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Van Zwet Ordering and the Ferreira-Steel Family of Skewed
Distributions

Ingo Klein1

Department of Statistics and Econometrics
University of Erlangen-Nuremberg, Germany

Abstract
There are several procedures to construct a skewed distribution. One of these pro-
cedures is based on a symmetric distribution that will be distorted by a skewed
distribution defined on (0, 1). This proposal stems from Arellano-Valle et al. and
was refined by Ferreira & Steel. Up to now, it is an open question whether the
famous skewness ordering of van Zwet will be preserved for this proposal. There
is a general condition under which the van Zwets skewness ordering will be pre-
served by the Ferreira-Steel family. But this condition is not easy to verify for the
most families of distribution. Therefore, for the skewness mechanism we choose a
special beta distribution with only one parameter. Then, we get three results. First,
the skewness ordering will be preserved starting for symmetric distributions that
are leptokurtic like the logistic distribution. Larger parameter values give distribu-
tions that are more skewed to the right. Second, the same skewness mechanism can
generate distributions that are more skewed to left if the support of the underlying
symmetric distribution is compact. Third, for underlying symmetric distributions
on R with platykurtic behavior the van Zwet ordering of skewness will be pre-
served. This restricts a little bit the benefit of the Ferreira-Steel family.

Keywords: Skewness; skewness to the right; skewness ordering, measure of skew-
ness

1 Introduction
Starting with a symmetric density f with corresponding distribution function F Ferreira & Steel
(2006) proposes

f(x; p) = f(x)p[F (x)], x ∈ IF (1)

as a class of skewed distributions where the skewness comes from the skewed density p defined
on [0, 1]. This proposal belongs to the large class of methods that introduce skewness into an
originally symmetric distribution. To this methods count, for example, the hidden truncation
model (see f.e. Azzalini (1985) or Arnold & Beaver (2002)), inverse scale factors in positive
negative orthants (see Fernández & Steel (1998)) and order statistics (Jones (2004)).

1Correspondence Author: Ingo Klein, Department of Statistics and Econometrics, University of Erlangen
Nuremberg, D-90403 Nuremberg, Lange Gasse 20, E-Mail: ingo.klein@wiso.uni-erlangen.de
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In all these cases the skewness will be introduced in an intuitive and plausible manner. Van
Zwet (1964) and later Oja (1981) propose and discuss formal properties a family of skewed
distributions should have. Van Zwet (1964) introduced the skewness ordering. This ordering
means that a distributions F is not more skewed to the right than a distribution G if G−1(F (x))
is convex for all x ∈ IF with the support IF of F . Klein & Fischer (2006) show for a family
of skewed distributions generated by splitting a scale parameter in the negative and positive
orthants that this family preserves the Zwet ordering of skewness. They have to claim mild
assumptions on the underlying symmetric distribution. Klein (2011) generalizes this result to
the more general family of skewed distributions introduced by Arellano-Valle et al. (2005).

In the following we want to discuss the van Zwet ordering of skewness for the Ferreira-
Steel family, too. But, for this family it will be seen that we cannot give a general proof.
The corresponding sufficient condition is not easy to check for the most distributions f and
p. Therefore, we concentrate on a very simple skewness mechanism by the choice of a beta
distribution with one parameter a for p. If f is the density of a leptokurtic distribution (like the
logistic distribution) we can show that the induced Ferreira-Steel family is a well defined family
of skewed distributions. In contrast to this result, for rather platykurtic symmetric densities
(like the power exponential distribution with parameter β > 2) the corresponding Ferreira-Steel
family does not preserve the van Zwet ordering. This restricts the usefulness of this skewness
mechanism. In the case of a symmetric distribution with compact support (like the uniform
distribution on (−1/2, 1/2) we can see that the elements of the Ferreira-Steel family are ordered
the other way round. This means that higher values of a give distributions that are more skewed
to left.

The paper is organized as follows. We give a short introduction in some concepts of skew-
ness measuring. Then, the Ferreira-Steel family will be discussed. For this family sufficient
condition will be derived for the van Zwet ordering. After this, we restrict the discussion to the
special skewness mechanism generated by a beta distribution with one parameter. In this case
the sufficient conditions look a little bit easier. But, they still depend heavily on the comparison
of score functions and hazard rates. Finally, we further restrict the discussion on three types of
symmetric distributions. For each of this types we get different results with respect to the van
Zwet ordering.

2 Some concepts for the measurement of skewness

Oja (1981) p. 7 introduces a location-scale-skewness family of distributions as a family of
distributions such that each pair of distributions is skewness comparable. This means that for
each pair of distributions the van Zwet (or convex) ordering of skewness holds.

Definition 1 Let F be a family of cumulative distribution functions and F,G ∈ F and G−1 the
quantile function of G.

1. F and G will be called skewness comparable if G−1(F (x)) is either convex or concave
on the support of F .
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2. F is not more skewed to the right than G (shortly: F �2 G) if G−1(F (x)) is convex on
the support of F .

3. F is a locations-scale-skewness family if each pair (F,G) ∈ F is skewness comparable.

Whether G−1(F (.)) is convex or concave can be checked by the sign of its second derivative.
The following lemma proven by Klein & Fischer (2006), p. 1167 or stated by Arnold & Groene-
veld (1995), p. 35 gives a sufficient and necessary condition for the convexity (concavity) of
G−1(F (.)).

For distributions F and G such that the corresponding densities f and g are differentiable
we give a sufficient condition for the convex ordering.

Lemma 1 Let F , G be continuous, cumulative distribution functions with densities f and
g. f and g shall be differentiable on IF and IG. Define φf (x) = −f ′(x)/f 2(x), φg(x) =
−g′(x)/g(x)2, x ∈ IG. F−1 and G−1 are the quantile functions corresponding to F and G.
Then G−1(F (x)) is convex (concave) on R iff

φf (F
−1(u))− φg(G−1(u)) ≤ (≥)0 for all u ∈ (0, 1). (2)

The so-called convex ordering �2 was introduced by van Zwet. This ordering has no refer-
ence to any measure of location or scale. MacGillivray (1986), p. 997 stated that ”any weak-
ening of the ordering in the sense of covering larger classes of distributions, involves reference
to particular location and scale parameters”. MacGillivray discusses five different ordering and
proves their interrelationships. The weakest ordering she considered is

F �5 G :⇐⇒ G−1(1− u)−G−1(1/2)

G−1(u)−G−1(1/2)
≤ F−1(1− u)− F−1(1/2)

F−1(u)− F−1(1/2)
u ∈ (0, 1). (3)

The notation �5 stems from Arnold & Groeneveld (1993). Both authors argue that orderings
based on skewness functionals are preferable to those related to convex orderings. We do not
agree with this statement. Following MacGillivray (1986) p. 997 a ordering has to be iden-
tified without reference to a preferred skewness functional. After this identification only such
skewness functionals should be used that preserves this ordering.

Skewness shall be measured by a functional that maps a set of distributions in the real
numbers and satisfies some requirements that are plausible for the concept of skewness. Oja
(1981) gives the following definition for a measure of skewness. If F ∈ F belongs to the
random variable X , a × F + b denotes the distribution function of the transformed random
variable aX + b, a, b ∈ R.

Definition 2 Let F be a family of distributions. T : F → R is a measure of skewness in F if

1. T (a× F + b) = sgn(a)T (F ) for all a, b ∈ R, F ∈ F .

2. T (F ) ≤ T (G) if F,G ∈ F and F �2 G.

3



As a consequence of this definition for a measure of skewness holds

T ((−1)× F ) = −T (F ) (4)

This means that reflection of the distribution changes the sign of the measure of skewness.
From the large class of possible measures of skewness we will discuss the proposal of

Arnold & Groeneveld (1995) in more detail. If Y is a random variable with uniquely defined
modus yM they propose

AG = P (Y < yM)− P (Y ≥ yM) = 1− 2P (Y < yM)

as a measure of skewness. AG takes values in [−1, 1]. As Ferreira & Steel (2006) p. 823
pronounce this measure ”is fairly intuitive for unimodal distributions with negative (positive)
values for left (right) skewed distributions and 0 for symmetric distributions”.

To show that the Ferreira Steel-family is a location-scale-skewness family in the sense of
Oja the functions G−1(F (x)) and φf have to be calculated.

3 Some functions for the Ferreira-Steel family
Let F denote the cumulative distribution function of a random variable X and assume that F
is continuous on R and has a density f which itself is differentiable on R. Furthermore, we
assume that X is symmetrically distributed. Without restriction of generality we assume that
the median of X is 0. Otherwise, we consider Y = X −median(X). F−1 denotes the quantile
function of X .

Let Xp be the random variable with density (1). Then it is easy to verify that Xp has the
following cumulative distribution function

F (x; p) = P [F (x)] x ∈ R (5)

with the cumulative distribution function P . This leads to the quantile function of Xp

F−1(u; p) = F−1[P−1(u)], u ∈ (0, 1). (6)

With the help of the cumulative and the inverse distribution functions we get (??).

Λ(x; p1, p2) = F−1[P−12 [P1[F (x)]]], x ∈ IF . (7)

Whether Λ(.; p1, p2) is convex or concave on IF can be checked with the following φ-function:
Let φf (x) = −f ′(x)/f 2(x), φp(u) = −p′(u)/p(u)2 and φ(x; p) = −f ′(x; p)/f 2(x; p) for
x ∈ IF , p ∈ (0, 1). Then it is easy to show that

φ(x; p) = φf (x)
1

p[F (x)]
+ φp[F (x)], x ∈ IF . (8)

Due to (2) Λ(.; p1, p2) is convex (concave) on IF if and only if

φ(F−1[P−11 (u); p1]− φ(F−1[P−12 (u); p2] ≤ (≥)0
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for u ∈ (0, 1). Inserting (8) this condition becomes

φf (F
−1[P−11 (u)])

p1[P
−1
1 (u)]

− φf (F
−1[P−12 (u)]

p2[P
−1
2 (u)]

+ φp1(P
−1
1 (u))− φp2(P−12 (u)) ≤ (≥)0 (9)

for u ∈ (0, 1). If P1 is not more skewed the right that P2 than the second difference of (9) is non
positive. If P−11 (u) ≤ P−12 (u), 0 < u < 1 it could be helpful that φf is increasing on IF . Klein
& Fischer (2006) discuss some examples for distributions such that φf (.) is increasing. To these
distributions belong among others the Gaussian and the t distribution, the Laplace distribution
and the generalized secant hyperbolic distribution of Vaughan (2002). A counterexample is
the generalized t distribution of McDonald & Newey (1988). But we cannot conclude from an
increasing function φf that the first difference in (9) is also non positive. This depends on the
values of pi[P−1i (u)] for u ∈ (0, 1) and i = 1, 2.

Ferreira & Steel (2006) specify a special skewing mechanism p that preserves the unimodal-
ity and the tail behavior of the underlying distribution F . Startı́ng with the function h as twice
the distribution function of a symmetric β-distribution on [0, 1/2]

h(x) = 4

∫ x

0

1

β(d+ 1, d+ 1)
ud(1− u)ddu, x ∈ [0, 1/2]

with d ∈ N0 they define the function

g(x) = h

(
eδx − 1

2(eδ/2 − 1)

)
I(0,1/2](x) +

(
2− h

(
eδ(x−1/2) − 1

2(eδ/2 − 1)

))
I(1/2,1](x).

The density of the skewing mechanism p is given by

p(x) ∝
(

1 +
M − 1

g(1/2)

)
I(0,1/2](x) +

(
r +

M − r
g(1/2)

g(x)

)
I(1/2,1](x).

M > max{1, r} determines the modal value and r the tail ratio. If d ∈ N0 h has a polynomial
form. This choice has the advantage that the corresponding distribution function P can be
derived in an analytical form. But, even in the simplest case d = 0 with h(x) = 4x, x ∈ [0, 1/2]
it is not possible to check analytically whether the convex ordering will be preserved. This is
due to fact that the quantile function P−1 can only be calculated numerically. Even the score
function −p′/p has a rather complicated form.

For this reason and to simplify the discussion we concentrate on distributions Pi, i = 1, 2
with an explicit representation of the corresponding quantile function. This is the case if we
consider beta distributions with one parameter ai, i = 1, 2 with monotone increasing densities
on [0, 1]. These special beta distributions are extremely skewed to the left.

4 Skewness of one parametric beta distributions
Lemma 2 Consider the distribution functions P1 and P2 with

Pi(u) = uai , u ∈ [0, 1], ai > 0, i = 1, 2.

Then, P1 not more skewed to the right than P2 if and only if a1 ≥ a2.
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Proof: The result follows immediately from the fact that

Λ(u, a1, a2) = P−12 (P1(u)) = ua1/a2 , 0 < u < 1, a1, a2 > 0.

is convex on [0, 1] if and only if a1 ≥ a2. �

Equivalently, we get the convexity of Λ(., a1, a2) from

φp1(P
−1
1 (u))− φp2(P−12 (u)) =

a2 − a1
a1a2

u−1 ≤ 0 < u < 1, a1, a2 > 0

for a1 > a2, where pi and P−1i are the corresponding density pi(u) = aiu
ai−1 and the quantile

function P−1i (u) = u1/ai , 0 ∈ [0, 1], ai > 0, i = 1, 2. For the φ-functions holds:

φpi(u) = −1− ai
ai

1

uai
, u ∈ [0, 1], ai > 0.

In the sense of Oja the parameter ai is a measure of skewness for this family of special beta
distributions.

For a > 1, the modus of p(u) = aua−1, u ∈ [0, 1] lies at u = 1. Therefore, AG = −1 for all
a > 1. This indicates that for a > 1 all one parametric beta distributions are extremely skewed
to the left.

Now, we want to investigate how these skewness properties of one parametric beta distribu-
tion will be transferred to the corresponding Ferreira-Steel family.

5 Skewness of the Ferreira-Steel family
Theorem 1 Let Pi(u) = uai , u ∈ [0, 1], ai > 0, i = 1, 2 and f , F , F−1 the density, distribution
and quantile function of a random variable with support IF distributed symmetrically around 0.
The derivatives f ′ and f ′′ of f will be assumed to exist. ψf (x) = −f ′(x)/f(x), x ∈ IF denotes
the score function. For a1 > a2, Λ(x; a1, a2) = F−1[P−12 [P1[F (x)]]] is convex (concave) for
x ∈ IF if

∆(x) =
f(x)

F (x)
+ ψf (x) +

(
(ψ′f (x) + ψf (x)2)

F (x)

f(x)
+ ψf (x)

)
lnF (x) ≥ (≤)0

for all x ∈ IF .

Proof: For (9) we get with x = F−1(P−11 (u))

D(x) =
φf (x)

p1[F (x)]
−
φf
(
F−1[P−12 [P1[F (x)]]]

)
p2
(
F−1[P−12 [P1[F (x)]]]

) + φp1(x)− φp2(P−12 [P1[F (x)])

=
−f ′(x)/f(x)

f(x)a1F (x)a1−1
−
−f ′(F−1

(
F (x)a1/a2

)
)/f(F−1

(
F (x)a1/a2)

)
f (F−1 (F (x)a1/a2)) a2F (x)a1−a1/a2

+
a2 − a1
a1a2

1

F (x)a1
, x ∈ IF .
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Setting a = a1/a2 it follows

D(x) =
F (x)−a1

a1

(
(1− a)− f ′(x)

f(x)

F (x)

f(x)
+ a

f ′ (F−1 (F (x)a))

f (F−1 (F (x)a))

F (x)a

f (F−1 (F (x)a))

)
, x ∈ IF .

The sign of D(x) will be determined by the sign of

λ(x; 1)− λ(x; a), x ∈ IF

with

λ(x; a) := a+ a
f ′ (F−1(F (x)a))

f (F−1(F (x)a))

F (x)a

f (F−1(F (x)a))
, x ∈ IF .

For a1 > a2, Λ(x; a1, a2) is convex (concave) for x ∈ IF if λ(x; a) is increasing (decreasing)
in a for all x ∈ IF . Due to the assumption that f is twice differentiable we can calculate the
derivative of λ with respect to a as

∂λ(x; a)

∂a
= 1 + φ(y)F (y) + a

(
φ′(y)

F (y)

f(y)
+ φ(y)

)
F (y)

1

a
lnF (y)

=
F (y)

f(y)

(
f(y)

F (y)
+ ψf (y) +

(
(ψ′f (y) + ψf (y)2)

F (y)

f(y)
+ ψf (y)

)
lnF (y)

)
with ψf (y) = −f ′(y)/f(y), φf (y) = ψ(y)/f(y) and y = F−1(F (x)a), x ∈ IF . For a > 1,
λ(x; a) is increasing (decreasing) in a if

∆(y) =
f(y)

F (y)
+ ψf (y) +

(
ψ′f (y) + ψf (y)2)

F (y)

f(y)
+ ψf (y)

)
lnF (y) ≥ (≤)0

with y = F−1(F (x)a), x ∈ IF . �

The function ∆ will be determined by the hazard rate f(y)/F (y) and the score function ψf . If
∆(y) ≥ (≤)0 for all y from the support of F , Λ(.; a1, a2) is convex (concave) for a1 > a2 > 0.

We want to discuss these functions in several examples. These examples will show that the
sign of ∆(y) can be negative for all y ∈ R, can be positive for distributions with compact sup-
port and can be indeterminate if the underlying symmetric distribution has no compact support
and is platykurtic.

6 Some examples

6.1 Concavity for the skewed logistic distribution
Corollary 6.1 Let Pi(u) = uai , u ∈ (0, 1), a1 > 0 and F the distribution function of the
logistic distribution

F (x) =
1

1 + e−x
, x ∈ R.

Λ(x; a1, a2) = F [P−12 [P1[F (x)]]] is convex for x ∈ R if a1 > a2.
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Proof: For this situation we have to discuss ∆(x). ∆(x) depends on

f(x) = F (x)(1− F (x)) =
e−x

1 + e−x

f(x)

F (x)
= 1− F (x) =

e−x

1 + e−x

ψ(x) = −d ln f(x)

dx
= 2F (x)− 1

ψ′(x) = 2f(x)

for x ∈ R. Inserting these expressions in ∆(x) we get

∆(x) = F (x) +
F (x)

1− F (x)
lnF (x)

= F (x)

(
1− 1 + e−x

e−x
ln
(
1 + e−x

))
= F (x)

(
1−

(
1 +

1

ex

)
ln

(
1 +

1

ex

)ex)
.

For x→∞ we get

1 +
1

ex
→ 1 and

(
1 +

1

ex

)ex
→ e

such that
∆(x)→ 1− 1 ln e = 0.

To show ∆(x) ≤ 0 for x ∈ R, we consider the derivative of

1−
(

1 +
1

ex

)
ln

(
1 +

1

ex

)ex
= 1− ln

(
1 +

1

ex

)ex+1

for x ∈ R. If this derivative is non negative then we can conclude that ∆(x) ≤ 0 for x ∈ R.
Calculating the derivative gives

−
(

1 +
1

ex

)ex+1
(
ex ln

(
1 +

1

ex

)
+ (ex + 1)

1

1 + 1/ex

(
−
(

1

ex

)2

ex

))

= −
(

1 +
1

ex

)ex+1

ex
(

ln

(
1 +

1

ex

)
− 1

ex

)
.

Because ln(1 + y) ≤ y holds for y > 0 we get

−
(

1 +
1

ex

)ex+1

ex
(

ln

(
1 +

1

ex

)
− 1

ex

)
≥ 0 for x ∈ R.

Putting the results together we get ∆(x) ≤ 0 for x ∈ R. �
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This means that starting with the logistic distribution with the density f and the distribution
function F

Λ(x; p1, p2) = F−1(P−12 (P1(F (x)))) = xa1/a2

is concave on R for a1 > a2 > 0.
The upper part of figure 1 gives an impression that the skewness mechanism generates den-

sities which are skewed to the right. The function Λ(x, a1, a2) in the lower part is concave for
all x ∈ R.

Figure 1: Skewed logistic densities for a = 1, 2, 10 and
Λ(.; a1, a2) for a1 = 2, 10 and a2 = 1.

We want to calculate the skewness measure proposed by Arnold & Groeneveld for the skewed
logistic distribution with density

f(x; a) = a
e−x

(1 + e−x)a+1
, x ∈ R, a > 0.

The mode of this distribution is given by x = ln a. Inserting the mode in the distribution
function F (x; a) gives

F (ln a; a) =

(
1

1 + 1/a

)a
.

Then, we get

AG = 1− 2F (ln a; a) = 1− 2

(
a

a+ 1

)a
for a > 0. AG is a monotone increasing function of the skewness parameter a.
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6.2 Convexity and compact support
Based on the logistic distribution the skewness mechanism of Ferreira & Steel gives a distri-
bution that is more skewed to the right for higher parameter values a. We can also get skewed
distributions that are as more skewed to the left if a increases as the example of an uniform
distribution shows.

Corollary 6.2 Let Pi(u) = uai , u ∈ [0, 1], ai > 0 and F the distribution function of the uniform
distribution

F (x) = x, x ∈ [−1/2, 1/2].

Λ(x; a1, a2) = F [P−12 [P1[F (x)]]] is convex for x ∈ [−1/2, 1/2] if a1 > a2.

Proof: The
Λ(x; p1, p2) = F−1(P−12 (P1(F (x)))) = xa1/a2

is convex on [−1/2, 1/2] for a1 > a2 > 0. �
The upper part of figure 2 show densities that are extremely skewed to the left for a = 2, 10.

This property stems the fact that the skewness mechanism p is already skewed to the left. The
lower part shows the convexity of Λ(x; a1, a2) for all x ∈ [−1/2, 1/2].

Figure 2: Skewed uniform densities for a = 1, 2, 10 and
Λ(.; a1, a2) for a1 = 2, 10 and a2 = 1.

6.3 Neither convex nor concave
6.3.1 Skewed power exponential distribution

For a > 1, it has to be that
F (x)a ≤ F (x) x ∈ R. (10)

10



This implies that

Λ(x; p1, p2) = F−1(P−12 (P1(F (x)))) = F−1(F (x)a1/a2) ≤ x x ∈ R. (11)

If 0 < F (x) < 1 (i.e. no compact support) for x ∈ R and ψ(x∗) = ψ′(x∗) = 0 for some x∗ ∈ R,
then

∆(x∗) =
f(x∗)

F (x∗)
> 0.

Therefore, F−1(P−12 (P1(F (.)))) can neither be concave or convex on R. Convexity means that
there is point where F−1(P−12 (P1(F (.)))) has to cut the identity line. This contradicts (11).

Example 6.1 As an example for a distribution with the properties 0 < F (x < 1, x ∈ R and
ψ(x∗) = psi′(x∗) for some x∗ we consider the power exponential distribution with parameter
β > 2.

Consider the density

f(x) =
β

21/β+1
Γ

(
1

β

)
e−1/2|x|

β

x ∈ R, β > 0.

The density is symmetric around 0. Distribution and quantile function can be easily derived
from the gamma distribution.

The score function and the corresponding derivative are

ψ(x) = 1/2sign(x)β|x|β−1, and ψ′(x) = 1/2β(β − 1)|x|β−2 (12)

for x ∈ R. For β > 2 it is ψ(0) = ψ′(0) = 0 and

∆(0) = 2
β

21/β+1
Γ

(
1

β

)
> 0.

hold. For β > 2, this means that the skewed exponential distributions f(x; a) = f(x)F (x)a,
x ∈ R cannot be ordered with respect to the skewness ordering of van Zwet.

The upper part of figure 1 shows the densities of the skewed power exponential distribution with
exponent β = 3 and the parameter values a = 1 (=symmetry), a = 2 and a = 10. Even this
extreme setting with a = 10 does not produce a skewed power exponential distribution with a
visible amount of skewness in any direction. This corresponds with the conclusion we can draw
from the lower part of the figure. Here, we can see explicitly that Λ(x; a1, a2) is neither convex
nor concave for all x ∈ R. We consider the skewness parameter values a = a1/a2 = 2 and
a = a1/a2 = 10.
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Figure 3: Skewed power exponential density for β = 3 and
a = 2, 3, 4 and Λ(.; a1, a2) for a2 = 1 and a1 = 2, 10.

6.3.2 Weaker ordering of skewness

Now, we want to investigate whether the family of skewed power exponential distributions cant
be ordered by a ordering that is weaker than the convex ordering. MacGillivray (1986) discussed
the ordering (3). Figure 4 shows the graph of the function

Z(u; a) =
F−1((1− u)1/a)− F−1((1/2)1/a)

F−1(u1/a)− F−1((1/2)1/a)
, u ∈ [0, 1]

for the values a = a1 = 3 and a = a2 = 2. We can see that there is a cutting point between
the two curves. This implies that the weak ordering �5 will not be preserved by the family of
skewed power exponential distributions.

Figure 4: Z(.; a) for β = 3 and a = 2, 3.
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6.3.3 Fechner asymmetry for the power exponential distribution

Now, we want to answer the question whether asymmetry can be introduced into the family
of power exponential distributions by an other skewness mechanism. We consider the general
approach of Arellano-Valle et al. (2005). Starting with a symmetric density f they introduce a
asymmetric distribution by

f(x; γ) =
2

a(γ) + b(γ)

(
f

(
x

a(γ)

)
I(x < 0) + f

(
x

b(γ)

)
I(x ≥ 0)

)
(13)

where a(.), b(.) are known positive functions with domain G. This is a general kind of gener-
ating skewness by splitting a scale parameter for the negative and positive half of a distribution
that includes several well-known special cases. The idea of splitting scale parameter values can
be traced back to the publications of Fechner (see f.e. Fechner (1897)).

Klein (2011) shows under which conditions this Arellano-Valle family preserves the van
Zwet ordering of skewness.

Theorem 2 Let F be a continuous distribution function with unimodal and symmetric density
function f that is continuous on R and differentiable for {R\0} such that φ′f (x) > 0 for x 6= 0.
Further, we assume that a(.) and b(.) are differentiable with a′(γ) > 0 and b′(γ) < 0 for γ ∈ G.
If γ2 < γ1,

Λ(x; γ1, γ2) = F−1(F (x; γ1); γ2) is convex on R.

All we have to do is to show that the derivative of φf (x) = −f ′(x)/f(x)2 is positive for
x 6= 0 if f is the density of a power exponential distribution.

Example 6.2 From (12) we know that

φ′(x) =
1

f(x)

(
ψ′(x) + ψ(x)2

)
=

1

f(x)

(
1

2
β(β − 1)|x|β−2 +

1

4
β2|x|β−1

)
, x ∈ R.

This expression is positive for x 6= 0.

7 Summary
There are several procedures to construct a skewed distribution. One of these procedures is
based on a symmetric distribution that will be distorted by a skewed distribution defined on
[0, 1]. This proposal stems from Arellano-Valle et al. and was refined by Ferreira & Steel. Up to
now, it is an open question whether the famous skewness ordering of van Zwet will be preserved
for this proposal. There is a general condition under which the van Zwets skewness ordering
will be preserved by the Ferreira-Steel family. But this condition is not easy to verify for the
most families of distribution. Therefore, for the skewness mechanism we choose a special beta
distribution with only one parameter. This corresponds with an extremely negative skewness.
Then, we get three results. First, the skewness ordering will be preserved starting for symmetric
distributions that are leptokurtic like the logistic distribution. Larger parameter values give
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distributions that are more skewed to the right. Second, the same skewness mechanism can
generate distributions that are more skewed to left if the support of the underlying symmetric
distribution is compact. Third, for underlying symmetric distributions on R with platykurtic
behavior the van Zwet ordering of skewness will be preserved. This restricts the benefit of the
Ferreira-Steel family. In this case, the alternative of Arellano-Valle et al. (2005) to generate
skewness by choosing different values for the scale parameter in left and right orthant of the
distribution seems to be more successful.

Up to now, there is no proof that in the case of the normal distribution the proposal of
Ferreira & Steel generates skewed distributions which can preserve the van Zwet ordering. This
is a real lack because this case is the most important one for applications.
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