
Calabrese, Gaetano; Schnizler, Björn; Streitberger, Werner; Eymann, Torsten; Zini,
Floriano

Working Paper

Simulator Development - Annual Report Year 2

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 10

Provided in Cooperation with:
University of Bayreuth, Chair of Information Systems Management

Suggested Citation: Calabrese, Gaetano; Schnizler, Björn; Streitberger, Werner; Eymann, Torsten;
Zini, Floriano (2006) : Simulator Development - Annual Report Year 2, Bayreuther Arbeitspapiere zur
Wirtschaftsinformatik, No. 10, Universität Bayreuth, Lehrstuhl für Wirtschaftsinformatik, Bayreuth,
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3646

This Version is available at:
https://hdl.handle.net/10419/52647

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3646%0A
https://hdl.handle.net/10419/52647
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 10

2006

Gaetano Calabrese (ITC-irst Trento), Björn Schnizler (University of Karlsruhe), Werner Streitberger,
Torsten Eymann (University of Bayreuth), Floriano Zini (ITC-irst Trento)

Simulator Development - Annual Report Year 2

ISSN 1864-9300

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

Torsten Eymann (University of Bayreuth)
Werner Streitberger (University of Bayreuth)
Floriano Zini (ITC-irst Trento)
Gaetano Calabrese (ITC-irst Trento)
Björn Schnizler (University of Karlsruhe)

1864-9300

IST-FP6-003769 CATNETS
D2.2

Annual Report of WP2

Contractual Date of Delivery to the CEC: 31.08.2006
Actual Date of Delivery to the CEC: 02.10.2006
Author(s): Gaetano Calabrese (ITC-irst Trento), Björn Schnizler (Universität Karlsruhe),
Werner Streitberger (Universität Bayreuth), Floriano Zini (ITC-irst Trento)
Workpackage: WP2-Simulation
Est. person months: YY
Security: public
Nature: final
Version: 1.0
Total number of pages: 58

Abstract:

This document describes the activities performed in WP2 - Simulation in the second year of the
CATNETS project. In particular, it focuses on the two tasks which WP2 was supposed to work
on namely, “Simulator enhancement to support new architecture properties” and “Simulation of
application layer networks and refinement”.

Keywords (optional):

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the Eu-
ropean Communities as project number IST-FP6-003769. The partners in this project are: LS Wirtschaftsinformatik
(BWL VII) / University of Bayreuth (coordinator, Germany), Arquitectura de Computadors / Universitat Politecnica
de Catalunya (Spain), Information Management and Systems / University of Karlsruhe (TH) (Germany), Dipartimento
di Economia / Università delle Marche Ancona (Italy), School of Computer Science and the Welsh eScience Centre /
University of Cardiff (United Kingdom), Automated Reasoning Systems Division / ITC-irst Trento (Italy).

University of Bayreuth
LS Wirtschaftsinformatik (BWL VII)
95440 Bayreuth
Germany
Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contactperson: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors
Jordi Girona, 1-3
08034 Barcelona
Spain
Tel: +34 93 4016882, Fax: +34 93 4017055
Contactperson: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and Systems
Englerstr. 14
76131 Karlsruhe
Germany
Tel: +49 721 608 8370, Fax: +49 721 608 8399
Contactperson: Daniel Veit
E-mail: veit@iw.uka.de

Università delle Marche Ancona
Dipartimento di Economia
Piazzale Martelli 8
60121 Ancona
Italy
Tel: 39-071- 220.7088 , Fax: +39-071- 220.7102
Contactperson: Mauro Gallegati
E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh eScience Centre
University of Caradiff, Wales
Cardiff CF24 3AA, UK
United Kingdom
Tel: +44 (0)2920 875542, Fax: +44 (0)2920 874598
Contactperson: Omer F. Rana
E-mail: o.f.rana@cs.cardiff.ac.uk

ITC-irst Trento
Automated Reasoning Systems Division
Via Sommarive, 18
38050 Povo - Trento
Italy
Tel: +39 0461 314 314, Fax: +39 0461 302 040
Contactperson: Floriano Zini
E-mail: zini@itc.it

Changes
Version Date Author Changes
0.1 06.06.06 Floriano Zini Draft structure
0.2 27.09.06 Floriano Zini,

Gaetano Calabrese,
Björn Schnizler,
Werner Streitberger

Almost all material added

0.3 29.09.06 Floriano Zini Chapters 1, 2, 3, 5 revised
1.0 02.10.06 Floriano Zini,

Björn Schnizler
Conclusions + Final revision

Contents

1 Introduction 3
1.1 Overall simulation architecture . 4

2 Preliminaries 6
2.1 ALN model . 6
2.2 Service and resource allocation . 8

2.2.1 Service Market . 8
2.2.2 Resource Market . 8

3 Simulator enhancement 10
3.1 Scenario generator . 10

3.1.1 Manual generation: requirements 10
3.1.2 Automatic generation: requirements 12
3.1.3 Scenario Generator: implementation 15
3.1.4 Automatic Generation: implementation 22

3.2 Simulator . 23
3.2.1 Simulator architecture . 23
3.2.2 Agent behaviour . 25
3.2.3 Overview of the code structure 27
3.2.4 Integration of centralised market 29
3.2.5 Integration of catallactic market 34
3.2.6 Metrics . 37

4 Simulation of ALNs 40
4.1 Simulator handbook . 40

4.1.1 The ALN Configuration File . 41
4.1.2 The Basic Service Configuration File 42
4.1.3 The Available Resource Bundle Configuration File 43
4.1.4 The Complex Service Configuration File 44
4.1.5 Simulation Parameters . 45

4.2 Simulator functional test . 48
4.2.1 Validation of the scenario generator 48
4.2.2 Validation of simulator . 48

1

CONTENTS 2

5 Relations to other WPs 50
5.1 WP1 . 50
5.2 WP3 . 50
5.3 WP4 . 51

6 Conclusions 52
6.1 Achieved results . 52
6.2 Future work . 53

Chapter 1

Introduction

This deliverable describes the activities performed inWP2 - Simulation in the second year
of the CATNETS project. According to the workplan of the project, WP2 was supposed
to work on two tasks:

Simulator enhancement to support new architecture properties. This tasks involves
the enhancement of the Grid simulator OptorSim [opt, BCC+03, CCSM+04],
chosen as the base simulation framework for CATNETS (see Deliverable
D2.1 [WP205]), in order to permit the simulation of Application Layer Networks
(ALNs). The task was supposed to be concluded by the end of year 2.

Simulation of application layer networks and refinement. This tasks relates to the ex-
ecution of preliminary experiments using the CATNETS simulator in order to do
first validation and testing of its implementation. The task will continue in year 3 of
the project in order to produce the final version of the CATNETS simulator and sub-
stantial evaluation results of the economic service/resource allocation mechanisms
under investigation.

The rest of this chapter presents the overall architecture of the simulation process. The
following chapters discuss various aspects of the development of the CATNETS simula-
tor. Chapter 2 introduces the ALN model adopted in simulations and the types of service
and resource allocation which are simulated. Chapter 3 is about the implementation work:
a tool for the generation of ALN scenarios is first described, followed by the description
of the enhancements introduced in OptorSim. Chapter 4 describes how a simulation can
be set up and executed. Chapter 5 is about relations of WP2 to the other work packages of
the project. Finally, Chapter 6 outlines the work to be done in the third year of the project.

3

CHAPTER 1. INTRODUCTION 4

1.1 Overall simulation architecture

The CATNETS simulation environment must be able to simulate the behaviour of both
the Catallactic distributed service/resource allocation mechanism and the auction-based
centralised service/resource allocation mechanism. Both mechanisms are described in
deliverables D1.1 [WP105] and D1.2 [WP106].

We adopt a system whose high level workflow is depicted in Figure 1.1. The workflow
is executed by has three main components:

Scenario Generator

Evaluator

Simulator

technical metrics

scenario

scenario parameters

ecanomical performance indicator

Alloc.
mech.

Figure 1.1: Architecture for evaluation system.

Scenario Generator. This component takes a set of scenario parameters as an input and
produces a scenario to be simulated as an output.

Simulator. It takes a scenario as an input and execute it by using a pluggable ser-
vice/resource allocation mechanisms. The output of a simulation is a set of techni-
cal metrics as described in Deliverable D4.1 [WP405].

CHAPTER 1. INTRODUCTION 5

Evaluator. This component takes a set of technical metrics as an input and, as described
in Deliverable D4.1 [WP405], calculates an economical performance indicator for
the allocation mechanism under observation.

This deliverable focuses on the description of the first 2 components. Details about how
the evaluation module is implemented are included in Deliverable D4.2 [WP406].

Chapter 2

Preliminaries

This chapter includes description of:

• the model for ALN to be simulated;

• types of service and resource allocation which are simulated.

2.1 ALN model

An ALN is defined by a connected non-oriented graph

ALN = 〈S, L〉

where S = {1, . . . , n} is a set of sites and L = {〈i1, j1〉, . . . , 〈im, jm〉} is a set of network
links which connect sites. Each site i is characterised by:

• a failure probability fpi which models the unreliability of the site;

• a triple
〈CSAi, BSAi, RAi〉

where CSAi is a set of Complex Service Agents (CSAs), BSAi is a set of Basic
Service Agents (BSAs), and RAi is a set of Resource Agents (RAs). In every site
there can be zero or more complex/basic service agents and zero or more resource
agents, that is

|CSAi| ≥ 0, |BSAi| ≥ 0, |RAi| ≥ 0

A node with no associated agents is a router.

Each link 〈i, j〉 is characterised by a bandwidth bwi,j which defines the maximum amount
of information (bits/second) that can be transmitted along the link.

6

CHAPTER 2. PRELIMINARIES 7

Complex Service Agents. CSAs are entry points to the ALN and are able to execute
Complex Services (CSs) for ALN clients. A CS is defined as a set of Basic Services (BSs).
CSAs are not specialised: they accept any type of complex service request and take care
of the execution of the component basic services.

Basic Service Agents. BSAs provide CSAs with the BSs they need to furnish their
complex services to ALN clients. BSs have two attributes: name and quality. Name is
a unique identifier whose intended semantics (i.e., the provided service) is shared among
all agents. Values for quality are from a discrete set. The intended semantics of quality
values is shared among all agents.

For example, there can be a basic service named pdf converter whose quality assumes
values in the set {bronze, silver, gold, platinum}. Another example is a basic service
named PrinterService with quality in the set {silver, gold}. Given these BSs, an example
CS is

CS1 = {〈PDFConverter, gold〉, 〈PrinterService, silver〉}

As a CS is defined as a set of BS, there there are no assumptions on the order BSs are
executed. In other words, the notion of workflow is not considered in the definition of
CSs.

Every BSA has an associated BS. This means that BSAs are specialised and able to
execute specific basic services. Multiple BSAs for the same basic service can co-exist in
the ALN. For example, in an ALN there might be two or more BSAs providing a the BS
〈pdf converter, silver〉.

Resources. Resources have a name, for example storage or cpu, or ram. Name is a
unique identifier whose intended semantics is shared among all agents. Every resource is
also characterised by a quantity whose value is a positive integer. The intended semantics
of quality values is shared among all agents. For example, the resource storage might
have quantity = 50 while quantities for resources cpu and ram could be 100 and 150
respectively. The unit for each resource is assumed to be virtual: for each resource the
value of quantity represents the maximum available amount of resource expressed in the
virtual unit.

Resource Bundle. A resource bundle is a set of pairs

〈resource name, resource quantity〉

Examples of resource bundles are:

RB1 = {〈cpu, 70〉, 〈storage, 40〉}

RB2 = {〈cpu, 50〉, 〈storage, 50〉, 〈ram, 75〉}

CHAPTER 2. PRELIMINARIES 8

Every basic service has an associated resource bundle. The bundle defines which re-
sources and respective quantity are necessary for service provision. For example, the
association

〈PDFConverter, gold〉 −→ RB1

specifies that for the execution of a pdf conversion having quality gold there is the need
of a 70 CPU units and 40 storage units.

Resource Agents. RAs are “proxies” for aggregations of resources. Their task is to
provide BSAs with resources needed for the execution of basic services. Every RA has an
associated available resource bundle. An available resource bundle is defined similarly
to a resource bundle but the resource quantities defines the maximum resource amounts
which are available from the RA. Example of available resource bundles are

ARB1 = {〈cpu, 100〉, 〈storage, 40〉}

ARB2 = {〈cpu, 100〉, 〈storage, 40〉, 〈ram, 150〉}

Multiple RAs for the same available resource bundle can co-exist in the ALN.

2.2 Service and resource allocation

The allocation of services and resource takes place in two separate markets, the service
market and the resource market. As the meaning of “allocation” in the two markets is not
the same, this section describes its two semantics.

2.2.1 Service Market

Basic services are provided by single BSAs. A CSA receiving a request for CS provision
starts a “service allocation process” for each of the BSs included in the CS. Every “service
allocation process” produces the selection of a single BSA able to provide the BS. Service
allocation abortion is possible.

2.2.2 Resource Market

ABSA requests a bundle of resources on the resource market in order to be able to execute
its specific basic service. Issuing such a request initiates a “resource bundle allocation
process”. This process can have a number of outcomes:

1. abortion, if there are no RAs able to provide the needed resources;

2. one single RA provides the total amount of every resource in the requested bundle;

3. multiple RAs partially provide all resources in the requested bundle;

CHAPTER 2. PRELIMINARIES 9

Example. Assume there is a BSA providing the basic service

BS1 = 〈PDFConverter, gold〉

and the resources bundle

RB1 = {〈cpu, 70〉, 〈storage, 40〉}

associated to BS1 as follows
BS1 −→ RB1

In addition, assume there are two resource providers RA1 and RA2 associated with the
following available resource bundles and two RA-ARB associations

RA1 −→ ARB1 = {〈cpu, 100〉, 〈storage, 40〉}

RA2 −→ ARB2 = {〈cpu, 100〉, 〈storage, 40〉, 〈ram, 150〉}

A resource bundle allocation process started by BSA1 might result into:

1. abortion

2. the single provider allocation

RA1({〈cpu, 70〉, 〈storage, 40〉}) −→ BSA1

where the notation RA1({〈cpu, 70〉, 〈storage, 40〉}) means that RA1 provides 70
cpu units and 40 storage units;

3. the multi-provider allocation

RA1({〈cpu, 30〉, 〈storage, 20〉}), RA2({〈cpu, 40〉, 〈storage, 20〉}) −→ BSA1

4. the multi-provider allocation

RA1({〈cpu, 40〉, 〈storage, 20〉}), RA2({〈cpu, 0〉, 〈storage, 20〉}) −→ BSA1

Chapter 3

Simulator enhancement

This chapter describes the first two components of the simulation/evaluation framework
depicted in Figure 1.1. They are the Scenario Generator end the Simulator. The
description of the third component, namely the Evaluator is included in Deliverable
D4.2 [WP406].

3.1 Scenario generator

The generation of a scenario can be done in two ways:

• manually, using a GUI which allows the user to specify the topology of the ALN
and the set of agents located on every ALN site.

• using an automated procedure which takes a set of ALN requirements as input and
generates a topology, as well as a distribution of the agents on sites, satisfying the
given requirements.

3.1.1 Manual generation: requirements

The manual generation can be used whenever the number of ALN sites is in the order of
few tens and the number of agents in every site is at most few units. The manual generator
provides the user with a GUI and a graphical tool for the input of the ALN specification
and the generation of the files containing the ALN description according to theOptorSim
format.

The manual generator helps the user in the following activities:

• definition of Resources, Basic Services, and Complex Services;

10

CHAPTER 3. SIMULATOR ENHANCEMENT 11

• creation of an ALN topology;

• association of CSAs, BSAs, RAs and properties to ALN nodes;

• association of bandwidth values to ALN links;

• generation of the output files in OptorSim format.

Definition of Resources. AResource is univoquely defined by its name. Within the tool
it will be possible to define Resource names, to check which names have been defined and
possibly to delete them.

Definition of Basic Services. A Basic Service is defined by a name and a quality (cho-
sen among a defined set). Each Basic Service is associated to a Resource Bundle and
this is defined by a set of pairs 〈Resource,Quantity〉. Tool has to give the possibility of
inserting the Basic Service name, to choose the quality from a predefined set, to define
the Resource Bundle choosing the Resources from a list and set the quantity for each of
them. When the Basic Service is created, a unique identifier and the Resource Bundle
will be assigned to it. The created Basic Services have to be shown in a list, so it will be
possible to check them and eventually to delete them.

Definition of Complex Services. A Complex Service is defined by its name, by a set
of Basic Service and by its execution probability. The tool has to give the possibility to
insert the Complex Service name and to visualize a list of Basic Service. From this list
it will be possible to choose the Basic Services that compose the Complex Service. A
unique identifier will be created and assigned to the Complex Service. It will be possible
to visualize the list of created Complex Services, to check them and to delete them. There
will be also a field where to set the execution probability.

ALN creation. The manual scenario generator has to provide a graphical editor able to
create the nodes and the edges of an ALN. The requirements for this editor are:

• the source code should be available, so it will be possible to customize the applica-
tion;

• it should be written in Java to allow an easier integration with OptorSim;

• it should allow the user to save the graphs in a text file format, so that it will be easy
to convert them in a format suitable for OptorSim;

After a preliminary search we found some open source tool with these features:
JUNG, Colt, JGraphpad, Jgapth and OpenJGraph. So we decided to adopt one of
these and integrate it into the main tool.

CHAPTER 3. SIMULATOR ENHANCEMENT 12

Association of agent and properties to ALN nodes. Once the ALN topology is cre-
ated, the tool has to allow the user to associate agents and properties to nodes.

For each node, the tool has to allow to:

• set the failure probability;

• set the number of CSAs;

• set the complex service schedule policy1;

• set the BSAs and select for each of them the Basic Service they provide;

• set the RAs and related Available Resource Bundles; each ARB is set by selecting
the component resources and defining their maximum quantity;

• if a scenario for the simulation of the centralised mechanism is being set, there will
be the possibility of deciding if the node contains a agents wrapping the service
market central auctioneer or the resource market central auctioneer.

For each edge in the land, the tool should be able to define also the value of its band-
width.

Generation of output in OptorSim format. Once the definitions of ALN and Agents
are finished, the tool has to generate an output in the form of four text file according to
the OptorSimformat. For details about the structure of this file, see Section 4.1.

3.1.2 Automatic generation: requirements

The automatic scenario generator should be based on an algorithm which takes a set of
ALN parameters as input and generates all the objects which in the manual generator
are defined by hand by the user. Moreover, the automatic generator should allow for an
automatic distribution of agents over sites by using a parametrised policy. Finally, the
automatic generator should be able to generate the scenario configuration in OptorSim
format. Figure 3.1 shows the main phases of the automatic generation.

The figure is self-explanatory for the first phase. In the following, the requirements
for the other phases are detailed.

1The schedule policy define which complex service are potentially executable by CSAs located in the
node.

CHAPTER 3. SIMULATOR ENHANCEMENT 13

Figure 3.1: Main phases of the automatic topology generator.

ALN generation. We decided to base the generation of an ALN topology on an existing
tool for automatic graph generation. The requirements for such a tool are:

• generation of various regular network topologies (i.e ring, mash, hypercube);

• generation of output in text format, to facilitate the generation of files needed as
input for OptorSim;

• open source code written in Java.

We evaluated some open source tools with respect these features: BRITE, GT-ITM,
and Inet. BRITE, GT-ITM are more complete from the point of view of the type of
topologies which can be generated. Moreover, BRITE has a version written in Java.
Therefore, BRITE was chosen as the base tool.

Resource generation. The parameters driving the automatic generation of resources
are:

• the number nr of resources to be generated;

• the maximum admissible quantity for each resource.

CHAPTER 3. SIMULATOR ENHANCEMENT 14

The quantity of each resource is a random integer number smaller then the maximum.
The name of each resource is generated using numbers in ascending order, i.e r1 . . . rnr

.

Available Resource Bundles generation. The parameter driving the automatic genera-
tion of ARBs are:

• maximum cardinality (number of resources)m for ARB;

• number narb of ARBs to be generated.

The number of resources composing each ARB is a random number (generated with a
uniform probability) between 0 and the maximum cardinalitym.

Basic Service generation. For the generation of basic services, the parameter are:

• number nbs of BSs to be generated;

• quality, randomly chosen with uniform probability from a finite set of names having
shared intended meaning.

The names of the Basic Service are generated following an ascending order, i.e
bs1 . . . bsnbs

. To associate the Basic Service with the Resource Bundle, first we choose
the cardinality of the bundle using a random number N, then we choose the N Resources
with uniform probability. Then we define the quantity of each resource using a random
value less then or equal to the maximum quantity available for that Resource.

Complex Service Generation. For the generation of basic services, the parameter are:

• number ncs of CSs to be generated;

• maximum cardinalitym for the CSs.

The names of the Complex Service are generated using numbers in ascending order,
i.e cs1 . . . csncs

The cardinality of each CS is a random number less then or equal to m. The set of
BSs to each CS is defined by randomly choosing a number of BSs equal to the cardinality
of the CS. The execution probability for each CS is equal to 1/ncs.

Agent distribution on sites.

CHAPTER 3. SIMULATOR ENHANCEMENT 15

3.1.3 Scenario Generator: implementation

Implementation of the manual generator

The implemented manual generator is described by means of an example. Suppose we
want to set up a scenario corresponding to an ALN with 4 sites (S1, S2, S3, S4) as shown
in Figure 3.2. Each site contains zero o more CSAs, BSA, or RAs. When requested a, a

Figure 3.2: An example ALN.

site could not be able to provide any service or resource and this is defined using a failure
Probability (FP). For example, the site S1 has one Complex Service Agent, two Basic
Service Agents, one Resource Provider Agent and a failure probability of 0.1. The label
on each edge represent the bandwidth of the ALN link.

In the following, the functions provided by the GUI are explained.

Definition of Resources. When the scenario generator is started, the GUI shown in Fig-
ure 3.3 appears on the screen. Resource names are defined by inserting a string denoting
the name in the Resource tab and then pressing the Add button. The name will be added
into the list. To delete a resource name from the list, simply select it and press the Delete
button.

CHAPTER 3. SIMULATOR ENHANCEMENT 16

Figure 3.3: Resource definition.

Definition of Basic Services, Figure 3.4 shows the interface to define the Basic Services
(BSs). The figure relates to the specification of the BSs described in table 3.1. The

name = PDFConverter quality = gold RB = (cpu 70, storage 40)
name = PrinterService quality = silver RB = (cpu 30, storage 10, ram 50)
name = PDFConverter quality = silver RB = (cpu 50, storage 20)
name = PrinterService quality = silver RB = (cpu 30, storage 10, ram 50)

Table 3.1: Example BSs.

specification of a BS (e.g. PDFConverter) is done by: (1) inserting the name in the text
field, (2) selecting its quality from the combo box (2) choosing the resources that make up
the Resource Bundle, (3) assigning the quantity to each resource, and finally (4) pressing
the Add button.

To delete a BS, simply select it from the table and press the button Delete.

Definition of Complex Services. Figure 3.5 shows the GUI for definition of CSs. The
figure relates to the specification of the CSs described in table 3.2. The specification of a
CS (e.g. cs4) is done by: (1) setting up the CS execution probability ep, (2) selecting the
Basic Service IDs that make up the Complex Service (for a multiple choice keep pressed
the CTRL button), and (3) press the Add button.

CHAPTER 3. SIMULATOR ENHANCEMENT 17

Figure 3.4: Basic Service definition.

Figure 3.5: Complex Service definition.

To delete a Complex Service, select it from the list and press the Delete button.

CHAPTER 3. SIMULATOR ENHANCEMENT 18

name = cs1 BSs = {bs1, bs2, bs3} ep = 0.3
name = cs2 BSs = {bs3, bs4} ep = 0.2
name = cs3 BSs = { bs2} ep = 0.2
name = cs4 BSs = { bs1, bs2, bs3, bs4} ep = 0.3

Table 3.2: Example CSs.

It is possible to go back and modify the choices made previously. Once all the param-
eter are correct, press the button Done. The GUI will be closed, and will appear the editor
for drawing the ALN topology.

Creation of an ALN topology. As ALN editor we have chosen OpenJGraph, an open
source tool written in Java. We have modified the code to implement the necessary fea-
tures.

Figure 3.6 shows how ALN nodes and links are created. For node creation, click on
the button with the oval shape in the tool bar and then click on the client area.

To connect two nodes with a link, select the button simple edge on the tool bar an then
draw the line.

Figure 3.6: Node and link creation.

To modify the name of a node right click on it, select Vertex Properties and modify
the tab label, as shown in Figure 3.7 and Figure 3.8.

To set up the bandwidth on the edges, right click on it, select Edges Properties, as
shown in Figure 3.9, unselect the check box, and write the bandwidth value. Figure 3.10
shows the created ALN.

CHAPTER 3. SIMULATOR ENHANCEMENT 19

Figure 3.7: Set up the Vertex name.

Figure 3.8: Set up the Vertex name.

Association of Agents and properties to the ALN nodes. Once defined the ALN, we
can set up the agents on the sites. Right clicking on a Node, a menu will appear. As shown
in the Figure 3.11 the possible choices are the following:

Set Service Market Central auctioneer. In the centralised market, we can decide in
which site the agent wrapping the central auctioneer is located.

Set Resource market Central Auctioneer. In the centralized market, we can decide in
which site the agent wrapping the central auctioneer is located.

Set Failure Probability. Set the failure probability of the site.

Set number of CSAs. Set the number of Complex Service Agents present on the site.

CHAPTER 3. SIMULATOR ENHANCEMENT 20

Figure 3.9: Set up the bandwidth.

Figure 3.10: The ALN.

Set Complex Service Schedule. Select a set of Complex Service that will run on that
site (see Figure 3.12)

Select BSAs. Select the set of Basic Service Agents that will run on the site (see
Figure3.13

Select RAs. Add Resource Agents to the site and define the related Available Resource
Bundle (see Figure 3.14).

Generation of the output files in OptorSim format. Figure 3.15 shows how to gen-
erate abs save the scenario configuration files in OptorSim format. Press the Save button
from the toolbar, a dialog will appear, choose the directory where to save the files, and
press Save.

CHAPTER 3. SIMULATOR ENHANCEMENT 21

Figure 3.11: Set up the Agents.

Figure 3.12: Set up Complex Service Schedule.

Figure 3.13: Set up Basic Service Agents.

Figure 3.14: Set up Resource Agents.

Four files are generated: arb.conf, bs.conf, cs.conf and topology.conf.
Examples of these files and explanation of their content is given in Chapter 4.

CHAPTER 3. SIMULATOR ENHANCEMENT 22

Figure 3.15: Save the configuration file.

3.1.4 Automatic Generation: implementation

The scenario Automatic Generator is currently under development. It will be completed
in the 3rd year of the CATNETS project. As already mentioned, we decided to use BRITE
as the base tool for topology automatic generation. BRITE is composed by a GUI where
to define the parameters and by a topology generator. We have already integrated a new
interface where it is possible to define all the parameters needed for the automatic gener-
ation of ALN scenarios. The modified BRITE GUI is shown in Figure 3.16.

Figure 3.16: BRITE extended with the OptorSim parameter tab.

CHAPTER 3. SIMULATOR ENHANCEMENT 23

An explanation of the parameters which can be set using the GUI follows.

Resource Parameters. They are: #Res: number of Resources that have to be generated;
QMax: Maximum quantity for each resource.

ARB Parameters. They are: #MaxRes: the maximum number of resources composing
the ARB;#ARB: number of ARBs to be generated.

Quality. It is possible to define the values for the quality adding them to a combo box.

Basic Service. #BS is number of Basic Services that have to be generated.

Complex Service. The parameters are: #CS: number of Complex Services that have to
be generated; #MaxCS: maximum number of Basic service composing the Com-
plex Service.

Bandwidth. The parameters are: Max BW: maximum value for the bandwidth; Min
BW: minimum value for the bandwidth.

3.2 Simulator

The CATNETS simulator is a tool written in Java, based on OptorSim [opt, BCC+03,
CCSM+04], a Data Grid simulator which was initially developed in the framework of the
European DataGrid project [edg].

The goal of the CATNETS simulator is to allow experimentation with and evaluation
of 2 economy-bases service and resource allocation mechanisms to be used in Application
Layer Networks. Given as input: (1) an ALN configuration (produced by the Scenario
Generator described in Section 3.1), (2) a set of simulation parameters included into a
configuration file, and (3) an allocation mechanism (centralised or catallactic, the CAT-
NETS simulator runs a number of Complex Services on the simulated ALN. During sim-
ulation it records metrics used for an off-line evaluation of the mechanism performance.

This section gives an overview of the architecture of the simulator and a high level
description of the packages in which the code is structured. More details are given on
how the integration of the centralised and catallactic mechanisms into OptorSim has
been performed.

3.2.1 Simulator architecture

The architecture of the CATNETS simulator is depicted in Figure 3.17. The component
at the top of the figure simulates ALN users who submits requests for the execution of
Complex Services. In the simulator, this component is implemented as a thread. The

CHAPTER 3. SIMULATOR ENHANCEMENT 24

Figure 3.17: High level architecture of the CATNETS simulator.

sequence of submitted requests is determined by a specific pattern, which is a parameter
of the simulation. Several patterns are available, as described in Section 4.1.5.

The component called ComplexServiceDispatcher performs the dispatching of com-
plex service requests to Complex Service Agents (CSAs). In the simulator, this compo-
nent is implemented as a thread. Various dispatching policies are available, as as described
in Section 4.1.5.

The bottom of Figure 3.17 represents the simulated ALN. In the simulator, Complex
Service Agents, Basic Service Agents (BSAs), and Resource Agents (RAs) are imple-
mented as threads. In every simulated ALN site there is also a components called P2P
mediator, whose task is to manage the exchanging of messages between ALN sites. P2P
Mediators are also implemented as threads.

The structure of the simulated ALN differs depending on the allocation mechanism.
When the central mechanisms is adopted, the structure is shown in Figure 3.18. The
ALN includes a special site where only the central auctioneers are located. The acronym
SMAA stands for Service Market Auctioneer Agent, while RMAA for Resource Market
Auctioneer Agent. This site is fully connected to all other ALN sites and all the allocation
requests for services or resources are sent to it via the P2P mediators.

When the catallactic decentralised mechanism is simulated, the special site is not
present in the ALN. As shown in Figure 3.19, in this case P2P Mediators perform a
propagation of messages over the ALN and agent interaction is likely to a “classical” P2P

CHAPTER 3. SIMULATOR ENHANCEMENT 25

Figure 3.18: ALN structure for centralised mechanism.

model.

3.2.2 Agent behaviour

The behaviour of users and agents in the ALN depends on the adopted service/resource
allocation mechanism.

Catallactic mechanism. When this mechanism is adopted the behaviour of ALN users
is proactive while CSAs, BSAs, and RAs are reactive. The intended meaning of proactive
is that users or agents are able to “take the initiative” in the interaction with other agents
while by reactive we mean that they respond to external messages from other agents or
users.

The behaviour of users and agents can be summarised as follows:

• ALN users proactively submit requests for complex services to CSAs;

• CSAs react to a requests for complex service by issuing a sequence of requests for
the involved basic services over the ALN; they are also able to react to messages
from BSAs while bargaining for basic services;

CHAPTER 3. SIMULATOR ENHANCEMENT 26

Figure 3.19: ALN structure for catallactic mechanism.

• the behaviour of BSAs is also reactive: they (1) respond to request for basic services
by possibly generating an offer for the requested basic service, (2) react to message
from CSAs while bargaining for basic services, and (3) issuing requests for the
associated resource bundle after a negotiation for a basic service ends successfully.

• the behaviour of RAs is reactive: they (1) respond to request for resource bundles
form BSAs by possibly generating an offer for the whole or part of the bundle and
(2) react to message from BSAs while bargaining for resources.

Centralised mechanism. When this mechanism is adopted users and all agents in the
ALN but CSAs act proactively. In both the service and resource markets the matching of
requests and offers is performed by a dedicated centralised auctioneer.

• As when the catallactic mechanism is used, ALN users proactively submit requests
for complex services to CSAs;

• CSAs react by submitting requests for the involved basic services to the centralised
service auctioneer (SMAA);

• BSAs which want to sell a basic service proactively send offers for this service
to the centralised service auctioneer (SMAA). Moreover, when a their service is
successfully allocated, they submit requests for resource bundles to the centralised

CHAPTER 3. SIMULATOR ENHANCEMENT 27

resource auctioneer (RMAA) in order to get the resources which are necessary for
service provision.

• RAs proactively send offers for resource bundles to the resource central auctioneer.

3.2.3 Overview of the code structure

The development of the CATNETS simulator is done using Eclipse SDK [ecl]. Fig-
ure 3.20 shows the structure of the simulator code. In the following a brief description of
the main packages is given.

Package edu. This packages includes the code implementing the MACE algorithm on
which the centralised resource allocation mechanism is based. Details on MACE are
given in Deliverable D1.1 [WP105]. The package also includes code implementing the
continuous double auction adopted for the centralised service allocation mechanism and
some statistical distribution.

Package org.catnets.avalanche. This package includes all the classes implementing the
strategy used by agents when the catallactic allocation mechanism is adopted. Details on
the strategy are given in Deliverable D1.1 [WP105] and Deliverable D1.2 [WP106].

Package org.catnets.optorsim. The classes in this package implement the parsing of
the simulation configuration files and the instantiation of the object described in the files.
For example, the class ALNConfFileReader takes the file describing an ALN topology as
an input and instantiate objects for all ALN sites, including components corresponding to
agents located in the sites.

This package also contain classes implementing the components Users and Com-
plexServiceDispatcher shown in Figure 3.17, as well as a number of policies which drive
the behaviour of the two threads. Details are given in Section 4.1.5.

Package org.catnets.optorsim.infrastructure. The package includes classes needed for
the implementation of an ALN as a graph of sites interconnected by network links. No-
table classes are ALNContainer, which a run time is a singleton embedding all the ALN
sites, and ALNSite, whose instances implements sites and their sub-components.

Package org.catnets.optorsim.markets. The classes in this package relate to the two
simulated market models. As far as the catallactic market is concerned, the package
includes three classes implementing the component CatallacticReasoner, embedded in
agents acting on the market. A catallactic reasoner is a wrapper developed to make the

CHAPTER 3. SIMULATOR ENHANCEMENT 28

Figure 3.20: Simulator package structure.

economic strategy included in org.catnets.avalanche available to agents. As for the cen-
tralised market, the package includes implementation of the central auctioneer agents
(SMAA and RMAA) which, in turn, are wrappers for the MACE algorithm in package
edu.

Package org.catnets.optorsim.negotiations. This is one of the most important pack-
ages of the simulator. It includes classes which implement economic agents (CSAs,

CHAPTER 3. SIMULATOR ENHANCEMENT 29

BSAs and RAs), as well as the functions of the P2P mediators. Classes are included
for all the types of messages exchanged during negotiations, when either the catallactic
or centralised mechanisms are used. The classes in this packages are better described
in sections 3.2.4 and 3.2.5, where the integration of the two market into the simulator is
described.

Package org.catnets.optorsim.time. This package implements the simulated time. Dif-
ferent time model are available, one time based and one event driven. When the first model
is adopted, simulation proceed in real time. When the event driven model is adopted, sim-
ulations speeds up because, when all threads are idle, the simulator is able to advance
simulation time to the point when the next thread should be activated.

Package org.catnets.optorsim.utils. Some utility functions are implemented by classes
in this package, including a function for the recording of simulation metrics, described in
Section 3.2.6.

3.2.4 Integration of centralised market

The following sections describe the integration of the auctioneers into OptorSim. This
includes a double auction implementation for the service market and an implementation of
a multi-attribute combinatorial exchange for the resource market. The conceptual design
of both mechanisms is described in Deliverable D1.1 [WP105]; the implementation of the
auctioneer components is outlined in Deliverable D1.2 [WP106].

The section is structured as follows: Section 3.2.4 outlines the integration of the dou-
ble auction component into the service market. Section 3.2.4 describes the integration of
the multi-attribute auction into the resource market.

Service Market

In the service market, a double auction instance is applied for coordinating service alloca-
tions. In a double auction market [Fri91], a large number of agents trade a common object
and can submit bids to a central auctioneer. Trading in double auctions is organized by
means of order books, each for a set of homogeneous goods. In the CATNETS scenario
there will be n different order books, each for one of the n different basic services. For
a detailed description of the auction mechanism, we refer to [SNVW06] and Deliverable
D1.1 [WP105].

In OptorSim, the service market auctioneer is represented as an agent. This auc-
tioneer gets instantiated by the simulator during its initialization and can be contacted by
every other agent. Complex service agents and basic service agents communicate with
the auctioneer by means of messages, i.e. they can submit their bids in form of messages.

CHAPTER 3. SIMULATOR ENHANCEMENT 30

Furthermore, they can receive further information from the auctioneer agent such as the
current market price. In case the auctioneer cleared the market – i.e., it computed an
outcome and prices – agents get informed whether or not they are part of the allocation.

Figure 3.21: Service market integration

Figure 3.21 briefly outlines the basic classes concerning the ser-
vice market integration. At heart of the central service market stands
three classes: ComplexServiceAgent, BasicServiceAgent, and
ServiceMarketAuctioneerAgent. First, the ComplexServiceAgent
class represents a buyer in the service market. Each complex service agent is repre-
sented by an individual instance of this class. Second, the BasicServiceAgent
class denotes a seller in the service market. Likewise the complex service, each
individual basic service agent is represented by an instance of this class. Last, the
ServiceMarketAuctioneerAgent implements the central auctioneer as an agent.
This auctioneer has access to the auction implementation, i.e. it can forward bids to the
order book, it can trigger allocation decisions, and it can receive further information from
the auction implementation (c.f. Deliverable D1.2 [WP106]). All three agent classes
implement the Negotiator interface, i.e. these classes can communicate with each
other by means of the methods declared by this interface.

A complex and a basic service agent each instantiates a
CentralisedNegotiation class which is responsible for submitting bids to
the auctioneer. In case an agent wants to trade, it first generates a valuation or reser-
vation price for the service. This means, it determines the value of the bid which it
would like to submit. This is realized by the ValuationGeneration class which
computes a value for the bid on the basis of market information and historical data
(c.f. Deliverable D1.2 [WP106]). After that, the agent communicates this price to its
CentralisedNegotiation instance. Subsequently, the negotiation object submits
a bid to the auctioneer.

CHAPTER 3. SIMULATOR ENHANCEMENT 31

Complex and basic service agents communicate with the auctioneer by
means of messages. For the central case, the most important message
type is the Point2PointMessage which enables the communication be-
tween two agents. A child of the Point2PointMessage class is the
CentralisedPoint2PointMessage class which directly sends messages to the
auctioneer. For the service market, the following messages are exchanged between the
agents:

ServiceMarketBuyerMessage: A buyer message is sent, whenever a complex ser-
vice agent wants to buy a service. The message contains the type of the required
service and the agent’s valuation (maximum price). Furthermore, agent specific in-
formation such as its ID and its location are stored in this message. The message is
directly sent to the auctioneer.

ServiceMarketSellerMessage: A seller message is sent, whenever a basic ser-
vice wants to sell a service on the service market. In analogy to the buyer message,
this message contains information about the transaction object (which service), the
agent’s reservation price (minimum price), as as well as an ID of the agent.

ServiceMarketDeleteMessage: In case an agent wants to delete a submitted or-
der, it can send a delete message to the auctioneer. The auctioneer removes the
corresponding order from the order book. Such a message is important if the nego-
tiation session of the agent is terminated, e.g. due to a time-out. In such a case, it
has to be ensured that all orders from this agent are removed from the order books.
The message contains all relevant information such as the agent’s ID and the ID of
its submitted order.

ServiceMarketNotificationMessage: A market notification message is sent
if the auctioneer has computed an outcome. Successful agents – i.e. agents that
are part of the allocation – get messages including their counterpart agent and the
transaction price. In case of a call market2, the unsuccessful agents also receive
such a message including a negative price (p = −1). Besides distributing alloca-
tion decision, this type of message is also used whenever an agent finished a job.
Suppose a complex service executes a job for which it uses a basic service. If the
job is finished, the complex service informs the corresponding basic service that the
execution is completed. Subsequently, the basic service agent can unlock this ser-
vice and sell it again on the market. It is to note that the content of these messages
may vary, e.g. the content informs that the allocation was successful or that a job
finished. Agents can interpret the context of such messages.

An example of the interaction between the agents and the auctioneer is outlined in
figure 3.22. A basic service agent wants to sell a basic service on the market and

2See Deliverable D1.1 [WP105] for a detailed definition.

CHAPTER 3. SIMULATOR ENHANCEMENT 32

has already generated valuation for the bid. For this, it calls the doNegotiation
method of its CentralisedNegotiation instance (1). This instance generates a
new ServiceMarketSellerMessage and submits this message to the auctioneer
(2). Likewise, a complex service wants to acquire a basic service. The service calls
the doNegotiation method of its CentralisedNegotiation instance (3). This
instance submits a ServiceMarketBuyerMessage to the auctioneer (4). Having
received a set of messages, the auctioneer computes an outcome.3 In the example,
both agents are successful, i.e. the valuation of the complex service agent is greater
than the reservation price of the basic service agent. Thus, the auctioneer distributes
two ServiceMarketNotificationMessage (5, 6) which includes all relevant
information that are required by both counterparts. The basic service starts to buy
the required resources on the resource market. It informs the complex service with a
ServiceMarketNotificationMessage (7) if all resources are allocated. After
that, the complex service starts to execute its job. If the job is finished, it informs the ba-
sic service by another ServiceMarketNotificationMessage to free the service.

Figure 3.22: Service market sequence

Resource Market

For allocating services in the resource market, we apply a multi-attribute combinatorial
exchange (MACE) [SNVW06]. Basic service agents and resource service agents submit
their bids to the auctioneer instance. After that, the bids are transformed into an internal
representation form and, subsequently, the winners are determined (allocation). Finally,
prices are computed in consideration of the allocation. As a result of the market mecha-
nism, agents get informed whether or not they are part of the allocation. A description of

3A key consideration in exchanges is the timing of the clearing process, i.e. the timing of determining
the auction winners. Exchanges can be either cleared continuously (Continuous Double Auction) or peri-
odically (Periodic Double Auction, Call Market). For a description of these different clearing strategies, we
refer to Deliverable D1.1 [WP105].

CHAPTER 3. SIMULATOR ENHANCEMENT 33

the implementation of the resource market component can be found in Deliverable D1.2
[WP106].

The resource market is integrated similarly into OptorSim as the service market.
The auctioneer is represented as a ResourceMarketAuctioneerAgent and has
access to the market implementation. Instances of the BasicServiceAgent classes
act as buyers on this market. In analogy to the service implementation, they gener-
ate a valuation by means of the ValuationGeneration class and communicate
their requirements to their CentralisedNegotiation instance. Likewise, an in-
stance of the ResourceAgent acts as a seller of resources. It has an instance of the
ValuationGeneration class and of the CentralisedNegotiation class.

The communication between agents is realized by means of messages. The resource
market provides similar message types as the service market:

• a ResourceMarketBuyerMessage for submitting buyer bids,

• a ResourceMarketSellerMessage for submitting seller bids,

• a ResourceMarketDeleteMessage for deleting bids, and

• a ResourceMarketNotificationMessage for distributing notifications.

Whenever a basic service agent has sold a service on the service market, it starts
to bid for the required resources on the resource market. In case it gets all required
resources allocated, it notifies the complex service that its job can now be executed. This
process is depicted in figure 3.23: A resource agent has free capacity4 and submits a
seller order to the auctioneer (1, 2). Furthermore, a basic service allocated a service on
the service market and requires resources for executing it. As such, it submits an order
to the resource market (3, 4). The auctioneer computes an outcome and informs the
participating agents about the allocation decision. In this example, both agents are part of
the allocation. By means of a ResourceMarketNotificationMessage (5), the
resource agent gets to know that its resources are required to execute a basic service. The
agent pins it, i.e. it marks the resources as locked. When the basic service agent receives
its ResourceMarketNotificationMessage (6), it notifies the complex service
that the job can be executed. The basic service agent waits until the complex service
finished the job, i.e. until it gets a message from it. After that, it informs the resource
agent, that it can unlock its resources (7).

If the basic service agent cannot allocate the required resources on the market, it noti-
fies the complex service that it cannot provide the service. This is also realized by sending
ResourceMarketNotificationMessage. In this case, the content of this mes-
sage describes a failed allocation.

4This means that it has free resources that it can sell on the market.

CHAPTER 3. SIMULATOR ENHANCEMENT 34

Figure 3.23: Resource market sequence

3.2.5 Integration of catallactic market

This section describes the integration of the catallactic agents into OptorSim. This in-
cludes the bilateral bargaining protocol implementation for the service and the resource
market. The conceptual design of the mechanism is described in Section 4.2.2 of Deliv-
erable D1.2 [WP106]; the implementation of the strategy core is presented in Deliverable
D1.1 [WP105].

In OptorSim, the service and the resource markets are both realised with software
agents. Three agent types were implemented: the complex service agent, the basic service
agent and the resource agent. They communicate with each other by exchange messages
using the P2P system of OptorSim. During the initialisation of the simulator, they get
instantiated and wait for incoming messages. They message are passed to the defined
strategy module of every software agent. A complex service agent uses a buyer catallac-
tic reasoner enabling him to buy basic services. The basic service agent instantiates two
catallactic reasoners, on for selling his service and one for buying resource bundles. Sim-
ilar to the complex service agent, the resource agent uses only one reasoner for selling its
resource bundles.

Major difference between the integration of the agents in the centralised and catallactic
case lies in the reactive and proactive behaviour, that OptorSim provides for the agent
development. For the integration of the catallactic agents, the behaviour is exclusively
reactive, whereas the agents in the central case is proactive by sending messages to the
central auctioneer.

Figure 3.24 outlines the most important classes concerning the integration of the
service and resource markets. Three classes are essential for the implementation
of the software agents: ComplexServiceAgent, BasicServiceAgent, and

CHAPTER 3. SIMULATOR ENHANCEMENT 35

ResourceAgent. First, the ComplexServiceAgent represents a buyer in the ser-
vice market. Each complex service agent is represented by an individual instance of this
class. Second, the BasicServiceAgent class denotes a seller in the service market.
Likewise the complex service, each individual basic service agent is represented by an in-
stance of this class. Last, the ResourceAgent implements a seller of resource bundles.
This implementation of a resource agent is able to manage the resources which means the
resource agent allocates the resources and frees after consumption.

«Java Class»
AnnounceMessage

«Java Class»
BidMessage

«Java Class»
CallForProposalsMessage

«Java Class»
LearningMessage

«Java Class»
CounterProposalMessage

«Java Class»
CatallacticPoint2PointMessage

«Java Class»
ProposalMessage

«Java Class»
PropagatingMessage

«Java Class»
Message

«Java Class»
BasicServiceAgent

«Java Class»
CatallacticNegotiation

«Java Interface»
CatallacticNegotiator

«Java Class»
ComplexServiceAgent

«Java Class»
Negotiation

«Java Interface»
Negotiator

«Java Class»
ResourceAgent

«Java Class»
Point2PointMessage

«Java Class»
ServiceMarketNotificationMessage

«Java Class»
ResourceMarketNotificationMessage

Figure 3.24: Service and resource market integration.

All software agent implementations are threads and implement the
CatallacticNegotiator interface, which enables the access to the catallac-
tic reasoner implementation.

CHAPTER 3. SIMULATOR ENHANCEMENT 36

Starting and running a bilateral negotiation. In OptorSim, a negotiation
is started using with the instantiation of the Negotiation class and the
call of the doNegotiation method. This class has been extended to
the CatallacticNegotiation class fulfilling the requirements of the bilat-
eral negotiation. New methods have been introduced to separate the service
(method doServiceNegotiation) and resource market negotiation (method
doResourceNegotiation). A call of these methods starts a service or resource ne-
gotiation, respectively. The caller will get back the result of the ended negotiation. This
is the complex service agent for a service market negotiation and the basic service agent
on the resource market.

As already mentioned, messages are used for communication between the software
agents. For the bilateral negotiation protocol in the catallactic case, several messages have
been introduced. The most important message types are the Point2PointMessage
and the PropagatingMessage. The Point2PointMessage class realizes a one-
to-one communication between to agents, where as the PropagatingMessage class
implements a broadcast to all agents. Every agent filters this broadcast message itself,
implementing simple filter rules. Finally, the transmission of the messages is performed
by passing the message to the P2PMediator which provides access to the underlying
peer-to-peer infrastructure connecting the nodes.

For integration of communication for the service and the resource market, several
specialized message subclasses of the two base communication classes have been created.
The following messages are exchanged between the agents (see Figure 3.24):

CallForProposalMessage: This message broadcasts a new request for a service
instance or resource bundle to all local and remote agents. This message starts the
negotiation by discovering possible negotiation partners. A receiver of this message
checks whether he is able to provide the asked service type or not. If he is willing
to offer this service, a BidMessage is created and sent back to the requester.

AnnounceMessage: In general, this message class is a generic broadcast implemen-
tation. Currently, this message broadcasts the selected negotiation partner after a
price ranking. Any receiver, which sent a BidMessage handles this message.

LearningMessage: This message broadcasts the fitness information to all agents
which trade the specified good. Learning messages are collected during a running
negotiation and interpreted after a negotiation ended.

ProposalMessage: A proposal message is a message from a buyer to a seller sug-
gesting a new price for the traded good, accepting or rejecting it.

CounterProposalMessage: A counter-proposal message is the answer message to
a proposal message. This message is sent from a seller to a buyer.

BidMessage: A bid message returns a bid related to call-for-proposal message.

CHAPTER 3. SIMULATOR ENHANCEMENT 37

ServiceMarketNotificationMessage: This message notifies the basic service
agent about the end of a negotiation on the service market.

ResourceMarketNotificationMessage: This message notifies the resource
agent about the end of a negotiation. The resource agent will free the reserved
resources for the specified request.

An example of the interaction between a complex service agent and a basic ser-
vice agent shows figure 3.25. A complex service wants to buy a basic service
on the market. The agent instantiates a new CatallacticNegotation and
calls the doServiceNegotiation method of this class. This instance creates a
CallForProposalMessage and broadcasts this message to all basic service agents.
A basic service agent receives the message and generates a BidMessage offering the
asked service. Having received a set of possible negotiation partners, the complex ser-
vice agent ranks the offers and chooses the cheapest offer to start negotiating with. First,
a AnnounceMessage is created. This message broadcasts the winner of the ranking.
Second, a CounterProposalMessage is sent to the winner basic service. The basic
service agent answers with a ProposalMessage containing an accept. The complex
service agents receives the result of the bilateral negotiation. In the current implementa-
tion, the results contains the identifier of the contracted basic service.

Similar to the service negotiation a resource negotiation is started by the contracted
basic service agent. The basic service agent uses a predefined, static mapping table to
create a CallForProposalMessage. At the end of the resource market negotiation
the ServiceMarketNotificationMessage signals either a successful or failed
negotiation to the ComplexServiceAgent.

Using this bilateral negotiation protocol, several metrics are defined and measured in
the simulator. The next section shows the current implemented metrics.

3.2.6 Metrics

Deliverable D4.1 [WP405] describes a set of technical and economical metrics for the
evaluation of the central and calallactic allocation mechanisms.

The challenge we encountered is that some of those metrics can be measured by the
middleware but not by the simulator and vice versa. Furthermore, we identified some
metrics that can be measured in the catallactic case but are fixed in the central case. An
example for such a metric is the service discovery time: In the catallactic case, several
nodes need to be contacted in order to find adequate counterparts for a service provision-
ing. In the central case this time is fixed, as the “discovery” of relevant services is realized
by a central component, i.e. the auctioneer.

For this reason in the second year of the project a subset of the envisioned metrics
framework has been implmented into the CATNETS simulator. The set of implemented

CHAPTER 3. SIMULATOR ENHANCEMENT 38

ResourceAgent:CatallacticNegotiation:BasicServiceAgent:CatallacticNegotiation:ComplexServiceAgent:

1.1: CallForProposalMessage

«return»
2: doServiceNegotiation

3.1: CallForProposalMessage

3.4: CounterProposalMessage

1.5: ProposalMessage

1.3: AnnounceMessage

3.2: BidMessage

3: doResourceNegotiation

1.2: BidMessage

«return»
4: doResourceNegotiation

3.3: AnnounceMessage

1: doServiceNegotiation

5: ServiceMarketNotificationMessage

1.4: CounterProposalMessage

Figure 3.25: Bilateral negotiation on the service and resource market.

CHAPTER 3. SIMULATOR ENHANCEMENT 39

metrics has also been chosen by taking in account the metrics which are recorded in the
prototype and an effort has been made in order to minimise the differences.

The implementation of the metrics is independent from the (centralised or catallactic
) economic model. A description of the implmented metrics is given in Section 2.3 of
Deliverable D4.2 [WP406].

Chapter 4

Simulation of ALNs

The second task in the workplan of WP2 for the second year of the project was the “Sim-
ulation of application layer networks and refinement”. This chapter illustrates the work
done for this task. In particular, the chapter includes:

• an handbook of the CATNETS simulator;

• the description of some functional tests performed to validate the manual scenario
generator and the simulator.

4.1 Simulator handbook

The code of the CATNETS simulator is stored into a CVS repository at the University
of Bayreuth and we currently run it within the Eclipse SDK [ecl] synchronised with the
repository.

There are five configuration files used to control various inputs to the CATNETS sim-
ulator. Four files are created by the Scenario Generator described in Section 3.1. These
are:

topology.conf The ALN Configuration File describes the ALN topology and the
content of each site; that is, the resources available and the network connections to
other sites.

bs.conf The Basic Service Configuration File associates each basic service to the re-
source bundle needed for its execution;

arb.conf The Available Resource Bundle configuration files defines the resources
which are part of bundles provided by RAs;

40

CHAPTER 4. SIMULATION OF ALNS 41

cs.conf The Complex service Configuration File contains information on the simu-
lated CSs, and the site policies for each site (the list of CS each site will accept).

The 5th configuration file is the Simulation Parameters File
examples/parameters catnets.conf which contains various simulation
parameters which the user can modify.

Sample configuration files for the CATNETS simulator can be found in the
examples/ directory.

The main class is org.catnets.optorsim.OptorSimMain. This classes uses the default
parameters file located at examples/parameters catnets.conf.

4.1.1 The ALN Configuration File

The file describes the status of the resources of each site and the layout of the simu-
lated ALN. The example configuration file shown in Figure 4.2 describes the ALN in
Figure 4.1.

Figure 4.1: An example ALN.

Each row in the configuration file is information about one site:

• the first column shows the failure probability of the site.

CHAPTER 4. SIMULATION OF ALNS 42

Nodes configuration for Catnets test - Catallaxy
#
failure prob., #CSAs, #BSAs, #RAs, SMAA, RMAA,
bs ids, arbs ids, links with bandwidth
#
0.1 1 2 1 F F bs1 bs2 arb1 0. 2000. 0. 1000.
0.3 1 0 2 F F arb2 arb3 2000. 0. 1500. 500.
0.0 1 1 1 F F bs4 arb5 0. 1500. 0. 2000.
0.2 0 1 1 F F bs3 arb4 1000. 500. 2000.

Figure 4.2: An example ALN configuration file (Catallaxy).

• the second column is the number of Complex Service Agents at the site.

• the third column is the number of Basic Service Agents at the site.

• the fourth column is the number of Resource Agents at the site.

• the fifth and sixth columns are two boolean values which specify if the SMAA and
RMAA, respectively, are located on the site.

• the following identifiers specify the Basic Services provided by the BSAs at the
Available Resource Bundles provided by the RAs at the site.

• The rest of the table is a site vs. site matrix giving the bandwidth (i.e. link capacity)
between each site in Mb/s. The matrix is diagonally symmetric. Entries along the
diagonal are ignored since network bandwidth within a site is assumed to be infinite.

When a simulation of the centralised allocation mechanism is performed, the file has
the form presented in Figure 4.3, where an additional site for the central auctioneers, fully
connected to all other sites, is also specified.

4.1.2 The Basic Service Configuration File

This file includes identifies of the basic service provided by BSAs. An example is given
in Figure 4.4.

Each row in the configuration file is the information for one basic service:

• the first column is the identifier of the basic service;

• the second column is the name of the basic service;

• the third column is the quality of the basic service;

• the following values specifies the resource bundle needed for service execution in
terms of 〈resource name, quantity〉 pairs.

CHAPTER 4. SIMULATION OF ALNS 43

Nodes configuration for Catnets test - Centralised
#
failure prob., #CSPs, #BSPs, #RPs, SCA, RCA,
bs ids, arbs ids, links with bandwidth
#
0.1 1 2 1 F F bs1 bs2 arb1 0. 2000. 0. 1000. 1000.
0.3 1 0 2 F F arb2 arb3 2000. 0. 1500. 500. 1000.
0.0 1 1 1 F F bs4 arb5 0. 1500. 0. 2000. 1000.
0.2 0 1 1 F F bs3 arb4 1000. 500. 2000. 1000.
#
Site for Central Auctioneers
#
0.0 0 0 0 T T 1000. 1000. 1000. 1000. 0.

Figure 4.3: An example ALN configuration file (Centralised).

Basic service configuration for Catnets test
#
bs1 pdf_converter gold cpu 70 storage 40
bs2 printer_service silver cpu 30 storage 10 ram 50
bs3 pdf_converter silver cpu 50 storage 20
bs4 printer_service silver cpu 30 storage 10 ram 50

Figure 4.4: An example Basic Service configuration file.

4.1.3 The Available Resource Bundle Configuration File

The file includes identifiers of the available resource bundles provided by RAs. An exam-
ple is given in Figure 4.5.

Available resource bundle configuration for Catnets test
#
arb1 cpu 100 storage 40
arb2 cpu 100 storage 40 ram 150
arb3 storage 70 ram 100
arb4 cpu 50
arb5 cpu 100 storage 40

Figure 4.5: An example Available Resource Bundle configuration file.

Each row in the configuration file is the information for one available resource bundle:

• the first column is the identifier of the available resource bundle;

CHAPTER 4. SIMULATION OF ALNS 44

• the following values specifies the resources available in the bundle in terms of
〈resource name, quantity〉 pairs.

4.1.4 The Complex Service Configuration File

An example file is shown in Figure 4.6.

#
CS Table
#
A CS name and a list of basic service needed.
#
\begin{cstable}
cs1 bs1 bs2 bs3
cs2 bs3 bs4
cs3 bs2
cs4 bs1 bs2 bs3 bs4
\end{cstable}
#
CSP Schedule Table
CSP site id, CS it will run
#
\begin{cspscheduletable}
0 cs1 cs2 cs3 cs4
1 cs1 cs2 cs3 cs4
2 cs1 cs2 cs3 cs4
3 cs1 cs2 cs3 cs4
\end{cspscheduletable}
#
The probability each cs runs
#
\begin{csselectionprobability}
cs1 0.25
cs2 0.25
cs3 0.25
cs4 0.25
\end{csselectionprobability}

Figure 4.6: An example CS configuration file.

It is structured as follows:

• the first part (between begin{cstable} and endcstable defined the set of
runnable complex services. Every row starts with a CS identifier followed by the

CHAPTER 4. SIMULATION OF ALNS 45

list of basic services which by which the CS is composed.

• each row in the second part of the CS configuration file (between
begin{cspscheduletable} and end{cspscheduletable}) gives the
scheduling policy for each site i.e., which CSs the CSAs located on a site are will-
ing to run. In this example all CSAs on all sites will be able to run all the defined
CSs.

• the third part of the CS configuration file, which
is between begin{csselectionprobability} and
end{csselectionprobability}, determines the frequency with which
each CS will be submitted to the ALN. In the example above all the four CS are
given the same probability of being submitted.

4.1.5 Simulation Parameters

The simulation parameters are set manually by the user in a parameters file. The default
parameters file is found in examples/parameters catnets.conf. Following is
an explanation of each parameter.

General Parameters

aln.topology.file - The configuration file to describe the ALN topology.

aln.bs.file - The configuration file to describe the basic services.

aln.arb.file - The configuration file to describe the available resource bundles.

cs.configuration.file - The configuration file to describe the complex services.

number.complexservices - The number of CSs submitted during the simulation run.

users - Determines the pattern in which ALN users submit CSs to the Complex Service
Dispatcher. Options:

1. Simple: submit CSs at regular intervals until all CSs have been submitted.
The interval is set by the cs.delay parameter (below).

2. Random: submit CSs at intervals which are uniformly random between zero
and twice the cs.delay.

policy - Determines the scheduling policy of the Complex Service Dispatcher. Options:

1. Random: CSs are scheduled randomly to any CSA that will run the CS.

CHAPTER 4. SIMULATION OF ALNS 46

2. Queue Length: schedules to the CSA with the shortest queue of waiting CSs.
If two CSAs have the same shortest queue length one of them is chosen at
random.

cs.delay - The basic time interval (in milliseconds) between CSs being submitted to the
ALN by the Users during simulation. The actual submission interval depends on
the type of user chosen (above).

access.pattern.generator - Determines the order in which BSs are accessed within a CS.
Options:

1. SequentialAccessGenerator: CSs are accessed in the order stated in the CS
configuration file.

2. RandomAccessGenerator: CSs are accessed using a uniform random distri-
bution;

3. RandomWalkUnitaryAccessGenerator: CSs are accessed using a unitary
random walk, starting from a CS chosen using a uniform random distribution.

4. RandomWalkGaussianAccessGenerator: CSs are accessed using a Gaus-
sian random walk, starting from a CS chosen using a uniform random distri-
bution.

5. RandomZipfAccessGenerator: CSS are accessed using a Zipf-like distribu-
tion1.

shape - The shape parameter α for the Zipf-like access pattern.

random.seed - Determines whether the seed used by various methods within the CAT-
NETS simulator where random numbers are required is fixed or random. If this is
set to yes, it will be random; if no, it will be fixed. For example, if it is yes, a
different set of CSs will run each time the simulation is run. If it is no, the same
CSs will run each time.

max.queue.size - The maximum number of CSs the CSA will hold in its queue before it
refuses to accept any more.

bs.execution.time - The time in milliseconds for a CSA to execute each BS.

Market Parameters

These parameters are specific for the service/resource allocation mechanisms.

market.model - Set to 1 to use the catallactic allocation mechanism or 2 to use the
centralised mechanism.

1In a Zipf-like distribution the popularity of the BSs associated to a CS is given by P (fi) = 1/iα, with
0 ≤ α < 1, where P (fi) is the popularity of the i-th most popular CS and α is close to 1.

CHAPTER 4. SIMULATION OF ALNS 47

market.central.service.clear - Clearing policy for the centralised service market: 1 Call
Market or 2 Continuous.

market.central.service.clearinterval - Call market clearing interval for the centralised
service market; defines after how many ms the market will be cleared.

market.central.resource.clear - Clearing policy for the centralised Resource Market: 1
Call Market or 2 Continuous

market.central.resource.clearinterval - Call market clearing interval for the centralised
resource market; defines after how many ms the market will be cleared.

market.decentralized.sm.file - File containing initialisation parameters for the catallac-
tic allocation strategy on the service market.

market.decentralized.rm.file - File containing initialisation parameters for the catallac-
tic allocation strategy on the resource market.

Negotiation Parameters

These parameters regulate how negotiations are conducted in both the catallactic and cen-
tralised mechanisms.

timeout - The time (in milliseconds) an agent will wait for non-blocking reception of
messages during negotiations for services or resources.

hop.count - Regulates the propagation of broadcast messages over the network when the
catallactic mechanisms is adopted

Other parameters

time.advance - There are two time models implemented in the CATNETS simulator one
time-based and one event-driven, and the simulator can be run in either mode with
the same end results. In the time-based model, the simulation proceeds in real time.
In the event-driven model, whenever all the threads are inactive, the simulation time
is advanced to the point when the next thread should be activated. The use of the
event-driven model speeds up the running of the simulation considerably, whereas
the time-based model may be desirable for demonstration or other purposes.

time advance - Set to yes to use the event-driven time model or no to use the
time-based model.

The time-bases model is the default.

metrics.path - The path where files recording metrics collected during simulations are
stored.

CHAPTER 4. SIMULATION OF ALNS 48

4.2 Simulator functional test

4.2.1 Validation of the scenario generator

The manual scenario generator has been used to create a medium-scale scenario to be
used for the evaluation of the centralised allocation mechanism. We decided to generate
an ALN having 20 nodes all connected to the special site where the two auctioneers are
located. The complete set of parameters defining the scenario is shown in Table 4.1.

of ALN nodes 21
node failure probability 0 for each node
Bandwidth 1000 for each edge
of CSAs 5 (max 1 for node)
of BSAs 30 (max 4 for node)
of RAs 15 (max 3 for node)
of resources 5
Resource quantity value between 20 to 50
of basic services 5
BS quality {platinum, gold, silver, bronze}
Resource bundle cardinality between 1 and 5
of complex cervices 5
CS execution probability 0.2

Table 4.1: Parameters for Scenario Generator Functional Test.

The generated configuration files are included in the examples/ directory. The
generation process took about two hours. Even though the generation was done by the
developer of the scenario generator, we believe that two hours is a reasonable time for the
definition of a scenario of this size. However, it is clear that the manual generator cannot
be used for the generation of larger scenarios, for which the use automatic generator is
necessary.

4.2.2 Validation of simulator

For a proof-of-concept evaluation of the simulator, we have run several simulation runs
to test the integration of the auctions (central case). In Deliverable D1.2 [WP106], we
discuss some of the preliminary results from these tests. The results are neither meant to
be convincing nor to be statistically evident.

We have run 10 different simulation runs using a small configuration file with 3 agents
and 2 different resources. We measured a subset of the metrics defined in WP4, as ex-
plained in Deliverable D4.2 [WP406]. As a main result of these test runs, we identified
that the total number of complex service requests is greater than the number of allocated

CHAPTER 4. SIMULATION OF ALNS 49

ones. In general, this ratio was low during most of the simulations runs. In order to im-
prove this ratio, we have to balance the valuation generation of the agents (cf. [WP106])
as well as the strategies of the bidding agents in project year 3.

Chapter 5

Relations to other WPs

The work done by WP2 is strictly related to the activities performed by the other work
packages of the CATNETS project. This chapter outlined the principal relationships be-
tween WP2 and the other WPs.

5.1 WP1

The objective of WP1 (Theoretical and Computational Basis) is the conceptual design
of market mechanisms for the CATNETS scenario. This includes the design of auctions
(denoted as central case) and a decentralized bargaining strategy (denoted as Catallactic
case). The relations to WP2 are the following ones:

• The central auctions and the decentralized bargaining strategies are integrated into
the simulator. This includes a deep collaboration concerning the simulation model
and the message system.

• The development of the software patterns and components that are required to sim-
ulate market based ALNs has been conducted in tight cooperation between WP1
and WP2.

5.2 WP3

The objective of WP3 is to have a proof-of-concept application that is used to demonstrate
the ideas being developed, among others, in WP1. The relations to WP3 are as follows:

• The simulator embeds into a single framework both the central and catallactic al-
location mechanisms while the prototype embeds only the catallactic mechanism.

50

CHAPTER 5. RELATIONS TO OTHER WPS 51

The reason for this is that the prototype is supposed to demonstrate the feasibility
of real-world ALN applications based on the catallactic service/resource allocation
mechanism, while the goal of the simulator development is to produce a tool which
permits to run a large set of scenarios for an effective and extensive comparison of
the performance of the two allocation mechanisms.

• As the CATNETS simulator directly derive from the grid simulator OptorSim, the
implementation of the agent communication layer differs from the implementation
of the corresponding middleware in the prototype. This implies some differences
in the way the technical metrics are collected and how the catallactic strategy is im-
plemented in the two tools. However, an effort has been made in order to minimise
these differences so that the results obtained by the two are potentially compara-
ble. In the third year of the project an investigation of their actual comparability
has to be performed. As a precondition, a set of simulation scenarios reflecting the
operation condition of the prototype application has to be defined.

5.3 WP4

The first goal of WP4 is to evaluate the performance of the Catallactic approach by means
of the simulator described in this deliverable and the prototype developed by WP3 (see
deliverable D3.1 [WP305] and D3.2 [WP306]). The second goal is to compare, using the
simulator, the performace of the catallactic and centralised mechanisms. The relations to
WP4 are as follows:

• The identification and formalization of relevant metrics to compare centralised and
catallactic market mechanisms has been done in cooperation between WP4 and
WP2.

• Analysis of which metrics can be measured by both the CATNETS simulator and
the prototype has been done in cooperation among WP4, WP3, and WP2.

Chapter 6

Conclusions

6.1 Achieved results

Two tasks were in the workplan of WP2 - Simulation in project year two: “Simulator
enhancement to support new architecture properties” and ”Simulation of ALNs and re-
finement”.

Simulator enhancement to support new architecture properties. The work done for
this task can be summarised as follows:

• definition of an abstract model for ALNs to be simulated.
• development of a manual ALN scenario generator, to be used for the definition
of simulation configurations.

• extension of the Grid simulator OptorSim in order to embed: (1) the code
implementing the central auctioneers; (2) the code implementing the catal-
lactic bargain strategy; (3) a flexible messaging system to support both cen-
tralised and catallactic allocation mechanisms; (4) a partial implementation
of the functions for recording the metrics defined by WP4; an effort has been
made in order to minimise the differences with the metrics implemented in the
prototype by WP3.

Simulation of ALNs and refinement. Two activities have been performed:

• Definition of a simulator handbook describing the input files which defines the
scenario to be simulated.

• Preliminary experiments for validation of the manual scenario generator and
the simulator.

52

CHAPTER 6. CONCLUSIONS 53

6.2 Future work

According to the workplan of the project, in year 3 WP2 is supposed to continue working
on task “Simulation of Application Layer Networks and refinement”. In particular, the
work will be conducted along the following directions.

Automatic scenario generator. This tool is needed in in order to generate large-scale
scenarios. Its requirements have already been defined and its implementation has
started. The implementation is planned to be concluded by T0+28.

Full implementation of metrics. The metrics framework developed byWP4 is currently
partially implemented into the CATNETS simulator. The full implementation of
metrics is planned to be completed by T0+28.

Bandwidth dependent message delivery. The current version of the simulator is not
able to simulate bandwidth dependent message delivery. This means that messages
are delivered from, say, site S1 to site S2 in the ALN, regardless the capacity of the
network links between the two sites. OptorSim embeds a mechanism which can
be exploited to simulate this missing feature. This task is supposed to be completed
by T0+30.

Extensive simulation. An extensive simulation of different ALN scenarios is necessary
to compare performances of the centralised and catallactic allocation mechanisms.
This tasks can start once the three activities above have been completed, i.e., at
T0+30 and is planned to be completed by T0+34.

Simulation of prototype-like scenarios. This task is needed to effectively compare per-
formance of the catallactic mechanism in the simulator and in the prototype. The
task will start at T0+30 and is planned to be completed by T0+34.

Bibliography

[BCC+03] W. Bell, D. G. Cameron, L. Capozza, P. Millar, K. Stockinger, and F. Zini.
Optorsim - a grid simulator for studying dynamic data replication strategies.
Int. Journal of High Performance Computing Applications, 17(4), 2003.

[CCSM+04] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson,
K. Stockinger, and F. Zini. Analysis of Scheduling and Replica Optimisa-
tion Strategies for Data Grids using OptorSim. Journal of Grid Computing,
2, 2004.

[ecl] Eclipse web site. http://www.eclipse.org.

[edg] The DataGrid Project. http://www.edg.org/.

[Fri91] D. Friedman. The Double Auction Market Institution: A Survey. In
D. Friedman and J. Rust, editors, The Double Auction Market - Institutions,
Theories, and Evidence, pages 3–26. Cambridge MA, Perseus Publishing,
1991.

[opt] OptorSim web site. http://edg-wp2.web.cern.ch/edg-wp2/
optimization/optorsim.html.

[SNVW06] Björn Schnizler, Dirk Neumann, Daniel Veit, and Christof Weinhardt. Trad-
ing Grid Services – A Multi-attribute Combinatorial Approach. European
Journal of Operational Research, forthcoming, 2006.

[WP105] WP1. Environmental Analysis of Application Layer Networks. Technical
Report WP1 - D1, CATNETS EU IST-FP6-003769, 2005.

[WP106] WP1. Annual Report of WP1. Technical Report WP1 - D2, CATNETS EU
IST-FP6-003769, 2006.

[WP205] WP2. Analysis of Simulation Environment. Technical Report WP2 - D1,
CATNETS EU IST-FP6-003769, 2005.

[WP305] WP3. Analysis of Current Middleware used in Peer-to-Peer and Grid Imple-
mentations for Enhancement by Catallactic Mechanisms. Technical Report
WP3 - D1, CATNETS EU IST-FP6-003769, 2005.

54

BIBLIOGRAPHY 55

[WP306] WP3. Annual Report of WP3. Technical Report WP3 - D2, CATNETS EU
IST-FP6-003769, 2006.

[WP405] WP4. Metrics Specification. Technical Report WP4 - D1, CATNETS EU
IST-FP6-003769, 2005.

[WP406] WP4. Annual Report of WP4. Technical Report WP4 - D2, CATNETS EU
IST-FP6-003769, 2006.

ISSN

In this paper the simulation environment for the
CATNETS project is defined further. The chosen
simulator is adopted in terms of new features an
architecture changes in order to provide a valid
simulation environment for Application Layer
Network scenarios. Furthermore the
requirements for a scenario generator and the
needed configuration mechanisms for the actual
simulation runs are introduced.

1864-9300

