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1 Introduction

There is a widely held concern in the urban economics literature that cities tend to

be too large in equilibrium. In particular environmental pollution is assumed to be

exceedingly high in large cities, expecially in developing countries (Henderson 2002a;

Henderson 2002b; Trolley 1979; Shah and Nagpal 1997; UNFPA 2001; UN-Habitat

2003). This becomes even more of an issue in a dynamic context where economic activity

and urban population grow over time. Yet, unlike other forces limiting city sizes, urban

environmental pollution may either increase or decrease over time, even in a growing

economy. As the extensive literature on the so-called Environmental Kuznets Curve

indicates, the environmental load with some pollutants – like e.g. SO2 – increases with

output at early stages of economic development, but may ultimately decrease again (e.g.,

Andreoni and Levinson 2001, Egli and Steger 2007, Grossman and Krueger 1995, Lieb

2002; 2003, Plassmann and Khanna 2006, Stern 2004). In light of these observations the

crucial question is, if cities are currently too large compared to their optimal size, will

this problem become worse or better in the course economic development?

Seminal contributions by Henderson (1974,1988) provide a theoretical foundation of

the concern that cities are too large in equilibrium. He showed that in an uncoordinated

migration equilibrium, cities are too few in number and too large each, because in the

absence of a coordinating mechanism people and firms are reluctant to found new cities

and rather stay in inefficiently large existing cities. As a solution to this coordination

failure he proposed that powerful land developers should be given the right to found new

cities and receive all land rents people and firms pay in the new city. The competition of

such land developers for tenants would then lead to efficient city sizes. Recent dynamic

theories of urban growth assume that such powerful land developers exist and ensure

efficient city sizes (Black and Henderson 1999, Rossi-Hansberg and Wright 2007). In

contrast to this view, Helsley and Strange (1997) argue that in practice developers only

have limited power and, thus, may fail to implement efficient city sizes. But also the

very diagnosis has been challenged that without coordination equilibrium city sizes are

inefficient. In a model of two regions with an exogenously growing total population,

Anas and Xiong (2005) show that an efficient population distribution over two cities

may emerge without developers if there are positive externalities between cities.

In this paper, we re-examine the question of whether and under which conditions

equilibrium city sizes are inefficient in a dynamic context. For this sake, we develop a

simple and analytically solvable model of endogenous urban growth that is related to

the recent theories of urban growth (e.g. Black and Henderson 1999, Rossi-Hansberg

and Wright 2007). Endogenous growth is driven by human capital accumulation, and
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an endogenous number of cities forms as the result of (aggregate) increasing returns to

scale in production. In contrast to current theories, we include environmental pollution

into the model, as pollution is a problem of major concern in many cities.

Unlike current theories our model can explain a decreasing number of cities even in

a growing economy – this is the case when environmental pollution decreases, such that

equilibrium city sizes increase. We also show that an endogenous number of cities is

crucial: considering just two cities, as in much of the literature (e.g., Anas and Xiong

2005 or many models of the so-called New Economic Geography, e.g. Krugman 1991 or

Puga 1999) may generate misleading results. In particular, the number and patterns of

equilibrium outcomes may be substantially different when there are more cities.

Our main result is that cities may be of efficient sizes or inefficiently large in an

equilibrium development path, depending on the nature of economic growth. If economic

growth is accompanied by increasing environmental pollution, cities are inefficiently large

in the uncoordinated equilibrium. Under conditions of ‘quality growth’, with decreasing

environmental pollution, city sizes are close to optimal, i.e. the uncoordinated market

equilibrium becomes efficient. This, however, does not happen immediately, but there

is a hysteresis effect. It takes a sufficiently large reduction of environmental pollution,

and, correspondingly, a sufficiently long interval in time over which pollution is reduced,

until the efficient urbanization pattern is reached in equilibrium.

The next section develops the model and derives the factor prices and outputs for

a given distribution of population across regions and sectors, i.e. the short-run equilib-

rium allocation. Section 3 contains the dynamic analysis of the model, and derives the

equilibrium and Pareto-optimal paths of urban growth and urbanization patterns. In

the final Section 4 we summarize and discuss our results.

2 The model and first results

We consider a small open economy that trades a primary resource and a final consump-

tion good on world markets at given prices. The price of the resource is normalized

to unity, the price of the consumption good is P . At these prices, the primary re-

source and the consumption good are also traded between cities within the economy.

By contrast, intermediate goods that are used to produce the final consumption good

are non-tradable and can be used only within the city where they are produced. One

may imagine the intermediate goods as specific sub-contracted production services that

are provided locally.

The economy is divided into a large number of regions i where a city could possibly

exist. A city, in our model, is a region that is actually inhabited by a positive number
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of (urban) residents. While the number of regions is exogenous, the number of cities is

one of the most important endogenous variables of the model. All regions are identical

in the first place, and we we will omit the index i when setting up the model in the

following, as long as no confusion may arise. In a city, two sectors of production exist: an

industrial sector which produces the final consumption good and a small and medium-

sized enterprises (SME) sector with a large variety of firms. Each firm in the SME-sector

produces a particular variety of the intermediate good, using the resource and sector-

specific human capital.

To operating a business in the SME-sector one unit of specific human capital K has

to be employed at a rental rate of r. In addition, for each unit of output, (ε− 1)/ε > 0

units of the resource are consumed. Hence, a firm’s total costs of producing x units of

output are:

C(x) = r +
ε− 1
ε

x (1)

The industrial sector uses a composite X of intermediate goods and specific human

capital H to produce a quantity M of the final consumption good with a technology

described by the production function

M = HµX1−µ, (2)

where H is the firm’s employment of human capital and

X =

 I∫
0

x(i)
ε−1
ε di


ε
ε−1

(3)

is the aggregate of a mass I of different intermediate inputs of quantity x each. The dif-

ferent varieties are assumed to be (imperfect) substitutes in production, i.e. the elasticity

of substitution exceeds one, ε > 1.

Let w denote the rate of return to human capital specific to the industrial sector,

p the domestic price of a variety of the intermediate good and G the price index of

the intermediate composite. Profit maximization of competitive firms in the industrial

sector yields (see appendix A.1)

wH = µP HµX1−µ (4)

p x = (1− µ)P HµX1−µGε−1 p1−ε (5)

GX = (1− µ)P HµX1−µ, (6)

where the price index for the intermediate good is

G =

 I∫
0

p(i)1−ε di


1

1−ε

. (7)
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Monopolistically competitive profit maximization of firms in the intermediate goods-

sector yields p = 1 (see appendix A.1). Given free entry of firms, profits are zero. From

this condition, we derive the output per firm x = ε r.

Given a region’s endowment of human capital K specific to the SME-sector, the

number of businesses in an urban region is I = K, as operating a firm in the intermediate

sector requires one unit of specific capital. Hence, the price index for intermediates is

G = K
1

1−ε , (8)

and the aggregate input of intermediates in the industrial sector is

X = ε r K
ε
ε−1 , (9)

i.e., GX = ε r K. With this, we derive from equations (4) and (6) the rates of return to

both types of human capital,

r =
1
ε

((1− µ)P )
1
µ HKψ−1 (10)

w =
µ

1− µ
((1− µ)P )

1
µ Kψ, (11)

where we used the abbreviation ψ = 1−µ
µ

1
ε−1 > 0. Total output is, using (9), x = ε r

and (10)

M = Hµ
(
ε r K

ε
ε−1

)1−µ
= ((1− µ)P )

1−µ
µ HKψ. (12)

This equation shows that on aggregate the urban production technology exhibits in-

creasing returns to scale. In particular, the parameter cluster ψ may be interpreted as

the degree of increasing returns in city production.

Environmental pollution occurs locally as an unwanted by-product of the production

of intermediate goods. Pollution load is assumed to be proportional to the aggregate

input of the primary resource, I ε−1
ε x (cf. equation 1), with a proportionality factor e(t),

E = e(t) I
ε− 1
ε

x. (13)

Given the technology of production, in particular (2), it is possible to abate emissions

by substituting human capital for intermediate goods. It is however not possible to

‘export’ pollution, as intermediate goods cannot be traded between cities. We assume

an exogenous ‘pollution-saving’ technical progress at a rate η > 0, i.e. the amount of

pollution per unit of resource input decreases over time, such that e(t) = e0 exp(−η t).
Thus, even with increasing use of resources, local pollution does not necessarily increase

at the same rate. Actually, it may even decrease if η is large enough, i.e. larger than the

growth rate of resource use. We call such a situation ‘quality growth’ or ‘smart growth’.
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Using the above results I = K and x = ε r in equation (13), we obtain aggregate local

environmental pollution

E = e(t)K
ε− 1
ε

ε r
(10)
= e(t)

ε− 1
ε

((1− µ)P )
1
µ HKψ. (14)

This equation shows that environmental pollution increases with the city’s endowments

of human capital of both types.

Total urban population N(t) is assumed to be growing (or declining) at a constant

rate γ, capturing rural-urban migration as well as natural growth (or decline) of urban

population, such that N(t) = N0 exp(γ t). Each individual decides in which city she

lives and in which sector she is employed, i.e. there is inter-regional as well as inter-

sectoral migration. Each individual can only live at one city and work only in one sector

at a given moment in time. We do not consider any migration costs. Concerning inter-

regional migration, we denote the population share of region i with ni ∈ [0, 1], i.e. N ni

people live in region i. The number of cities is endogenous and given by the number

actually inhabited regions, i.e. those regions i with a non-zero population, ni > 0. Of

course, the number of cities and the population of each city may change over time.

Concerning inter-sectoral migration, we denote the share of workers employed in the

SME-sector of city i by li. Assuming that all individuals are employed, the share of

workers in the industrial sector of city i is 1 − li. Hence, total labor force employed in

the SME-sector in city i is N ni li, and the total labor force employed in the industrial

sector of the same city is N ni (1− li). The shares of workers employed in either of the

sectors is endogenous, too, and may change over time.

Each individual is initially endowed with k0 units of human capital specific to the

SME-sector and h0 units of human capital specific to the industrial sector. Both types of

human capital can be transferred between cities, and newly born individuals (or rural-

urban migrants) are immediately endowed with the average level of human capital.

Further human capital can only be accumulated if the individual under consideration

actually works in the respective sector, i.e. no ‘learning’ is possible without ‘doing’. Per

capita human capital h(t) specific to the industrial sector is accumulated with a linear

technology according to the equation

ḣ = θh (1− uh)h, (15)

where the dot superscript denotes a derivative with respect to time, uh is the share of

human capital used in production and θh > 0 would be the growth rate of human capital

if all of it could be used for accumulation rather than for producing intermediate goods.

Per capita human capital k specific to the SME-sector is accumulated with a similar
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technology according to

k̇ = θk (1− uk) k, (16)

where uk and θk are defined analogously to uh and θh.

Intertemporal utility function of each individual is
∞∫
0

(
ln c+ φ ln

(
Ē − E

))
exp(−ρ t) dt, (17)

where c is the amount of goods consumption, E is environmental pollution in the in-

dividual’s city of residence. Beyond a maximum tolerable level of pollution Ē life at

the place of residence is impossible. The parameter φ > 0 is the weighting factor of

environmental pollution in utility; ρ > 0 is the rate of time preference.

Income of an individual working in the industrial sector of city i is yh,i = uh hwi,

i.e. the industrial wage rate in city i times the amount of human capital used in produc-

tion. Similarly, the income of an individual employed in the SME-sector is yk,i = uk k ri.

All current income is used for the consumption of goods. Hence, demand for the con-

sumption good is ch,i = yh,i/P for an individual who works in the industrial sector and

ck,i = yk,i/P for an individual who is employed in the SME-sector of city i.

In order to derive the time paths of human capital endowments, we determine the

optimal decisions concerning the uh, h, uk, and k. Suppose the individual under con-

sideration joins the industrial sector of the urban region i at time t and leaves it at time

t. Using ch,i = yh,i/P = uh hwi/P in (17), her optimization problem reads

max
uh

t∫
t

[
ln (uh hwi/P ) + φ ln

(
Ē − Ei

)]
exp(−ρ t) dt, (18)

subject to (15) and given h(t). Since the individual under consideration takes wi, P ,

and Ei as given, this is problem is equivalent to max
uh

∞∫
0

ln (uh h) exp(−ρ t) dt subject

to (15) and given h(t). Hence, the accumulation of human capital does not depend on

the city of residence. This means, the optimization problem (18) is independent of when

the individual under consideration leaves or enters the industrial sector of a specific city,

i.e. it is independent of t and t. Hence, the optimal accumulation of human capital is

determined by the solution of

max
uh

∞∫
0

ln (uh h) exp(−ρ t) dt s.t. (15), (19)

given h(0) = h0. Similarly, the corresponding optimization problem for an individual

working in the SME-sector only depends on the stock of sector-specific human capital

7



and the time spent in production. The solution of these optimization problems is given

by the following lemma.

Lemma 1. The share of human capital specific to the industrial sector used in production

is uh = ρ/θh =const. Human capital is accumulated according to

h(t) = h0 exp((θh − ρ) t). (20)

The share of human capital specific to the SME-sector used in production is uk =

ρ/θk =const. Human capital is accumulated according to

k(t) = k0 exp((θk − ρ) t). (21)

Proof. see appendix A.2.

Using these results, we can also determine the sectoral distribution of labor. In order

to derive the population shares engaged in either of the sectors, we consider the decision

of which sector to join at time t = 0. By assumption, all individuals at this time are

equally endowed with human capital specific to both sectors. It turns out that the share

of workers employed in either sector is constant over time and independent of the city

of residence.

Lemma 2. In each city i the share li of workers employed in the SME-sector is constant

over time and given by

li =
ε µ

1− µ+ ε µ
. (22)

Proof. see appendix A.3.

Given the population share ni of city i, lemma 1 with lemma 2 determines the

total human capital stocks of both types, i.e. Ki = N ni li uk k and Hi = N ni (1 −
li)uh h. Moreover, incomes are the same in both sectors, i.e. yi = yh,i = yk,i with (see

appendix A.3)

yi =
µ

1− µ
((1− µ)P )

1
µ
ρ

θh

(
li
ρ

θk

)ψ
Nψ kψ hnψi . (23)

Given human capital stocks and the population share of city i, environmental pollution

in that city is

Ei =
ε− 1
ε

((1− µ)P )
1
µ (1− li)

ρ

θh

(
li
ρ

θk

)ψ
eN1+ψ kψ hn1+ψ

i . (24)

Hence, both income and environmental pollution crucially depend on the city’s popula-

tion, in particular in the city’s share ni of total urban population.
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Based on the results derived in this section the analysis in the following section will

focus on how the population shares ni of the different regions, i.e. the urbanization

patterns, evolve over time. We shall derive both the equilibrium outcomes and the

Pareto-optimum, given the exogenous development of pollution-saving technical progress

e(t), growth (or decline) of urban population N(t) and the dynamics of human capital

accumulation, equations (20) and (21).

3 Urbanization dynamics

As individuals can freely choose their city of residence, they will move to the region

with the highest utility level. Considering the level of utility at region i as a function of

income yi and environmental pollution Ei, the utility level in city i is ln
(yi
P

)
+φ ln(Ē−

Ei). Using equations (23) and (24), we can express utility as a function of time and

city i’s population share ni.

ln
(yi
P

)
+ φ ln(Ē − Ei) = ln

(
µ

1− µ
((1− µ)P )

1
µ
ρ

θh

(
li
ρ

θk

)ψ
Nψ kψ hnψi

)

+ φ ln

(
Ē − ε− 1

ε
((1− µ)P )

1
µ (1− li)

ρ

θh

(
li
ρ

θk

)ψ
eN1+ψ kψ hn1+ψ

i

)
. (25)

This expression looks quite complicated. But indeed, it may be simplified to a great

extent. Transforming (25) in an appropriate way, we obtain the following result

Lemma 3. An individual will choose to live in the city such as to maximize the trans-

formed utility function

v(ni) = nψi

(
1− z(t)n1+ψ

i

)φ
(26)

with

z(t) =
1
Ē

ε− 1
ε

((1− µ)P )
1
µ (1− li)

ρ

θh

(
li
ρ

θk

)ψ
e(t) N(t)1+ψ k(t)ψ h(t). (27)

Utility v(ni) is a hump-shaped function of ni that is zero at ni = 0 and n̄ = z(t)−
1

1+ψ . For

all z(t) > ψ
ψ+φ (1+ψ) , v(ni) has a unique maximum at nmax =

[
φ
ψ + 1 + φ

]− 1
1+ψ

z(t)−
1

1+ψ .

Proof. see appendix A.4

The quantity z(t) defined in equation (27) may be interpreted as a measure of aggre-

gate environmental pollution. It is equal to total emissions – measured relative to the

maximum possible amount of pollution Ē – that would prevail if the whole economy’s

production was concentrated in a single city. Of course, z(t) can exceed one, i.e. aggre-

gate pollution may be larger than the maximum tolerable pollution in any single city.
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By definition z(t) does not depend on ni, but urbanization dynamics are driven by the

dynamics of z(t), as v(ni) depends on both city i’ population share ni and aggregate

pollution z(t).

Lemma 3 states that utility in city i is a hump-shaped function of the city’s popu-

lation share ni. The reason is that utility is increasing with the population share for a

small population, because environmental pollution is still small and a larger population

generates a higher income due to increasing returns to scale in production. For a large

population, the increasing environmental damage outweighs the benefit from increasing

returns to scale such that utility ultimately decreases with the city’s population. Utility

assumes a maximum at an intermediate level of population at which increasing returns

to scale in production and environmental pollution are in an appropriate balance.

To derive the equilibrium and efficient urbanization patterns at a given moment in

time we will consider z(t) as given. After that, in order to derive the urbanization

dynamics, we will consider how the dynamics of z(t) determine the dynamic evolution

of urbanization patterns. For in any migration equilibrium the utility level must be

the same in all cities. Otherwise, an incentive to migrate would still exist. Hence, a

migration equilibrium requires

v(ni) = v(ni′) (28)

for all cities i and i′ with ni > 0 and ni′ > 0. In general, no closed form solution exists

for this equation. Many general results can however be derived without such a solution.

Figure 1 illustrates the properties of the utility function v(ni) that determine the

possible equilibrium and efficient urbanization patterns. Of course, utility in any pair

of two cities is the same if both cities have the same population share, i.e. ni = ni′ ⇒
v(ni) = v(ni′). Second, given the hump-shaped utility function v(ni) (lemma 3), for any

given ni equation (28) is solved by exactly one ni′ 6= ni, as illustrated in figure 1. This

result is formally proven in the following lemma.

Lemma 4. There are at most two different equilibrium sizes of cities.

Proof. see appendix A.5.

This means that if in equilibrium there are three (or more) cities, at least two of

them are of equal size. As a consequence, either all cities are inhabited by an equal share

of population, or there are two types of cities, one with a larger share of population and

the other one with a smaller share of population. This result holds for any migration

equilibrium, whether it is stable or not.

Of particular interest, however, are the stable equilibria, i.e. those migration equi-

libria to which the economy returns after a small perturbation of the population distri-

bution. Focusing on stable equilibria rules out the majority of asymmetric migration
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v(ni)

population share of city i

v(ni′)

z(t)
− 1

1+ψni′nmaxni0

v(nmax)

v(ni)

0

Figure 1: The (transformed) utility v(ni) of an individual living in city i as a function

of this city’s population share ni.

equilibria. In particular, only migration equilibria can be stable where all or all but one

cities are ‘large’, i.e. have a share of population ni > nmax, as shown in the following

lemma.

Lemma 5. Migration equilibria in which more than one city has a population share

smaller than nmax (i.e. the population share at which utility is maximal) are unstable.

Proof. By lemma 4 the two (or more) small cities must be of equal size in equilibrium.

A small deviation from this equilibrium would lead to a population differential between

the two (or more) small cities. This would create an incentive for further migration

from the smaller city to the city that has become a little bigger, as utility increases with

population size for ni < nmax. Hence, such an equilibrium is unstable.

Taken together, lemma 4 and lemma 5 imply that only two types of stable urban-

ization patterns exist in the model: either all cities are of equal size or there is just one

small city in addition to one or more large cities. If all cities are of equal size, each city

has the same share of population, i.e. ni = 1/m where m is the number of cities, i.e.

regions that are actually inhabited. For such an equal distribution of population across

m cities it is easy to determine whether the corresponding urbanization pattern is stable

or not. If each city’s population share ni = 1/m is smaller than nmax the pattern is

unstable. A small deviation from the equilibrium would imply that there is an incentive
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for further migration to the city that has become a little larger than the others. For,

as illustrated in figure 1, utility is increasing in ni for all ni < nmax. By contrast, if

each city’s population share ni = 1/m is larger than nmax the pattern is stable. Any

deviation from the equilibrium would create an incentive to move back to the smaller

city, because utility is decreasing in ni for all ni > nmax due to high environmental

damages. In this sense, environmental pollution is a negative feedback mechanism that

prevents unlimited growth and thereby stabilizes city sizes.

For very low aggregate environmental pollution z(t) ≤ 1, complete agglomeration of

economic activity in one region is the only stable equilibrium. It is easily verified that

for an equal distribution of population over two cities, each city would have a population

share of less than nmax if z(t) ≤ 1. Also a pattern with one large city and one small city

would not be stable against a deviation from this equilibrium such that the smaller city

would grow and the larger city would shrink a little bit.

For larger aggregate environmental pollution, z(t) > 1, complete agglomeration is

not an equilibrium anymore. Rather all equal distributions of population across cities

are stable for which each city has a population share greater than nmax. In addition, a

pattern with one small and several large cities may be stable. The stable urbanization

patterns are derived in the following proposition.

Proposition 1 (stable urbanization patterns)

1. For z(t) > 1, stable urbanization patterns consist of m? cities with a population share

1/m? each for all

m? ∈

{
m ∈ IN

∣∣∣∣∣ z(t) 1
1+ψ ≤ m ≤

(
φ

ψ
+ 1 + φ

) 1
1+ψ

z(t)
1

1+ψ

}
. (29)

2. For all

m?? ∈

{
m ∈ IN

∣∣∣∣∣
(
φ

ψ
+ 1 + φ

) 1
1+ψ

z(t)
1

1+ψ − 1 ≤ m ≤ z(t)
1

1+ψ

}
, (30)

an asymmetric distribution of population over m?? − 1 cities with a population share

n+ > nmax and one city with a population share n− < nmax is the only stable equilibrium.

Proof. Part 1. If the population share 1/m of each of the m cities exceeds the value

z(t)−
1

1+ψ , transformed utility would be negative (lemma 3). Hence, there would be an

incentive to move to any empty region where transformed utility is zero, i.e. an equal

distribution of population across m regions with m1+ψ ≥ z(t) is unstable. This is the

lower inequality in condition (29). Provided this condition holds, an equal distribution

over m cities is a stable equilibrium if utility decreases with each city’s population share,

12



i.e. if v′(1/m) < 0. Using (26), this condition is

v′(1/m) = m−ψ
(

1− z(t)m−(1+ψ)
)φ [

ψm− φ (1 + ψ) z(t)m−ψ

1− z(t)m−(1+ψ)

]
< 0,

which is the case, if and only if ψm1+ψ − ψ z(t) < φ (1 + ψ) z(t), i.e. if m1+ψ < (φ (1 +

ψ) + ψ)/ψ z(t). Rearranging leads to the upper inequality in condition (29).

Part 2. There is no integer fulfilling condition (29), if

m < z(t)
1

1+ψ and m+ 1 >
(
φ

ψ
+ 1 + φ

) 1
1+ψ

z(t)
1

1+ψ

Putting both inequalities together and rearranging yields condition (30). If this condi-

tion is fulfilled, no stable symmetric equilibrium exists. Hence, an asymmetric equilib-

rium must be stable. Since the only stable asymmetric equilibrium is one with only one

‘small’ city (lemma 5), this is the only stable equilibrium.

For any given z(t), condition (29) determines a set of integers. The larger z(t),

the larger is the number of subsequent integers that are contained in this set. Hence,

proposition 1 shows that the higher z(t) the more stable symmetric equilibria exist at

the same time. The economic intuition for this result is as follows. The larger aggregate

environmental pollution is, the smaller are the city sizes at which pollution limits city

sizes. If there are many cities with small population each, however, environmental pol-

lution in each city would increase only by a small amount if one city’s population would

distribute over all remaining cities. Such an urbanization pattern with one city less

would still be stable. Only if many cities would vanish in this manner each city’s pop-

ulation and environmental pollution would ultimately become so large that maximum

tolerable level of pollution is exceeded.

As stated in the second part of the proposition, it may also be the case that no stable

symmetric equilibrium exists. In that case, a pattern with one small city and several

large cities is the only stable migration equilibrium. However, this may only happen

for comparatively small values of aggregate pollution: the larger z(t), the smaller is

the number of integers that fulfill condition (30). Eventually the set determined by this

condition will be empty. In particular, this is the case for all levels of aggregate pollution

for which the left hand side of the inequality contained in (30) is greater than the right

hand side, i.e. for all levels of aggregate pollution for which

z(t) >
((φ

ψ
+ 1 + φ

) 1
1+ψ

− 1
)−(1+ψ)

≡ z̄. (31)

Asymmetric equilibria may be stable for higher values of z(t). In that case there also

exist stable symmetric equilibria at the same level z(t) of aggregate pollution. The

13



population shares of the cities in stable equilibria for different z(t) are depicted in figure 2

(for the parameter specification ψ = 1 and φ = 1). A horizontal solid line in this figure,

aggregate environmental pollution z(t)
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Figure 2: The population shares n of one of the cities in stable equilibria for different

z(t), for the specification ψ = 1 and φ = 1.

e.g. at n = 1/4, depicts a stable urbanization pattern with 4 cities having a population

share of 1/4 each. For the specification of parameters used in figure 2, an asymmetric

distribution of population over one small and one large city is the only stable equilibrium

for z(t) ∈ (1, 4/3). For larger values of z(t), stable symmetric equilibria exist. For large

levels of aggregate pollution, z(t) > 25/3, several symmetric equilibria may be stable at

the same time. In the example shown in figure 2 asymmetric equilibria are stable also for

values of z(t) which are larger than z̄. This is the case, e.g. for z(t) ∈ (3, 4). For these

levels of aggregate pollution a stable urbanization pattern exists with one small city,

with a population share between zero and 1/3, and two large cities, with a population

share between 1/3 and 1/2.

As many stable equilibria may exist at the same time, the questions arise which

of these equilibria will actually occur when z(t) is evolving over time and whether or

not these equilibria are Pareto efficient. The rest of the analysis is concerned with

these questions. Concerning the latter question, it is obvious that the stable symmet-

ric equilibria differ with regard to the level of utility. In particular, among all stable

symmetric equilibria those with a larger number of cities, i.e. smaller population shares

each, involve a higher level of utility. This is because in a stable symmetric equilibrium

14



utility by definition is decreasing with the share of population living in each city. Hence

if there are (at least) two stable symmetric equilibria, the pattern with more cities of

smaller size is Pareto-superior to the other one. The following proposition identifies the

Pareto-efficient equilibrium, which is unique, given a value of aggregate pollution z(t).

Proposition 2 (Pareto-optimal urbanization patterns)

1. An equal population distribution over m̂ cities, where

m̂ = min

m ∈ IN

∣∣∣∣∣∣ m
−ψ
φ − (m+ 1)−

ψ
φ

m
−

“
ψ
φ

+ψ+1
”
− (m+ 1)−

“
ψ
φ

+ψ+1
” ≥ z(t)

 (32)

is a Pareto optimum.

2. Other equilibria are not Pareto-optimal. In particular,

a) equal population distribution over m 6= m̂ cities is not Pareto-optimal and

b) equilibria with cities of different size are not Pareto-optimal.

Proof. We proceed by proving the following two steps: (i) given a number m of cities,

no Pareto improvement is possible by changing relative city sizes, compared to the equal

distribution of population. (ii) whenm = m̂ as defined in the proposition, v(1/(m̂−1)) <

v(1/m̂) and also v(1/(m̂+ 1)) < v(1/m̂), i.e., the equal distribution of population over

m̂ cities is an optimum. This will also prove part 2.a of the proposition.

Ad (i). Considerm ≥ 1/nmax (m < 1/nmax). For any deviation from ni = 1/m, there

must be some city with a population ni < 1/m (ni > 1/m). In that city, v(ni) < v(1/m),

as is easily confirmed. Hence, a deviation from the symmetric distribution ni = 1/m

for all m is not a Pareto improvement. Ad (ii). An equal distribution over m cities is

superior to an equal distribution over m+ 1 cities, if v(1/m) ≥ v(1/(m+ 1)), i.e. if

m−ψ
(

1− z(t)m−(1+ψ)
)φ
≥ (m+ 1)−ψ

(
1− z(t) (m+ 1)−(1+ψ)

)φ
. (33)

Clearly, as long as 1/m < nmax, i.e., if m > 1/nmax, this inequality will be always

fulfilled. If m + 1 < 1/nmax, on the other hand, this equation is not fulfilled. Thus,

the smallest integer that fulfills inequality (33) is the closest integer to 1/nmax, i.e., the

optimal number of cities. With little rearrangement, we arrive at condition (32).

Finally, to prove part 2.b of the proposition, consider an equilibrium with (at least)

one city with a population share n1 < nmax and (at least) one city with a population

share n2 > nmax. If one individual would move from city 2 to city 1, utility would

increase in both cities, i.e. a Pareto-improvement is obtained.

Thus, a Pareto-optimal equilibrium exists, but just one of the different equilibria

is Pareto-optimal and moreover the optimum is not necessarily a stable equilibrium.
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In order to analyze under which conditions the equilibrium outcome is optimal, we

further investigate how the economy dynamically evolves over time. Since both the

population distribution in the different equilibria and in the Pareto optimum depend on

aggregate emissions z(t), we shall concentrate on how z(t) evolves over time. According

to equation (27), the growth rate of z(t) is

ż(t)
z(t)

=
ė(t)
e(t)

+ (1 +ψ)
Ṅ(t)
N(t)

+ψ
k̇(t)
k(t)

+
ḣ(t)
h(t)

= −η+ (1 +ψ) γ+ψ (θk − ρ) + θh− ρ (34)

Whether z(t) increases or decreases over time depends on the relative sizes of the rate

η of pollution-saving technical progress, the growth rate γ of population, and on the

growth rates of both types of human capital. In particular if there is no pollution-

saving technical progress, z(t) will increase over time unless population is declining at

an extreme pace. Only if the rate of pollution-saving technical progress η is high enough

to outweigh the increase in total production output (given by the other growth rates),

z(t) will decrease over time. We discuss the two possibilities of growing or declining

aggregate pollution in turn.

In order to understand how the equilibrium urbanization pattern changes over time

when aggregate pollution increases, consider condition (29) in proposition 1. If z(t)

increases, the upper bound on the equilibrium number of cities becomes less restrictive

while the lower bound becomes more restrictive. Hence, for a given stable symmetric

equilibrium with m+ cities at some moment in time the lower bound becomes binding.

If aggregate pollution increases further, the pattern with m+ cities is not an equilibrium

anymore. Rather, a first individual will move to a formerly empty region and set up a

business. A second individual will move to the same region rather than to another one,

because due to increasing returns to scale the already inhabited region offers a higher

level of utility. Hence, just one new city will form and the resulting new equilibrium will

consist of m+ + 1 cities.

So, if people move one by one (Anas and Xiong 2005 call this “laissez-faire”), with

growing aggregate pollution the equilibrium number of cities will be as small as possible.

The lack of coordination in the laissez-faire outcome involves too few cities which are

too large each, compared to the Pareto-optimum, as stated in the following proposition.

Proposition 3 (urbanization with increasing aggregate emissions)

1. When aggregate pollution z(t) increases from a value z(0) = z̄ (eq. 31), all cities are

of equal size and the number of cities evolves according to

m?
+(t) = min

{
m ∈ IN

∣∣∣m ≥ z(t) 1
1+ψ

}
. (35)

2. A z? exists such that for all z(t) ≥ z?, the equilibrium outcome is not Pareto optimal.
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The difference between the optimal and equilibrium number of cities is increasing over

time and unbounded from above.

Proof. Part 1. We prove this by complete induction. As the initial step we assume

that for some value z(t) ≤ z̄ an asymmetric distribution of population over m+−1 large

cities and one small city is the only stable equilibrium (cf. proposition 1). This allocation

becomes unstable as z(t) grows beyond z̄. At this point in time an allocation with m+

cities of identical size becomes a stable equilibrium. This allocation remains stable until

z(t) reaches the value z(t) = m+
1+ψ. Then, one new city will form, such that the new

urbanization pattern is an equal distribution of population across m′+ = m+ + 1 =

min
{
m ∈ IN

∣∣∣m ≥ z(t) 1
1+ψ

}
cities. If for any z(t) > z̄ the equilibrium urbanization

pattern is an equal distribution across m+ cities, it will remain a stable equilibrium

until z(t) reaches the value z(t) = m+
1+ψ. After that, one new city will form, which

then is the minimal integer that is greater than z(t)
1

1+ψ .

Part 2. The larger z(t) the larger the number of stable symmetric equilibria (cf.

proposition 1). We choose z? such that there are at least two stable symmetric equilibria.

Since the number of cities in with growing z(t) is the minimum number of cities among

all stable symmetric equilibria (part 1 of the proposition), another stable symmetric

equilibrium exists with m?
+ + 1 cities. Because for stable symmetric equilibria utility is

decreasing in each city’s population share, all individuals enjoy a higher level of utility in

the equilibrium with m?
+ + 1 cities compared to the equilibrium with m?

+ cities. Hence

the latter is not Pareto optimal. Since the number of stable symmetric equilibria is

unbounded from above, also the difference between the equilibrium number of cities and

the optimal number (as given by proposition 2) is unbounded.

The optimal number of cities and the equilibrium number of cities are plotted as

functions of z(t) in figure 3. In this figure the solid line depicts the Pareto-optimal num-

ber of cities and the dotted line depicts the equilibrium number of cities when aggregate

pollution is increasing. For z(t) sufficiently large (i.e. z(t) > 4) these two numbers clearly

deviate from each other. The difference between the optimal and equilibrium number of

cities is increasing with aggregate pollution z(t), because in the optimum the number of

cities grows much faster with z(t) than the equilibrium number of cities with increasing

aggregate pollution. Indeed, the difference in the number of cities grows without bound

when aggregate environmental pollution continues to grow (proposition 3).

Since the utility level in each city depends on the population share of each city, it

depends, in a symmetric equilibrium, on the number of cities. Utility is (considerably)

higher in the Pareto-optimum than in the equilibrium with increasing pollution. The

difference in the Pareto-optimal utility level and the equilibrium level of utility is in-
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Figure 3: The number of cities for varying z(t) in the Pareto optimum (solid line), in the

equilibrium with decreasing aggregate pollution z(t) (broken line) and in the equilibrium

with increasing aggregate pollution z(t) (dotted line). The parameters are ψ = 1 and

φ = 1.

creasing with aggregate pollution. That means, with increasing aggregate pollution z(t),

the equilibrium outcome becomes worse compared to the efficient urbanization pattern.

This result is due to a coordination failure: if the inhabitants of the few large cities

that exist in equilibrium could commit themselves to jointly move to empty places such

that new cities will form a Pareto-improvement would be obtained. Henderson (1974;

1988) suggests that powerful land developers could assume a coordinating role in order

to achieve such Pareto improvements. In the case of increasing aggregate emissions, also

our model suggests that some sort of coordination mechanism, as e.g. endowing land

developers with a sufficient amount of power, is needed.

However, an increase in aggregate emissions z(t) is not the only possibility. If

pollution-saving technical progress occurs at a sufficiently high rate (and/or urban pop-

ulation is shrinking), aggregate emissions may also decrease over time. This is the case,

if the rate of pollution-saving technical progress η fulfills the following condition

η > (1− ψ) γ + ψ (θk − ρ) + θh − ρ. (36)

We call such a development of the economy “smart growth” or “quality growth”, because

aggregate environmental quality increases in spite of an overall increasing economy. In
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the following we show that the coordination failure (almost) vanishes under conditions

of smart growth.

In order to understand how the equilibrium urbanization pattern changes over time

when aggregate pollution decreases, consider again condition (29) in proposition 1. If

aggregate pollution z(t) decreases from some large level, the lower constraint on the

number of cities becomes less restrictive while the upper constraint becomes more re-

strictive. Any equilibrium number m− of cities remains stable until the upper constraint

is binding. If aggregate pollution declines further a symmetric distribution of population

across m− cities is not stable anymore: the stabilizing effect of environmental pollution

has become weaker than the destabilizing effect of increasing returns to scale. Hence, one

city will vanish, giving rise to a new stable equilibrium with m− − 1 cities of equal size.

This equilibrium will remain stable until the upper constraint becomes binding again.

The upper constraint on the equilibrium number of cities in condition (29) is derived

from the condition that for a larger number of cities a symmetric equilibrium would be

unstable. That means, for a larger number of cities, utility would be increasing in the

population share of each city (for an illustration see figure 1). Let m be the maximum

number of cities such that for a given z(t) the symmetric population distribution across

m cities is stable, i.e. a symmetric equilibrium with m + 1 cities is unstable. Thus, we

have 1/m > nmax and 1/(m+ 1) < nmax. In words, in the symmetric equilibrium with

m cities each cities population share is close to the population share that maximizes

utility. This is proven formally in proposition 4.

Of course, the number of cities may not be optimal in the beginning. As z(t) de-

creases, however, at some moment in time the upper constraint in condition (29) will

become binding. From that moment onwards, the equilibrium allocation will be close

to optimal. As shown in the following proposition, from any initially stable, but ineffi-

cient, urbanization pattern it will take finite time until a stable equilibrium close to the

optimal one is reached.

Proposition 4 (urbanization with decreasing aggregate emissions)

When aggregate pollution z(t) decreases from a large level, i.e. condition (36) holds,

after a period of time

∆t ≤
ln
(
φ
ψ + 1 + φ

)
η −

(
(1− ψ) γ + ψ (θk − ρ) + θh − ρ

) , (37)

or earlier, all cities are of equal size with a population share of 1/m?
− each, where

m?
−(t) = max

{
m ∈ IN

∣∣∣∣m1+ψ ≤
(
φ

ψ
+ 1 + φ

)
z(t)

}
, (38)

until z(t) is less than z̄.

19



2. After the time ∆t, the equilibrium outcome is close to Pareto optimal in the following

sense: the difference between the optimal number m̂(t) and the equilibrium number m?
−(t)

of cities is either zero or one, i.e. m̂(t)−m?
−(t) ≤ 1.

Proof. Consider a stable population distribution in the beginning (t = t1) that involves

the worst possible utility level v(nm) = 0. That means, the number m of cities in a

symmetric equilibrium is such that the lower constraint on m in condition (29) is binding,

i.e. m = z(t1)
1

1+ψ . When z(t) decreases, per capita utility increases, until the upper

constraint in condition (29) becomes binding, i.e. until m =
(
φ
ψ + 1 + φ

) 1
1+ψ

z(t2)
1

1+ψ .

At this moment in time (or earlier), the population distribution is Pareto optimal. At

the same time, it becomes unstable, and one city vanishes, as soon as z(t) has become

slightly smaller. A new symmetric equilibrium emerges with m−1 cities. At this moment

in time, the equal distribution of population across m cities would be optimal, but is

not stable. If z(t) continues to fall, utility would decrease for an urbanization pattern

with m cities and increases for the pattern with m− 1 cities, until utility in the pattern

with m− 1 cities is larger than in the pattern with m cities, i.e. the former becomes the

Pareto optimum. Hence, the difference between the equilibrium number m−(t) of cities

and optimal number of cities is either one or zero, i.e. m̂(t)−m−(t) < 1.

The maximum time to reach the Pareto optimum is needed if the initial urbanization

pattern is the worst possible. It is given by the time t2 − t1 until z(t) decreases from

z(t1) = m1+ψ to z(t2) = m1+ψ/
(
φ
ψ + 1 + φ

)
, i.e.

z(t1)
z(t2)

=
φ

ψ
+ 1 + φ (39)

exp
(
− (−η + (1− ψ) γ + ψ (θk − ρ) + θh − ρ) (t2 − t1)

)
=
φ

ψ
+ 1 + φ. (40)

Taking the logarithm on both sides leads to (37).

While in the case of increasing aggregate pollution z(t) the equilibrium number of

of cities increases very slowly compared to the maximal possible increase in the number

of cities, in the case of decreasing aggregate pollution z(t), the equilibrium number of

cities decreases very slowly compared to the maximal possible decrease. The difference

between the two cases is that the equilibrium outcome is far from optimal in the case

of increasing aggregate pollution, but close to optimal when z(t) decreases over time.

Indeed, with decreasing aggregate pollution the equilibrium outcome ultimately is a

constrained Pareto optimum, if we consider only stable equilibria.
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4 Conclusion and discussion

In this paper we have studied the dynamic development of urbanization patterns in a

model of endogenous urban growth where urban environmental pollution discourages the

formation of very large cities. We considered two urban sectors of production: a small

and medium-sized enterprises sector with a large endogenous variety of businesses pro-

ducing intermediate goods from a primary resource, and an industrial sector, producing

the final consumption good from the intermediates. The accumulation of sector-specific

human capital, and an endogenous variety of intermediate goods lead to increasing re-

turns to scale on aggregate. Equilibrium and optimal city sizes are determined by the

balance between increasing returns to scale as a positive feedback mechanism that fa-

vors agglomeration and environmental pollution as a negative feedback mechanism that

discourages agglomeration.

Our results also indicate that an endogenous number of cities is crucial. The set of

potential urbanization outcomes is much richer than with a limited number of regions,

especially when aggregate production output and pollution are large. Hence, considering

just two regions, as in much of the literature may generate misleading results. In partic-

ular asymmetric equilibria are more likely for a small economy and when only a small

number of cities exist. However, for the more realistic setting of a large economy asso-

ciated also with a large level of aggregate pollution, the model predicts a large number

of cities of equal and equal internal structure. This result is due to the assumption that

all regions are identical ex ante. Outcomes with heterogenous city sizes could easily be

described by our model if we impose differences in the absorption capacity of the urban

environments or different factor productivities. Such differences could be, among other

causes, due to differences in climate or physical geography. As a result, equilibrium city

sizes would differ, allowing for a more realistic outcome. An empirical test of the theory

developed in this paper should account for these exogenous differences between regions.

Our main result is that cities may be of efficient sizes or inefficiently large in an equi-

librium development path, depending on the nature of economic growth. If economic

growth is accompanied by increasing environmental pollution, cities are inefficiently large

and too few in number in the uncoordinated equilibrium. Thus, the equilibrium growth

path is not efficient. This result confirms the concern that urbanization patterns involve

inefficiently large cities. This is different in the case of decreasing pollution, i.e. if there

is ‘quality growth’ and production becomes cleaner over time. First of all, in contrast to

current theories our model can explain a decreasing number of cities even in a growing

economy when environmental pollution decreases. Then, the equilibrium city sizes in-

crease and the economy’s population will distribute over a smaller number of cities. In
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such a situation of quality growth the equilibrium city sizes and number are very close

to the efficient urbanization pattern, i.e. the uncoordinated market equilibrium becomes

efficient. However, this does not happen immediately, but it takes a sufficiently large

reduction of environmental pollution, and, correspondingly, a sufficiently long interval in

time over which pollution is reduced, until the efficient urbanization pattern is reached

in equilibrium.

The policy conclusion is that a continuous reduction of aggregate emissions will

ultimately lead to an efficient urbanization pattern. The point in time when the efficient

urbanization pattern is reached can be observed, as it is the moment when the number

of cities starts to decline. Between the moment when urban pollution starts to decline

and the moment when the efficient urbanization pattern is reached there is a time lag,

however, that can be long if the rate of pollution decrease and the degree of increasing

returns are low and the preferences for environmental quality are strong. Accordingly it

may require some degree of patience until under such an environmental policy also an

efficient urbanization pattern is reached.
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A Appendix

A.1 The industrial firm’s profit maximization

The problem is to maximize

P HµX1−µ − wH −
I∫

0

p x, (A.1)

where X is given by (3), such that

d

dx
X = X

1
ε x−

1
ε . (A.2)

Hence, the first order condition with respect to x is

(1− µ)P HµX−µX
1
ε x−

1
ε = p (A.3)

((1− µ)P M)ε−1 p1−ε = x
ε−1
ε X

(ε−1)2

ε (A.4)

((1− µ)P M)ε−1 G1−ε = X
ε−1
ε X

(ε−1)2

ε = Xε−1. (A.5)

Rearranging leads to (6). From (A.3), we have

p x = ((1− µ)P M)ε X1−ε p1−ε = (1− µ)P M ((1− µ)P M)ε−1 X1−ε p1−ε.

Using (A.5) and rearranging leads to (5).

Firms in the SME-sector choose p such as to maximize profits p x− r− ε−1
ε x subject to

(5), i.e. they solve

max
p

(
p− ε− 1

ε

)
(1− µ)P HµX1−µGε−1 p−ε − r. (A.6)

The first order condition for this problem is

(1− ε) p−ε + (ε− 1) p−ε−1 = 0. (A.7)

Rearranging leads to p = 1.

A.2 Proof of lemma 1

The current-value Hamiltonian for the optimization problem (19) is (suppressing time

arguments)

H = ln (uh h) + λh θh (1− uh)h (A.8)

The first order conditions are as follows

1
uh

= λh θh h (A.9)

1
h

+ λh θh (1− uh) = ρ λh − λ̇h (A.10)
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and the transversality condition requires

lim
t→∞

λh h = 0. (A.11)

Using condition (A.9) in (A.10), we obtain

θh uh − ρ =
u̇h
uh
. (A.12)

This differential equation for uh is solved by

uh(t) =
ρ

θh + C exp(ρ t)
. (A.13)

Using the transversality condition (A.11), rule out C > 0 (since then lim
t→∞

λh h→∞).1

Thus, the solution to problem (19) is

uh(t) =
ρ

θh
(A.14)

h(t) = h0 exp((θh − ρ) t). (A.15)

Similarly, we derive for the human capital in the intermediate goods-sector

uk(t) =
ρ

θk
(A.16)

k(t) = k0 exp((θk − ρ) t). (A.17)

A.3 Proof of lemma 2

We start with the conjecture that an individual who once has chosen to join a particular

sector will stay in that sector forever, and show that indeed there is no incentive to

deviate from the decision once made. The human capital of individuals engaged in the

intermediate goods and industrial sector is respectively given by equations (21) and (20).

At time t = 0, an individual is indifferent between joining either of the sectors, if

∞∫
t=0

ln
(
ri uk k

P

)
exp(−ρ t) dt =

∞∫
t=0

ln
(
wi uh h

P

)
exp(−ρ t) dt. (A.18)

Since all individuals who are engaged in the same sector in the same city are identical,

we get from equations (10) and (11)

ri =
1
ε

((1− µ)P )
1
µ N ni (1− li)uh h (N ni li uk k)ψ−1 (A.19)

wi =
µ

1− µ
((1− µ)P )

1
µ (N ni li uk k)ψ (A.20)

1C < 0 is impossible, since then uh eventually would become negative.
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Plugging this into (A.18), and canceling common constants from both sides of the re-

sulting equation, we derive the condition

∞∫
t=0

ln
(

1
ε
N ni (1− li)uh h (N ni li uk k)ψ−1 uk k

)
exp(−ρ t) dt

=

∞∫
t=0

ln
(

µ

1− µ
(N ni li uk k)ψ uh h

)
exp(−ρ t) dt, (A.21)

If condition (22) is fulfilled at each moment in time, both sides of this condition are

equal. Thus, individuals have no incentive to move to a sector other than that in which

they engage at t = 0.

A.4 Proof of lemma 3

Re-arranging (25), we obtain

ln
(yi
P

)
+ φ ln(Ē − Ei)

= ln

(
µ

1− µ
((1− µ)P )

1
µ
ρ

θh

(
li
ρ

θk

)ψ
Nψ kψ h

)
+ φ ln

(
Ē
)

+ ln
(
nψi

)
+ φ ln

1−
ε−1
ε ((1− µ)P )

1
µ (1− li) ρ

θh

(
li

ρ
θk

)ψ
Ē

eN1+ψ kψ hn1+ψ
i

 .

(A.22)

The first two terms on the right hand side of this equation do not depend on ni. Hence,

they do not alter the migration decisions. Using the definition of z(t) (equation 27), the

terms of the utility function relevant for the migration decision are

ln
(
nψi

)
+ φ ln

(
1− z(t)n1+ψ

i

)
. (A.23)

A monotonic transformation (applying the exponential function) leads to the trans-

formed utility function (26).

It is seen by inspection that the transformed utility function v(ni) is zero at ni = 0 and

n̄ = z(t)−
1

1+ψ . Differentiating v(n) with respect to n yields

v′(n) = v(n)
[
ψ

n
− z(t) (1 + ψ)nψ φ

1− z(t)n1+ψ

]
(A.24)

v′(n) ≥ 0, if and only if

ψ − z(t)n1+ψ [ψ + φ (1 + ψ)] ≥ 0. (A.25)

Thus, v(n) is hump-shaped with a unique maximum at nmax =
[

ψ
z(t) [ψ+φ (1+ψ)]

] 1
1+ψ .
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A.5 Proof of lemma 4

Assume the the equilibrium size of the first city is n1. Then, the equilibrium sizes of all

other cities i ≥ 2 with ni > 0 are determined by the condition

v(ni) = v(n1) or ni = 0. (A.26)

The equation v(ni) = v(n1) has (at most) two positive solutions, since v(ni) is zero at

ni = 0 and n̄ = z(t)−
1

1+ψ and has a unique interior extremum, which is a maximum, at

ni = nmax.
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