariance is
satisfied by sequential sharing rules that are based on any bankruptcy rule that

4This property implies that Drop Out Monotonicity (no agent is worse off whenever one of the
agents decides to drop out), introduced by Fernández et al. (2005), is satisfied.
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satisfies Scale Invariance itself.

Scale Invariance. For each river sharing problem ω = 〈N, e, c〉, each i ∈ N, all
λ ≥ 0, and each related problem ω′ = 〈N, λe, λc〉, we have F(ω′) = λF(ω).

This property says that a rescaling of endowments and claims (or a change of
the unit in which they are measured) does not affect the solution to any agent.

The definition of Consistency requires some explanation. The property says
that agents receive the same allocation whether or not a subset of N has left with
their allocation. Following Moulin (2000), let this subset be a single agent j ∈ N.
Denote by ω the river sharing problem including j and denote by ω′ the river
sharing problem where j has left. Agent j leaves by eliminating the j’th element
from both the set of players and the claims vector. Because agent j leaves with
his allocation x j = F j(ω), this amount has to be deducted from the endowments
vector. In a standard bankruptcy problem, we have E′ = E − x j. In a river
sharing problem, the problem is to find a suitable endowments vector e′. The
vector difference e − e′ can then be regarded as the contribution of each agent’s
endowment to the allocation of water rights to agent j. Formally:

Consistency. For each river sharing problem ω = 〈N, e, c〉, each i, j ∈ N, i , j,
and each related problem ω′ = 〈N′, e′, c′〉 such that N′ = N \ { j}, c′ = c \ {c j}, and

e′ =
(
e′1, . . . , e

′

j−1, e
′

j+1, . . . , e
′
n

)
, with e′ feasible and efficient such that

∑
i≤k

(
e′i − ei

)
≤

0 ∀k < j and
∑

k∈N′
(
e′k − ek

)
= e j − x j, we have Fi(ω) = Fi(ω′)

The following proposition covers the four axioms discussed in this section.

Proposition 2. The following relations between the properties of bankruptcy rules and
their corresponding sequential sharing rules hold:

(a) If a bankruptcy rule satisfies Claims Monotonicity, its corresponding sequential
sharing rule satisfies Claims Monotonicity.

(b) If a bankruptcy rule satisfies Resource Monotonicity, its corresponding sequential
sharing rule satisfies Resource Monotonicity.

(c) If a bankruptcy rule satisfies Scale Invariance, its corresponding sequential sharing
rule satisfies Scale Invariance.

(d) If a bankruptcy rule satisfies Claims Monotonicity and Resource Monotonicity, there
exists an endowment vector e′ such that its corresponding sequential sharing rule
satisfies Consistency.

12



Proof. See Appendix.

Because PRO, CEA, CEL, and TAL satisfy Claims Monotonicity, Resource Mono-
tonicity, and Scale Invariance (Moulin, 2002; Thomson, 2003), this proposition im-
mediately leads to the following corollary.

Corollary. Sequential sharing rules based on PRO, CEA, CEL, and TAL satisfy Claims
Monotonicity, Resource Monotonicity, Scale Invariance, and Consistency.

Note that proposition 2 implies that to satisfy Consistency, a sequential sharing
rule need not be based on a bankruptcy rule that satisfies Consistency. The con-
struction of sequential sharing rules assures that every bankruptcy rule that satis-
fies Claims Monotonicity and Resource Monotonicity, has a corresponding sequential
sharing rule that satisfies Consistency for some feasible endowment vector e′.

A final property discussed in this section relates to an agent’s position in the
order of agents and how this affects his allocation. No general statement can be
made on whether it is favourable for an agent to be located upstream or down-
stream in the river. An agent’s allocation of water rights can be affected positively
or negatively by the combination of the vectors of claims and endowments as
well as the specific sequential sharing rule used, as illustrated by table 2. For
a sequential sharing rule based on PRO though, we can infer that downstream
agents are always better off in terms of the portion of their claim that they receive.

As illustrated by table 2, the values of pPRO
i increase with i (for case 1, pPRO =

(0.73, 0.76, 0.79, 0.82)). This is not a coincidence, as proposition 3 shows:

Proposition 3. The sequential sharing rule based on PRO satisfies the following property.
For each i, j ∈ N, pPRO

i ≤ pPRO
j if and only if i < j.

Proof. See Appendix.

This proposition says that the sequential sharing rule based on PRO always
favours downstream agents. The explanation is that all water is allocated propor-
tional to claims while endowments need not be shared with upstream agents. E1

is allocated proportional to claims to agents 1 and D1. E2 is allocated proportional
to claims to agents 2 and D2, etc. If e2 = 0, then E2 = xD1 = E1 − x1 and by
proportionality to claims we have pPRO

1 = pPRO
2 . If e2 > 0, then E2 = xD1 + e2 and

we have pPRO
1 < pPRO

2 ; agent 2 can never be worse off than agent 1, because he also
receives, proportional to his claims, part of the additional resource e2. A special
case occurs if e j = 0 ∀ j > i, then pPRO

j is constant for all j ∈ Di (see proposition 4 in
section 6).
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6 Comparison to four alternative solutions

In this section, we compare our solution to four alternative solutions that can
be applied to river sharing problems. The first of these is only relevant for the
special case where all river water is endowed to agent 1, while the other agents
have no endowments. Bankruptcy rules can be directly applied in this case, when
ignoring the order of the agents. The second solution is a generalisation of the
first one. It applies bankruptcy rules directly to the river sharing problem, while
treating endowments and the linear order as a feasibility constraint. The third
solution is similar in spirit to the class of priority rules constructed by Moulin
(2000). The fourth solution is the one proposed by Ambec and Sprumont (2002).

Although each of these four solutions possesses some attractive features, they
also have disadvantages compared to the approach presented in this paper. The
first solution is only valid for a special class of river sharing problems. The second
solution does not allow for differential treatment of agents that have equal claims
but different endowments. The third solution strongly favours upstream agents,
while the fourth solution strongly favours downstream agents.

6.1 Direct application of bankruptcy rules with no downstream en-
dowments

If all water originates at the head of the river: ei = 0 ∀i > 1, and the ordering of
the agents is not considered, then bankruptcy rules can be directly applied to this
class of river sharing problems.

At first sight, this approach seems unrelated to the sequential sharing rules.
There is a class of rules, however, for which this approach replicates the sequential
sharing rules. This class of rules includes all bankruptcy rules that satisfy No
Advantageous Merging or Splitting (O’Neill, 1982; Thomson, 2003). PRO is one of
the bankruptcy rules in this class. Hence, the solution given by application of
the sequential sharing rule based on PRO corresponds to the solution given by
PRO itself applied to the river sharing problem. This is stated in the following
proposition.5

Proposition 4. The sequential sharing rule based on PRO satisfies the following property.
If ei = 0 ∀i > 1, then pPRO

i = e1∑
j∈N c j
∀i ∈ N.

5A proposition and proof for the full class of rules that satisfy No Advantageous Merging or
Splitting is omitted.
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Proof. See Appendix.

This proposition says that for this class of river sharing problems, the char-
acterising properties of PRO also hold for its corresponding sequential sharing
rule. Consequently, each agent receives the same proportion of his claim. Clearly
then, differences between the solutions induced by PRO and by its corresponding
sequential sharing rule are completely driven by the distribution of the claims
over the agents. These differences are not a result of the linear order of the agents.

This result implies that the proportional solution to a bankruptcy problem
equals the proportional solution to a sequence of reduced bankruptcy problems
(i.e. bankruptcy problems in which the available resource is distributed between
agent i and the set of other agents Di). Hence, this class of river sharing problems
is a generalisation of the bankruptcy problem. Note, however, that from the river
sharing perspective this class of problems reflects a very special case, because of
its specific assumption that all water originates at the head of the river (although
some rivers come close to resembling this extreme structure).

6.2 Constrained direct application of bankruptcy rules

Bankruptcy rules can be applied to river sharing problems in general, if the en-
dowments and linear order of the agents are considered as feasibility constraints.
For example, a sharing rule based on CEA implements CEA, constrained by fea-
sibility. Two agents with equal claims therefore receive the same water rights (if
feasible) no matter their location in the basin. Because the endowments and order
are treated as a feasibility constraint only, this approach preserves Equal Treatment
of Equals when possible, and ignoring the differences in location of the agents.

Constrained direct application of bankruptcy rules is an attractive solution
in the sense that it treats the river sharing problem as a bankruptcy problem to
the largest extent possible. This approach is used by İlkiliç and Kayı (2009), who
model allocation rules in a network structure, (see also Bergantiños and Sanchez,
2002).

In our solution, however, the Equal Treatment of Equals property is not neces-
sarily satisfied. Two agents with equal claims and endowments may end up with
different allocations, even if an equal allocation would be feasible. This differ-
ence is driven by the agents’ position in the linear order of agents and depends
on the sequential sharing rule that is applied. Agents’ location in the order of
agents and their endowment both matter for the solution, also when feasibility
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is not a binding constraint. Our approach allows these distinctive features of the
river sharing problem to determine the solution. The position in the linear order
does not just constrain the set of possible solutions, but assigns significance to an
agent’s endowment with a particular amount of water.

6.3 Priority rule in the spirit of Moulin (2000)

As discussed in section 5, the class of priority rules constructed by Moulin (2000), is
related to our approach. In fact, the bankruptcy problem studied in Moulin (2000),
including an ordered set of agents, is a special case of the river sharing problem.
The ordering of agents is according to a complete, transitive, and antisymmetric
binary relation, which is equivalent to the linear order in our approach. In our
notation, the priority rules satisfy:

∀i, j ∈ N with i < j, if x j > 0, then xi = ci.

In words, priority rules allocate water rights to upstream agents until their claim
is met in full, before the next agent is served.

Again, as in the previous approach, we have to treat the endowments and
linear order of the agents as a feasibility constraint. Hence, when ci > Ei, agent j =

i + 1 is allocated a positive amount of water rights only when e j is positive. This
approach is an extreme rule in the sense that it strongly favours upstream agents
over downstream agents.

6.4 Sharing a river based on Ambec and Sprumont (2002)

Recently, Ambec and Sprumont (2002) proposed an axiomatic solution that is
based on ATS and ATI, as discussed in the introduction. These two principles are
used as a lower bound and aspiration upper bound to the welfare of a coalition
of agents, with welfare originating from water and side payments. Ambec and
Sprumont (2002) show that there is a unique welfare distribution that provides
a compromise between these two principles: water is allocated such that each
agent’s welfare equals his marginal contribution to a coalition composed of all
upstream agents (see also Herings et al., 2007).

Comparison of the class of sequential sharing rules and the solution proposed
by Ambec and Sprumont (2002) is not straightforward because their solution is in
terms of welfare while we follow the bankruptcy literature by having a solution
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in terms of the resource to be distributed. Comparison is only possible if we
assume that benefits are linear in water use.6 In that case, the solution proposed
by Ambec and Sprumont (2002) falls in the class of sequential sharing rules. In
fact, it is an extreme case of this class of rules in which xi = ei ∀i ∈ N. The solution
allocates to each agent the rights to his own endowment. Obviously, this solution
is independent of the claims vector because Ambec and Sprumont (2002) do not
consider claims in their model.

This approach may be an attractive compromise of ATS and ATI but we
question its applicability for two reasons. First, Ambec and Sprumont (2002)
find a solution to the river sharing problem using a combination of lower and
upper bounds to welfare. Uniqueness of this solution follows by construction
because of the implicit assumption that lower and upper bounds coincide for
the most upstream agent. In other words, it is assumed that the most upstream
agent does not aspire a higher welfare level than what he can secure himself.
This assumption is driving the solution. Second, the solution by Ambec and
Sprumont (2002) assigns all gains from cooperation to downstream agents which
is not very convincing, as noted by Van den Brink et al. (2007), Houba (2008), and
Khmelnitskaya (2009).

7 Discussion and conclusion

A remaining issue to discuss is whether a reduced river sharing problem, although
mathematically equivalent to a bankruptcy problem, can indeed be interpreted
as such. The answer to this question depends on the interpretation of Ei, the
resource that is to be distributed between i and Di. In a bankruptcy problem, the
resource is separated from the agents. In a reduced river sharing problem, Ei is
the river flow available to agent i. If we do not consider claims, this endowment
could be interpreted as agent i’s “property rights” (as in the Walrasian framework
and as in the ATS principle, see the introduction). The redistribution of water is
then equivalent to the redistribution of the property rights to water.

In our interpretation, overlapping claims imply that endowments do not con-
stitute property rights. Thus a sharing rule is needed to introduce such rights.
Ei is not interpreted as a property right, but as a resource whose level may influ-
ence the solution to a river sharing problem, depending on the sharing rule used.

6Ambec and Sprumont (2002) assume strictly increasing and strictly concave benefits of water
use.
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In this case, Ei is separated from the agents and, hence, a reduced river sharing
problem is fully equivalent to a bankruptcy problem. Although this interpreta-
tion gives additional support to the use of sequential sharing rules, we do not
claim this interpretation to be more convincing than the alternative. We leave it
to the reader to judge the merits of both interpretations.

In this paper we analyse a river sharing problem with linearly ordered agents
who have resource endowments and claims to this resource. We construct a
class of sequential sharing rules, by transforming the river sharing problem to a
sequence of reduced river sharing problems. These reduced problems are math-
ematically equivalent to bankruptcy problems and can therefore be solved using
bankruptcy rules. This approach for solving river sharing problems contrasts
with alternative approaches by allowing agents’ position in the order of agents
and their endowment to play an important role in the solution. A solution to
a river sharing problem is determined by the combination of endowments and
claims and the selected bankruptcy rule.7

The results of this paper can be readily adopted for application in negotiations
on national or international river sharing problems. The approach to be followed
is to jointly agree on the sharing rule to allocate water rights to the most upstream
agent, who then leaves the negotiation table with his allocation. The same sharing
rule is then used sequentially to allocate water rights to the other agents.

A remaining question is whether this negotiation procedure has any credible
non-cooperative foundations. The n-player “sequential share bargaining” proce-
dure, proposed by Herings and Predtetchinski (2007) appears to be a promising
approach. Sequential share bargaining is an n-player extension of the Rubinstein-
Ståhl bargaining model, in which the players’ shares are determined sequentially
according to a fixed order, and require unanimous agreement. Its resemblance to
sequential sharing rules is apparent. A complete analysis of this implementation,
however, is left for future work.

7Two related approaches are the following. Goetz et al. (2008) apply sequential sharing rules to
irrigation water allocation, based on (Barberà et al., 1997). The domain of their paper is different,
however, as they focus on strategy-proof rules for situations with single-peaked preferences and,
unlike Klaus et al. (1997), no initial endowments. Coram (2006) implements a sequential bidding
game to allocate water. This approach also assigns an important role to agents’ endowments and
their location in the river, but its scope is clearly different from ours.
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Appendix: Proofs

Proof of lemma 1

Proof. The proof is by contradiction.
Suppose that the lemma does not hold, then ∃i ∈ N : Ei ≥ ci + cDi , which can

be written as (i) Ei +
∑

j∈Di
e j ≥ ci +

∑
j∈Di

c j. By construction we have (ii) En =

Ei +
∑

j∈Di
e j − xi −

∑
j∈Di\{n} x j By substitution and rearrangement of (i) and (ii) we

obtain:
En − cn ≥ ci − xi +

∑
j∈Di\{n}

(c j − x j).

Because definition 2 requires that x ≤ c, we know that the RHS of this weak
inequality is non-negative. This implies that En ≥ cn, which violates assumption 1.

�

Proof of proposition 2

Proof. Because a reduced river sharing problem is mathematically equivalent to a
bankruptcy problem, in any reduced river sharing problem, Claims Monotonicity,
Resource Monotonicity, and Scale Invariance are satisfied (Moulin, 2002; Thomson,
2003). The remainder of the proof is for each axiom separately.

(a) Claims Monotonicity Consider a river sharing problem ω = 〈N, e, c〉, and
a related problem ω′ = 〈N, e, (c′i , c−i)〉 such that c′i > ci. In any reduced problem
ω′j, j < i, Claims Monotonicity implies that x′D j

≥ xD j and therefore x′j ≤ x j. By (1),
this gives E′i ≥ Ei. Because Claims Monotonicity is satisfied in reduced river sharing
problem ωi, and because E′i ≥ Ei, it follows that c′i > ci ⇔ Fi(ω′) ≥ Fi(ω).

(b) Resource Monotonicity Consider a river sharing problem ω = 〈N, e, c〉, and
a related problem ω′ = 〈N, (e′i , e−i), c〉 such that e′i ≥ ei. In reduced problem ω′1,
Resource Monotonicity implies that x′1 ≥ x1 (and x′D1

≥ xD1). By (1), this gives
E′2 ≥ E2. This argument can be repeated to show that forω′2, Resource Monotonicity
implies that x′2 ≥ x2 (and x′D2

≥ xD2), etc. It follows that e′i ≥ ei ⇔ F(ω′) ≥ F(ω).

(c) Scale Invariance Consider a river sharing problemω = 〈N, e, c〉, and a related
problem ω′ = 〈N, λe, λc〉, with λ > 0. In reduced problem ω′1, Scale Invariance
implies that x′1 = λx1 and x′D1

= λxD1 . By (1), this gives E′2 = λE2. This argument
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can be repeated to show that for ω′2, Scale Invariance implies that x′2 = λx2 (and
x′D2

= λxD2), etc. It follows that F(ω′) = λF(ω).

(d) Consistency Denote by e′′i = e′i − ei ∀i ∈ N′ the difference in endowments
to agent i between e and e′. Feasibility requires

∑
i≤k e′′i ≤ 0 ∀k < j. Efficiency

requires
∑

k∈N′ e′′k = e j − x j.
To prove the proposition, we show how to construct the vector difference e′′,

first for the case where j = 1 and then for the case where j ≥ 2. Note that excess
downstream claims may be lower in ω′ compared with ω. Using (2), we have
c′Di

= cDi − c j + e j −
∑ j+1

k=i+1 e′′k ∀i ≤ j − 1, so that c′Di
≤ cDi ∀i ≤ j − 1.

Suppose j = 1. By construction, x1 ≤ e1, so we can set e′′2 = e1 − x1. This gives
E′2 = e2 + e1 − x1 = E2, while satisfying efficiency and feasibility, and we are done.

Suppose j ≥ 2. Consider reduced problem ω′1. We have E′1 = e1 + e′′1 ≤ E1.
Because c′D1

≤ cD1 , by Claims Monotonicity and Resource Monotonicity there exists
e′′1 ≤ 0 such that x′1 = x1. Using this value of e′′1 , we have x′D1

= xD1 + e′′1 .
Now, consider reduced problem ω′2. We have E′2 = e2 + e′′2 + x′D1

= e2 + e′′2 +

xD1 + e′′1 , and because of feasibility e′′2 ≤ −e′′1 , such that E′2 ≤ E2. Because c′D2
≤ cD2 ,

by Claims Monotonicity and Resource Monotonicity there exists e′′2 ≤ −e′′1 such that
x′2 = x2. Using this value of e′′2 , we have x′D2

= xD2 + e′′2 .
The same argument can be repeated up to and including reduced prob-

lem ω′j−1.
Now, consider reduced problem ω′j+1. We have:

E′j+1 = e j+1 + xD j−1 + e′′j+1

= e j+1 + e′′j+1 +
∑

k≤ j−1

(
ek − xk + e′′k

)
.

We can set e′′j+1 = e j − x j −
∑

k≤ j−1

(
e′′k

)
. This gives:

E′j+1 = e j+1 + e j − x j +
∑

k≤ j−1

(ek − xk) = E j+1.

while satisfying efficiency and feasibility, and we are done. �

Proof of proposition 3
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Proof. We first show that the proposition holds for j = i + 1.8 Following from
definition 2 and the definition of PRO, xi = λci, with λ = pi = Ei

ci+cDi
. For j = i + 1,

we should verify whether:

pi =
Ei

ci + cDi

≤
E j

c j + cD j

= p j.

We do so by by contradiction. Suppose that pi > p j, then:

Ei

E j
>

ci + cDi

c j + cD j

.

Substituting E j = Ei + e j − xi, and xi = ciEi/(ci + cDi), and re-ordering terms gives:

c j + cD j >
(ci + cDi)(Ei + e j)

Ei
− ci.

Substituting c j + cD j = cDi + e j, re-ordering, and cancelling terms gives:

Ei > ci + cDi ,

which contradicts lemma 1. By transitivity of the order of the agents, the propo-
sition also holds for j = i + k ∀k ≥ 1. �

Proof of proposition 4

Proof. Following from definition 2 and the definition of PRO, xi = λci, with
λ = pi = Ei

ci+cDi
.9 Hence, we have (i) xDi = Ei

ci+cDi
cDi .

Because ei = 0 ∀i > 1, by (1) we have (ii) Ei+1 = xDi and by (2), we have (iii)
cDi = ci+1 + cDi+1 .

Using (ii) and (iii), we have (iv) pi+1 = Ei+1
ci+1+cDi+1

=
xDi
cDi

. Combining (i) and (iv),

we obtain pi+1 = Ei
ci+cDi

= pi. �
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