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Abstract

We propose a model of Kidney-Exchange that incorporates the main European

institutional features. We assume that patients do not consider all compatible kid-

neys homogeneous and patients are endowed with reservation values over the mini-

mal quality of the kidney they may receive. Under feasibility constraints, patients’

truthful revelation of reservation values is incompatible with constrained efficiency.
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In the light of this result, we introduce an alternative behavioral assumption on pa-

tients’ incentives. Patients choose their revelation strategies as to “protect” them-

selves of bad outcomes and use a lexicographic refinement of maximin strategies.

In this environment, if exchanges are pairwise, then priority rules or rules that

maximize a fixed ordering provide incentives for the patients to report their true

reservation values. The positive result vanishes if larger exchanges are admitted.

1 Introduction

In the past decade economists have become increasingly more involved in the design of

markets/practical mechanisms (labor market clearinghouses, Roth 2002; power markets,

Wilson 2002; school choice, Abdulkadiroğlu and Sönmez 1999, 2003). With the recent

seminal paper by Roth et al. (2004), the theory of mechanism design has found an im-

portant application in the design and implementation of matching mechanisms (rules) to

allocate organs for transplantation. The complexity of institutional and feasibility con-

straints, the normative implications and the effects on patients’ lives make the task of

designing optimal rules a fascinating challenge.

The best treatment for end-stage kidney failure is kidney transplantation. Kidneys

available for transplantation may be obtained from deceased donors or from willing liv-

ing donors. In October 2008, more than 400,000 people in the US are being treated for

end-stage kidney failure, and more than 76,000 are listed for a deceased donor kidney

transplant. In 2007, there were 16628 kidney transplants in the US, 6041 of those trans-

plants were from living donors.1 Unfortunately, a donated kidney may be unsuitable for

transplantation (incompatible) to a given patient because the mismatch between donor

and patient blood types and tissues would lead to the immediate rejection and loss of the

graft.

In recent years, there has been many proposals to alleviate the (universal) shortage of

kidneys. Some authors as Becker and Elias (2002) present arguments favoring a market

approach, but the medical community is firmly opposed to the application of monetary

1The figures vary significantly in different developed countries. For instance, in the same period, there

were 2211 transplants from deceased donor kidneys and only 137 from living donor for about 6000 patients

on the waiting list in Spain. See Organ Procurement and Transplatantion Network and Organización

Nacional de Transplantes webpages, www.optn.org and www.ont.es.
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incentives to donation.2 In their recent paper, Roth et al. (2004) show however, that mon-

etary transfer between patients and donors may not be necessary to attenuate kidneys

scarcity. The combination of dialysis (an alternative treatment for kidney–failure) and liv-

ing donors generates interesting new protocols. Two incompatible donor–patient couples

may be mutually compatible and a swap of donors between the two couples would result

in two successful transplantations. (Kidney Paired Exchange: KPE).3 Analogously, the

donor’s kidney may be transplanted to some patient in the deceased donor kidney waiting

list and her initially intended patient may receive an absolute priority over kidneys in the

cadaveric waiting list. (List Paired Exchange: LPE).4 Further gains can be obtained if

kidney swaps involve more than two donor–patients couples. In fact, simulations carried

out by Roth et al. (2004) suggest that the benefits of such an exchange could be very

substantial, increasing live organ donations between unrelated donors from about 54% to

as much as 91% if exchanges among multiple couples are feasible, and to as much as 75%

even if only pairwise exchanges are feasible. In this environment a Central Transplant

Coordinator (CTC) uses kidney assignment rules that taking into account the medical

details of the patients and donors involved in the possible exchanges, propose compat-

ible exchanges among the couples. A key issue when designing these rules is that they

should not provide incentives for the patients to lie about their medical details in order

to improve their chances of getting a match as good as possible.

In subsequent work, Roth et al. (2005a) have proposed a mechanism design approach

to KPE that encompasses the specific features and institutional detail of New England.5

Roth et al. (2005a) assume that patients consider all compatible kidneys as homogeneous

and patients’ sets of compatible kidneys are not known to the CTC. Since incentive

constraints imply that all the operations involved in an exchange must be carried out

2In fact, the trade in human organs is a felony under the National Organ Transplant Act (NOTA)

of 1984, and the Uniform Anatomical Gift Act of 1987. On the other hand, Iran has the highest living-

donor rate in the world and it is the only country where monetary compensation for organs is officially

sanctioned. See “The gap between supply and demand ” in The Economist, October 8th, 2008.
3See Delmonico (2004); Delmonico et al. (2004); Segev et al. (2005b); Spital (2004); Segev et al.

(2005a).
4Patients remaining in the cadaveric waiting list would benefit as well because the patients who receive

a kidney would drop from it. See Delmonico (2004); Kaplan et al. (2005); Zenios et al. (2001).
5Their proposal is actually been used by the New England Program of Paired Kidney Exchange since

2006. See www.nepke.org and Roth et al. (2005b) for additional details.
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simultaneously, Roth et al. (2005a) consider that only pairwise exchanges between two

donor–patient pairs are feasible. In fact, they prove that priority rules used in real life

ensure that it is a dominant strategy for patients to truthfully reveal both the set of donors

they can receive a kidney from and the set of patientes that their donors can donate a

kidney to.6

Roth et al. (2005a)’s focus on the institutional details of New England restricts the

application of their model to other regions and countries. In Europe and in several areas

of the US, it is generally accepted that patients and doctors do not consider all compatible

kidneys as homogeneous. Many individual characteristics of the donor, like age, health

status, as well as matching characteristics of the donor–patient pair, like HLA mismatches,

are statistically significant in determining the probability of long–term graft survival and

the quality of life of the patient after the operation.7 Thus, we propose an alternative

approach to KPE that incorporates some important features of the European view on

kidney exchange. First, as Roth et al. (2005a) we assume that there exist feasibility

constraints on the number of simultaneous operations (even if we do not initially restrict

our attention to pairwise exchanges). On the other hand, we departure from Roth et al.

(2005a) in two important aspects.

(i) Following Roth et al. (2004), patients do not consider all compatible kidneys homo-

geneous. Their preferences over available kidneys are based on the quality of the

donor-patient match. The quality of the match is determined by characteristics of

patients and donors which are observable by doctors and verifiable by means of med-

ical tests. For instance, the quality of a match can be measured according to some

objective criterion as the Lifetime Years From Transplant (LYFT) method that es-

timates the difference between the remaining lifetime with and without transplant

for each candidate on the waiting list.8 Hence, patients’ preferences are known for

6Hatfield (2005) shows that the results are robust to arbitrary feasibility constraints. More recently,

Saidman et al. (2006) and Roth et al. (2007) show that efficiency gains could be attained (and almost

exhausted) if kidney exchanges among three donor-patient couples and LPE were admitted. Sönmez and

Ünver (2005); Roth et al. (2006) also analyze the potential benefits of altruistic no-related –Samaritan–

donors in LPE.
7See Duquesnoy et al. (2003), Merion et al. (2005), Keizer et al. (2005), Klerk et al. (2004), Opelz

(1997), Kranenburg et al. (2004), and Schnitzler et al. (1999).
8See “Predicting the Life Years From Transplant (LYFT): Choosing a Metric”, Scientific Registry for

Transplant Recipients working paper, May 16, 2007 at www.unos.org.
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the CTC and need not to be elicited.9

(ii) Patients are endowed with a reservation value over the minimal quality of the donor-

patient match required to accept a transplantation. The choice of receiving a given

kidney or continuing the dialysis treatment depends in fact on patient’s eagerness

to receive an organ instead of continuing the dialysis and waiting for a better kid-

ney. Hence, each patient reservation value depends on how the patient subjectively

evaluates the quality of life under dialysis, her expectations about the quality of

future pools of kidneys available for exchange, and on her attitude towards risk and

uncertainty.10 Of course, patients reservation values are not observable and remain

private information.

In this scenario, we investigate whether we can construct rules such that revealing the

true reservation value is a dominant strategy for the patients. Surprisingly, we show that

in the presence of feasibility constraints, truthful revelation is not compatible with a weak

version of efficiency.

In the light of the negative result that we obtain in the standard model, we propose

an alternative “behavioral” approach. KPE programs normally involve the coordination

of nephrology services and patients of several hospitals. In this environment, patients

have little information about the remaining patients involved in the program. Patients

may consider that by misreporting their own reservation values, they also could end

up losing the possibility of a beneficial transplant. In fact, they could even receive an

undesirable kidney. Therefore, it becomes natural to assume that patients might prefer

to choose their strategies so as to “protect” themselves from the worst eventuality as far

as possible. We capture formally this “lexicographic maximin” behavior assumption with

the notion of‘ “protective behavior” proposed by Barberà and Dutta (1982) and later

axiomatized by Barberà and Jackson (1988). With his assumption on patients’ strategic

9A possible problem is that, even doctors could be tempted to report strategically these information

to the CTC in order to favor their own patients. This is the justification for the approach in Roth et al.

(2004). The problem seems less relevant for European continental countries, where Transplant Services

are normally public and have more information and less coordination problems that those in US.
10The existence of patients’ reservation values is consistent with the existence of Extended Donor Crite-

ria and the use of organs previously regarded as unsuitable, because improvements on immunosuppressive

treatment imply that even those low quality organs have good probability of survival. See Su et al. (2004);

Su and Zenios (2006).
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behavior, we reconcile the notion that patients only care about obtaining a kidney in

so far it is compatible with the evidence on the heterogeneity of compatible kidneys.

In this scenario, we show that truthful revelation of patients reservation values can be

attained despite the feasibility constraints. If kidney exchanges are restricted to involve

only pairs of donor–patient couples, then a plethora of rules provide (strong) incentives

for the patients to report their true reservation values. This is the case for priority

rules or rules that maximize a fixed ordering over the set of feasible and individually

rational kidney assignments. The positive result vanishes however, if larger exchanges are

admitted. There are kidney allocation problems where if 3-way exchanges are feasible,

then truth-telling is a protectively dominated strategy. Thus, in some sense, our results

justify the possibility of introducing a pairwise kidney exchange in Europe, but also

provide additional theoretical support beyond the logistic reasons for concentrating on

the possibilities that arise in pairwise exchanges.

The remainder of the paper is organized as follows. In Section 2, we outline the

model of kidney allocation problems and basic notation. In Section 3, we introduce the

concept of kidney asignment rules and some desirable conditions. In Section, 4 we present

an introductory impossibility result. In Section 5, we define the protective behavior and

present the positive results. In Section 6, we conclude and discuss lines of further research.

2 Kidney Assignment Problems

Consider a finite society consisting of a set N = {1, . . . , n} of patients (n > 3) who need a

kidney for transplantation. Each patient has a potential donor, and Ω = {ω0, ω1, . . . , ωn}
denotes the set of kidneys available for transplantation. The kidney ω0 refers to the

situation in which a patient does not receive any kidney, while ωi for each i 6= 0 refers

to the kidney of patient i’s donor. We assume that each patient has only one potential

donor and that there are not kidneys without living donor.11

Each patient i is equipped with a complete and transitive preference relation %i on Ω.

Patients’ preferences are based on rankings expressed through objective, medical criteria

that measure the fitness of each available kidney to each patient and that are observable by

11Hence, we focus on KPE. We discuss in the concluding section the possibility of multiple donors.
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the CTC.12 We express patients’ preferences by using numerical valuations over kidneys.

For each i, j ∈ N , we denote by vi(ωj) i’s valuation of kidney ωj. For each i ∈ N ,

ω, ω′ ∈ Ω, we say patient i considers kidney ω at least as good as kidney ω′, ω %i ω
′, if

and only if vi(ω) ≥ vi(ω
′). Of course, given %i the associated strict preference relation �i

and the indifference relation ∼i are defined in the standard way. We normalize in such a

way that for each i ∈ N , and each ω ∈ Ω \ {ω0}, vi(ω) ∈ [0, 1). If for some i ∈ N and

ω ∈ Ω vi(ω) = 0, we say that patient i and kidney ω are incompatible. This reflects

the possibility that patient i’s body will reject the graft of kidney ω, because of blood–

type incompatibility, positive crossmatch, or any other reason. We say that patient i and

kidney ω are compatible if vi(ω) > 0.We assume that agents have strict preferences over

compatible kidneys, and therefore for each i ∈ N and each ω, ω′ ∈ Ω if vi(ω) 6= 0 and

vi(ω
′) 6= 0, then vi(ω) 6= vi(ω

′). A preference profile is a matrix P ∈ Mn×n and it is

defined by Pi,j ≡ vj(ωi) for each i, j ∈ N . Preference profiles contain all the information

about patients’ observable priority rankings.

Each patient i is also endowed with a reservation value ri ∈ (0, 1). We interpret ri as

the valuation that patient i assigns to receive ω0. Hence, ri ≡ vi(ω0). Reservation values

may incorporate patients’ subjective valuation of being on dialysis and not receiving any

kidney, as well as the endogenous expectation of receiving a new organ in the future

from a new pool of donor–patient couples. We assume that for each patient i, ri > 0.

Thus, patients always prefer to stay on dialysis rather than receiving an incompatible

kidney. In order to be consistent with our assumption on strict preferences for compatible

kidneys, we assume that patients are never indifferent between receiving a kidney and

not receiving a kidney and remaining on the waiting list. Thus, for each i and each

ω 6= ω0, ri 6= vi(ω0). Given a patient i and a preference profile P, we denote by Ri ≡
{ri ∈ (0, 1) | ∀ ω ∈ Ω \ {ω0}, ri 6= vi(ω)} the set of i’s reservation values that are consistent

with P.13 Let R ≡ ×i∈NRi. We call r ∈ R patients’ reservation values profile. For each

i ∈ N and each r ∈ R, r−i denotes the restriction of r to the patients in N \ {i}.

A (kidney exchange) problem K is a pair K = (P, r).

12These rankings may be based on the LYFT index –Life Years From Transplantation– or any other

quality–efficiency criteria.
13The reader should keep in mind that Ri depends on P. We are abusing notation but since P is

always a primitive of the analysis, there will not be room for confusion in the arguments.
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An assignment a is an n-tuple of pairs a = [(1, ω), . . . , (n, ω′)] such that

(i) for each i, j ∈ N , i 6= j and each ω, ω′ ∈ Ω \ {ω0}, if (i, ω), (j, ω′) ∈ a, then ω 6= ω′.

(ii) if there are i, j ∈ N such that (i, ωj) ∈ a, then (j, ω0) /∈ a.

An assignment is an allocation of the available kidneys to the patients. By (i), an

assignment never allocates the same kidney to two different patients, unless that kidney

is the null kidney. By (ii), if the kidney of a patient’s donor is assigned to another

patient, then the initial patient is not assigned the null kidney. For each patient i and

each assignment a, we denote by ai the kidney that patient i receives at a.

In every assignment, kidneys are allocated by forming exchange cycles of patient–

donors couples. In each exchange cycle, every patient receives a kidney from the donor

of some patient in the cycle and simultaneously her donor’s kidney is transplanted to

another patient in the cycle. In an exchange cycle among k couples, all the kidneys

must be reaped from the donors and transplanted to the patients simultaneously. If this

constraint is not taken into account, once a donor’s kidney is transplanted to another

patient, the donor of the recipient may reject to donate her kidney in order to avoid

any clinical complication involved in the operation. This fact implies that an assignment

among k couples involves 2k simultaneous operations. Since hospitals face evident logistic

restrictions, we incorporate such constraints in our analysis through a narrower definition

of feasible assignments.

For each assignment a, let πa be the finest partition of the set of patients such that

for each p ∈ πa and each i ∈ p:

(i) either there are j, j′ ∈ p, with ai = ωj and aj′ = ωi,
14

(ii) or ai = ω0.

Clearly, for each assignment a the partition πa is unique and well-defined. We define

the cardinality of a as the maxp∈πa#p.

The cardinality of an assignment refers to the size of the largest exchange cycle formed

in the assignment. Basically, it refers to the maximum number of simultaneous operations

14Note that j = j′ and i = j = j′ and then ai = ωi are allowed.
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involved in an assignment. Of course, the concept of cardinality is crucial for our notion

of feasibility.

For each k ∈ N, k ≤ n, we say that the assignment a is k–feasible if a’s cardinality

is not larger than k. Let Ak be the set of all k–feasible assignments.

An interesting case of feasibility restrictions appears when only immediate exchanges

between two couples are admitted. An assignment a is a pairwise-exchange assignment

(a ∈ A2) if a satisfies that if for some i, j ∈ N (i, ωj) ∈ a, then (j, ωi) ∈ a.

3 Kidney Assignment Rules

In this paper, we are interested in rules that select a (kidney) assignment for each (kidney

exchange) problem. An (assignment) rule is a mapping ϕ that selects an assignment

a for each problem K. For each patient i and each problem K = (P, r), we denote by

ϕi(P, r) the kidney assigned to i by ϕ at K. As we take patients’ preferences profile P

as given, whenever there is no room for confusion, we drop P from the arguments and

simply write ϕ(r).

The assignment selected by a rule can be interpreted as an optimal recommendation

that takes into account the preferences of the patients for the available kidneys and their

reservation values and that tries to find a compromise between their (maybe conflicting)

interests.

Every preference profile P together with a rule ϕ define a revelation mechanism.

The revelation mechanism (or game form) specifies a set of players (the patients), a

set of strategies for each patient, the sets Ri that are consistent with P; and an outcome

function, ϕ(P, ·). Note that the mechanism (P, ϕ) fails short of defining a game in normal

(strategic) form because P does not introduce the information about patients’ preferences

about the possibility of receiving the null kidney ω0.

Next, we present formal definition of the standard conditions for desirable rules. The

reader should keep in mind that all the conditions refer to a given observed preference

profile P.

Individual Rationality. For each i ∈ N and each r ∈ R, vi(ϕi(r)) ≥ max {ri, vi(ωi)}.
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k–Efficiency. For each r ∈ R, ϕ(r) ∈ Ak and there is no a ∈ Ak such that for each

i ∈ N ai %i ϕi(r) and for some j ∈ N , aj �j ϕj(P, r).

Individual rationality is a minimal participation constraint which takes into account

patient’s right of refusing any transplant and receiving her donor’s kidney. On the other

hand, k-efficiency is the natural version of efficiency taking into account the feasibil-

ity restrictions on the cardinality of the assignments because at most 2k simultaneous

operations can be carried out in the kidney exchange process. Of course, n-efficiency

corresponds to the classical notion of (full) Pareto efficiency when there are not feasibility

constraints.

4 Incentive-Compatibility and Feasibility Constraints

A central issue in the design of an optimal kidney exchange program is the use of all the

relevant information in the assignment of the available kidneys. Although doctors may

have all the information about the degree of compatibility and fitness among patients and

kidneys that is imbedded in preference profiles, there is a key piece of information that

remains private information for the patients and must be elicited for public use, their

reservation values. The objective of this section is to analyze whether we can construct

rule s that provide incentives to the patients to reveal their true reservation values in the

presence of feasibility constraints on the cardinality of the proposed assignments.

We are interested in rules that provide incentives for the patients to reveal their true

reservation values in all the games induced by the revelation mechanism (P, ϕ).

Strategy–proofness. For each i ∈ N , each r ∈ R, and each r′i ∈ Ri, ϕi(r) %i

ϕi(r
′
i, r−i).

Strategy-proofness implies that reporting the true reservation value is a (weakly) domi-

nant strategy for every patient in all the games compatible with the revelation mechanism

y P and ϕ. Note that strategy–proofness is weak in our framework because only reservation

values are private information. The justification for the requirements of strategy-proofness

is two–fold. On the normative side, if patients do not provide the correct reservation val-

ues, then the assignment selected by the rule may be based on incorrect information, and
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therefore it may represent a far from optimal recommendation to the society. On the

positive side, in order to compute patients’ best strategies in the revelation game induced

by P and ϕ, patients simply need to know their own reservation values.

The literature on the allocation of indivisible objects has extensively studied the prob-

lem of designing strategy–proof and individually rational assignment rules.15 When pa-

tients have strict preferences there is a natural way to assign the available kidneys among

the patients. We can simply use the Gale’s top trading cycle procedure to allocate objects

in markets with individual property rights. According to this procedure, given a kidney

allocation problem, let every patient point to the donor with her favorite kidney. A top

trading cycle consists of patients such that each patient in the cycle points to the donor

of the next patient in the cycle. (A single patient may constitute a cycle, by pointing to

herself if her donor’s kidney is her best preferred kidney or if she thinks that no available

kidney is acceptable and she prefers not to perform any operation). Since there is a finite

number of patients and kidneys, for each problem there is at least one top trading cycle.

Give each patient in a top trading cycle her best preferred kidney, and remove them from

the problem with her assigned kidney. Repeat the process until each patient receives a

kidney (maybe the null kidney). The resulting assignment is unique given that preferences

over compatible kidneys are strict.16 Moreover, the induced rule satisfies individual ra-

tionality, n-efficiency, and strategy-proofness.17 A top trading cycle however, may involve

all the patients.

Example 1. Let N = {1, 2, 3, 4}. Consider the problem K = (P, r) with

P =


0 0 0 0.99

0.99 0 0 0

0 0.99 0 0

0 0.95 0.99 0

 ,

and for each i ∈ N , ri = 0.9. In this problem, the top trading cycle procedure selects the

assignment

ā = [(1, ω2)(2, ω3)(3, ω4)(4, ω1)] .

15See Gale and Shapley (1962); Shapley and Scarf (1974); Abdulkadiroğlu and Sönmez (1999).
16Patients will rather pick the null kidney rather than receiving an incompatible kidney.
17See Roth and Postlewaite (1977); Roth (1982).
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Under ā, there is a top trading cycle that involves all the patients and every patient receives

her best preferred kidney. Every rule that satisfies individual rationality and 3-efficiency

however, selects the assignment

a′ = [(1, ω2)(2, ω4)(3, ω0)(4, ω1)].

Clearly, for each i ∈ N , āi %i a
′
2 and ā2 �2 a

′
2 but ā is not 3–feasible.

Our first result shows that feasibility constraints may make it impossible to construct

efficient rules that provide the right incentives to the patients at every preference profile.

Theorem 1. For each 2 ≤ k ≤ n − 1, there are P such that no rule satisfies individual

rationality, k-efficiency, and strategy-proofness.

Proof. We study two cases. We analyze first the restriction to pairwise exchanges. Then,

we provide the proof for k ≥ 3. In both cases we exploit arguments similar to those em-

ployed in the literature of strategy-proof assignment rules in economies with indivisibilities

where the core is empty (k = 2) or multi-valued (k ≥ 3).18

Assume to the contrary there is a rule ϕ that satisfies individual rationality, 2-efficiency,

and strategy-proofness for every P. Consider three patients {1, 2, 3} and a preference pro-

file P such that its restriction to these patients and their donors’ kidneys is:

P =


0 0.75 0.99

0.99 0 0.75

0.75 0.99 0

 ,

and so that for each i ∈ {1, 2, 3}, and each ω /∈ {ω0, ω1, ω2, ω3}, vi(ω) = 0. Thus,

ω2 �1 ω3 �1 ω1, ω3 �2 ω1 �2 ω2, and ω1 �3 ω2 �3 ω3. In order to simplify notation, let

N = {1, 2, 3}. (By individual rationality, this is without loss of generality.)

Let r = (r1, r2, r3) = (0.6, 0.6, 0.6). By individual rationality and 2-efficiency, ϕ se-

lects an assignment in which two patients exchange their donors’ kidneys while the re-

maining patient receives the null kidney. We assume without loss of generality that

ϕ(r) = [(1, ω2), (2, ω1), (3, ω0)] .

Next, let r′ = (r′1, r
′
2, r
′
3) = (0.9, 0.6, 0.6). By strategy–proofness, ϕ1(r′) = ω2. Finally,

let r′′ = (r′′1 , r
′′
2 , r
′
3) = (0.9, 0.9, 0.6). By individual rationality and strategy-proofness,

ϕ2(r) = ω0. Then, ϕ(r′′) = [(1, ω0), (2, ω0), (3, ω0)]. Note that the assignment a =

18See Sönmez (1999).
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[(1, ω0), (2, ω3), (3, ω2)] is 2–feasible, and ai %i ϕi(r
′′) for each i ∈ N and a2 �2 ϕ2(r′′).

Then, ϕ violates 2–efficiency.

Next, we analyze the general case. Let k ≥ 3. Remember that k < n and then there

are at least k+1 patients. Assume to the contrary there is a rule ϕ that satisfies individual

rationality, k-efficiency, and strategy-proofness for every P. Let the preference profile P

be such that for every i = 1 . . . , k + 1:

vi(ωi+1) > vi(ωi+2) > vi(ωi) > vi(ω) = 0,

∀ ω ∈ Ω \ {ω0, ωi, ωi+1, ωi+2}. (modulo k + 1).

Again, (by individual rationality, without loss of generality) simplify notation and let

N = {1, . . . , k + 1}.

%1 %2 . . . %k−1 %k %k+1

ω2 ω3 . . . ωk ωk+1 ω1

ω3 ω4 . . . ωk+1 ω1 ω2

ω1 ω2 . . . ωk−1 ωk ωk+1

. . . . . . . . . . . . . . . . . .

Table 1: P: Theorem 1, Case k ≥ 3.

Let r ∈ R be such that:

vi(ωi+2) < ri < vi(ωi+1) for each i 6= k + 1

vk+1(ωk+1) < rk+1 < vk+1(ω2)

Note that, by individual rationality either no object is assigned to any patient 1, . . . , k+

1, or patient k + 1 receives ω2, patient 1 receives the null object, and every other patient

i receives ωi+1 (the kidney of her next to the right neighbor). By k-efficiency :

ϕ(r) =


(1, ω0),

(i, ωi+1), ∀i = 2, . . . , k

(k + 1, ω2)

 .
Let r′ ∈ R be such that for each i 6= k−1, ri = r′i and vk−1(ωk−1) < rk−1 < vk−1(ωk+1).

By strategy-proofness, ϕk−1(r′) %k−1 ϕk−1(r) = ωk. Note that ωk is patient k−1’s preferred

kidney. Then, ϕk−1(r′) = ωk. By k-efficiency and individual rationality, ϕ(r) = ϕ(r′).
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Let r̄ ∈ R be such that for each i 6= k + 1, r′i = r̄i and vk+1(ω2) < r̄k+1 < vk+1(ω1).

The same arguments we employed to determine ϕ(r) apply here to obtain:

ϕ(r̄) =


(i, ωi+1)(modulo k + 1), ∀i /∈ {k, k − 1}
(k − 1, ωk+1),

(k, ω0)

 .
Note that ω1 = ϕk+1(r̄) = ϕ(r̄′k+1, r

′
−(k+1)) �k+1 ϕk+1(r′) = ω2 , which contradicts strategy-

proofness.

The previous impossibility result is robust to the introduction of weak preferences

over kidneys. All we require is to admit the existence of two indifference classes for

acceptable kidneys. Hence, Theorem 1 contrasts with the positive results in dichotomous

domains of preferences by Roth et al. (2005a) and Hatfield (2005). Moreover, the result

can be extended to incomplete information settings where patients may have incomplete

information (i.e. beliefs) about the reservaton values of the remaining patients. In a

result that parallels the results of Roth (1989), we can prove that there are preference

profiles and sets of patients’ beliefs about other patients’ reservation values such that

there is no rule that satisfies individual rationality, k-efficiency, and (Bayesian) incentive

compatibility.19

5 Protective Behavior in Kidney Exchange Problems

The previous section presents a negative result for kidney assignment rules. This neg-

ative result is particularly discouraging since we balance the enrichment of preference

domain with the increase in the information available to the CTC. Namely, we make

the assumption that patients’ preferences over available kidneys are known by the CTC

because they depend on measurable and verifiable characteristics of patients and donors,

like blood types of patients and donors, their age, health status, race, HLA mismatches,

etc. The fact that reservation values depend on unobservable patients’ characteristics

however, introduces severe limitation on the properties that the kidney assignment rules

19A precise statement of this result can be found in Appendix A. In a recent paper, Villa and Pa-

trone (2008) prove that the rule that maximizes the sum of the welfare of the patients is not incentive

compatible.
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may satisfy. Thus, information on the patients’ reservation values have to be elicited and

patients might be tempted to misreport such information to get better kidneys. In this

scenario, if patients waiting for a transplant are strongly risk-averse, they might prefer to

choose their strategies so as to “protect” themselves from the worst eventuality as far as

possible. This “lexicographic maximin” behavior assumption is captured by the notion

of “protective behavior”.

Consider a preference profile P, a rule ϕ and a patient i who faces the revelation

mechanism (game form) defined by (P, ϕ).20

For each patient i, each pair of reservation values ri, si ∈ Ri, and each real number

l ∈ R, let:

cri(l, si) = {s−i ∈ R−i | vi (ϕ (P, (si, s−i))) = l} .

Then, cri(l, si, ) is the set of restricted profiles of reservation values of the remaining

patients under which i receives a kidney ω with vi(ω) = l when i announces si and her

true reservation value is ri.

Given P and ϕ, for each patient i with reservation value ri ∈ Ri, si, s
′
i ∈ Ri,

si protectively dominates s′i , denoted si d(ri) s
′
i if there exists l ∈ R such that:

(i) cri(t, si) ∩ cri(t′, s′i) = ∅ for each t ≤ k and t < t′,

(ii) cri(l, si) ( cri(l, s′i).

For each patient i and each ri ∈ Ri, let D(ri) ≡ {si ∈ Ri | there is no s′i ∈ Ri with s′i d(ri) si}
be the set of protective strategies of patient i.

In order to compare two strategies according to this criterion an agent looks at the

utility level of the worst outcome (say t = minω∈Ω vi(ω)). Strategy si protectively domi-

nates s′i if two conditions hold. First, it never occurs that there exists a profile such that

20Throughout this section, we assume that all the information available to the CTC, namely P and

ϕ is also available to the patients. The results are not altered however, if we only assume that patients

have information about the set of mutually compatible exchanges and not the whole preference profile P.

We maintain the assumption on common knowledge of preference profiles just for the sake of clarity of

exposition and to avoid the introduction of additional notation. We delay the discussion on the incomplete

information case where patients only know her own preferences and reservation values to the end of this

section.
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strategy si induces this minimum utility level and strategy s′i induces a higher level of

utility. Second, there are some profiles such that s′i induces the minimum level of utility,

while si induces a larger payoff for patient i. If the first condition holds but not the second

because cri(t, si) = cri(t, s′i), then patient i repeats the comparison with respect to the

next to the worst utility level.

Clearly, the protective domination relation is not complete, but it is transitive. Thus,

for each reservation value ri ∈ Ri, the set D(ri) is not empty. Moreover, if there is a

unique protective strategy, {si} = D(ri), then si d(ri) s
′
i for each s′i ∈ Ri \ {si}.

Truth–telling requires that reporting the true reservation value is a protective strategy

for the player at every direct revelation game generated by P and ϕ. Protective domi-

nation however, is not a complete relation. Thus, if there are several different protective

strategies besides reporting the true value, then we could not say that truth–telling is an

optimal strategy for the patients. This fact calls for a stronger implementability require-

ment.

Let r, r̄ ∈ R. The reservation values profile r̄ is a protective equilibrium at r iff

for each patient i, r̄i ∈ D(ri).

A rule ϕ is directly implementable via protective equilibria (DIPE) iff for

each r, r̄ ∈ R such that r̄ is a protective equilibrium at r, ϕ(r) = ϕ(r̄).

With our focus on DIPE rules, we emphatize that there is no a priori reason why im-

plementation of rules should be achieved through equilibria involving truthful preference

revelation. In fact, focusing on the implementability of rules reflects the consideration

that correct revelation is not an objective per se, and what we really care about is the

result of strategic behavior, rather than its correspondence to truth. The following re-

sult indicates, however, that the only rules which are implementable in our sense are

those which in fact guarantee truthful revelation by all patients, under the behavioral and

informational assumptions underlying the definition of protective equilibrium.

For each patient i, strategies si, s
′
i ∈ Ri are equivalent if for each s−i ∈ R−i,

ϕi (si, s−i) = ϕi (s
′
i, s−i).
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Truth–telling is (essentially) the unique protective strategy for patient i

if for each ri ∈ Ri,

D(ri) = {r′i | ri and r′i are equivalent} .

Our first result in this section replicates Theorem 1 in Barberà and Dutta (1982).

Proposition 1. Let P ∈ P. A rule ϕ is directly implementable via protective equilibria

if and only if for each patient i, truth-telling is essentially the unique protective strategy .

The proof of Proposition 1 mimics the proof Theorem 1 in Barberà and Dutta (1982),

and it is relegated to the Appendix. The proof consists of three steps. First, we prove

that the set of undominated strategies for non-equivalent reservation values (strategies)

are disjoint. Then, we show reservation values with the same sets of admissible kidneys

are equivalent. Finally, we check that revealing the true reservation value is indeed an

undominated strategy.

The following example shows that the difference between truth–telling as a unique

protective strategy and strategy–proofness. There are profiles for which no rule satisfies

individual rationality, 2-efficiency, and strategy-proofness, but there exist rules that satisfy

individual rationality, 2-efficiency, and such that truth-telling is the unique protective

strategy.

Example 2. Let N = {1, 2, 3} and let ψ be the rule that maximizes the number of trans-

plants obtained through pairwise exchanges, and ties are broken according to patient 1’s

preferences. Consider the preference profile presented in the first part of the proof of

Theorem 1,

P =


0 0.75 0.75

0.99 0 0.99

0.75 0.99 0

 .

Let r2 ∈ R2. If s2 < 0.75, then

cr2(r2, s2) = {s−2 ∈ R−2 | s1 > 0.99 and s3 > 0.75} ,
cr2(0.75, s2) = {s−2 ∈ R−2 | s1 < 0.99} ,

cr2(0.99, s2) = {s−2 ∈ R−2 | s1 > 0.99 and s3 < 0.75} .
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If 0.75 < s′2 < 0.99, then

cr2(r2, s
′
2) = {s−2 ∈ R−2 | s1 > 0.99 or s3 > 0.75} ,

cr2(0.99, s′2) = {s−2 ∈ R−2 | s1 > 0.75 and s3 > 0.75} .

Finally, if s′′2 > 0.99, then cr2(r2, s
′′
2) = R−2.

Assume that r2 < 0.75, then for each s2 < 0.75, s2 is strategically equivalent to r2.

Moreover, for each s′2 > 0.75, cr2(r2, r2) ( cr2(r2, s
′
2). Using a similar argument for

r2 > 0.75, we can prove that truth-telling is (essentially) the unique protective strategy

for patient 2 . The same reasoning applies to the remaining patients, and therefore ψ is

DIPE. On the other hand, It is immediate to check that ψ violates strategy-proofness.

Let r̄ = (0.8, 0.1, 0.1) and r′2 = 0.8, then ψ(r̄) = [(1, ω2), (2, ω1), (3, ω0)] and ψ(r′2r̄−2) =

[(1, ω0), (2, ω3), (3, ω2)]. Because ω3 �2 ω1, ψ2(r′2r̄−2) �2 ψ2(r̄). Notice that the violation

of strategy-proofness appears for reservation values profile where patient 2 is nor receiving

her worst preferred outcome.

In order to follow with the analysis of truth-telling as a protective strategy, we need

to introduce additional notation and definitions. Consider a patient i, (given P and ϕ)

the set of possible outcomes for patient i a is defined by:

Ωi ≡ {ω ∈ Ω such that there exists r ∈ R with ϕi(r) = ω}.

With the definition of Ωi at hand, for each problem reservation value ri ∈ Ri the set

of acceptable kidneys for i is defined as:

Ω+
i (ri) ≡ {ω ∈ Ωi such that vi(ω) ≥ max{vi(ωi), ri}}.

Of course, i’s set of unacceptable kidneys is analogously defined:

Ω−i (ri) ≡ {ω ∈ Ωi such that vi(ω) < max{vi(ωi), ri}}.

If ϕ satisfies individual rationality, then ϕi(r) ∈ Ω+
i (ri) 6= ∅. Finally let ω+

i (ri) ≡
arg minω∈Ω+

i ri)\{ω0} vi(ω) if Ω+
i (ri) 6= ∅, ω+(ri)) ≡ ∅ otherwise; and ω−i (ri) ≡ arg maxω∈Ω−i (ri)

vi(ω)

if Ω−i (ri) 6= ∅, ω−i (ri) ≡ ∅ otherwise. Thus, ω+
i (ri) is i’s worst acceptable kidney and

ω−i (ri) is i’s best unacceptable kidney. Note that if patient i’s reservation value is lower

than her donor’s kidney valuation, ri < vi(ωi), then ω+
i (ri) = ωi and ω−i (ri) = ∅.

At this point, we introduce two conditions that turn out to be necessary for truth-

telling being a unique protective strategy in our environment.
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Invariance. For each patient i, and each pair r, r′ ∈ R such that r−i = r′−i, if Ω+
i (ri) =

Ω+
i (r′i), then ϕi(r) = ϕi(r

′).

Weak Consistency. For each i ∈ N , each r ∈ R, and each ri ∈ Ri, if ϕi(r) = ω0 and

ri < r′i, then ϕi (r
′
i, r−i) = ω0.

Invariance requires that if a patient changes her reported reservation value, but this

change does not affect her set of acceptable kidneys, then the patient receives the same

kidney. Note that a rule satisfying invariance may be responsive to the cardinal informa-

tion of patients’ reported reservation values. For instance, think of a serially dictatorial

(priority) rule that always picks the best feasible allocation for a given patient, and then

proceeds iteratively (serially breaking ties) according to a priority list that depends on

the reservation value reported by that first patient on the list. Weak Consistency is a

convenient weakening of the Axiom of Choice for single-valued choice functions.21 Simply,

if a patient does not receive a kidney when she reports ri, then she cannot be assigned

to a compatible kidney when she raises her reservation value. Note that if a rule satisfies

individual rationality, then weak consistency applies the logic behind the Axiom of Choice

only at situations where the patients receive the worst possible outcome, the null kidney.

Proposition 2. For each preference profile P and each rule ϕ, if ϕ satisfies individual

rationality and for each patient i truth telling is the unique protective strategy, then ϕ

satisfies invariance and weak consistency.

Proof. Let i ∈ N . We start with the proof of invariance. Assume first that ri < vi(ωi). In

this case, Ω−i (ri) = ∅ and we need to prove that every si ∈ Ri such that si < vi(ω
+(ri)),

is equivalent to ri. Let si < vi(ωi). By individual rationality, for each s̄−i ∈ ×j 6=iRj,

vi(ϕi (si, s̄−i)) ≥ vi(ωi). Let r̄−i ∈ ×j 6=iRj be such that ϕ (ri, r̄−i) = ωi. Because truth–

telling is the unique protective strategy for patient i, cri(vi(ωi), ri) ⊆ cri(vi(ωi), si) and

ϕ (si, r̄−i) = ωi. Next, assume that i’s true reservation value is si and let r̃−i ∈ ×j 6=iRj be

such that ϕ (si, r̃−i) = ωi. Repeating the previous argument, individual rationality and the

fact that truth–telling is the unique protective strategy for i, imply that csi(vi(ωi), si) ⊆
21See Arrow (1959) and Sen (1971). We follow Hatfield (2005) in the terminology.
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csi(vi(ωi), ri), and ϕ (ri, r̃−i) = ωi. Applying the same argument iteratively for each level

k > ri, we conclude that ri and si are equivalent.

Next, assume that ri > vi(ωi) and that Ω−i (ri) 6= ∅.22 Hence, we need to check that

every si ∈ Ri such that

vi(ω
−(ri)) < si < vi(ω

+(ri))

is equivalent to ri. Let si ∈ (vi(ω
−(ri)), vi(ω

+(ri))) By individual rationality and the

definitions of ω−i (ri) and ω+
i (ri), for each s̄−i ∈ ×j 6=iRj, vi(ϕi (si, s̄−i)) ≥ ri. Let r̂−i ∈

×j 6=iRj be such that ϕi (ri, r̂−i) = ω0. Because truth–telling is the unique protective

strategy for patient i, cri(ri, ri) ⊆ cri(ri, si), and ϕ (si, r̂−i) = ω0. Next assume that i’s

true reservation value is si and let r̃−i ∈ ×j 6=iRj be such that ϕ (si, r̃−i) = ω0. Repeating

the previous argument, individual rationality and the fact that truth–telling is the unique

protective strategy for i imply that csi(si, si) ⊆ csi(si, ri), and ϕ (ri, r̃−i) = ω0. Applying

the arguments of the previous paragraph iteratively for each level k > ri, we conclude

that ri and si are equivalent. Finally note that the same argument suffices to prove that

every si < vi(ω
+
i (ri)) is equivalent to ri if ri > vi(ωi) and Ω−i (ri) = ∅, which completes

the proof of invariance.

We conclude with the proof of weak consistency. Note that by individual rationality,

for each k < max {ri, vi(ωi)}, cri(k, ri) = ∅ and cri(max {ri, vi(ωi)} , ri) 6= ∅. Assume

that ϕ does not satisfy weak consistency, then there are i ∈ N , and ri < r′i such that

ϕi(r) = ω0 and ϕi (r
′
i, r−i) 6= ω0. Note that, by individual rationality, ri > vi(ωi). Then,

there is r′ ∈ R with r′i > ri such that ϕi(ri, r
′
−i) = ω0 but ϕi(r

′) 6= ω0. By individual

rationality, ϕi(r
′) ∈ Ω+

i (ri)\{ω0}. Hence, by (i) of the definition of protective domination,

ri does not protectively dominates r′i. Moreover, ri and r′i are not equivalent strategies.

These facts contradict that truth–telling is essentially the unique protective strategy.

The next proposition shows that invariance and weak consistency are also sufficient

if only pairwise exchanges are admitted.

Proposition 3. For each preference profile P, if the rule ϕ satisfies individual rationality,

2-efficiency, invariance, and weak consistency, then for each patient i truth–telling is the

unique protective strategy.

22By individual rationality, this is always the case if vi(ωi) 6= 0.
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Proof. Fix a patient i and a reservation value ri ∈ Ri. By invariance, we need only prove

that ri protectively dominates every strategy si ∈ Ri such that si /∈ [ω−i (ri), ω
+
i (ri)] if

ω−i (ri) 6= ∅, and every s′i /∈ (0, ω+
i (ri)] if ω−i (ri) = ∅.

Assume first that ri < vi(ωi). Then, ω+
i (ri) = ωi. Note that, by individual rationality,

for each t < vi(ωi), c
ri(t, ri) = ∅. Let si ∈ Ri be such that si > vi(ωi) = ω+

i (ri). Clearly,

for each t ≤ ri and each t′ > t, cri(t, ri)∩ cri(t′, si) = ∅, which proves the (ii) of protective

domination. Next, consider r̂ ∈ R such that r̂i = si and for each patient j 6= i and each

ω ∈ Ω \ {ω0}, r̂j > vj(ω). By individual rationality, for each j ∈ N ϕj(r̂) = ω0. Then,

cri(ri, ri) = ∅ ( cri(ri, si) 6= ∅, which proves condition (ii) of protective domination.

Next, assume that ri > vi(ωi) and assume that ω−i (ri) 6= ∅. Let s′i ∈ Ri be such

s′i < vi(ω
−
i (ri)). By individual rationality, cri(t, ri) = ∅ for all t ≤ vi(ω

−
i (ri)). Let

j ∈ N be such that ω−i (ri) = ωj.
23 Consider the reservation values profile r′ ∈ R such

that r′i = s′i, for each l /∈ {i, j} and each ω ∈ Ω \ {ω0}, r′l > vl(ω); and vj(ωi) >

r′j. (Note that this is possible because ω−i (ri) ∈ Ωi.) By individual rationality and

k-efficiency, ϕi(r
′) = ωj and ϕi(ri, r

′
−i) = ω0. Clearly, vi(ϕi(ri, r

′
−i)) ≥ ri > vi(ϕi(r

′)).

Hence cri(vi(ϕi(r
′)), ri) ( cri(vi(ϕi(r

′)), s′i) 6= ∅. This suffices to prove that ri protectively

dominates s′i.

We conclude by checking that if ri > vi(ωi), then ri protectively dominates every s′′i ∈
Ri such that s′′i > vi(ω

+
i (ri)) ≥ ri. By individual rationality, for each t < ri, c

ri
i (t, ri) = ∅.

Note that for each r∗ ∈ R such that r∗i = ri and ϕi(r
∗) = ω0, and for each si > ri, by weak

consistency, ϕi(si, r
∗
−i) = ω0. Then, for each t′ > ri we have cri(ri, ri)∩cri(t′, s′′i ) = ∅ which

proves condition (i) of the definition of protective domination. The previous argument

implies that cri(ri, ri) ⊆ cri(ri, s
′′
i ). In order to conclude the argument, we show that the

previous inclusion is proper. Let j ∈ N be such that ω+(ri) = ωj. Consider the reservation

values profile r′′ ∈ R such that r′′i = s′′i , vj(ωi) > r′′j , and for each m /∈ {i, j} and each

ω ∈ Ω \ {ω0}, vm(ω) < rm. By individual rationality and k-efficiency, ϕi(ri, r
′′
−i) = ωj

and ϕi(r
′′) = ω0. Hence cri(ri, ri) ( cri(ri, r

′′
i ) which proves condition (ii) of the definition

of protective domination.

The results in Propositions 2–3 are clearly positive. Under protective behavior, there is

a large class of rules that provide incentives for the patients to reveal their true reservation

23It is possible that j = i.
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values. This family includes every rule that maximizes a strict order over the set of efficient

and individually rational pairwise assignments. Hence, rules that maximize the number

of exchanges, or serial priority rules satisfy our axioms. In addition, the previous results

are in line with the results in Roth et al. (2005a) and Hatfield (2005) despite we start

from different assumptions on patients’ preferences and strategic behavior.

The previous result shows that when only pairwise exchanges are possible, under

protective behavior weak consistency is almost sufficient for providing the right incentives

to patients. In the light of the arguments of the proof of Proposition 3, the result extends

to preference profiles and rules in which for every patient every kidney in the set of possible

outcomes can be obtained through a pairwise exchange.24 This observation however, does

not hold generally. Our next result shows that the restriction on pairwise exchanges is

essential for the positive result. If larger cycles are possible, then truth–telling may fail

to be a protective strategy.

Proposition 4. Let ϕ be a rule that satisfies individual rationality and k-efficiency for

some k ≥ 3. There are preference profiles P such that if for some r ∈ R #ϕ(r) > 2 then

for some patient i ri /∈ D(ri).

Proof. Consider the following counterexample. Let N = {1, 2, 3} and let the preference

profile P be such that

P =


0 0 0.75

0.9 0 0.9

0 0.9 0

 .

Let the rule ϕ satisfy individual rationality and 3-efficiency. Individual rationality and

3-efficiency imply that ϕ is defined according to Table 2 and Table 3.

r2 \ r3 r3 > 0.9 r3 ∈ (0.75, 0.9) r3 < 0.75

r2 > 0.9 [(1, ω0), (2, ω0), (3, ω0)] [(1, ω0), (2, ω0), (3, ω0)] [(1, ω0), (2, ω0), (3, ω0)]

r2 < 0.9 [(1, ω0), (2, ω0), (3, ω0)] [(1, ω0), (2, ω3), (3, ω2)] [(1, ω0), (2, ω3), (3, ω2)]

Table 2: r1 > 0.9

24This is the case for the preference profile presented in the proof of the case k = 2 of Theorem 1.
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r2 \ r3 r3 > 0.9 r3 ∈ (0.75, 0.9) r3 < 0.75

r2 > 0.9 [(1, ω0), (2, ω0), )3, ω0)] [(1, ω0), (2, ω0), (3, ω0)] [(1, ω0), (2, ω0), (3, ω0)]

r2 < 0.9 [(1, ω0), (2, ω0), (3, ω0)] [(1, ω0), (2, ω3), (3, ω2)]
either [(1, ω0), (2, ω3), (3, ω2)],

or [(1, ω2), (2, ω3), (3, ω1)].

Table 3: r1 < 0.9

Assume now that there is r ∈ R such that #ϕ(r′) = 3. That is, there is r such

that ϕ(r) = [(1, ω2), (2, ω3), (3, ω1)]. Necessarily, r1 < 0.9, r2 < 0.9, and r3 < 0.75. It

is immediate to compute: cr3(r3, r3) = cr3(r3, 0.8) = {(s1, s2) | s2 > 0.9}. On the other

hand,

cr3(0.75, r3) 6= ∅, cr3(0.75, 0.8) = ∅,

Note that

ϕ3(r1, r2, 0.8) = ω2 �3 ω1 = ϕ3(r).

If patient 3 reservation value is r3, then s3 = 0.8 protectively dominates r3. In this case,

by reporting s3 = 0.8, patient 3 is not taking any risk at the other patients’ profiles for

which she receives the null kidney. In the case of receiving an acceptable kidney however,

by reporting s3 = 0.8 she always gets her best preferred kidney. Interestingly, we have to

move beyond the first round of comparisons between strategies to check domination.

Proposition 4 implies that at some preference profiles rules individual rationality and

k-efficiency, it is necessary to introduce limits on the cardinality of the recommended

exchanges in order to provide incentives for the patients to reveal their true reservation

values. The problem affects reasonable rules like priority rules and every rule that max-

imizes the number of (individually rational) exchanges. Hence, Proposition 3 provides

a strategic rationale for the focus on pairwise exchanges. Besides the logistic and direct

incentives problems described by Roth et al. (2005a), the restriction to pairwise exchanges

may be necessary to obtain the correct information from the patients in the protective

behavior scenario.

Two final remarks are in order.

Proposition 4 depends crucially on the information available to the patients. In the

light of the proof, it is clear that it is not necessary that the patients have perfect knowl-

edge of the prefernece profile P. It suffices that the patients know the sets of compatible
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kidneys of the remaining patients. If each patient only has information about her own

preferences, then the arguments in the proof of Proposition 3 would apply to prove a gen-

eral version of Proposition 3. In such incomplete information framework, for each k ≤ n,

if a rule ϕ satisfies individual rationality, k-efficiency, invariance, and weak consistency,

then ϕ is DIPE.

Finally, in this article we have focused on situations where each patient has only one

possible donor. When patients can have multiple donors, it could be possible that a patient

may have incentives to withdraw some of her possible donors if by doing so the assignment

rule assigns her a better kidney. Again, with slight modifications of the arguments in the

proof of Proposition 3, we can prove that rules that satisfy a version of Arrow’s Axiom of

Choice (defined over feasible assignments) are immune to such manipulations.

6 Concluding Remarks

In this paper, we have proposed a framework that departs from proposed by Roth et al.

(2005a) in the design of the New England kidney exchange clearing-house in two relevant

aspects. These departures try to convey some relevant institutional features of European

approach to kidney exchange. On the one hand, we assume that patients may have

heterogeneous preferences over the set of compatible kidneys. On the other hand, we

assume that the CTC may avail with detailed information about patients’ preferences.

Our first result shows the difficulties to fulfill different forms of incentive compatibility

if there are restrictions on the cardinality of feasible exchanges. The positive results are

restored if patients follow the protective behavior and are strongly averse to the risk of

refusing a transplant of a compatible kidney. Namely, if only pairwise kidney exchange are

feasible, then the rules which satisfy strategy-proofness and (constrained) efficiency in the

dichotomous domain provide incentives for truthful revelation in the protective behavior

scenario. Interestingly, the difficulties return if larger exchanges are admitted. These

results have policy implications. The efficiency gains of making possible cycles larger

than pairwise exchanges can be overcome by the impossibility of eliciting the correct

information from the patients. Since the cost of slackening the feasibility constraints are

high, then our work puts some doubts on the economic advantage of these investments

for the healthcare service.
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In order to conclude, we devote a few lines to sketch some open venues of further

research. Evidently, our assumption on patients’ (protective) behavior deserves to be

tested by means of controlled questionnaires on the population of patients in the waiting

lists. On the other hand, incentive problems in kidney exchange environments have been

studied on static model as ours. It is evident however, that kidney transplantation has a

dynamic component. It seems a promising line of new research the analysis of dynamic and

strategic models where patients and kidneys are available sequentially and simultaneously

living donation and kidney exchange are feasible procedures.25 In the light of the technical

difficulties that appear in standard queue–management models, the analysis of protective

behavior in such settings is a promising line of investigation.
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A. Abdulkadiroğlu and T. Sönmez. House allocation with existing tenants. Journal of

Economic Theory, 88:233–260, 1999.
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7 Appendices

7.1 Appendix A: Incomplete Information about Other Patients’

Preferences

The results in Section 4 show the impossibility of obtaining the true values of the reser-

vation values of the patient in fully private information environments. In this Appendix,

we assume that patients do not know other patients’ reservation values, but they do know

the probability distribution from which they are drawn. Since we deal with probabilities

we need to consider not only their preferences over kidneys (assignments) but also their

preferences over lotteries on assignments. Hence, in this section, we assume that patients

are expected utility maximizers.

A expected utility function is a function u : Ω → R. For each each i ∈ N ,

P ∈ Mn×n, and each ri ∈ Ri, u is consistent with patient i preferences if for each

ω, ω′ ∈ Ω, vi(ω) ≥ vi(ω
′), and for each probability p ∈ [0, 1] and lottery [pω, (1 − p)ω′]

which yields kidney ω with probability p and kidney ω′ with probability (1−p), the utility

of the lottery is given by its expected utility pu(ω)+(1−p)u(ω′). Of course, a patient with

expected utility u we assume that prefers a lottery [pω, (1− p)ω′] to any other alternative

α (which may or may not be a lottery itself) if and only if pu(ω) + (1− p)u(ω′) > u(α).

Clearly, vi is consistent with patient i’s preferences, but there are many other consistent

utility functions, because an expected utility function reflects not only the simple order

of her preferences over kidneys, but also a measure of their intensity.

Let F denote a probability distribution over n-tuples of utility functions. We call such

a probability distribution a information structure.

Given a preference profile P and a information structure F , a rule ϕ satisfies incentive

compatibility if for each r ∈ R truth-telling for all the patients forms a Bayesian Nash

equilibrium of the Bayesian game defined by (P, r, ϕ, F ). That is, for each patient i, each

r ∈ R, each r′i ∈ Ri,and each ui consistent with patient i preferences

E [ui(ϕ(r) | F ] ≥ E [ui(ϕ(r′i, r−i) | F ] .

Our next result is an impossibility theorem that extends the negative conclusions of

Theorem 1. It says that in the incomplete information case, in equilibrium any revelation

mechanism cannot satisfy the joint requirements of k-feasibility, constrained efficiency,

and individual rationality.
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Theorem 2. Let 2 ≥ k < n. There exist preference profiles and states of information

[P, F ] for which no rule that satisfies individual rationality,k-efficiency, and incentive

compatibility.

Proof. Again, we consider the cases k = 2 and k > 2 separately.

Let k = 2 and consider the deterministic revelation mechanism ϕ that satisfies indi-

vidual rationality, k-efficiency, and incentive compatibility. Consider three patients, 1, 2,

and 3 with preference profile

P =


0.5 0.75 0.99

0.99 0.5 0.75

0.75 0.99 0.5

 ,

and the vi(ωj) = 0 for each i ∈ {1, 2, 3}, j /∈ {1, 2, 3}. Let the type distribution F

be such that Prob(r1 = 0.7) = p, Prob(r1 = 0.8) = (1 − p), Prob(r2 = 0.7) = q ,

Prob(r2 = 0.8) = (1− q) for some p, q ∈ (0, 1), and Prob(r3 = 0.7) = 1. Assume without

loss of generality that ϕ(0.7, 0.7, 0.7) = [(1, ω2), (2, ω1), (3, ω0)]. By individual rationality

and k-efficiency, ϕ(0.8, 0.8, 0.7) = [(1, ω0), (2, ω3), (3, ω2)] and we have four possibilities:

(i) ϕ(0.8, 0.7, 0.7) = [(1, ω2), (2, ω1), (3, ω0)] and ϕ(0.7, 0.8, 0.7) = [(1, ω3), (2, ω0), (3, ω1)].

By reporting r2 = 0.7, patient 2 receives kidney ω1. By reporting r2 = 0.8, she re-

ceives ω3 with probability q and the ω0 with probability (1− q). If u2(ω0) = 0 and

u2(ω3) > 1
1−pu2(ω1), then patient 2 prefers to report r2 = 0.8 even though her true

reservation value is r2 = 0.7, which contradicts incentive compatibility.

(ii) ϕ(0.8, 0.7, 0.7) = [(1, ω2), (2, ω1), (3, ω0)] and ϕ(0.7, 0.8, 0.7) = [(1, ω0), (2, ω3), (3, ω2)].

By reporting r2 = 0.7, patient 2 receives kidney ω1. By reporting r2 = 0.8, she re-

ceives ω3. Then, patient 2 always prefers to report r2 = 0.8 independently of her

true reservation value, which contradicts incentive compatibility.

(iii) ϕ(0.8, 0.7, 0.7) = [(1, ω0), (2, ω3), (3, ω2)] and ϕ(0.7, 0.8, 0.7) = [(1, ω0), (2, ω3), (3, ω2)].

By reporting r1 = 0.7, patient 1 receives kidney ω2 with probability q and ω0 with

probability (1− q) By reporting r2 = 0.8, she receives ω0. Hence, patient 1, always

has an incentive to report r1 = 0.7, which contradicts incentive compatibility.

(iv) ϕ(0.8, 0.7, 0.7) = [(1, ω0), (2, ω3), (3, ω2)] and ϕ(0.7, 0.8, 0.7) = [(1, ω3), (2, ω0), (3, ω1)].

By reporting r1 = 0.7, patient 1 receives kidney ω2 with probability q and ω3 with
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probability (1− q). By reporting r2 = 0.8, she receives ω0. If u1(ω3) is close enough

to u1(ω0) and u1(ω2) is large enough, then patient 1 has an incentive to report

r1 = 0.7 even though her true reservation is r1 = 0.8, which leads to the desired

contradiction.

Next, we analyze the general case. Let k > 2. Assume to the contrary there is a rule

ϕ that satisfies individual rationality, k-efficiency, and incentive compatibility. Let P be

such that for every i = 1 . . . , k:

vi(ωi+1) > vi(ωi+2) > vi(ωi) > vi(ω) = 0, ∀ ω ∈ Ω \ {ω0, ωi, ωi+1, ωi+2}. (modulo k + 1),

and for patient k + 1, vk+1(ω2) > vk+1(ω1) > vk+1(ω) = 0 for each ω ∈ Ω \ {ω1, ω2}.
By individual rationality, without any loss of generality, we can focus on the assignment

restricted to the patients 1, . . . , k + 1.

Consider type information distribution F be such that for each i ∈ N \ {k− 1, k+ 1},
Prob(vi(ωi+2 < ri < ωi+1) = 1, Prob(vk−1(ωk−1 < rk−1 ≥ ωk) = p, Prob(vk−1(ωk+1 <

rk−1 < ωk) = (1 − p), Prob(vk−1(ωk+1 < rk+1 < ω2) = q, and Prob(vk+1(ω2 < rk+1 <

ω1) = (1− q).
Consider patient k − 1. By reporting rk−1 ∈ (vk−1(ωk−1, ωk+1)), for λ ∈ {0, 1}, she

obtains with probability q, (λωk, (1−λ)ωk+1), and with probability (1−q) the kidney ωk+1.

On the other hand, by reporting rk−1 ∈ (vk−1(ωk+1, ωk), she receives with probability q the

kidney ωk and with probability (1 − q) the null kidney ω0. Normalizing uk−1(ω0) = 0, if

λ = 0, for all q ∈ (0, 1) there is uk−1 such that uk−1(ωk) >
1
q
uk−1(ωk+1), which contradicts

incentive compatibility. (Note that patient k − 1 with such utility function would rather

report a higher reservation value than her true one.) Thus λ = 1. Repeating the same

argument with patient k + 1 yields the desired contradiction.

7.2 Appendix B: Omitted Proofs

Proof of Proposition 1. It is obvious that if for each patient truth-telling is the unique

protective strategy then ϕ is DIPE. Hence, we focus on the converse result. Let ϕ be a

DIPE rule. We proceed thrugh a series of steps.

(a) If ri and r′i are not equivalent, then D(ri) ∩D(r′i) = ∅.

Let r∗i ∈ Ri. Assume to the contrary that r∗i ∈ D(ri) ∩D(r′i). Since ri and r′i are not

equivalent, there is r−i ∈ R−i such that ϕi(ri, r−i) 6= ϕi(r
′
i, r−i). For each j ∈ N \ {i}, let
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r̂j ∈ D(rj). Since ϕ is DIPE, ϕi(r
∗
i , r̂−i) = ϕi(ri, r−i) and ϕi(r

∗
i , r̂−i) = ϕi(r

′
i, r−i), which

is not possible.

(b) If ri and r′i are such that Ω+
i (ri) = Ω+

i (r′i), then ri and r′i are equivalent.

Note first that both ri and r′i together with P define the same preference relation

%i. Let r̄i ∈ D(ri) and r̄′i ∈ D(r′i). Let r̂−i ∈ R−i be such that for every r−i ∈ R−i,
ϕi(r̄i, r−i) %i ϕi(r̄i, r̂−i). Because r̄i ∈ D(ri), ϕi(r̄i, r̂−i) = ϕi(r̄

′
i, r̂−i). Using the same

argument with r̄′i, we conclude that the worst outcomes that i receives reporting r̄i and

r̄′i are the same. Moreover, they receive such worst outcomes at the same reservation

values profiles of the remaining patients. Repeating as many times as necessary the

same argument with the following utility levels, we prove that r̄i and r̄′i are equivalent.

Therefore, by step (a), ri and r′i are equivalent.

Remark 1. Since there is a finite number of patients and kidneys, steps (a) and (b) imply

that patients divide their strategy sets in a finite number of equivalence classes.

(c) D(ri) = {r′i | ri and r′i are equivalent}.
By steps (a) and (b), it suffices to prove that ri ∈ D(ri). Assume to the contrary

that there are i ∈ N and r0
i ∈ Ri such that r0

i /∈ D(r0
i ). Since D(r0

i ) 6= {∅}, then

there is r1
i ∈ D(r0

i ). As r1
i protectively dominates r0

i , there is r0
−i ∈ R−i such that

ϕi(r
1
i , r

0
−i) �i ϕi(r0

i , r
0
−i), and for each r′−i ∈ R−i such that ϕi(r

1
i , r
′
−i) = ϕi(r

0
i , r

0
−i),

ϕi(r
0
i , r
′
−i) = ϕi(r

0
i , r

0
−i).

Since r0
i and r1

i are not equivalent, by step (a), r1
i /∈ D(r1

i ). Thus there exist r2
i ∈ D(r1

i )

and r2
i is not equivalent to r1

i . By repeated application of this argument we can construct

a sequence r0
i , r

1
i , r

2
i , . . . of i’s reservation values such that for all t ∈ N, rti /∈ D(rti) and

rti ∈ D(rt−1
i ).

By step (b) there is a finite number of equivalence classes D(ri), there exist integers

T and S such that rTi and rT+S
i are equivalent. Then, by step (a), rT−hi and rT+S−h

i are

also equivalent for h = 1, . . . , T . In particular, r0
i and rTi are equivalent.

Let now define the sequence {r1
−i, . . . , r

S
−i} of elements of R−i such that for each

t = 1, . . . , S, and each j ∈ N \ {i}, rt−i ∈ D(rt−1
j ).

Since ϕ is DIPE, ϕi(r
1
i , r

1
−i) = ϕi(r

0
i , r

0
−i), and because r1

i ∈ D(r0
i ), ϕi(r

0
i , r

1
−i) =

ϕi(r
0
i , r

0
−i). Again, since ϕ is DIPE, ϕi(r

0
i , r

1
−i) = ϕi(r

0
i , r

0
−i) implies ϕi(r

1
i , r

2
−i) = ϕi(r

0
i , r

0
−i)
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and ϕi(r
0
i , r

2
−i) = ϕi(r

0
i , r

0
−i). Repeating the argument as many times as necessary, we ob-

tain that ϕi(r
0
i , r

S−1
−i ) = ϕi(r

0
i , r

0
−i).

On the other hand, by repeated application of the fact that ϕ is DIPE, we obtain that

for each t = 1, . . . , S; ϕi(r
1
i , r

0
−i) = ϕi(r

t
i , r

t−1
−i ). In particular, ϕi(r

S
i , r

S−1
−i ) = ϕi(r

1
i , r

0
−i) �i

ϕi(r
0
i , r

0
−i), which contradicts that r0

i and rSi are equivalent.

33



NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI 

Fondazione Eni Enrico Mattei Working Paper Series 

Our Note di Lavoro are available on the Internet at the following addresses: 
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm 

http://www.ssrn.com/link/feem.html 
http://www.repec.org 

http://agecon.lib.umn.edu 
http://www.bepress.com/feem/ 

 
 
 
 
 

NOTE DI LAVORO PUBLISHED IN 2009 
SD 1.2009 Michael Hoel: Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas 

Emissions 
SD 2.2009 Abay Mulatu, Reyer Gerlagh, Dan Rigby and Ada Wossink: Environmental Regulation and Industry Location
SD 3.2009 Anna Alberini, Stefania Tonin and Margherita Turvani: Rates of Time Preferences for Saving Lives in the 

Hazardous Waste Site Context 
SD 4.2009 Elena Ojea, Paulo A.L.D. Nunes and Maria Loureiro: Mapping of Forest Biodiversity Values: A Plural 

Perspective 
SD 5.2009 Xavier Pautrel : Macroeconomic Implications of Demography for the Environment: A Life-Cycle Perspective 
IM 6.2009 Andrew Ellul, Marco Pagano and Fausto Panunzi: Inheritance Law and Investment in Family Firms 
IM 7.2009 Luigi Zingales: The Future of Securities Regulation 
SD 8.2009 Carlo Carraro, Emanuele Massetti and Lea Nicita: How Does Climate Policy Affect Technical Change? An 

Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model 
SD 9.2009 William K. Jaeger: The Welfare Effects of Environmental Taxation 
SD 10.2009 Aude Pommeret and Fabien Prieur: Double Irreversibility and Environmental Policy Design 
SD 11.2009 Massimiliano Mazzanti and Anna Montini: Regional and Sector Environmental Efficiency Empirical Evidence 

from Structural Shift-share Analysis of NAMEA data 
SD 12.2009 A. Chiabai, C. M. Travisi, H. Ding, A. Markandya and P.A.L.D Nunes: Economic Valuation of Forest 

Ecosystem Services: Methodology and Monetary Estimates 
SD 13.2009 Andrea Bigano, Mariaester Cassinelli, Fabio Sferra, Lisa Guarrera, Sohbet Karbuz, Manfred Hafner, Anil 

Markandya and Ståle Navrud: The External Cost of European Crude Oil Imports 
SD 14.2009 Valentina Bosetti, Carlo Carraro, Romain Duval, Alessandra Sgobbi and Massimo Tavoni: The Role of R&D 

and Technology Diffusion in Climate Change Mitigation: New Perspectives Using the Witch Model 
IM 15.2009 Andrea Beltratti, Marianna Caccavaio and Bernardo Bortolotti: Stock Prices in a Speculative Market: The 

Chinese Split-Share Reform 
GC 16.2009 Angelo Antoci, Fabio Sabatini and Mauro Sodini: The Fragility of Social Capital  
SD 17.2009 Alexander Golub, Sabine Fuss, Jana Szolgayova and Michael Obersteiner:  Effects of Low-cost Offsets on 

Energy Investment – New Perspectives on REDD – 
SD 18.2009 Enrica De Cian: Factor-Augmenting Technical Change: An Empirical Assessment 
SD 19.2009 Irene Valsecchi: Non-Uniqueness of Equilibria in One-Shot Games of Strategic Communication 
SD 20.2009 Dimitra Vouvaki and Anastasios Xeapapadeas: Total Factor Productivity Growth when Factors of Production 

Generate Environmental Externalities 
SD 21.2009 Giulia Macagno, Maria Loureiro, Paulo A.L.D. Nunes and Richard Tol: Assessing the Impact of Biodiversity 

on Tourism Flows: A model for Tourist Behaviour and its Policy Implications 
IM 22.2009 Bernardo Bortolotti, Veljko Fotak, William Megginson and William Miracky: Sovereign Wealth Fund 

Investment Patterns and Performance 
IM 23.2009 Cesare Dosi and Michele Moretto: Auctioning Monopoly Franchises: Award Criteria and Service Launch 

Requirements 
SD 24.2009 Andrea Bastianin: Modelling Asymmetric Dependence Using Copula Functions: An application to Value-at-

Risk in the Energy Sector 
IM 25.2009 Shai Bernstein,  Josh Lerner and Antoinette Schoar: The Investment Strategies of Sovereign Wealth Funds 
SD 26.2009 Marc Germain, Henry Tulkens and Alphonse Magnus: Dynamic Core-Theoretic Cooperation in a Two-

Dimensional International Environmental Model 
IM 27.2009 Frank Partnoy: Overdependence on Credit Ratings Was a Primary Cause of the Crisis 
SD 28.2009 Frank H. Page Jr and Myrna H. Wooders (lxxxv): Endogenous Network Dynamics 
SD 29.2009 Caterina Calsamiglia, Guillaume Haeringer and Flip Klijnb (lxxxv): Constrained School Choice: An 

Experimental Study 
SD 30.2009 Gilles Grandjean, Ana Mauleon and Vincent Vannetelbosch (lxxxv): Connections Among Farsighted Agents 
SD 31.2009 Antonio Nicoló and Carmelo Rodríguez Álvarez (lxxxv): Feasibility Constraints and Protective Behavior in

Efficient Kidney Exchange 
 
 

(lxxxv) This paper has been presented at the 14th Coalition Theory Network Workshop held in 
Maastricht, The Netherlands, on 23-24 January 2009 and organised by the Maastricht University CTN 
group (Department of Economics, http://www.feem-web.it/ctn/12d_maa.php). 




