
Ardaiz, Oscar et al.

Working Paper

Proof-of-Concept Application - Annual Report Year 3

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 27

Provided in Cooperation with:
University of Bayreuth, Chair of Information Systems Management

Suggested Citation: Ardaiz, Oscar et al. (2007) : Proof-of-Concept Application - Annual Report Year
3, Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 27, Universität Bayreuth, Lehrstuhl für
Wirtschaftsinformatik, Bayreuth,
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3725

This Version is available at:
https://hdl.handle.net/10419/52637

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3725%0A
https://hdl.handle.net/10419/52637
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 27

2007

Oscar Ardaiz, Pablo Chacin, Isaac Chao, Felix Freitag, LeandroNavarro (Universidad Polytecnica de
Catalunya), Liviu Joita, Omer F. Rana (Cardiff University), Werner Streitberger, Sebastian Hudert,
Torsten Eymann (University of Bayreuth)

Proof-of-Concept Application - Annual Report Year 3

ISSN 1864-9300

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

Oscar Ardaiz, Pablo Chacin, Isaac Chao, Felix
Freitag, LeandroNavarro (Universidad Polytecnica
de Catalunya), Liviu Joita, Omer F. Rana (Cardiff
University), Werner Streitberger, Sebastian
Hudert, Torsten Eymann (University of Bayreuth)

1864-9300

IST-FP6-003769 CATNETS

D3.3
Annual Report on WP3 (T0+36)

Contractual Date of Delivery to the CEC: 31 August 2007

Actual Date of Delivery to the CEC: 30 September 2007

Author(s): Oscar Ardaiz, Pablo Chacin, Isaac Chao,
Felix Freitag, Liviu Joita, Leandro
Navarro, Omer F. Rana, Werner
Streitberger

Work package: WP3

Est. person months: 9.5

Security: public

Nature: final

Version: 1.0

Total number of pages: 53

Abstract:
This deliverable describes the work undertaken in Work Package 3 of the CATNETS project,
which involves the following tasks:
(1) Development of performance measuring components for experiments. The task is mainly
concern to defining the necessary components for the generation of the metrics, as well as
capturing these values;
(2) Development of a distributed application to execute on economic-enhanced Grid/P2P
platform and middleware integration. The task is related to the development of the prototype,
including architecture, layers, modules, services, deployment, tests and capture of metrics,
which are further analysed in WP4.

Keyword list: Prototype, Grid Market Middleware, Resource Allocation

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the Commission
of the European Communities as project number IST-FP6-003769. The partners in this project are: LS
Wirtschaftsinformatik (BWL VII) / University of Bayreuth (coordinator, Germany), Arquitectura de
Computadors / Universitat Politecnica de Catalunya (Spain), Information Management and Systems /
University of Karlsruhe (TH) (Germany), Dipartimento di Economia / Università delle merche
Ancona (Italy), School of Computer Science and the Welsh eScience Centre / University of Cardiff
(United Kingdom), Automated Reasoning Systems Division / ITC-irst Trento (Italy), Chair of
Business Administration and Information Systems - E-Business and E-Government / University of
Mannheim (Germany).

University of Bayreuth
LS Wirtschaftsinformatik (BWLVII)
95440 Bayreuth
Germany
Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contact person: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors
Jordi Girona, 1-3
08034 Barcelona
Spain
Tel: +34 93 4016882, Fax: +34 93 4017055
Contact person: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and
Systems
Englerstr. 14
76131 Karlsruhe
Germany
Tel: +49 721 608 8370, Fax: +49 721 608 8399
Contact person: Christof Weinhardt
E-mail: weinhardt@iism.uni-karlsruhe.de

Università delle merche Ancona
Dipartimento di Economia
Piazzale Martelli 8
60121 Ancona
Italy
Tel: 39-071- 220.7088 , Fax: +39-071- 220.7102
Contact person: Mauro Gallegati
E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh
eScience Centre
Cardiff University, Wales
Cardiff CF24 3AA, UK
United Kingdom
Tel: +44 (0)2920 875542, Fax: +44 (0)2920
874598
Contact person: Omer F. Rana
E-mail: o.f.rana@cs.cardiff.ac.uk

ITC-irst Trento
Automated Reasoning Systems Division
Via Sommarive, 18
38050 Povo – Trento
Italy
Tel: +39 0461 314 314, Fax: +39 0461 302 040
Contact person: Floriano Zini
E-mail: zini@itc.it

University of Mannheim
Chair of Business Administration and Information
Systems
- E-Business and E-Government -
L9, 1-2
68131 Mannheim
Germany
Tel: +49 621 181 3321, Fax: +49 621 181 3310
Contactperson: Daniel Veit
E-mail: veit@uni-mannheim.de

Changes

Version Date Author Changes
01 16/05/2007 LJ First draft, Table of Content
02 23/06/2007 LJ Chapters 1, 3, 4 - first draft
03 06/07/2007 IC Chapter 2, 4 - first draft
04 13/07/2007 IC More content added to chapters 2 and 4
05 18/07/2007 SH Content added to chapters 2 and 4
06 27/07/2007 LJ Content added to chapter 7, revision to chapters 1, 3, and 4
07 30/07/2007 LJ Chapter 5 and 6 added
08 07/08/2007 LJ Revision to chapters 1, 3, 4, 5, 6 and 7
09 20/08/2007 IC More content added to chapters 2 and 4
10 23/08/2007 IC Revision of chapters 2, 3, 4, 5
11 28/08/2007 LJ Revision, proof reading
12 28/09/2007 WS Final draft editing
13 28/09/2007 LJ Revision chapter 4
14 01/10/2007 IC Revision algorithm ZIP agents sec. 2.3.2 + alignment WP4
15 04/10/2007 WS Incorporating revisions of chapter 6

TABLE OF CONTENT:

1� Introduction ... 6�

2� Catallactic Middleware ... 7�

2.1� Catallactic Resource Allocation Model .. 7�

2.2� Catallactic Middleware Infrastructure ... 8�

2.3� Grid Market Middleware and its implementation ... 9�
2.3.1� Contract Net simple offer/demand agents .. 9�
2.3.2� Zero Intelligence Plus agents ... 10�
2.3.3� Catallactic agents ... 12�

3� Distributed application to execute on economic-enhanced Grid/P2P
platform and middleware integration .. 14�

3.1� Application Layer Components .. 15�
3.1.1� Scenario Generator .. 17�
3.1.2 CATNETS Service Provider Advertisement Service .. 18�

3.2� Middleware Layer Components ... 19�

4� Prototype performance measuring components for experiments 21�

4.1� Application Scenarios & Use Cases.. 21�

4.2� Performance measuring components for experiments .. 21�

4.3� Performance Results ... 24�

5� Relation to other WPs .. 26�

5.1� WP1 ... 26�

5.2� WP2 ... 27�

5.3� WP4 ... 27�

6� Economical model for eNVS .. 28�

6.1� Hypothesis .. 28�

6.2� Scenarios ... 28�

6.3� Algorithm for decision making regarding the hypothesis ... 29�

6.4 Hypothesis testing ... 30�

6.5 General observations about CATNETS in regard to the hypothesis and the main
question presented above .. 31�

6.6 Conclusions and further directions .. 34�

7� Conclusions of WP3 ... 35�

7.1� Prototypes using Catallactic-based markets .. 35�

References .. 36�

Annex A – CATNETS Repositories Settings ... 38�

Annex B – GMM CATNETS FINAL RELEASE DESCRIPTION & USER MANUAL 48�

What is on the tar file distribution ... 48�

How to deploy the GMM .. 49�

Deploy from scratch ... 49�

Deploy after config changes / GMM jar update .. 50�

How to run the experiments .. 50�

Experiment configuration ... 50�

Running Experiments ... 51�

How to collect metrics ... 51�

Raw Metrics available ... 51�

Collecting the metrics .. 53�

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 6

1 Introduction
This deliverable describes the work undertaken in Work Package 3 (WP3) of the CATNETS
project, which involves the following tasks:

� T3.3 Performance measuring components for experiments. The task is mainly concern
to defining the necessary components for the generation of the metrics, as well as
capturing these values.

� T3.4 Distributed application to execute on economic-enhanced Grid/P2P platform and
middleware integration. The task is related to the development of the prototype,
including architecture, layers, modules, services, deployment, tests and capture of
metrics, which are further analysed in WP4.

The document is divided in seven parts:

� The introduction into the Application Layer Network;

� Catallactic resource allocation model and middleware architecture;

� Distributed application to execute on economic-enhanced Grid/P2P platform and
middleware integration;

� Prototype performance measuring components for experiments;

� Relation to other work packages;

� A case study of the CATNETS applicability for an experimental National
Visualization Service in UK, and conclusions.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 7

2 Catallactic Middleware

The Grid Market Middleware (GMM) design, implementation and early evaluation have been
thoroughly described in previous deliverables. Development in core GMM components (agent
hosting, group communication, metric collection) has been frozen since Year 2, once
requirements have been met. For this last year, effort has been switched to two main tasks:
firstly, specifying and implementing a dedicated resource model amenable to detailed
experimentation with the prototype in a resource constrained environment; secondly, testing
as many economic protocols as possible. So far we have implemented three different
economic algorithms in the same GMM substrate. We have demonstrated with this the
modularity of the tool referred as Grid Market Middleware toolkit.

High-Performance Grid Computing (HPGC) combines the advances in research and
technologies in high speed networks, software, distributed computing and parallel processing
to deliver high-performance, large-scale and cost-effective computational, storage and
communication capabilities to a wide range of applications. Typically the resources are used
in Grids to provide processing capabilities for massive batch job scheduling. In this context,
the resources are consumed in a dedicated mode. Each processor runs one batch job at a time,
and concurrent processing of several jobs in one processor is not considered. This contrasts
with transactional applications. With transactional applications there are different issues to be
considered, such as: accessing databases or maintaining the transactional integrity of the
request. Resources are not dedicated, and small concurrent computations for specific tasks
might be performed continuously on the resources. We considered into the experimental
phase of the prototype running in the cluster only the HPGC scenario with full dedicated
resources.

2.1 Catallactic Resource Allocation Model
The dedicated resource model translates for the market concerns in a limited offer by the
BasicServices (BSs). Once the BS has sold its resource to a ComplexService (CS), it cannot
accept more bids from other CSs’ Call for Proposals (CFPs) until the moment when the client
of the awarded CS ends the execution of the sold service (i.e. the Data Mining service in our
prototype scenario) in the resource. This peculiarity is what makes novel and interesting this
scenario with respect to other previous research on decentralized economic algorithms based
on simple learning agents in ideal markets [Preist, 1998], [Despotovic, 2004].

The dedicated resource model is modelled in this precise way for the GMM deployment in
clusters:

1) Each BS is deployed in one node. The CPU of this node is its resource. Then the second
market is useless here, we consider that the BS always has this precise resource and no other
resource available.

2) Once a CS buys a BS, the CS (which could be seen, as a logical element, the application
proxy which executes the service with the end point reference (EPR) passed by the BS)
executes the service (i.e. Data Mining service) on the resource and no other CS can bargain
for it. When execution is over, the resource can come back to the market. The BSs are aware
of execution termination by means of a lock that the CS deletes on the resource when
execution ends.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 8

2.2 Catallactic Middleware Infrastructure
There has been an increase of interest in Service Oriented Grids (SOGs) recently within the
Grid community towards services that are often considered as a natural progression from
component based software development, and as a mean to integrate different component
development frameworks. A service in this context may be defined as a behaviour that is
provided by a component to be used by any other component. A service stresses
interoperability and may be dynamically discovered and used [Foster, 2002]. Utility
computing assumes service instances are created on the fly and automatically bound as
applications that are configured dynamically. The service viewpoint abstracts the
infrastructure level of an application. It enables the efficient usage of Grid resources and
facilitates utility computing, especially when redundant services can be used to achieve fault
tolerance. As for configurability, a SOG system is configured on-demand and flexibly, which
means different components are bound to each other late in the composition process. Thus,
the configuration can change dynamically as needed and without loss of correctness.

In a SOG infrastructure, the GMM is exposed to be accessed by applications trough a
convenient access point, a Web Service which can be deployed in any application server and
integrated as a service in an existing SOG. Figure 2.1 describes the main steps in the
interaction trough the access point. When a client issues a request, the application determines
which Grid services are required to fulfil it. These Grid services represent either software
services (e.g. a data processing algorithm) or computational resources. The application
translates these requirements into a standardized Service Level Agreement (SLA) document
based on WS-Agreement [WS-Agreement, 2007]. The application invokes the access point
and passes the corresponding SLA request. This is in turn parsed and processed at the access
point, which instantiates the GMM with the required economic agents to fulfil the client
request.

The GMM searches among the available service providers, which have registered their
particular service specifications, like contractual conditions, policies and QoS levels. When a
suitable service provider is found, the application requirements are negotiated within the
middleware by agents who act on behalf of the service providers as sellers and on behalf of
the applications as buyers. Once an agreement is reached between the trading agents, a Grid
service instance is created for the application and a reference is returned to the
application/client, which can invoke it.

The server-side infrastructure is deployed by a set of scripts which allow for the bootstrapping
of BSs in available resources. The scripts perform the automatic deployment and
configuration of the BSs, which are then ready to be contacted by CSs. Services offered by
BSs for clients executions are also deployed and exposed in Apache Tomcat application
servers. Complemented by the access point, this comprises a complete infrastructure for
economic-based SOGs.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 9

Application

Service Oriented Grid Infrastructure

Service
Deployment

Scripts

Service
Provider 1Request

Service allocation
(WS-Agreement)

Grid Service
deployment

Client

Service reference

Service
Provider n

Response

Access
Point Negotiation

Grid Market
Middleware

Buyer
Agent

Seller
Agent

Service invocation

Service
instantiation

deployed
Grid Service

Application

Service Oriented Grid Infrastructure

Service
Deployment

Scripts

Service
Provider 1Request

Service allocation
(WS-Agreement)

Grid Service
deployment

Client

Service reference

Service
Provider n

Response

Access
Point Negotiation

Grid Market
Middleware

Buyer
Agent

Seller
Agent

Service invocation

Service
instantiation

deployed
Grid Service

Figure 2.1 - Service Oriented Grid (SOG) infrastructure.

2.3 Grid Market Middleware and its implementation
The GMM allow currently for plugging of various decentralized economic algorithms. We
have demonstrated this with three implementations: the Catallactic agents implementation
discussed in WP1 and the alternative algorithms such as: Contract-Net protocol with simple
offer/demand, and Zero Intelligence Plus (ZIP) agents in a continuous double auction.

2.3.1 Contract Net simple offer/demand agents

In this version of the GMM, we have plugged in as economic agents an implementation of the
Contract-Net protocol standardized by FIPA [FIPA, 2007], as shown in Figure 2.2. The
Contract-Net protocol has been developed to specify problem-solving communication and
control for nodes in a distributed problem solver. Task distribution is affected by a negotiation
process, a discussion carried on between nodes with tasks to be executed and nodes that may
be able to execute those tasks. This protocol has been applied to many domains in multi-agent
systems [Paurobally, 2004]. An example of application of the protocol to Grid resource
allocation can be found in [Chao, 2004].

Figure 2.2 - Contract-Net [taken from FIPA web site]

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 10

The Contract-Net protocol starts with a task announcement phase by the initiator (the buyer),
which can be answered by one or more participants (the sellers). This announcement is carried
out by a groupcast of a call for proposals (CFP). After concluding this period, the initiator
selects from the set of collected proposals the best one, informing the winner. On top of this
protocol we apply a simple offer/demand-based economic algorithm: the sellers will answer
the CPFs which meet its current selling price. If the CFP does not meet its requirements, the
seller will lower its expectations and it will decrease the selling price. As for the buyers, if a
seller rejects the CFP, then it will lower its expectation by increasing the offer in the next
CFP. Both the buyers and the sellers will increase their expectations in case of receiving
offers/bids which meet their expectations. The price updating is done at fixed small price
steps.

2.3.2 Zero Intelligence Plus agents

In this version we consider a simplified Grid market with only one homogeneous Data Mining
service being traded. The execution time of the service can be varied during the experiments.
The auction mechanism is a continuous double auction in which the agents follow a modified
ZIP strategy based on [Preist, 1998].

In the context of the GMM, the buyer agents are called ComplexServices (CSs) and the seller
agents BasicServices (BSs). CSs aggregate BSs from the market. As BSs and CSs get
involved in trading, the price will evolve by offer and demand, with dependence on the
limited CS budget and the limited resources which can be sold by the BS. Once the BS has
sold its resource to a CS, it cannot accept more bids from other CSs’ CFPs until the moment
when the client of the awarded CS ends the execution of the sold Data Mining service in the
resource.

For the realization of the decentralized continuous double auction we divide the traders in
subgroups, called clusters (see Figure 2.3) which are trading independently. This allows to
cope with the scalability of large networks. Moreover this approach enables the agents to be
well-informed of shouts from other agents, which in decentralized auctions is a general
problem [Despotovic, 2004]. To avoid this groups are only trading isolated, agents have to
join and leave the clusters. The selection of individual agents to move to another cluster
depends on their trading success. This method allows reaching one global equilibrium price
P0 for all clusters situated the distributed market place. As the feasibility of a global P0 is
already shown in [Ogston, 2002], we will concentrate our prototype analysis focusing in one
bidding cluster.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 11

 Figure 2.3 - Bidding clusters

Each cluster deploys an own central continuous double auction. The agents are coordinated in
synchronous manner and are acting in bidding rounds. Therefore a delegated auctioneer
controls the matching of the bids and offers, where the highest bid corresponds to the lowest
offer. No matching of a trade will be executed, if no offers are lower than the highest bid
exists.

The bidding algorithm is based on extended ZIP agents. This allows reaching the equilibrium
price P0, at which the maximum resources will be exchanged, with simple agents. Therefore
they have to know the minimum price of the shouted offers, by sellers Smin and the maximum
price of the shouted bids by buyers Bmax. The agents base the bidding algorithm to calculate
the new price P(t+1) on these two values. The price update in the basic service follows a
gradient algorithm: if the current price is above the maximum offered price of all bids, the
basic service tries to lower its price to become competitive. If the price is below, it “tests” the
market by raising the price, looking for higher profits.

In the following algorithm, PriceChange is a parameter that defines the price change rate. The
algorithm bases on a momentum � considering the weight of previous price changes and on
the learning rate � describing the rapidity of adoption to the current target price.

Algorithm1 : Bidding algorithm of the BS (seller).
 Input: random1 > 0 and < 0.2
 Input: random2 > 0 and < 0.2 and not random1;
 if Smin > Bmax then
 PT = Smin - (random1 * P(t) + random2);
 else
 PT = Bmax + (random1 * P(t) + random2);
 endif
 priceChange = � * priceChange + (1-�) * � * (PT-P(t));
 P(t+1) = maximum (P(T)+priceChange, Pmin) ;

Algorithm 2: Bidding algorithm of the CS (buyer).
 Input: random1 > 0 and < 0.2
 Input: random2 > 0 and < 0.2 and not random1;
 if Smin > Bmax then

 PT= Bmax + (random1 * P(t) + random2);

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 12

 else
 PT = Smin - (random1 * P(t) + random2);
 endif
 priceChange = � * priceChange + (1-�) * � * (PT-P(t));
 P(t+1) = minimum (P(T)+priceChange, budget) ;

2.3.3 Catallactic agents

The catallactic agents are more complex than both simple Contract-Net agents and ZIP agents
from previous sections. In fact, catallactic agents apply and iterate Contract Net protocol with
sophisticated strategies for the bargaining (the catallactic strategy described thoroughly in
WP1) and applying an extra evolutionary learning step (conform to the learning algorithm
from WP1). These sophistications target both a better control of agents’ goals through the
strategy, and improve adaptability through evolutionary learning.

Figure 2.4 depicts the whole process of the middleware implementation. The
ApplicationProxyAgent firstly creates a demand message and sends this to all the
ComplexServiceAgents (CSA) in the market (groupcast). After the discovery timeout
occurred the ApplicationProxyAgent chooses one of the CSA that answered to that demand
message for processing it on the actual CATNETS market (acknowledgment of the demand
for the one chosen CSA). After this first step the CSA task to handle the particular demand is
identified. This agent subsequently creates a Call-for-Proposals (CfP) message according to
the demand received (considering the types and numbers of needed BasicServices for this
ComplexService). After creating the CfP message, this is sent to the Service Market
(groupcast to all BasicServicAgents). Again, the sending agent waits for a distinct amount of
time, the discovery timeout, and then chooses the best offer of all received answers to this CfP
(proposals from BasicServiceAgents). Subsequently, the CSA starts a one-to-one negotiation
with the chosen BasicServiceAgent (BSA). After successfully finishing this negotiation the
BSA creates a CfP message for the Resource Market according to the agreement just reached
with the CSA. Again after reaching the discovery timeout for the Resource Market the BSA
starts a one-on-one negotiation with the Resource Agent having posted the best proposal after
the CfP.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 13

Figure 2.4 – Abstract sequence diagram of catallactic middleware agent process

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 14

3 Distributed application to execute on economic-
enhanced Grid/P2P platform and middleware
integration

Different examples of application scenarios can be constructed and could benefit from using
the Grid Market Middleware (GMM) in combination with centralized auctions or
decentralized bilateral bargaining approaches over Grid computing infrastructure. This leads
to an advantageous flexibility by allowing different application-specific requirements and
needs of services and resources to be addressed.

One application scenario could require a highly specialized service (e.g., a medical simulation
service, visualization service or query service). Another application requires a specific data
mining service or mathematical service. The data mining service is more or less standardized
and there are several suppliers offering this service. Different types of auction algorithms
could be used by the supplier, such as MACE [Schnizler, 2006] or a double auction. The
medical simulation service, however, does not have many suppliers. As such, the liquidity of
the market trading such services may be low. In such cases, English auctions may be useful.

Figure 3.1 details the logical components of a distributed catallactic enabled prototype along
the three layers: the application layer, the catallactic middleware layer and the base platform
layer – in the use case of one service invocation [WP3-Year2, 2006].

Figure 3.1 – Catallactic enabled prototype – logical layers and components

Client Job Builder

MasterGridService
(MGS)

ServiceFactory
(GT4/JavaWS)

ComplexServi
ceAgent

Application

CATNETS Middleware

Resource
(GT4/JavaWS)

BasicServi
ceAgent

ResourceAgent

Base Platform

ServiceInstance
(GT4/JavaWS)

1

2

3

4

5

6

7

8

10

Catallactic
Access Point

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 15

At the application layer, there are two main logical modules: (1) the job builder module,
which interprets the user’s request, and (2) the Master Grid Service (MGS), the module
named in Catnets that requests services on behalf of the user. The application requests are
made via an interface, named Catallactic Access Point (CAP), this is an important module that
must be provided to issue the requests for services to the middleware, and use the references
to service instances provided in response. At the middleware layer, a set of agents provide the
capability to negotiate for services and resources. The Complex Service agent acts on behalf
of the application and initiates the negotiation. Basic Service and Resource agents manage the
negotiation for services and resources respectively. A Service Factory is provided to
instantiate the service on the hosting platform selected during the negotiation process. Finally,
at the Base Platform layer, a Resource is created to manage the allocation of resources to the
service. This resource represents the “state” of the basic service from the perspective of the
middleware (however this does not mean the service is stateful from the perspective of the
application). The flow of information among the logical components can be summarized as
follows: a Client issues a request to the application (1), which builds a data mining job and
requests the execution of this job to the MGS (2). The MGS contacts a CAP asking for a WS-
Agreement template for such a service. The MGS fills in the template and sends back an AO
(3). The Complex Service Agent initiates the Catallactic mechanism to find appropriate Basic
Services and Resources. The Complex Service Agent uses the discovery mechanisms
implemented in the middleware to locate Basic Service Agents providing the J48 Service.
When a number of Basic Service Agents are discovered, it starts negotiations with one of
them (4). In turn such Basic Service Agent must discover and negotiate with a Resource
Agent for resources (5). Negotiations are implemented by the Economic Framework Layer,
where different protocols can be used depending on the agent's strategy. When an agreement
with a Basic Service Agent is reached, the Resource Agent instantiate a Resource to keep
track of the allocated resources and returns to the Basic Service Agent a handle for this
resource (6). Consequently Basic Service Agents use the service Factory to instantiate the
data mining service on the selected GT4 container (7). Basic Service Agent returns to the
Complex Service Agent the End Point Reference (EPR) to this data mining service instance
(8), forwarded to the MSG (9), which uses it to invoke the service (10). The CAP therefore
provides an interface between an application wishing to discover suitable services, and the
underlying resources that host those services.

The following sub-sections contain a description of two layer components of the proof-of-
concept prototype: the Application layer and the Middleware layer, as well as the integration
and deployment process as one entity distributed application.

3.1 Application Layer Components
Figure 3.2 shows a detailed graphical view of components and repositories of an application
prototype that accesses the Catallactic middleware, the components and the modules of
interaction between application and middleware, as well as the workflow among the
components. The repositories could be any type of database (MS SQL, MySQL, Oracle, etc)
or files systems. In our implementation, the repositories are based on MySQL 5.0. The
Catallactic Access Point Web Service (CAP_WS) is a wrapper in the format of a Web Service
which provides the location of a CAP closer to the user location. There are different ways of
“enforcing” or “finding” the user location, such as: user’s digital certificate, in which the
location is specified as a parameter in the certificate, “ping” time between the user and
multiple available CAPs, etc.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 16

Application settings, repositories, and details about two scenarios designed, developed,
implemented and deployed are presented in [WP3-Year2, 2006] -- these involve the use of a
Query Service and a Data Mining Service.

Figure 3.2 – Application prototype components

The workflow process, in a generalised application that connects to a Catallactic GMM, could
be summarised as:

1 – A user enters the request criterion.

2 – A type of Job Loader / Builder component service interprets the user’s request and
converts it into a service request.

3 – A generic service, interpreted by Master Grid Service in the above diagram, requires an
application specific logic, such as: start a workflow of services to fulfil the user request, or
obtain a budget. Any other parameters could be customised and added to this module.

4 – The Catallactic Access Point lists services available on the market (as complex or basic
services) and establishes the necessary agreements.

Job Loader/Builder
Service

INPUT -- Parameters:
<AppInstanceName>
<Location>
<No.Instances>
<Delay>

Loader_DB

MGS

2

3

1 Launch Prototype
2 Select the job

1

3 Retrieve the job
4 Launch the job

5 Select the closest CAP

6 Retrieve the closest CAP

CAP_URLs_DBCAP_WS

CAP Barcelona

MGS_Agreement_DB

CAP_AgreementTemplates_DB CAP_AgreementTemplates_DB

Catallactic Middleware

4

7c

7b
7a 8

6

87

5

9

7 a, b, c – Exchange agreements; Submit the job
8 Retrieve the results

9 Pass the results
10 Display the results

OUTPUT -- Results
10

APPLICATION

CAP (Cardiff)

MIDDLEWARE

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 17

3.1.1 Scenario Generator

The generation of a scenario at the prototype can be done manually, using a GUI which
allows the user to specify the initial parameters the prototype needs to start with. Figure 3.3
presents the GUI. The GUI provide an interface for the prototype to set up the scenario that
application will run for testing the capabilities of Catallaxy, as well as to perform tests and
extract the results which will be compare with the simulator results in WP4.

Figure 3.3 – CATNETS prototype

The use of the GUI is straightforward: the user specifies which application prototype instance
to start by choosing among the buttons from the Prototype Instances layer. The
implementation provides three different types of instances:

� firstly, Cat-COVITE prototype, which is based on the COVITE prototype [COVITE].
� secondly, the Cat-DataMining-1 prototype, in which one service request for and

invocation of a J48 data mining service is made.
� thirdly, the Cat-DataMining-2 prototype, in which a workflow of services could be

requested to GMM via the CAP. This option is available only in a centralized case, in
which the services that compose the workflow are allocated statically by the CAP.

In order to run the tests, Figure 3.4 provides an example of the prototype GUI with
parameters. The prototype instance to run is Cat-COVITE, the user location is: cardiff – this
will be used to asses the closest CAP that the application will invoke in order to request the
necessary services from the markets (GMM). Also, the market instance is connected to the
CAP. The “number of prototype instances to run” and the “delay between prototype instances
to run” are two parameters needed to run tests, collect the metrics obtained in the prototype
and compare the results with the simulator that runs under similar conditions.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 18

Figure 3.4 – Example of application prototype GUI with parameters

3.1.2 CATNETS Service Provider Advertisement Service

The following tool is part of the CATNETS prototype and allows service providers to
advertise their services on the GMM market. This is the service needed by the application
user.

Figure 3.5 presents the GUI interface of this tool. The following are the functionalities of the
tool:

- FIND button helps to locate an agreement (search using Name (Service Name) field).
- ADD button helps to create a new agreement template -- storing the attributes in the

'AgreementTemplates' table and advertise the template in the 'agreementemplate' table of
cap_agreementtemplates_db database from the CAP repository. - UPDATE button helps
to update the attributes of the agreement template (first use FIND button to locate the
agreement you want to update), as well as the advertised agreement template.

- DELETE button helps to delete an agreement template record (first use FIND to locate the
agreement you want to delete), in both tables: AgreementTemplates - that stores the
template attributes, and in the agreementtemplate -- that stores the advertised agreement
template

- CLEAR button to empty the fields.

The following parameters are needed:

- Name (Service Name) – the name of service advertised by the service provider, so that

application users can search for. The following Service Names are already available
within the CATNETS prototype (as services available on GMM): QueryService,
J48DataMiningService, ConverterCsvToArff-J48DataMiningService,
ConverterCsvToArff_Service, ContourService

- AgreementInitiator – the name of the service provider. Example: cardiff, barcelona, etc.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 19

- ExpirationTime – defines the time until the service advertised in valid to. The
“ExpirationTime” attribute has to be entered ONLY in this format: 'YYYY-MM-DD'

- BasicService Type – the name of the basic service that is made up the service available.
- PayForService – the maxim price (budget) the application user is willing to pay for the

service from the market. The service provider can also fill in this parameter, meaning that
the service is available for at least the price specified by this parameter, as minimum.

- ApplicationInstance and AgreementTemplateName are two parameters needed by the
CATNETS prototype. In order to run the prototypes, the following names have to be used
in the “ApplicationInstance”: cat-J48DataMining_WS, cat-covite, cat-
converterCsv2Arff_WS-J48DataMining_WS, converterCsv2Arff_WS, cat-
ContourService.

Figure 3.6 – CATNETS Service Advertisement prototype

3.2 Middleware Layer Components
The dedicated resources model operates in the following manner in the context of the
experimental setup for the Data-Mining prototype.

We setup controlled experiments by deploying several instances of the GMM in a Linux
server farm. Each machine has a 2 CPU Intel Xeon at 2.80 GHz and 2 GB of memory. The
nodes in the farm are connected by an internal Ethernet network at 100Mps. The topology is a

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 20

mesh; all nodes are interconnected to each other. CFPs are transmitted via groupcast to all the
nodes in the destination groups (in our scenario CFPS are groupcasted from CSs to BSs).

We deploy the GMM in a number of nodes. Some nodes host a BS each and the Data Mining
Web Service, while other nodes host the CSs, access points and clients. The Web Services are
exposed in Tomcat servers. Access for execution of these Web Services on the resource node
is what is traded between BSs and CSs. The experiments consist in launching 2 clients
concurrently, which use each one of the CS as broker. Each client makes a number requests to
the CS in intervals of a few seconds. Whenever a CS wins a bid with a BS, it invokes the
Data Mining Service in the selected node, and the resource in the corresponding node gets
locked for the duration of the service execution. We measure the selling prices of the BSs and
observe the proportion of successful CFPs issued by the CSs.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 21

4 Prototype performance measuring components for
experiments

4.1 Application Scenarios & Use Cases
Application scenarios and uses cases have been presented in WP3-year 2 deliverable. This
section presents the use case used for CATNETS tests made using the J48 Data Mining
example. The scenarios are fully described in WP4-year3 deliverable.

The use case implemented within the CATNETS prototype has the following flow: an
application user wants a complex service of type “S” made up of just one basic service “S1”,
in which case the application requests the Catallactic GMM to find this specific complex
service. This case does not require co-allocation of services. The application gets the service
instance back from the GMM or nothing, in which case the interaction between the
application and the GMM is terminated, and a new request has to be issued by the application.

In a workflow scenario, a client wants a complex service of type “S” (made up of just one
basic service “S1”). The MGS asks CAP what complex services of type “S” are currently
available. The CAP subsequently sends a list of possible types of complex services to the
MGS -- one of these is “S1”. If there is no “S1”, the process terminates, requiring the client to
make a new request.

In another version of this scenario, an MGS asks for a service of type “S”. By using the
middleware complex service agent, a basic service that implements “S” is found (referred to
as “S1”). If “S1” is available on multiple resources (R), one R that can host “S1” is returned
as an end point reference – using the middleware. It may be assumed that different instances
of “S1” on different resources have a different price.

Two proof-of-concept application prototype instances, based on the above scenarios, have
been implemented:

� In CAT-COVITE, there is only one S (Query Complex Service), made up of a query basic
service (S1). There is only one type of resource (a database hosted on a particular
machine). Hence the choice is based on selecting one instance of S1 and one instance of R
(all of which do the same thing).

� In Cat-DataMining, there is a complex service S (Data Mining Complex Service), made
up of a Basic Service S1 (J48 data mining classifier basic service). The type of resource R
is defined by the bundle of {CPU, memory, latency}. The choice is based on selecting one
instance of S1 and one instance of bundle R.

4.2 Performance measuring components for experiments
This section deals with the metrics collected at the agent layer of the middleware. First the
process of executing a demand on the CATNETS market will shortly be sketched to set the
context of the metric collection, for a more detailed discussion of this process see section
2.3.3 in this WP3 and the Deliverables for WP1. Afterwards the metrics collected will be
presented along with the actual situation within the process when they are gathered.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 22

Some metrics are semantically meaningful for all agents involved some only make sense for a
subset of the involved agent types (ApplicationProxyAgents, CSA, BSA, ResourceAgents).
All metrics collected will now shortly be described along with the individual points in the
overall process when they are collected and the agent types collecting them.

Metrics collected in the Catallactic agents:

� Negotiation Request Metric

� Negotiation Start Metric

� Negotiation End Metric

� Strategy Metric

Each of these metrics represents a bundle of raw data that is semantically grouped. A more
detailed description follows below.

Negotiation_Request metrics consist of the following data:

� Timestamp � timestamp stating when this particular metric was
collected/written

� Writing Agent � Agent that was collecting/writing this metric

� NegotiationID � Identifier of the negotiation this metric is related to

This metric is always written when a new request for negotiation is initiated. This differs from
ApplicationProxyAgents to all other agent types. The ApplicationProxyAgent writes this
metric when sending the demand message to the CSAs. The CSAs and BSAs write it when
sending a CfP to either the Service Market (CSA) or the Resource Market (BSA).

Negotiation Start metrics consist of the following data:

� Timestamp � timestamp stating when this particular metric was collected/written

� Writing Agent � Agent that was collecting/writing this metric

� “start” � flag stating that this metric is a negotiation start metric

� NegotiationID � Identifier of the negotiation this metric is related to

This metric is written after the discovery timeout is reached and a one-to-one negotiation is
started (if at least one potential negotiation partner answered the CfP). Since the groupcast
sent from the ApplicationProxyAgents to the CSAs does not result in a one-to-one negotiation
between the ApplicationProxyAgent and the CSA – the chosen CSA just starts a CfP on the
Service Market – this only CSA and BSA write the negotiation start metric.

Negotiation End metrics consist of the following data:

� Timestamp � timestamp stating when this particular metric was collected/written

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 23

� Agent 1 � Agent sending the accept/reject message

� Agent 2 � Agent receiving the accept/reject message; agent writing this metric

� “end” � flag stating that this metric is a negotiation end metric

� NegotiationID � Identifier of the negotiation this metric is related to

� “failure” or “success” � flag stating the result of the negotiation

The negotiation end metric is written whenever an accept or reject message (stating the end of
a one-to-one negotiation) is received. This metric is written by the receiving agent. Since in a
one-to-one negotiation each of the both involved agents can end the negotiation (i.e. sending
an accept or reject message), all agents of the CATNETS market (CSA, BSA and
ResourceAgents) can write this metric.

The Strategy metrics consist of the following data:

� Agent � writing agent

� “seller” or “buyer” � flag indicating the role of the particular agent in this
negotiation

� Acquisitiveness � concession probability

� Price Step � price step probability

� Price Next � price jump between two negotiations

� Satisfaction � probability to continue negotiation

� weightMemory � weight of old negotiation results

� average Profit � agent’s fitness

� generation � crossover counter

� currentMessageID � message id

� currentMessagePrice � price at which the negotiation was ended

� currentAverage � estimated market price

� currentLowerLimit � lower price range limit

� currentUpperLimit � upper price range limit

The strategy metric is always written when a negotiation was ended successfully (accept
message was sent). However this metric is written by both agents involved in this negotiation
in order to log both strategy values. For clarity reasons only the important data used for
calculating the overall metrics for the CATNETS market are indicated by additional

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 24

information here. For a more detailed overview of all strategy values used for implementing
the agents’ intelligence see WP1.

Based on this information the agent-related metrics can be calculated (see next section for a
summary of all metrics used within CATNETS and WP4 for further information about the
computation of higher level metrics).

4.3 Performance Results
Table 4.1 provides a global view of the metrics measured with the CATNETS prototype and
the alignment with the metrics measured within the simulator.

We refer to WP4 year 3, section 3.8 for the experimental results and evaluation for the all
three decentralized economic algorithms implemented in the prototype and its evaluation.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 25

Metric Description Prototype Layer Simulator Layer

start timestamp. Experiment start time APPLICATION (NOT
NEEDED)

Simulator

end timestamp Experiment stop time APPLICATION (NOT
NEEDED)

Simulator

Timestamp Time elapsed from the beginning
of simulation and experiment
(Simulation time
reference/Realtime for prototype).

MIDDLEWARE AGENT

Number of Demand Requests This metric counts the number of
launched discovery processes until
this contract is achieved.

APPLICATION AGENT

Number of Negotiation
Requests

This metric counts the number of
launched negotiation processes
until this contract is achieved

AGENT AGENT

Number of Demand Accepts This metrics counts the number of
accepted demands before a
transaction occurs

APPLICATION AGENT

Number of Negotiation Accepts This metrics counts the number of
accepted negotiations before a
transaction occurs

AGENT AGENT

Agent Satisfaction Calculated from 3 variables:

Final price of the negotiation

Reservation price for the buyer
maximum price he is willing to
pay; for the seller minimum sell
price

AGENT AGENT

Discovery Time This metric is used to measure the
time to find a given set of possible
negotiation partners.

AGENT AGENT

Negotiation/Waiting time The measurement of the
negotiation time starts after service
discovery has completed, and ends
before service usage or service
provisioning. For centralized
approach, this also comprises the
allocation time

AGENT AGENT

Service Provisioning Time The evaluation framework defines
the service provisioning time as
the service usage time of one
transaction (This metric is only
taken into account for the
prototype, as provision time
cannot be fixed.).

APPLICATION

This metric represents the
ServiceProvisiongTime, in one
transaction (not in one
experiment). Stored in
metrics_prototype repository.

Normally it should happen
thatService Provisioning =
Service Allocation Time + Job
Execution Time

Messaging Infrastructure

Service Allocation Time Negotiating + discovery time MIDDLEWARE

negotiation Time.txt +
discovery(constant time)

Messaging Infrastructure

Job Execution Time The job execution time is defined
as a sum of discovery time,

APPLICATION MATLAB

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 26

negotiation time (waiting time in
centralized approach), network
transfer time and execution time
(which is - however - fixed for
simulation).

Job execution time

 = executionTime.txt

sender agent Message transmitter AGENT MESSAGING
INFRASTRUCTURE

receiver agent Message receiver AGENT MESSAGING
INFRASTRUCTURE

hops Distance between the partners in
hops

MIDDLEWARE

Constant 1: Mesh topology

MESSAGING
INFRASTRUCTURE

latency time Distance between the partners in
latency time.

MIDDLEWARE

Constant for the cluster
measured once

MESSAGING
INFRASTRUCTURE

Agent id The unique id of the agent. AGENT AGENT

Service Usage The service usage is evaluated by
the ratio between the service
provisioning time and the total
simulation time.

 APPLICATION

Calculated in a matlab script
per each experiment service
provision Time

AGENT

Message Size Sum of Message Size for each
transaction

MIDDLEWARE

Constant size for the messages
message size in the middleware

Calculated once.

MESSAGING
INFRASTRUCTURE

Number of Messages This value counts the number of
messages. (only the messages
related to a negotiation will be
count)

AGENT

Count the number of messages
in the experiments

MESSAGING
INFRASTRUCTURE

Table 4.1 – Metrics alignment at prototype and middleware

5 Relation to other WPs

WP3 deals about the prototype, typically the practical implementation of all the concepts and
tools from the rest of WPs. As such, WP3 has strong ties with the rest of WPs. From WP1 it
takes the decentralized market design. The catallactic algorithms implemented in the GMM in
WP3 follow the specifications from WP1. The scenarios for testing WP3 components have
been aligned with those of the simulator from WP2 (cf. section 4.5 in WP3). Finally, all the
results extracted from prototype experiments are evaluated using the analysis tools developed
in WP4.

5.1 WP1
The objective of WP1 is the conceptual design of market mechanisms for the CATNETS
scenario. This includes the design of auctions (denoted as central case) and a decentralized
bargaining strategy (denoted as Catallactic case). The catallactic case is implemented as a
resource allocation mechanism in the prototype. The results of the implementation of both
centralized and decentralized mechanisms in simulator and the decentralized mechanism in

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 27

the prototype will demonstrate the applicability and feasibility of the strategies used in the
markets.

5.2 WP2
The prototype demonstrate the feasibility of and ALN application based on Catallactic
service/resource allocation - the decentralized case, while the simulator implements both
centralized and decentralized cases, which permits to run large scale scenarios for extensive
comparison of system performance. There are scenarios defined in order to run the
experiments of which the results are compared and presented in WP4.

5.3 WP4

The work of WP3 provides as a result parts of the performance measuring infrastructure for
the CATNETS prototype used in the measurements made within WP4. The view in WP3 is on
implementation related aspects of the prototype for performance measurements, while in WP4
the focus is on the evaluation of the developed prototype in a wider sense, including its
feasibility, aspects of generalization, standards used, performance in experiments, and
identified limitations, leading as a result to a statement on implementing Catallactic-based
resource allocation in application layer networks.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 28

6 Economical model for eNVS

eNVS is a proposed experimental National Visualization Service (eNVS) for the UK e-
Science programme [VizNET-LOUGH-0001-060811] .

6.1 Hypothesis
Our working hypothesis is that at present CATNETS has the expressive power to model and
inform the establishment of a proposed eNVS. We can examine different case studies to
explore this hypothesis under CATNETS.

Main question
How the CATNETS mechanism can be used for creating a price model, which can be applied
for eNVS?

6.2 Scenarios
We consider two proposed eNVS scenarios, presented below, and map them to the CATNETS
scenarios:

� batch mode
This scenario is about “LOCALITY”, and requires a linear visualization pipeline where all the
resources are present at the same location and it can be mapped to the first scenario from
CATNETS -- Single Service. The batch mode scenario is presented in Figure 6.1. Symbols
“A”, “B” and “C” in Figures 6.1 and 6.2 represent services involved in a workflow.

Figure 6.1 - Batch mode of process execution

� interactive mode
This scenario, presented in Figure 6.2, is about “PERSISTENCY”, and requires distributed
resources, which could be based at different locations. It also requires co-allocation of
resources; therefore the service will only start if all resources have been reserved in advance.
The resources will be released after all the jobs have been completed. After the service is
completed, the user may need to re-use some or all of the resources, which leads to several
possible feedback actions to occur in this process. This scenario can be mapped to the second
scenario from CATNETS – Multiple Service.

Figure 6.2 - Interactive mode of process execution

A B C

A B C

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 29

One main gap in the existing CATNETS approach has been identified after mapping our
visualization scenarios to the application scenarios developed in CATNETS; namely, that the
CATNETS service is not interactive during the job execution, therefore it cannot provide
currently the required interactivity for some visualization services, e.g. the need to restart the
service or to change parameters dynamically. Such capability is essential to support
interactive visualization applications, as exemplified through the general area of
“computational steering”. In such an approach, visualization is separated geographically from
a machine running the analysis or simulation. Any change in simulation parameters causes
data to be transferred over the network to the user to be visualized. Such interaction between a
visualization and simulation engines cannot be undertaken effectively using a batch mode
execution.

6.3 Algorithm for decision making regarding the hypothesis

CATNETS
model

BEGIN

Define limits of CATNETS,
expressive ability and decide how

this can be extended/achieved.

Does CATNETS
have the present

capability to extend
into the proposed

eNVS model?

Yes

Run simulations to show how a range of eNVS
services and resources could work and be

sustained (say 5 centers plus mix of resources
in batch or interactive mode)

No

Build the required extensions to
CATNETS

Refine market metrics with iso latency etc.
after the above goal has been achieved

Test results

END

Figure 6.3 - Algorithm for decision making

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 30

6.4 Hypothesis testing

For the purpose of testing the hypothesis, an example of visualization Web Services, such as
Marching Cubes services and the Contour Filter service, developed by G. Shu and N. Avis
[Shu07] need to be run on the CATNETS framework and the results visualized. It is very
important to determine the difference between these results and the results from the Data
Mining example, which is a case study provided in CATNETS.

Shu and Avis [Shu07] present a novel workflow-based approach to the design and
implementation of distributed visualization systems in a Grid computing environment. The
approach evolves the traditional dataflow visualization system into an environment in which
visualization Web Services can be linked with local visualization tools to form a pipeline
using workflow technology. A specific aim of our design is to provide a distributed
visualization toolkit to fulfil a user’s request for any particular visualization
techniques/algorithms, allowing users to select the most appropriate resources, and compose
the visualization pipeline.

Each visualization algorithm available in the Visualization Toolkit (VTK)1 was developed
into a Web Service. For example, the Web Service “MarchingCubes” is for the algorithm
“Marching Cubes”. As Web Services, visualization services are wrapped using WSDL (Web
Service Description Language) and SOAP (Simple Object Access Protocol) interfaces and
messaging. These visualization services serve to filter data, provided by source, into
geometry. For example, the service “ContourFilter” processes data by means of a contour
algorithm. It takes as input any dataset and generates on output isosurfaces and/or isolines.
These visualization services are developed using ij-VTK, which is a Java wrapper for VTK.
Taking the service “ContourFilter”, mentioned above, for instance, it uses vtkPolyDataWriter
to write output of vtkContourFilter, which is polygon data, into a binary data file in VTK
format, and sends the file as a SOAP message to the client-side application. On the other
hand, the client-side application will use vtkPolyDataReader to read the binary polygonal data
file in VTK format.

Below is a case study presented as a proof-of-concept demonstrator. The case study shows
how the various visualization tools in the Triana workflow system can be used in conjunction
with the visualization Web Services to form a visualization workflow. Figure 6.4 illustrates
the composition tools provided for the visualizing workspace. On the left hand side, the user
is provided with a collection of pre-defined folders containing tools grouped according to
function. The tools in the DataInput folder, for example, perform tasks inputting local dataset
and remote dataset. On the right hand side, the user is provided with workspace for
composing workflows by dragging and dropping the units/tools from the toolboxes. Each tool
or unit represents a service with a pre-defined input/output interface. The connection between
tools is made by dragging a cable from the output node (right-hand side) of the sending task
to the input node (left-hand side) of the receiving task. Once a workflow has been created it
can be executed. A Web Service is imported to the workspace by providing its WSDL
interface. If the interface is provided, Triana creates a tool for each operation provided by the
service. These tools are used to invoke the service operations and are similar to the pre-
defined tools but have a different colour in the workspace. The toolbox, which provides
additional support for creating a workflow and using the developed visualization Web
Services, is in the Visualization folder. A variety of visualization Web Services, such as
MarchingCubes, ImageFilter, which are deployed on a Windows platform and registered, at

1 http://www.vtk.org/

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 31

this moment, in our private UDDI and have been imported into Triana, are shown in the
WebServices folder.

The data used in the case study is obtained from [Schroeder03]. It deals with Computed
Tomography (CT) data. This study contains 93 such slices, each of which is taken
perpendicular to the spine approximately through the middle of the ears, spaced 1.5 mm apart.
Each slice has 2562, 0.8 mm pixels with 12 bits of gray level. We build a workflow with two
branches, one branch for using algorithm “ContourFilter” to filter data, and the other
“MarchingCubes”. Two branches work in parallel in order that we can judge the different
rendered results from different algorithms as soon as possible. The workflow first inputs the
data set from remote machine by means of tool “RemoteDataSet”, then reads the data set and
converts it into the VTK format. In the end, the workflow filters the data set using Web
Service “ContourFilter” and “MarchingCubes” respectively and renders them. The test shows
that “MarchingCubes” is faster than “ContourFilter”, but the resulting images are almost the
same.

Figure 6.4 - A case study for workflow-based distributed visualization

6.5 General observations about CATNETS in regard to the
hypothesis and the main question presented above

CATNETS provides some support for initiating an interactive service, because the user can
interact with the services while they run. Initially, the process of negotiation for the resource
is an interactive process, where the customer and the resource provider negotiate in interactive
mode about the time, the price and the location of the required resources. Once the resource
has been allocated to a certain user, the user can start his job in a batch mode, but he can still

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 32

interact with the service while the job is running, getting up-to-date information about the
state of the job, the estimated time left etc.

The main question is: How much to charge for the service? To be able to answer this
question, we need to determine the process parameters, business rules and to calculate the cost
of the service based on this data. We will also need to model the business processes in the
middle layer of CATNETS, as well as the ones in the Application layer. There is a need for a
business model of the Application layer, so we can calculate the cost of the service.

The main parameters of the services in CATNETS are:

1. Number of requests (number of instances you run the application)
2. The delay between each request
3. Budget – as a fixed parameter (should be calculated as a cost)
4. Resource parameter
5. Time (needs to be calculated – how long the user is taking the resource for)
6. The initial cost of the resource
7. Location parameter showing where the resource is located (using MySQL repository

on one machine, CAP (Catallactic Access Point) on another machine)
8. Price offered by the application layer – it is fixed currently

There is a request on demand – if a user requires a resource, he sends a request and receives
an offer back with the price and the location of the resource. If he agrees to use the resource
for this service, he sends his URI back and can start his job. If the user does not accept, he
simply does not send anything back.

There is also an archive of metrics, agreement template, agreement offer, module MGS
(Master Grid Service) running on the service. The metrics are: service provisioning time (the
total time of the process), job execution time and ID of the experiment. Another useful
parameter is the Number of basic service nodes.

In Figure 6.5 a possible scenario is presented, when a user requests a service, which can be
performed at different locations on distributed resources. The figure shows example services
A, B and C, which could represent the Data Input, Contour Filter and Rendering Services
within Figure 6.4, respectively. These services have been arranged using quality of service
(QoS) criteria, such as a notion of iso-latency, which corresponds to the time to receive a
response once a request has been sent to any one of these services. These services have been
grouped according to some defined QoS thresholds and as such the price for each service can
theoretically depend on QoS metrics.

Figure 6.6 represents the intersection between the batch and the interactive services, united by
the CATNETS approach. The J48 data mining example is shown as a batch processing
application. This reflects the UK’s National Grid Service (NGS) operation [NGS]. The
proposed eNVS is an adjunct to the NGS that must support both batch and interactive
services. Therefore, we need to test the market in both ways – for batch and interactive mode
– and to estimate which one is more economically efficient from the provider’s point of view.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 33

CATNETS

Figure 6.5. Groupings of services based on QoS criteria

Figure 6.6 - The intersection between Batch and Interactive services

The price estimation in CATNETS depends on the resource price. However, there is a lower
bound to this price, this threshold must never be exceeded. This is valid for the batch mode
market. The interactive mode has not been incorporated in the existing CATNETS model.

It is possible to view the second scenario (Figure 6.2) as two concurrent CATNETS markets –
batch and interactive. CATNETS has the concept of the resource bundle already, which can
be refined and used in the case of interactive mode.

C
A

A

B

C

A

B

C

A

B

BATCH

NGS

INTERACTIVE

eNVS

J48 data mining
example

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 34

If we consider the second scenario as a portfolio of services, we need to consider Price Risk
Management. Another possible solution for the interactive mode could be to use
Decentralized Catallactic approach, where the user requests two or three times the time slot,
which he would have requested for the batch mode and he does not care about location, time,
resource etc.

We have to use the CATNETS scheduler to price these two models – batch and interactive.
There is no need to change the scheduler for this purpose.

We can model the services in two different ways and explore the market twice as a batch or
interactive service. For this purpose, the Time should be added to the current model as a
parameter.

It is also important to be able to determine the number of service instances to support in these
two markets (batch and interactive). Market intervention approaches (for instance, promoting
interactive services ahead of batch mode services) will be explored to better understand this
problem.

6.6 Conclusions and further directions
There are three main things to be done:

1. We need to define a time parameter in the resource.
2. What request you make through CAP (Catallactic Access Point) to SLA (Service

Level Agreement) request? – need to change the SLA for the interactive mode.
3. How to price both of these models (batch and interactive) based on the scheduler?

We will conduct further simulation results with a view to informing the incorporation of the
CATNETS model into a future eNVS. The outcomes of these studies will be reported by
means of presentations, reports and talks. Another expected outcome is a publication in a
journal or conference.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 35

7 Conclusions of WP3
7.1 Prototypes using Catallactic-based markets
The implementation of two prototypes with a Catallactic based mechanism, as well as a
generalisation of application with the GMM, detailed in WP3 year 2 deliverable and enhanced
with more details within this deliverable, have raised interesting conclusions outlined below:

� COVITE prototype [COVITE, 2007], [Joita, 2004] supports the creation of Virtual
Organisations (VOs) via a centralised system. All resources and services are allocated by
a central authority at the creation of the VO. A decentralized solution, as Cat-COVITE
prototype presented above, in which services and resources are to be allocated in
peak/busy times to application users / processes is an straightforward way to deal in such
demanding situations, while there is no other possibility of adding more resources or the
availability of services are limited.

� A second solution, as Cat-Data Mining prototype, has been proposed and developed. The
main problem data mining services are addressing is of data that is typically too
inconsistent and difficult to understand into such forms that are more compact, useful and
understandable. This can be achieved via specific data-mining methods for pattern
discovery and extraction. This process can be structured into a discovery
pipeline/workflow, involving access, integration and analysis of data from disparate
sources, and to use data patterns and models generated through intermediate stages. The
GMM addresses the need of such data mining services to be found just-in-time and used
by the application services.

� The Catallactic markets expect to provide members of VOs a fair price for services
needed by the users’ application.

� The Catallactic markets also expect to provide a fair welfare distribution among the
participants, such as users’ application, and service and resource providers.

� The Catallactic mechanism expects to help systems in discovering and selecting resources
and services on demand and just in time, as application processes can make use of third
parties services or can demand more and more resources.

� Relevant prototype metrics are proposed and a composite index - social utility factor, is
being calculated as a single index, so that comparison and evaluation of different
scenarios, as well as between prototypes and simulators can be realised. The process of
extracting and analysing the results are shown in Deliverable WP4.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 36

References
[Ardaiz, 2005] O. Ardaiz, P. Chacin, I. Chao, F. Freitag, L. Navarro, An Architecture for
Incorporating Decentralized Economic Models in Application Layer Networks, Internacional
Workshop in Smart Grid Technologies, Utrecht, Holanda, July 25 - 29, 2005.
[Chao, 2004] Isaac Chao,Ramon Sangüesa and Oscar Ardaiz, Design, Implementation and
Evaluation of a Resource Management Multiagent.System for a Multimedia Processing Grid,
Workshop on Grid Computing and Its Application to Data Analysis (GADA) On the Move to
Meaningful Internet Systems 2004

[COVITE, 2007] COVITE project. http://www.wesc.ac.uk/projectsite/covite/index.html

[Joita, 2004] Joita L., Pahwa J. S., Burnap P., Gray A., Rana O., and Miles J. Supporting
Collaborative Virtual Organisations in the Construction Industry via the Grid. Proceedings of
the UK e-Science All Hands Meeting 2004, 31st Aug.-3rd Sept. 2004 Nottingham, UK

[Despotovic, 2004] Z. Despotovic, J.-C. Usunier, K. Aberer: Towards Peer-To-Peer Double
Auctioning, Proceedings of the 37th International Hawaiian Conference on System Sciences
(HICSS), Waikoloa, Hawaii, USA, 2004

[FIPA, 2007] FIPA webpage: http://www.fipa.org/
[Foster, 2002] Foster, I.; Kesselman, C.; Nick, J.M.; Tuecke, S., Grid services for distributed
system integration, Computer, Vol.35, Iss.6, Jun 2002, Pages:37-46

[NGS] Neil Geddes, Andrew Richards, Malcolm Atkinson, Steve Chidlow, W. T. Hewitt,
Stephen Pickles, Paul Jeffreys, “Workshop on Sustainability and Future Business Models for
the UK National Grid Service”, National e-Science Centre, Edinburgh, May 2007,
http://www.nesc.ac.uk/technical_papers/UKeS-2007-05.pdf

[Schnizler, 2006] Schnizler, B., Neumann, D., Veit, D., Weinhardt, C., “A Multiattribute
Combinatorial Exchange for Trading Grid Resources”, Proceedings of the 12th Research
Symposium on Emerging Electronic Markets, Amsterdam, 2005

[Paurobally, 2004] Shamimabi Paurobally, Jim Cunningham, and Nicolas R. Jennings.
Verifying the contract net protocol: A case study in interaction protocol and agent
communication language semantics. In Proceeding 2nd International Workshop on Logic and
Communication in Multi-Agent Systems, 2004

[Ogston, 2002] E. Ogston and S. Vassiliadis, A peer-to-peer agent auctionProceedings of the
First International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2002)

[Preist, 1998] C. Preist, M. van Tol, Adaptive agents in a persistent shout double auction. In
Proceedings of the First international Conference on information and Computation Economies
(Charleston, South Carolina, United States, October 25 - 28, 1998). ICE '98. ACM Press, New
York, NY, 11-18

[Schroeder, 2003] William Schroeder, Ken Martin, Bill Lorensen, The Visualization Toolkit:
An Object-Oriented Approach to 3D Graphics (3rd Edition), Publisher: Prentice Hall; (2003).

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 37

[Shu, 2007] Gao Shu, Nick J. Avis, Workflow-Based Distributed Visualization, 2nd
International Workshop on Workflow Management and Application in Grid Environments
(WaGe07), August 16-18, 2007, Urumchi, Xinjiang, China

[Streitberger, 2007] Werner Streitberger, Torsten Eymann, Daniel Veit, Michele Catalano,
Gianfranco Giulioni, Liviu Joita, Omer F. Rana - "Evaluation of Economic Resource
Allocation in Application Layer Networks - A Metric Framework", 8. Internationale Tagung
Wirtschaftsinformatik -- eOrganisation: Service-, Prozess-, Market-Engineering, 28 February
- 2 March 2007, Karlsruhe, Germany.
[VizNET-LOUGH-0001-060811] R.S. Kalawsky, “A Visualization Service for the National
Grid Service: A Workshop to derive User Needs”, Loughborough University, VizNet, 18 May
2006, http://www.nesc.ac.uk/technical_papers/UKeS-2006-05.pdf
[WP3-Year2, 2006] Oscar Ardaiz, Pablo Chacin, Isaac Chao, Juan Carlos Cruellas, Felix
Freitag, Liviu Joita, Manuel Medina, Leandro Navarro, Omer F. Rana, Miguel Valero, “WP3,
Year 2 Catnets deliverable”, August 2006
[WP4-Year1, 2005] Michele Catalano, Gianfranco Giulioni, Werner Streitberger, Michael
Reinicke, Torsten Eymann, WP4, Year1 Deliverable, August 2005

[WS-Agreement, 2007] Web Services Agreement Specification (WS-Agreement),
https://forge.gridforum.org/sf/projects/graap-wg

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 38

Annex A – CATNETS Repositories Settings

A. Cat-COVITE prototype

1. Supplier Database (SupplierDB) Design

Databases used to host the supplier products are: MySQL 5.0.20 and MS SQL Server 2000.

1.1 Use case of MySQL 5.0.20

Below are the steps needed to creating an instance of a supplier database:

- Creating a database named supplierdb.

mysql> CREATE DATABASE supplierdb;

- Create a table named product within the supplierdb database.

mysql> use supplierdb
mysql> CREATE TABLE product (
 IDProduct SMALLINT(5) UNSIGNED NOT NULL AUTO_INCREMENT,
 ManufacturerName VARCHAR(50) NOT NULL,
 ProductName VARCHAR(50) NOT NULL,
 Price SMALLINT(5) UNSIGNED,
 PRIMARY KEY(IDProduct)

);

- Fill in the table with some raw data.

mysql> INSERT INTO product VALUES (NULL,'manufacturer1','chair1','10'),
(NULL,'manufacturer2','chair2','15'), (NULL,'manufacturer3','chair3','20'),
(NULL,'manufacturer4','chair4','25'), (NULL,'manufacturer5','chair5','30');

- The way to check the data entries is by running the query below:
mysql> SELECT * FROM SupplierDB.Product;

The following script performs the operations describe above:
CREATE DATABASE SupplierDB;
use SupplierDB;
CREATE TABLE Product (
 IDProduct SMALLINT(5) UNSIGNED NOT NULL AUTO_INCREMENT,
 ManufacturerName VARCHAR(50) NOT NULL,
 ProductName VARCHAR(50) NOT NULL,
 Price SMALLINT(5) UNSIGNED,
 PRIMARY KEY(IDProduct)
);
INSERT INTO Product VALUES (NULL,'manufacturer1','chair1','10'),
(NULL,'manufacturer2','chair2','15'), (NULL,'manufacturer3','chair3','20'),
(NULL,'manufacturer4','chair4','25'), (NULL,'manufacturer5','chair5','30');
select * from SupplierDB.product;

- As a “root” (administrator of the database) account, create user “catnets” with password
“catnets” that has all privileges on the database supplierdb.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 39

mysql> GRANT all privileges on supplierdb.* to 'catnets'@'localhost'
identified by 'catnets';
mysql> GRANT all privileges on supplierdb.* to 'catnets'@'%' identified by
'catnets';

2. Users’ Loader Jobs Repository

The Loader database (loader_db), table userloaderjobs are used to load the initial parameters
that emulate the clients’ requirements. Within the context of COVITE project, a user of a
formed Virtual Organisation for the duration of an architectural / engineering / construction
project is interested in running query jobs to finding data needed within the project. Queries
run to specific supplier databases that are register to supplying products that users are
interested in.

Steps to creating the “loader_db” database:

Create a database named Loader_DB.
mysql> CREATE DATABASE Loader_DB;

Create a table named userloaderjobs.
mysql> use loader_db
mysql> CREATE TABLE userloaderjobs (
 ID SMALLINT(4) UNSIGNED NOT NULL AUTO_INCREMENT,
 Location VARCHAR(250) NOT NULL,
 ApplicationInstance VARCHAR(250) NOT NULL,

Job TEXT NOT NULL,
 PRIMARY KEY(ID)

);

Fill in the table UserLoaderJobs with the corresponding Cat-COVITE application instance
data.
mysql> INSERT INTO loader_db.userloaderjobs VALUES (NULL,'cardiff','cat-
covite','SELECT * FROM supplierdb.product ORDER BY Price DESC;');

- Change 'cardiff' with the relevant location for you. For example, enter 'barcelona' or
'bayreuth'.

- Check the data entries.

mysql> SELECT * FROM loader_db.userloaderjobs;

MySQL SCRIPTS: The following scripts perform only the operations needed above, in case
of location “cardiff”:
CREATE DATABASE loader_db;
use loader_db;
CREATE TABLE loader_db.userloaderjobs (
 ID SMALLINT(4) UNSIGNED NOT NULL AUTO_INCREMENT,
 Location VARCHAR(250) NOT NULL,
 ApplicationInstance VARCHAR(250) NOT NULL,
 Job TEXT NOT NULL,
 PRIMARY KEY(ID)
);
INSERT INTO Loader_DB.UserLoaderJobs VALUES (NULL,'cardiff','cat-covite','SELECT * FROM
SupplierDB.Product ORDER BY Price DESC;'),(NULL,'cardiff','cat-
J48DataMining_WS','http://users.cs.cf.ac.uk/L.Joita/dataFiles/weather.arff'),(NULL,'cardiff','cat-
converterCsv2Arff_WS-J48DataMining_WS','http://users.cs.cf.ac.uk/L.Joita/dataFiles/weather.csv');

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 40

SELECT * Loader_DB.UserLoaderJobs;

- As a “root” (administrator of the database) account, create user “catnets” with password
“catnets” that has all privileges on the database Loader_DB.
mysql> GRANT all privileges on Loader_DB.* to 'catnets'@'localhost'
identified by 'catnets';
mysql> GRANT all privileges on Loader_DB.* to 'catnets'@'%' identified by
'catnets';

3. Catallactic Access Point URLs Repository

The Catallactic Access Point (CAP) URLs repository represents a database that keeps track of
available CAPs to be invoked by the Master Grid Service (MGS). The repository is hosted by
a MySQL database.
The MGS will contact the wrapper Catallactic Access Point URLs Web Service
(CAP_URLs_WS) to get the closest possible CAP URL located to the MGS. A number of
CAPs are available to the application instances.

Steps to creating the CAP URLs repository:

- Create a database named CAP_URLs_DB.
mysql> CREATE DATABASE CAP_URLs_DB;

- Create a table named CAP_URLs within the CAP_URLs_DB database.
mysql> use CAP_URLs_DB
mysql> CREATE TABLE CAP_URLs (
 ID SMALLINT(5) UNSIGNED NOT NULL AUTO_INCREMENT,
 Location VARCHAR(50) NOT NULL,
 CAP_URL VARCHAR(250) NOT NULL,
 PRIMARY KEY(ID)

);

- Fill in the table CAP_URLs with the corresponding CAP URLs site locations.
mysql> INSERT INTO CAP_URLs_DB.CAP_URLs VALUES
(NULL,'cardiff','http://131.251.47.197:8080/axis/CatallacticAccessPoint/Cat
allacticAccessPoint.jws');

-- change 'cardiff' and
'http://131.251.47.197:8080/axis/CatallacticAccessPoint/CatallacticAccessPo
int.jws'with the relevant locations for you. For example, enter 'barcelona' and the
relevant URL of the CAP in Barcelona.

- Check the data entries.
mysql> SELECT * FROM CAP_URLs_DB.CAP_URLs;

MySQL SCRIPT: The following script performs only the operations needed above:
cap_urls_db-script.sql (BEFORE running this script, read the following file: cap_urls_db-
script-sql-README.txt)

CREATE DATABASE CAP_URLs_DB;
use CAP_URLs_DB;
CREATE TABLE CAP_URLs (
 ID SMALLINT(5) UNSIGNED NOT NULL AUTO_INCREMENT,
 Location VARCHAR(50) NOT NULL,
 CAP_URL VARCHAR(250) NOT NULL,
 PRIMARY KEY(ID)

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 41

);
INSERT INTO CAP_URLs_DB.CAP_URLs VALUES
(NULL,'cardiff','http://131.251.128.7:18088/axis/CatallacticAccessPoint/Cat
allacticAccessPoint.jws');
ENTER your relevant address for the Catallactic Access Point web service
INSERT INTO CAP_URLs_DB.CAP_URLs VALUES
(NULL,'barcelona','http://<ipaddress>:<port>/<path-to-CAP>');
INSERT INTO CAP_URLs_DB.CAP_URLs VALUES
(NULL,'bayreuth','http://<ipaddress>:<port>/<path-to-CAP>');
check the data entry
SELECT * FROM CAP_URLs_DB.CAP_URLs;

To update the CAP_URL within the CAP URLs repository:
mysql> UPDATE CAP_URLs_DB.CAP_URLs SET CAP_URL =
'http://131.251.128.7:18088/axis/CatallacticAccessPoint/CatallacticAccessPo
int.jws' WHERE Location = 'cardiff';
-- use your relevant updates data, if needed.

- As a “root” (administrator of the database) account, create user “catnets” with password
“catnets” that has all privileges on the database CAP_URLs_DB.

mysql> GRANT all privileges on CAP_URLs_DB.* to 'catnets'@'localhost'
identified by 'catnets';
mysql> GRANT all privileges on CAP_URLs_DB.* to 'catnets'@'%' identified by
'catnets';

4. Catallactic Access Point Repository

The CAP repository represents each MySQL database linked to the individual CAP which is
invoked by the MGS. This repository is hosted by a MySQL database and named
CAP_AgreementTemplates_DB.

Steps to creating the CAP repository:

- Create a database named CAP_AgreementTemplates_DB.
mysql> CREATE DATABASE CAP_AgreementTemplates_DB;

- Create a table named AgreementTemplate within the CAP_AgreementTemplates_DB.
mysql> use CAP_AgreementTemplates_DB
mysql> CREATE TABLE `cap_agreementtemplates_db`.`agreementtemplate` (

 `ID` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `AgreementTemplatesReference` SMALLINT UNSIGNED NOT NULL DEFAULT 0,
 `ApplicationInstance` VARCHAR(250) NOT NULL DEFAULT '',
 `ServiceName` VARCHAR(200) NOT NULL DEFAULT '',
 `AgreementTemplateName` VARCHAR(200) NOT NULL DEFAULT '',
 `AgreementTemplate` TEXT NOT NULL DEFAULT '' COMMENT 'Agreement

Template Content',
 PRIMARY KEY(`ID`)
 CONSTRAINT `FK_AgreementTemplatesReference` FOREIGN KEY

`FK_AgreementTemplatesReference` (`AgreementTemplatesReference`)
 REFERENCES `AgreementTemplates` (`ID`)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT
)
)
ENGINE = InnoDB
COMMENT = 'Contains agreement templates of the complex services

available at this Catallactic Access Point location';

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 42

There is no need to insert data into this repository. For this, use CATNETS WS-Agreement
Prototype to insert (advertise) the services at CAP repository – see section 3.1.2
/* Fill in the table with data:

mysql> INSERT INTO cap_agreementtemplates_db.agreementtemplate
VALUES(NULL,'cat-covite','QueryService','AT-
QueryService','<AgreementTemplateLite><Name>QueryComplexService</Name><Cont
ext><AgreementInitiator></AgreementInitiator><StartingTime></StartingTime><
TerminationTime></TerminationTime></Context><Terms><BasicServiceType>QueryS
ervice</BasicServiceType><NumberOfBasicServiceNodes>1 to 10<!-- between 1
to 10 --
></NumberOfBasicServiceNodes><BasicServiceConstraints><DBType>Architectural
/Engineering/Construction</DBType><ResponseTimePerRequest>10</ResponseTimeP
erRequest></BasicServiceConstraints><PayForService></PayForService></Terms>
</AgreementTemplateLite>');
*/
Check that entry data is correct:
mysql> SELECT * FROM cap_agreementtemplates_db.agreementtemplate;

- Create a table named AgreementOfferReceived within the CAP_AgreementTemplates_DB.

mysql> CREATE TABLE `cap_agreementtemplates_db`.`AgreementOfferReceived` (
 `ID` INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 `AgreementTemplateReference` SMALLINT UNSIGNED NOT NULL DEFAULT 0,
 `SenderName` VARCHAR(200) NOT NULL DEFAULT '',
 `AgreementOfferReceived` TEXT NOT NULL DEFAULT '',
 `Decision` TEXT NOT NULL DEFAULT '',
 PRIMARY KEY(`ID`),
 CONSTRAINT `FK_AgreementTemplateReference` FOREIGN KEY
`FK_AgreementTemplateReference` (`AgreementTemplateReference`)
 REFERENCES `agreementtemplate` (`ID`)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT
)
ENGINE = InnoDB;
COMMENT = 'Contains agreement offers received from the MGS (application
level)';

The following script performs only the operations needed above: cap-agreementtemplates-
script.sql

CREATE DATABASE CAP_AgreementTemplates_DB;
use CAP_AgreementTemplates_DB;
CREATE TABLE `cap_agreementtemplates_db`.`agreementtemplate` (
 `ID` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `AgreementTemplatesReference` SMALLINT UNSIGNED NOT NULL DEFAULT 0,
 `ApplicationInstance` VARCHAR(250) NOT NULL DEFAULT '',
 `ServiceName` VARCHAR(200) NOT NULL DEFAULT '',
 `AgreementTemplateName` VARCHAR(200) NOT NULL DEFAULT '',
 `AgreementTemplate` TEXT NOT NULL DEFAULT '' COMMENT 'Agreement Template
Content',
 PRIMARY KEY(`ID`)
 CONSTRAINT `FK_AgreementTemplatesReference` FOREIGN KEY
`FK_AgreementTemplatesReference` (`AgreementTemplatesReference`)
 REFERENCES `AgreementTemplates` (`ID`)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT
)
ENGINE = InnoDB
COMMENT = 'Contains agreement templates of the complex services available
at this Catallactic Access Point location';

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 43

SELECT * FROM cap_agreementtemplates_db.agreementtemplate;
CREATE TABLE `cap_agreementtemplates_db`.`AgreementOfferReceived` (
 `ID` INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 `AgreementTemplateReference` SMALLINT UNSIGNED NOT NULL DEFAULT 0,
 `SenderName` VARCHAR(200) NOT NULL DEFAULT '',
 `AgreementOfferReceived` TEXT NOT NULL DEFAULT '',
 `Decision` TEXT NOT NULL DEFAULT '',
 PRIMARY KEY(`ID`),
 CONSTRAINT `FK_AgreementTemplateReference` FOREIGN KEY
`FK_AgreementTemplateReference` (`AgreementTemplateReference`)
 REFERENCES `agreementtemplate` (`ID`)
 ON DELETE RESTRICT
 ON UPDATE RESTRICT
)
ENGINE = InnoDB
COMMENT = 'Contains agreement offers received from the MGS (application
level)';
#SELECT * FROM cap_agreementtemplates_db.AgreementOfferReceived;
CREATE TABLE `cap_agreementtemplates_db`.`AgreementTemplates` (
 `ID` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `Name` VARCHAR(45) NOT NULL DEFAULT '' COMMENT 'Agreement Name',
 `AgreementInitiator` VARCHAR(45) NOT NULL DEFAULT '',
 `ExpirationTime` DATE NOT NULL,
 `BasicServiceType` VARCHAR(45) NOT NULL DEFAULT '',
 `NumberOfBasicServiceNodes` INTEGER UNSIGNED NOT NULL DEFAULT 1,
 `PayForService` INTEGER UNSIGNED,
 PRIMARY KEY(`ID`)
)
ENGINE = InnoDB
COMMENT = 'Store the agrement template elements for CATNETS prototype';

- Create a table named AgreementTemplates within the CAP_AgreementTemplates_DB. This
table hosts the agreement template elements.

mysql> CREATE TABLE `cap_agreementtemplates_db`.`AgreementTemplates` (
 `ID` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `Name` VARCHAR(45) NOT NULL DEFAULT '' COMMENT 'Agreement Name',
 `AgreementInitiator` VARCHAR(45) NOT NULL DEFAULT '',
 `ExpirationTime` DATE NOT NULL,
 `BasicServiceType` VARCHAR(45) NOT NULL DEFAULT '',
 `NumberOfBasicServiceNodes` INTEGER UNSIGNED NOT NULL DEFAULT 1,
 `PayForService` INTEGER UNSIGNED,
 PRIMARY KEY(`ID`)
)
ENGINE = InnoDB
COMMENT = 'Store the agrement template elements for CATNETS prototype';

- As a “root” (administrator of the database) account, create user “catnets” with password
“catnets” that has all privileges on the database CAP_AgreementTemplates_DB.
mysql> GRANT all privileges on CAP_AgreementTemplates_DB.* to
'catnets'@'localhost' identified by 'catnets';
mysql> GRANT all privileges on CAP_AgreementTemplates_DB.* to 'catnets'@'%'
identified by 'catnets';

5. MGS Agreements Repository

MGS Agreements Repository hosts the agreement templates received and agreement offers
send by the MGS.

- Create a database named MGS_Agreement_DB.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 44

mysql> CREATE DATABASE MGS_Agreement_DB;

- Create a tabled named MGS_Agreements within the MGS_Agreement_DB.

mysql> use MGS_Agreement_DB
mysql> CREATE TABLE `mgs_agreement_db`.`MGS_Agreements` (
 `ID` INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 `AgreementTemplateReceived` TEXT NOT NULL DEFAULT '',
 `AgreementOfferSend` TEXT NOT NULL DEFAULT '',
 `Decision` TEXT NOT NULL DEFAULT '',
 PRIMARY KEY(`ID`)
)
ENGINE = InnoDB;

MySQL SCRIPT: The following script performs all operations needed: mgs_agreement_db-
script.sql

CREATE DATABASE MGS_Agreement_DB;
use MGS_Agreement_DB;
CREATE TABLE `mgs_agreement_db`.`MGS_Agreements` (
 `ID` INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 `AgreementTemplateReceived` TEXT NOT NULL DEFAULT '',
 `AgreementOfferSend` TEXT NOT NULL DEFAULT '',
 `Decision` TEXT NOT NULL DEFAULT '',
 PRIMARY KEY(`ID`)
)
ENGINE = InnoDB;

- As a “root” (administrator of the database) account, create user “catnets” with password
“catnets” that has all privileges on the database MGS_Agreement_DB.

mysql> GRANT all privileges on MGS_Agreement_DB.* to 'catnets'@'localhost'
identified by 'catnets';
mysql> GRANT all privileges on MGS_Agreement_DB.* to 'catnets'@'%'
identified by 'catnets';

B. Cat-DataMining prototype

1. Users’ Loader Jobs Repository

Using the database already created at section A.2 -- loader_db, below are the commands to
filling the table with data:

mysql> INSERT INTO loader_db.userloaderjobs VALUES (NULL,'cardiff','cat-
J48DataMining_WS','http://users.cs.cf.ac.uk/L.Joita/dataFiles/weather.arff'
);

mysql> INSERT INTO loader_db.userloaderjobs VALUES (NULL,'cardiff','cat-
converterCsv2Arff_WS-
J48DataMining_WS','http://users.cs.cf.ac.uk/L.Joita/dataFiles/weather.csv')
;

Check that entry data is correct:

mysql> SELECT * FROM loader_db.userloaderjobs;

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 45

MySQL SCRIPTS (already done at point A.2): The following scripts perform all operations
of databases creation needed: loader_db-cardiff-script.sql, loader_db-barcelona-script.sql,
loader_db-bayreuth-script.sql

Assign the user “catnets” and password “catnets” – THIS HAS TO BE DONE AFTER YOU
RUN THE SCRIPTS (already done at point A.2)

2. Catallactic Access Point URLs Repository
Follow section A.3.

3. Catallactic Access Point Repository

Catallactic Access Point Repository hosts the agreement templates (in AgreementTemplate
table), agreement offers (in AgreementOfferReceived) sent by the MGS, as well as hosts the
agreement template elements (in AgreementTemplates).

There is no need to insert data into this repository. For this, use CATNETS WS-Agreement
Prototype to insert (advertise) the services at CAP repository – see section 3.1.2

/* Fill in the table agreementtemplate from cap_agreementtemplates_db database with
the following data:

mysql> INSERT INTO cap_agreementtemplates_db.agreementtemplate VALUES
(NULL,'cat-J48DataMining_WS','J48Service','AT-
J48Service','<AgreementTemplateLite><Name>J48-
ComplexService</Name><Context><AgreementInitiator></AgreementInitiator><Sta
rtingTime></StartingTime><TerminationTime></TerminationTime></Context><Term
s><BasicServiceType>J48</BasicServiceType><NumberOfBasicServiceNodes><!--
between 1 to 10 --
></NumberOfBasicServiceNodes><BasicServiceConstraints><ResponseTimePerReque
st>10<!-- maximum milliseconds --
></ResponseTimePerRequest></BasicServiceConstraints><PayForService></PayFor
Service></Terms></AgreementTemplateLite>');

mysql> INSERT INTO cap_agreementtemplates_db.agreementtemplate VALUES(NULL,
'cat-converterCsv2Arff_WS-J48DataMining_WS','ConverterCSVToArff-
J48Service','AT-ConverterCSVToArff-
J48Service','<AgreementTemplateLite><Name>ConverterCSVToARFF-J48-
ComplexService</Name><Context><AgreementInitiator></AgreementInitiator><Sta
rtingTime></StartingTime><TerminationTime></TerminationTime></Context><Term
s><BasicServiceType>ConverterCSVToARFF</BasicServiceType><BasicServiceType>
J48</BasicServiceType><NumberOfBasicServiceNodes><!-- between 1 to 10 --
></NumberOfBasicServiceNodes><BasicServiceConstraints><ResponseTimePerReque
st>10<!-- maximum milliseconds --
></ResponseTimePerRequest></BasicServiceConstraints><PayForService></PayFor
Service></Terms></AgreementTemplateLite>');
*/

MySQL SCRIPT(already done at point A.4): The following script performs all operations of
databases creation needed: cap-agreementtemplates-script.sql
Assign the user “catnets” and password “catnets” – THIS HAS TO BE DONE AFTER YOU
RUN THE SCRIPTS (already done at point A.4)

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 46

4. Converter .csv format to .arff format

This is used for the Triana workflow.

4.1 User Loader Job Repository

mysql> INSERT INTO loader_db.userloaderjobs VALUES
(NULL,'cardiff','converterCsv2Arff_WS','http://users.cs.cf.ac.uk/L.Joita/da
taFiles/weather.csv');

MySQL SCRIPT: loader_db-cardiff-script-1.sql

CAP Repository

There is no need to insert data into this repository. For this, use CATNETS WS-Agreement
Prototype to insert (advertise) the services at CAP repository – see section 3.1.2
/*
mysql> INSERT INTO cap_agreementtemplates_db.agreementtemplate VALUES
(NULL, 'converterCsv2Arff_WS','Converter_CsvToArff_Service','AT-
Converter_CsvToArff_Service',
'<AgreementTemplateLite><Name>Converter_CsvToArff-
ComplexService</Name><Context><AgreementInitiator></AgreementInitiator><Sta
rtingTime></StartingTime><TerminationTime></TerminationTime></Context><Term
s><BasicServiceType>Converter_CsvToArff</BasicServiceType><NumberOfBasicSer
viceNodes><!-- between 1 to 10 --
></NumberOfBasicServiceNodes><BasicServiceConstraints><ResponseTimePerReque
st>10<!-- maximum milliseconds --
></ResponseTimePerRequest></BasicServiceConstraints><PayForService></PayFor
Service></Terms></AgreementTemplateLite>');
*/
MySQL SCRIPT: cap-agreementtemplates-script-1.sql

C. Metrics for the Prototype

1. Repository for holding the metrics measured at the prototype level

Create a repository “metrics_prototype” that holds the metrics measured at the prototype
level:

mysql> CREATE DATABASE metrics_prototype;

- Create a tabled named metrics within the metrics_prototype.

mysql> use metrics_prototype
mysql> CREATE TABLE `metrics_prototype`.`metrics` (
 `ID` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `Experiment_ID` INTEGER UNSIGNED COMMENT 'Represent the ID of the
experiment',
 `ServiceProvisionTime` BIGINT UNSIGNED COMMENT 'Represents the time
required for MGS to complete a user request
(discovery+negotiation+execution). Measured in milliseconds',
 `ServiceExecutionTime` BIGINT UNSIGNED COMMENT 'Represents the job
execution time. Measured in milliseconds',
 `SuccessfulAllocationRate` DOUBLE UNSIGNED COMMENT 'The rate of
successful service allocation.',

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 47

 `UnsuccessfulAllocationRate` DOUBLE UNSIGNED COMMENT 'The rate of
unsuccessful service allocation.',
 PRIMARY KEY(`ID`)
)
ENGINE = InnoDB;

mysql> CREATE TABLE `metrics_prototype`.`metrics` (
 `ID` SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 `Experiment_ID` SMALLINT UNSIGNED COMMENT 'Represent the ID of the
experiment',
 `ServiceProvisionTime` BIGINT UNSIGNED COMMENT 'Represents the time
required for MGS to complete a user request
(discovery+negotiation+execution). Measured in milliseconds',
 `ServiceExecutionTime` BIGINT UNSIGNED COMMENT 'Represents the job
execution time. Measured in milliseconds',
 `SuccessfulAllocationRate` DOUBLE UNSIGNED COMMENT 'The rate of
successful service allocation.',
 `UnsuccessfulAllocationRate` DOUBLE UNSIGNED COMMENT 'The rate of
unsuccessful service allocation.',
 `Description` VARCHAR(200) DEFAULT '',
 `Approach` VARCHAR(200) DEFAULT '',
 `StartTimestamp` TIMESTAMP DEFAULT '0000-00-00 00:00:00',
 `EndTimestamp` TIMESTAMP DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY(`ID`)
)
ENGINE = InnoDB;

MySQL SCRIPT: The following script performs only the operations needed above:
metrics_prototype-script.sql

- As a “root” (administrator of the database) account, create user “catnets” with password
“catnets” that has all privileges on the database MGS_Agreements_DB.
mysql> GRANT all privileges on metrics_prototype.* to 'catnets'@'localhost'
identified by 'catnets';
mysql> GRANT all privileges on metrics_prototype.* to 'catnets'@'%'
identified by 'catnets';

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 48

Annex B – GMM CATNETS FINAL RELEASE
DESCRIPTION & USER MANUAL

What is on the tar file distribution2

The middleware tar consist of the following (all data store in the REPOSITORY, default is
GMM_all)

No addtional exteral resources (programs, libraries ,etc) are required. All is cointained in the
package and is automatically deployed by the deploymnet scripts.

*** Vxargs (included in the bundle) performs remote ssh on a set of pararell machines,
allowing for a paralell deployemt on N machines from a single node. Vxargs requires Python
in your system in order to work.

- middleware jars:
1 jar with the GMM for zip agents: middlewareBaseline.jar
2 jars with the GMM for catallactic agents: middlewareCS.jar and middlewareBS.jar
required libs stored in middleware/lib

- configuration
1 GMM congifuration file for the server nodes ZIP agents:
BSHostingConfig.properties
1 GMM congifuration file for the client nodes ZIP agents:
CSHostingConfig.properties
1 GMM congifuration file for the server nodes CNet agents:
CNetBSHostingConfig.properties
1 GMM congifuration file for the client nodes CNet agents
CNetCSHostingConfig.properties
1 GMM congifuration file for the server nodes catallactic agents:
CatllacticBSHostingConfig.properties
1 GMM congifuration file for the client nodes: catallactic agents:
CatallacticCSHostingConfig.properties
1 profile.xml for JXTA configuration
Files for catallactic agents detailed config:
complexService.properties
basicService.properties
resourceAgent.properties
strategy.cong
learning.conf

- required sofware and libs
apache tomcat as Web Server: apache-tomcat-5.5.12.zip
apache axis for Wed Services: axis-bin-1_3.zip
required libs to run Web Services: activation.jar and mail.jar

2 All paths in the document are relative to the REPOSITORY PATH, by default GMM_all

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 49

vxargs script to deploy run on several machines in paralell and collect results

- Remote nodes lists:
nodeList.txt : list all nodes involved in the experiment
nodeListBS.txt : list all servers
nodeListCS.txt : list all clients

- scripts to execute from the base node (deployer)
1 script to deploy the middleware: deployMiddleware.sh
1 script to deploy small realease/config into the middleware: deployLittle.sh
1 script to run a catallactic experiment: runExperiment.sh
1 script to run a ZIP agents experiment: runZIPExperiment.sh
1 script to stop any running experiment: stopExperiment.sh
1 script to collect the metrics and logs for catallactic agents: collectMetrcis.sh
1 script to collect the metrics and logs for ZIP agents: collectZIPMetrcis.sh
1 script to clean all nodes in the cluster/LAN: cleanAllNodes.sh
1 script to be remotely executed in each node taking part in the experiment (this is done
automatically by the runExperiment.sh script): launchMidleware.sh

- Data Mining Services
classes and data for J48 Web Service deployment
1 class to act as J48 Web Service client

Vxargs is used to provide parallel execution of deployment and experiments

How to deploy the GMM

How to deploy/run on a given cluster or set of machines in LAN (using provided scripts)

All the commands are run do from the central node where you untared the package, thereafter
REPOSITORY_LOCATION, by default: GMM_all

Deploy from scratch

In scratch, run the following:
This deployment is required whenever a new node is added to the experiments, in order to
deploy java, tomcat and axis in the new node.

1 - edit deployMiddleware.sh and set REPOSITORYPATH and YOURPATH to the
convenient path on the cluster (default should work)
 REPOSITORYPATH -> The path where the GMM was untared, this is the central node for
deployment/execution
 YOURPATH -> Path on the remote nodes, this is the path where the GMM will be deployed
in the remote nodes selected in nodelist.txt

 2 - edit nodelistBS.txt , nodelistCS.txt and nodelist.txt with the list of nodes for the
experiment (see
 description for more info)

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 50

 3 - edit CatallacticCSHostingConfig.properties and CatallacticBSHostingConfig.properties to
config CSs and BSs (or keep on defaults)
 minimun: edit the config.workdirectory to a full path valid to your system; without this
JXTA wont work

 4 - Deployment: this will deploy the middleware and required data in all nodes in
nodeList.txt
 from the REPOSITORY location run:
 %>./deployMiddleware.sh (alternative %>source deployMiddleware.sh)
 If all exit codes of the vxargs operations output are set to 0, then you are should the GMM
is correctly deployed
 if you get any exit code not 0, the errors. Go to ../deployment where all deployment output
results is stored

This is for the catallactic agents. For the ZIP agents experiments do the same, but using
CSHostingConfig.properties and BSHostingConfig.properties; for the CNetAgents do the
same but using %> CNetCSHostingConfig.properties and CNetBSHostingConfig.properties

Deploy after config changes / GMM jar update

You don’t need to deploy again the all the infrastructure whenever you make changes to
agent’s configurations or update the GMM jars. In this case run deploymentLittle.

5 - Little Deployment: this will deploy the middleware jar and configFiles in all nodes in
nodeList.txt, nodeListCS.txt/nodeListBS.txt
 from the REPOSITORY location run:
 %>./deployLittle.sh (alternative %>source deployMiddleware.sh)
 If all exit codes of the vxargs operations output are set to 0, then you are should the GMM
is correctly deployed
 if you get any exit code not 0, the errors. Go to ../deployLittle where all deployment output
results is stored

How to run the experiments3

Experiment configuration

Whenever you change agents configuration files for a new experiment, you need to run
deployLittle.sh in order to make the remote nodes aware of the new config for the
experiment.

ZIP agents configuration is controlled in :
BSHostingConfig.properties
CSHostingConfig.properties

CNet agents configuration is controlled in :
CNetBSHostingConfig.properties

3 No simultaneous experiments can be performed in a set of nodes: Just one experiment at a time.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 51

CNetCSHostingConfig.properties

Catallactic Agents configuration is controlled in:
CatllacticBSHostingConfig.properties
CatllacticBSHostingConfig.properties
complexService.properties
basicService.properties
resourceAgent.properties
strategy.cong
learning.conf

Running Experiments

All the commands are run do from the central node where you untared the package, thereafter
REPOSITORY_LOCATION, by default: GMM_all

6 - runExperiment : this will lauch a GMM instances in Servers and Client with several
BSs(listed in nodeListBS.txt and CSs(listed in nodeListCS.txt) from the REPOSITORY
location (default is GMM_all) run:
 %>./runExperiment.sh
 You may check Result live of vxargs executions .out and .err for all the nodes in
../outputVxargs
 resutsBS and resultsCS directories contains the execution output (experiment may last
from 2 min to 10 or more, depending how many CS are lauched).

This is for the catallactic agents. For the ZIP agents experiments do the same, but using %>
./runZIPExperiment.sh, and for the CNetAgents do the same but using %>
./runCNetExperiment.sh

You may collect your metrics in any moment, this wont stop the experiment. You can collect
them more than once, each time you do so a tar file with your metrics, logs up to that moment
as well as the experiment config will be stored in ../results/resultsHistory

 7 - Stop experiment and cleanup.
 from the REPOSITORY location (default is GMM_all) run:
 %.>/stopExperiment.sh

 - Don’t forget to stop the experiment after your metrics have been collected since this leaves
alive processes on your system.

How to collect metrics
Raw Metrics available

The metrics from a prototype execution are stored in raw text files. For the ZIP agents and for
the catalectic agents we get respectively the following metrics

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 52

Metrics for ZIP agents

METRIC NAME METRIC VALUE
Price.txt current price of an agent
Match.txt shows the price at which an offer is

accepted (offer+bid/2).
Active.txt shows if the CS is in the market or not.

After a successful match
an agent leaves the market and returns with
the probability of for example 1/3

By counting the events in Match.txt you and dividing by the total number of requests issued
till the moment of metric collection, you can calculate the allocationRate.

Metrics for CNet agents

METRIC NAME METRIC VALUE
Price.txt current price of an agent
sellSucces.txt Shows the number of succesfull trades

By counting the events in sellSuccess and dividing by the total number of requests issued till
the moment of metric collection, you can calculate the allocationRate.

Metric for catallactic Agents

negotiation_start, negotiation_request, negotiation_end
strategy_metric

METRIC NAME METRIC VALUE
negotiation_request.txt

A negotiation is requested between 2
agents (== CFP received by the BS?)

negotiation_start.txt

A negotiation starts between 2 agents

negotiation_end.txt

A negotiation ends between 2 agents

strategy_metric.txt Contains the catallactic strategy values in
this moment + the current price

The strategy metric contains the following fields, separated by commas:
Strategy_Metric detailed parameter of the agent strategy:

Agent
 Acquisitiveness
 Price Step
 Price Next
 Satisfaction
 weightMemory

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

 53

 averageProfit
 generation
 currentMessageID
 currentMessagePrice
 currentAverage
 currentLowerLimit
 currentUpperLimit

CurrentMessagePrice contains the current price in the negotiation.

In order to calculate the allocation rate, you need to count all the negotiation_end events
containing a CS in the second or third positions. You need to take into account both the
negotiation_end metrics fired by CSs or BSs. This happens since both CSs or BSs can close
the negotiation.

Collecting the metrics

All the commands are run do from the central node where you untared the package, thereafter
REPOSITORY_LOCATION, by default: GMM_all

The metrics are collected in ../results/metrics. You may collect your metrics in any moment,
this wont stop the experiment. You can collect them more than once, each time you do so a tar
file with your metrics, logs up to that moment as well as the experiment config will be stored
in ../resultsHistory. Each of this metric collection is marked with the system timestamp
unambiguously labelling the experiment results

8 - Collect logs and metrics: this will collect all metrics and logs for the experiment logs, and
store a tar with all your experiment results in the RESULTSH_HISTORY_PATH. Provide
your user identification to properly label your experiment.
 If you changed the default YOURPAHT, then update also YOURPATH in the
collectMetrics.sh script
 metrics and logs for an experiment are unambiguosly stored in a file labelled
metricAndLogsMiddleware_DATE.tar , located in ../results
 %> ./collectMetrcis.sh

This is for the catallactic agents.
For the CNet agents experiments do the same, but using %> ./collectCNetMetrcis.sh
For the ZIP agents experiments do the same, but using %> ./collectZIPMetrcis.sh

ISSN

In this report the progress of developing the
proof-of-concept application in the CATNETS
project is presented. Hence the development of
the necessary performance measuring
components as well as a distributed application
to execute on economic-enhanced Grid/P2P
platforms and middleware integration are
described.

1864-9300

