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On the Relationship between Income and the Body Mass Index* 
 
Contrary to conventional wisdom, NHANES data indicate that the poor have never had a 
statistically significant higher prevalence of overweight status at any time in the last 35 years. 
Despite this empirical evidence, the view that the poor are less healthy in terms of excess 
accumulation of fat persists. This paper provides evidence that conventional wisdom is 
reflecting important differences in the relationship between income and the body mass index. 
The first finding is based on distribution-sensitive measures of overweight which indicates 
that the severity of overweight has been higher for the poor than the nonpoor throughout the 
last 35 years. The second finding is from a newly introduced estimator, unconditional quantile 
regression (UQR), which provides a measure of the income-gradient in BMI at different points 
on the unconditional BMI distribution. The UQR estimator indicates that the strongest 
relationship between income and BMI is observed at the tails of the distribution. There is a 
strong negative income gradient in BMI at the obesity threshold and some evidence of a 
positive gradient at the underweight threshold. Both of these UQR estimates imply that for 
those at the tails of the BMI distribution, increases in income are correlated with healthier BMI 
values. 
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1. Introduction 

Mortality and morbidity rates for many health outcomes are inversely related to income (Deaton 

and Paxson, 1999; Deaton, 2001). Deaton (2002) estimates that people in the U.S. with family 

income less than $5,000 (in 1980 dollars) have a life expectancy that is around 25 percent lower 

than those with income above $50,000. He also notes that the negative income gradient in health 

has a long history, first documented in France in the 1820s. Perhaps the most prominent U.S. 

public health concern in the last decade has been the rapid rise of overweight. Ogden et al. 

(2006) estimate that 66 percent of U.S. adults are overweight based on data from 2003 and 2004. 

The potential health consequences from being overweight or obese include being at increased 

risk of morbidity from hypertension, stroke, type 2 diabetes, osteoarthritis, respiratory problems, 

and breast, prostate, and colon cancers.1 A reasonable and common assertion then is that the poor 

suffer significantly higher rates of overweight. 

 There are important policy implications linked to correctly understanding this relationship. In 

both the popular press and academic research, there is the argument that the growth of fast food 

and energy-dense food has been an important cause of the overweight epidemic in the U.S. and 

that this has disproportionately affected poor people. Drewnowski and Specter (2004) argue that 

limited economic resources may shift dietary choices toward a diet that provides maximum 

calories at the least cost. An implication of this line of research is that the poor cannot afford 

healthy diets.2 In contrast, Lakdawalla, Philipson and Bhattacharya (2006) argue that 

technological change has lowered food prices, made work more sedentary, and led to the 

increase in BMI. They also note that their model of weight transition based on earned and 

                                                 
1 See National Heart, Lung, and Blood Institute (1998, Chapters 1 and 2) for a more complete list of 
health problems associated with being overweight and for citations for each of the listed health problems.  
2 In popular press, Critser (2003) similarly argues that cheap fats and sugars are the primary cause of 
overweight and notes that “… one fact stuck out above all others …In late-twentieth-century America, it 
was the poor, the underserved, and the underrepresented who were most at risk from excess fat” (p.109).  
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unearned income explains why “…richer people are thinner than poorer people…” (p. 253).3 A 

different line of reasoning suggests that Federal food assistance programs are exacerbating the 

overweight epidemic. In the Washington Post, Besharov (2002) argues that programs such as 

food stamps are increasing the food budgets of the poor, who are already over-consuming. In 

Congressional testimony he states that “Today, as many as 70 percent of low-income adults are 

overweight, about 10 percent more than the nonpoor” (2003). 

 The aim of this paper is to first assess the accuracy of the common portrayal of income and 

overweight prevalence (section 2), and then in section 3, to measure the income gradients in 

BMI. Section 2 documents what is now reasonably well known to obesity researchers, that there 

is no correlation between the prevalence of overweight (BMI > 25) and poverty status. A key 

new finding in this section though, is that distribution-sensitive measures reveal that the severity 

of overweight is much greater for the poor than the nonpoor. This finding indicates that the BMI 

distributions for the poor and nonpoor have very different shapes, and this has important 

implications for the regression models used in section 3 to measure the income gradient in BMI.  

 There has been research that examines the relationship between income and BMI which has 

focused on the nonlinearity between income and BMI, that is the correlation between income and 

BMI differs at different income levels (see for example, Lakdawalla and Philipson, 2002, 2009). 

This paper focuses on a different issue by measuring whether the correlation between income 

and BMI varies at different points on the BMI distribution. While both estimates are of interest, 

the latter is more consistent with the literature examining income-health gradient. The findings 

indicate that there is a positive income-gradient in BMI at the low-end of the BMI distribution, 

and a negative income-gradient at the obesity threshold (BMI=30).  

                                                 
3 Cutler, Glaeser and Shapiro (2002) suggest that the BMI increase is primarily due to declines in the 
pecuniary and non-pecuniary price of food; but they note that income is not an important variable in their 
models predicting the probability of obesity. 
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2. Overweight and Poverty Status 

The official estimates of overweight and obesity come from the National Health and Nutrition 

Examination Survey (NHANES), which is conducted by the National Center for Health Statistics 

of the Centers for Disease Control. The NHANES samples are representative of the U.S. civilian, 

non-institutionalized population and observations are selected following a stratified, multi-stage 

design. I use seven rounds of the NHANES data: 1971-1974 (NHANES I), 1976-1980 

(NHANES II), 1988-1994 (NHANES III), 1999-2000, 2001-2002, 2003-2004 and the 2005-2006 

files. Body weight and height measures were obtained by trained health technicians, and 

effective sample sizes of those persons between 20 and 75 years of age range from 7,592 in the 

pooled 1999-2002 two-year cycles to 12,901 from NHANES I. 

 Current medical research indicates that excess accumulation of body fat, as a percent of total 

body weight, is the primary source of health concerns associated with being overweight. Federal 

guidelines use the body mass index (BMI), which is body weight in kilograms divided by the 

square of height in meters, as an approximation for measuring body fat. In 1998, the U.S. Federal 

Government adopted the recommendations of the World Health Organization Expert Committee 

(1995) and defined a person as overweight if they had a BMI greater than or equal to 25, and 

obese as greater than or equal to 30.4 

 

2.1 Prevalence of overweight by poverty status 

Table 1 lists rates of overweight and obesity from 1971 to 2006 by poor and non-poor categories. 

Throughout this paper, I categorize an individual as poor if their income is less than 130 percent 

                                                 
4 Throughout this paper, overweight describes people with BMI greater than 25, including those who are 
obese. This is done primarily to facilitate the extension to the distribution-sensitive measures, but it is also 
consistent with the initial definition adopted by the U.S. government (see for example, National Center 
for Health Statistics, 2001). Currently, the term overweight is more typically defined as BMI between 25 
and 29.9, which the CDC had previously referred to as pre-obese (see for example, Flegal et al. 1998).  
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of the poverty line. I use this income cutoff primarily because it matches the gross-income 

eligibility criterion for the Supplemental Nutrition Assistance Program,5 the largest of the 

Federal food assistance programs.6 In terms of BMI, Table 1 indicates that there has historically 

been no relationship at all between being poor and being overweight. Between 1971 and 2006, 

there are no statistically significant differences in the rates of overweight between the poor and 

nonpoor. While the estimated difference is not statistically significant, the point estimates from 

the pooled 2003-06 sample indicate that the overweight rate for the poor is actually 2.8 

percentage points lower than for the nonpoor.  

 

[INSERT TABLE 1 APPROXIMATELY HERE] 

 

 The findings change if we ignore overweight and just consider obesity. Panel B of Table 1 

now provides at least some historical evidence that is more consistent with the common assertion 

in the popular press. Between 1971 and 2002, the poor did have higher rates of obesity and the 

difference in the rates ranged from 5.1 to 6.5 percentage points higher than the nonpoor. The 

more current point estimates from 2003-06 though, show essentially no difference in the obesity 

rate between the poor and nonpoor.7 

 From the simple comparison of poverty status with the overweight and obese outcomes, the 
                                                 
5 Using 130 percent of the poverty line for the poor-nonpoor split also has the advantage of a greater 
sample of poor observations (relative to using the poverty line) and thereby increases the power of poor – 
nonpoor comparisons.  
6 In 2008, federal spending on the Supplemental Nutrition Assistance Program (formerly called the Food 
Stamp Program) was $37.5 billion, accounting for 62 percent of total spending on food assistance 
programs. Monthly participation rates topped 31 million people in the fall of 2008 (USDA, 2009). 
7 As a robustness check of the statement that there are no statistically significant poor-nonpoor differences 
in overweight and obesity prevalence from 2003-06, I consider several definitions of poverty based on the 
following: Define someone as poor if income <  α * (poverty line). For all of the analysis in this paper,    
α = 1.3. For the robustness check, I consider 11 values of α ranging from 0.5 to 1.5, in increments of 0.1. 
Over all 11 variants of this definition, in no case do the poor have a statistically significantly higher 
prevalence of overweight or obesity. In one case, the opposite is true. If poverty is defined as having less 
than 110% of the poverty line, then the nonpoor have a statistically significant higher level of overweight.  
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evidence is mixed. If overweight (BMI > 25) is the relevant health indicator, then there never has 

been an association between this measure and poverty. If on the other hand, obesity (BMI > 30) 

is the relevant measure of health, then the poor have historically been less well off, but this 

relationship appears to no longer exist. Part of the reason for this mixed message is due to an 

attempt to simplify a complex relationship. Discussing overweight and obesity in terms of 

prevalence rates requires that the continuous BMI measure is converted into discrete outcomes, 

and this loses information. Discrete outcomes for overweight and obese have the important 

advantage that they are easy for the public to understand, but they also have disadvantages. 

 In   particular, research indicates that the risks of health problems associated with being 

overweight are increasing in BMI (Willett, Dietz and Colditz, 1999 and Freedman et al., 2002). 

For example, the risk of heart failure increases 5 percent in adult men and 7 percent in adult 

women with a unit increase in BMI (Kurth et al., 2002). Similarly, a one-unit increase in BMI is 

associated with a 6 percent increase in the relative risks of total, ischemic and hemorrhagic 

stroke for men (Kenchaiah et al., 2002). Treating BMI as a discrete outcome largely ignores the 

research indicating that someone whose BMI is twice the overweight threshold is at higher risk 

of negative health outcomes than someone whose BMI is just slightly greater than the threshold. 

As one example, Filardo et al. (2007) assert that categorizing BMI into discrete outcomes not 

only loses information, but also results in critically biased estimates of the association between 

BMI and post-CABG (coronary artery bypass graft surgery) morbidity and mortality. 

 

2.2 Alternate measures of overweight and poverty status 

To avoid this loss of information, I extend on Jolliffe (2004) and use distribution-sensitive 

measures of overweight and obesity for the poor and nonpoor. These measures draw from the 

poverty literature, and were introduced by Foster, Greer and Thorbecke (1984, hereafter referred 
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to as FGT). Modifying the FGT index, one can express a class of overweight indices, OWα, as: 

 

 1 ( )[( ) ]i ii
OW n I BMI f BMI f f α

α = ≥ −∑       (1) 

 

where n is the sample size, i subscripts the individual, f is the cutoff point identifying who is 

overweight, and I is an indicator function which takes the value of one if the statement is true 

and zero otherwise.8  

 When α=0, OW0 is the proportion of the population that is overweight, or the overweight 

prevalence. When α=1, OW1, can be described as revealing the depth of the problem. A useful 

interpretation of OW1 is to recognize that it is equal to the product of the prevalence rate and the 

average value of excess BMI of the overweight (expressed as a fraction of the overweight cutoff 

point). When α=2, the resulting measure is the average of the squared values of the individual 

overweight-gaps (i.e. the proportionate difference between BMI and the threshold), and is 

sensitive to (mean-preserving) changes in the BMI distribution of the overweight. Using the 

poverty semantics, OW2 can be described as reflecting the severity of overweight. The merit of 

these measures can be illustrated by considering an overweight person who gains weight. This 

weight gain has no effect on the overweight prevalence (OW0), but the health of this person has 

changed and this is reflected in changes to OW1 and OW2.  

 

 [INSERT FIGURE 1 APPROXIMATELY HERE] 

 

 The first indication that there have been important changes in the distribution of BMI that 

would be masked by prevalence measures, but revealed by the FGT measures, can be seen in 
                                                 
8 The indices and sampling variance are detailed in Jolliffe and Semykina (1999).  
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Figure 1. This figure compares two distributions of BMI, one for the early 1970s and the other 

from the pooled samples of 1999-2006. The most striking change is the significant shift to the 

right of BMI over time. It is clear from this figure that significantly more of the 1999-2006 BMI 

distribution lies to the right of the cutoff at 25. This shift is reflected in the increased prevalence 

of overweight from 47 percent in the 1970s to the more recent estimate of 66 percent. What is 

also clear from the figure is that BMI in 1999-2006 is significantly less-peaked indicating greater 

spread in the tails. The changing shape of the density functions indicates that the variance in 

BMI is now greater. This change is largely hidden in the prevalence measures, but will be 

revealed in the depth and severity measures.  

 Table 2 presents the three overweight indices by income status, starting with estimates from 

1971-1974 NHANES and ending with the pooled NHANES 2003-2006. While the OW0 measure 

replicates the finding above, that the poor have never had a greater prevalence of overweight; the 

depth and severity measures are more consistent with the portrayal in the popular press. 

Throughout the 1970s and 1980s, both the depth and severity measures were statistically 

significantly greater for the poor than the nonpoor. While more recently the poor-nonpoor 

differences have diminished, the overweight severity measure for the poor has continued to be 

statistically significantly higher up through the current 2003-06 estimates.9  

 The distribution-sensitive measures indicate an important similarity in the change in BMI 

distribution over time for both the poor and nonpoor. Between the early 1970s (NHANES I) and 

the current estimates from 2003-06, the rate of increase in each of the overweight measures is 

greater for larger values of α. That is OW2 has increased by more than OW1, and similarly OW1 

by more than OW0, for both the poor and nonpoor. Noting that a greater α means OWα is more 
                                                 
9 In terms of poor-nonpoor differences, it is also worth noting the difference in growth of the measures. 
For example, the severity measure for the poor has increased by 135 percent, while this measure for the 
nonpoor has more than tripled. While the overweight severity is greater for the nonpoor, if the trend 
continues, one would expect poor-nonpoor convergence in this measure as well at some future point.  
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sensitive to changes at the high-end of the BMI distribution, this pattern shows that the increases 

in the prevalence rates fail to reveal that an important component of the change over the last 

three decades has been a large shift out of the right tail of the BMI distributions for both the poor 

and nonpoor. For example, while median BMI has increased less than 3 units between NHANES 

I and the recent estimates from 2003-2006 (increasing from 24.6 to 27.4), the 95th percentile has 

increased by 6.6 units in this period (increasing from 34.1 to 40.7).10 

   

[INSERT TABLE 2 APPROXIMATELY HERE] 

 

 While there is no poor-nonpoor difference in prevalence of overweight, Table 2 shows that 

the overweight poor are heavier on average, and this may in part explain the perception that the 

poor are more overweight. The ratio OW1/OW0 provides a measure of the extent to which BMI 

of the overweight surpasses the overweight threshold of 25. Using the 2003-2006 estimates, this 

ratio indicates that the overweight poor are 29 percent overweight (i.e. their BMI is on average 

29 percent greater than 25), while this estimate for the nonpoor is 26 percent. Figure 2 plots the 

most recent BMI density functions for the poor and nonpoor and graphically illustrates this point. 

There is more mass in the density function for the overweight nonpoor near the threshold of 25 

(the nonpoor density function lies above the poor density for BMI between about 25 and 33). 

Similarly, the density function for the poor lies above the nonpoor at the extreme values of BMI, 

between about 40 and 50.  

 

[INSERT FIGURE 2 APPROXIMATELY HERE] 

 
                                                 
10 To put this increase in terms of kilograms, consider an average-height male at 1.77 meters (or 5 feet, 10 
inches). An increase of BMI by 6.6 means a weight gain of 20.9 kilograms (or 46 pounds). 
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 Gender adds an important dimension to the correlation between poverty and BMI which 

indicates very different associations for men and women, and the distribution-sensitive measures 

again provide a much more detailed profile of overweight by sex and income (see Table 3). For 

example, over the last 35 years, nonpoor men had much higher prevalence of overweight than 

poor men, but there were largely no poor-nonpoor differences in the severity measures for men.11 

For men, the severity measure dampens the difference observed in the prevalence measure. For 

women, the opposite is true. Poor women had higher prevalence of overweight in all years, and 

the severity measures amplify this difference. For example in 2003-06, the overweight 

prevalence for poor women is about 10 percent greater than for nonpoor women, while the 

overweight severity for poor women is 40 percent greater than for nonpoor women.  

 As another example of how measures which account for the distributional differences alter 

the portrayal, note that that in 2003-06 three fourths of nonpoor men, and 60 percent of nonpoor 

women, were overweight. Without accounting for distributional differences, one might infer that 

being overweight is a larger problem for nonpoor men than nonpoor women. The severity 

measure reveals that this would overly simplify the picture. OW2 for nonpoor women is more 

than 30 percent higher than that for nonpoor men, indicating that of the overweight nonpoor, 

women are overweight by much greater amounts relative to men.12  

 

    [INSERT TABLE 3 APPROXIMATELY HERE] 

 

3. BMI and Income, using continuous measures 

An important motivation for the alternative measures of overweight considered above is the 

                                                 
11 The 1999-2002 severity measure for poor men was greater (p < 0.1) than that for the nonpoor.  
12 From the 2003-06 pooled estimates, nonpoor, overweight women exceed the overweight threshold by 
30 percent. Nonpoor, overweight men exceed this threshold by 23 percent on average.  
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argument that the dichotomous (prevalence of overweight) measure fails to reveal information 

about the changing distribution of those who are overweight. Similarly, treating income as 

dichotomous (poor and not poor) could very well also be failing to reveal important aspects of 

the relationship between income and BMI. Case, Lubotsky and Paxson (2002, p. 1308) note that 

the income gradient in health status “is evident throughout the income distribution.” For 

example, the decision to treat all of the poor as the same might hide important differences 

between those who are in severe poverty compared to those whose income is closer to the 

poverty line. In this section, I avoid converting either the BMI or income measures into 

dichotomous outcomes, and consider the relation between continuous measures of each.  

 

3.1 Correlation between Income and BMI, the conditional mean 

There is a large literature on the income gradient in health outcomes which fairly uniformly 

documents positive correlation between bad health outcomes and decreases in income. See for 

example, Pappas et al. (1993), Sorlie, Backlund and Keller (1995), Deaton and Paxson (1999), 

Deaton (2001). Essentially all of this analysis is based on estimating the correlation between the 

probability of a negative health outcome and income. BMI as a health outcome has an important 

complicating factor relative to many other health outcomes (or at least for how these outcomes 

are typically measured). At high levels of BMI, decreases in BMI indicate health improvements; 

but at low levels of BMI, increases in BMI indicate health improvements (the Centers for 

Disease Control and Prevention, CDC, consider 18.5 as the threshold for underweight status).  

 Given the current epidemic of overweight, it’s reasonable to assume that negative correlation 

between income and BMI indicates that higher income is associated with better BMI outcomes. 

But for measurement purposes, it is important to recognize that for the underweight, negative 

correlation indicates that deteriorating BMI outcomes are associated with increases in income.  
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 An OLS regression of BMI on income and other controls, X, provides an estimate of the 

partial derivative of BMI (conditional on X) with respect to income, or:  

 

   E(BMI | Income, X) /  Income∂ ∂       (2) 

 

The OLS estimator measures the change in the mean of BMI from a change in income. A 

nonparametric (or lowess, or spline) estimator would allow the estimated partial derivative to 

vary at different levels of income, but it would continue to estimate the change in the mean of 

BMI from a change in income. Lakdawalla and Philipson (2002, 2009) provide a theoretical 

explanation for when we would expect the correlation between BMI and income to differ by 

income. They propose that the demand for food and the demand for an ideal body weight can 

have differing effects at different levels of income. At low levels of income, an increase in 

income might mean increased demand for food and weight, which work together to increase 

BMI. At high levels of income, an ideal weight might mean weight reduction, offsetting the 

demand for more food, and potentially resulting in decreased BMI. Lakdwalla and Philipson also  

estimate their model, using income splines, and indeed validate that the correlation between BMI 

and income changes at different points on the income distribution.  

 

3.2 Correlation between Income and BMI, at different points on the BMI distribution 

Estimates such as these fail to allow for the possibility that income could have very different 

effects on BMI at different points on the distribution of BMI. This is the same point made by 

Chamberlain (1994) who compares OLS and quantile estimators to measure the wage premium 

from union participation. The OLS estimates indicate that union participation has a positive 

effect on mean wages. The quantile estimates allow one to see that the premium is much larger 
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for low (conditional) wage earners than for high (conditional) wage earners, and the OLS 

estimate falls between the two.  

 In contrast to the union example, where the union effect is diminished at higher points on the 

conditional wage distribution, one might expect the income effect on BMI to potentially reverse 

signs. In other words, if there is an income gradient in BMI which indicates a positive 

relationship between income and improvements in BMI, then there should be positive correlation 

at low levels of BMI and negative correlation at high levels. The OLS estimator is unable to 

reflect this diversity. The obvious alternative estimate of the marginal effect of income on BMI, 

which would allow for variation in the slopes, would be to use the quantile estimator:  

 

  IncomeXIncomeQBMI ∂∂ /),|(τ       (3) 

 

Following the notation of Koenker (2005), QBMI is the conditional quantile function of BMI and 

τ represents quantiles of the conditional BMI distribution. The expression in Equation (3) is the 

conditional quantile marginal effect (CQME), estimated by the quantile estimator.  

 It is not always the case that the quantile estimator will necessarily provide qualitatively 

different information from OLS, but Koenker and Basset (1982) show that in the presence of a 

heteroscedastic error distribution, the quantile estimator will typically differ from the OLS 

estimator.13 The analysis in section 2 provides evidence that there are important and significant 

differences in the BMI distribution of the poor and nonpoor, which suggests that the error 

structure from a regression of BMI on income is likely to be heteroscedastic.   

                                                 
13 More accurately, they show that variation in the quantile estimator at different points of the conditional 
distribution cam be used as a basis to test for heteroscedasticity. An implication of their test is that if the 
error distribution is homoscedastic, the quantile estimator will provide similar information at different 
points on the conditional distribution (including the conditional mean). 
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 Stifel and Averett (2009) examine the correlation between children’s BMI and several 

explanatory variables such as mother’s characteristics and household composition, and argue that 

OLS fails to reveal important correlations. They use the quantile estimator to measure these 

correlations at five points (the 5th, 25th, 50th, 85th, and 90th percentiles) on the conditional 

distribution of BMI. They find that “OLS models mask some of the correlates of childhood BMI 

at both the upper and lower tails of the weight distribution” (p. 396).  

 With the quantile estimator, marginal effects are typically compared at fixed points on the 

conditional distribution, such as the five points used by Stifel and Averett.14 Because I examine 

the income gradient in BMI using data from different points in time, this approach of fixing the 

quantile will produce estimates that are difficult to interpret. For example, the quantile estimator 

evaluated at the conditional median on data from 1988 and later would estimate the relationship 

between income and BMI at some point above the overweight threshold. But for the earlier 

years, the conditional median (for the specifications considered in this paper) BMI is below the 

overweight threshold, and the public health literature is fairly silent as to whether we believe 

health is positively or negatively affected for BMI changes between 18.5 and 25.  

 Rather than fixing the quantile, the more relevant concern is to estimate the marginal effect at 

a fixed value of BMI. The current medical literature designates primarily three values of BMI as 

key thresholds – 18.5, which defines underweight; 25, which defines overweight; and 30, which 

defines obesity.15 As these are the thresholds for defining this public health concern, I propose 

that they are the policy-relevant points at which to measure whether there is an income gradient 

in BMI. This choice also helps to place these findings in the context of related literature 

documenting that there is a negative income gradient in poor health outcomes. Modifying 
                                                 
14 For other examples of estimating at a fixed point on the conditional distribution, see Chamberlain, 
1994, Nguyen et al. (2007), Patrinos and Sakellariou (2006). 
15 Obesity is sometimes further decomposed into different categories, including morbid (or class 3) 
obesity defined as a BMI greater than 40.  
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equation (3) slightly, I express the CQME evaluated at each of the τth quantile of the BMI 

distribution corresponding to BMI values of 18.5, 25, and 30. For example, if the prevalence of 

obesity (threshold BMI=30) in the selected sample year is 34 percent, the CQME is estimated at 

the 66th quantile of the conditional distribution.      

 

  IncomeXIncomeQ BMIBMI ∂∂ = /),|( 30,25,5.18τ      (4) 

 

 The advantage of the quantile estimator over OLS, as noted above, is that it can be used to 

estimate marginal effects at the tails of the conditional distribution, allowing for the concern that 

the sign of the marginal effect might switch. The disadvantage of this estimator is that policy 

makers typically aren’t interested in the CQME, but rather want to know about the effect of the 

explanatory variable on the unconditional distribution of the relevant statistic. In the case of the 

quantile estimator, the nonlinearity of the estimator means that the CQME is not equal to the 

unconditional quantile marginal effect (UQME). The parameter estimate from the quantile 

estimator (3) will describe the change in conditional BMI at the τth quantile; but it does not 

measure change in BMI at that τth quantile. Equation (5) formalizes this statement. For example, 

if X includes controls for education, the τth quantile of BMI conditional on low education status 

will correspond to a different BMI level than for the CQME evaluated at the same quantile for a 

person with more education.  

 

  IncomeQIncomeXIncomeQ BMIBMI ∂∂≠∂∂ /)(/),|( ττ    (5) 

 

 An important advantage of OLS is that the distinction between the conditional and 

unconditional distributions is not a concern.  The OLS estimator is a consistent estimator of the 
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marginal effect of some explanatory variable on both the conditional and unconditional mean of 

the dependent variable. This latter characteristic comes from the linearity of OLS, and the law of 

total expectations (also known as the law of iterated expectations). If X and Y are random 

variables, and the E(Y) < ∞ (i.e. Y is integrable), then the expected value of Y is equal to the 

conditional expected value of Y given X (i.e. E(Y) = E(E(Y|X)) ). This means that the OLS 

estimator, βOLS , estimates the marginal effect of X on the mean of Y.  

 Firpo, Fortin and Lemieux (2009, hereafter referred to as FFL) propose a new estimator, the 

Unconditional Quantile Regression (UQR) estimator, which has attractive characteristics of both 

the OLS and the quantile estimators. The UQR estimator allows marginal effects to be estimated 

at different points on the distribution, like the quantile estimator; and also has the characteristic 

that it respects the law of total expectations, like OLS. The implication of this statement is that it 

estimates the Unconditional Quantile Marginal Effect (UQME), meaning it allows the estimation 

of the marginal effect of income on BMI (at each of the points on the BMI distribution 

corresponding to the public-health thresholds), while also conditioning on X.  

 The UQR estimator is based on influence functions, which were introduced by Hampel 

(1988) as a tool in robust estimation techniques. Consider some distributional statistic, υ(Fy), 

such as the median, inter-quantile range, or any quantile. The influence function, IF(Y; υ, Fy), 

represents the influence of an individual observation on the distributional statistic, υ(Fy). A key 

innovation of FFL is that they center the influence function by adding υ(Fy) to it, and call this a 

re-centered influence function (RIF). By design then, the E(RIF(Y; υ, Fy))= υ(Fy), that is the 

expectation of the RIF at the τth quantile is the value of the τth quantile. Using notation from FFL, 

they define m τ (X) = E(RIF(Y; τ, Fy)|X) as the unconditional quantile regression model (which is 

one case from their family of RIF regression models). The parameter estimates from the RIF 

regression model then provide estimates of the Unconditional Quantile Marginal Effect 
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(UQME), or in our example the marginal effect on BMI at the τth quantile from small shift in a 

covariate (all else constant).16  

 

3.3 Correlation between Income and BMI, Results 

Table 4 reports the regression coefficients from the OLS and UQR estimators of BMI on income, 

with controls for age, square of age, and indicator variables for race, and education levels. Table 

5 replicates the estimates without the control variables.17 In all of the analysis, income is 

measured relative to the poverty line and scaled to one (e.g. a value of two indicates that income 

is twice the poverty line). Appendix Figure 1 compares the income data from the pooled 1999-

2006 NHANES with the income estimates from March Supplements of the Current Population 

Survey, both from 1999 and 2006. The overall shapes of the two distributions are similar, with 

similar central tendencies as well, though due most likely to sample size differences, the CPS 

density is smoother. For all regression estimates, the exam sample weights are used, allowing 

inferences to be drawn to the reference population (U.S. civilian, non-institutionalized 

population). The estimated variance-covariance matrix is adjusted to correct clustering.18  

 For the regression estimates, I pool together four cross sections of the 2-year cycle NHANES 

data, resulting in a sample from 1999 to 2006. While this crosses a long time period, it is useful 

to note that the early NHANES also had lengthy periods of field work (e.g. NHANES III is from 

                                                 
16 FFL provide an estimation method based on transforming the dependent variable into the re-centered 
influence function and then using OLS estimation. FFL show that this approach yields a consistent 
estimator of the average marginal effect, E[d Pr[Y > τ | X]/dX], if Pr[Y > τ | X=x] is linear in x. 
17 The Table 5 estimates are provided to map more directly with the discussion in the popular press, 
though they are perhaps less nuanced in their interpretation. The conditional correlation estimates in 
Table 4 are presented as providing a stronger case for the existence of an income gradient, existing over 
many subpopulations (e.g. by race, education, age groupings).   
18 The standard errors are corrected for the sample weights and clustering, but not for stratification. Given 
the general result that clustering reduces efficiency and stratification, if anything, increases efficiency, the 
reported standard errors are interpreted as slightly downward biased. Correcting for stratification will 
produce marginally smaller standard errors.  
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1988-94). The primary reason for this pooling though is that it produces sample sizes that are 

roughly similar across each of the decades. For example, in the Table 4 specification for the 

female subsample, the sample sizes range from 5,889 (NHANES II) to 7,604 (NHANES I) 

observations. The pooled 1999-2006 lies within this range. One purpose of presenting the 

regression estimates over the four decades is to examine the similarities and patterns over time. 

When sample sizes differ substantially, one must consider the extent to which observed 

differences across samples are driven by differences in power of the estimator. In using the same 

estimator, same specification, and similar sample sizes, one need be significantly less concerned 

about power differences across estimates.19  

 An additional reason for pooling the four 2-year cycles (1999-2006) is because we are 

estimating marginal effects in some cases on the extremes of the tails of the distribution. In 

particular, the prevalence of underweight in the U.S. has been approximately two percent over 

the last three decades. Estimating the UQME of income on BMI at the second percentile for one 

of the two-year cycles would mean estimating this quantile with about 3,500 observations (for 

the full sample, about half this when considering the sex-specific subsamples). By pooling the 

last four cycles of data, the sample size increases to 14,134.  

 

[INSERT TABLES 4 AND 5 APPROXIMATELY HERE] 

 

 Panel A in Table 4 reports the income gradient in BMI for all adults between the ages of 20 

and 75 from 1971-74 to 1999-2006 (conditioning on age, race, and education). The approach of 

using the OLS estimator shows a negative and statistically significant income gradient in BMI in 
                                                 
19 Alternatively, it is also of interest to know what is happening recently, and for this purpose, pooling 
from 1999 to 2006 is limiting. To address this concern, tables are available from the author with the 1999-
2006 sample separated into two separate samples – 1999-2002 and 2003-06. The qualitative story 
presented in Tables 4 and 5 is similar, though the point estimates differ somewhat.  
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all decades. The magnitude of the point estimate ranges from -0.09 to -0.22.20 Recalling that 

income is measured in poverty line units (where an income of 1 means income equal to the 

poverty line), the 1999-2006 OLS estimates suggest a unit increase in income is associated with 

a reduction of BMI by approximately 0.22 during the last two decades.21  

 The UQR estimates in Panel A though, reveal that the OLS estimates are averaging over 

important differences across the distribution. At the underweight threshold, there is a positive 

and statistically significant income gradient in BMI in three of the four decades examined (the 

insignificant estimates are from the 1971-74 period). The 1999-2006 estimates indicate that a one 

unit increase in income is associated with an increase in BMI of 0.11 when evaluated at the 

underweight threshold. It is useful to note that this gradient is opposite in sign to the OLS 

estimate, but also consistent with the prior that presumed health improvements (increases in BMI 

at the underweight threshold) are associated with increases in income. The data also indicate that 

there is a negative income gradient in BMI at the overweight threshold in two of the four decades 

examined (1971-74 and 1988-94), But, the estimates from 1999-2006 indicate a relatively flat 

gradient. (Table 5 shows that the correlation coefficient is a precisely estimated zero.  

 Finally, at the obese threshold, there is a negative and statistically significant income gradient 

in BMI in all decades examined. The 1999-2006 estimates indicate that a one unit increase in 

income is associated with a decrease in BMI of 0.40 when evaluated at the quantile 

corresponding to the obesity threshold (BMI=30). It is useful to note that this gradient is 

essentially twice the magnitude of the OLS estimate, and during the 1970s is more than four 

times the magnitude of the corresponding OLS estimates.  

 An important measurement issue in these findings then is that because the OLS estimator 

                                                 
20 For all estimates, the p-values are less than 0.1. When considering the simple bivariate regressions in 
Table 5, the point estimates fall between -0.14 and -0.17 with all p-values less than 0.01. 
21 The 2003-2006 pooled estimate (available from the author) suggests that this has dropped to 0.12.  
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assumes a constant gradient at all points on the conditional distribution, it mis-estimates the sign 

of the effect for the underweight and significantly underestimates the magnitude of the gradient 

for the obese. The findings for the estimates without the controls for age, race and education 

(Table 5) are quite similar. The OLS estimates suggest an income gradient that is about half the 

size of the UQR estimator when evaluated at the obesity threshold, and the OLS estimate are the 

wrong sign when estimating the effect at the quantile corresponding to the underweight threshold 

(BMI=18.5).  There is little evidence of any statistically significant correlation between income 

and BMI (for either specification) when evaluated at the overweight threshold based on the 

1999-2006 pooled data.   

 Given the significant gender differences in the relationship between BMI and income 

observed in Table 3, it is not that surprising that Tables 4 and 5 show differences in the income 

gradient by gender. For males, the OLS estimates suggest that there is a positive relationship 

between BMI and income. Without the control variables (Table 4), the correlation is weak; but in 

the model with controls (Table 5), the positive correlation is strong (p-values < 0.01) in three of 

the four periods. As with the full sample results, the OLS estimates are masking quite a bit of 

variation at different points in the BMI distribution. The UQR estimates show that the positive 

correlation is much larger than the OLS estimates when examined at BMI=25. Whereas the OLS 

estimate for 1999-2006 indicate an increase of 0.16 for a one unit increase in income, the UQR 

estimate evaluated at the overweight threshold is almost three times larger (0.45). The more 

recent UQR estimates further indicate that there is essentially no income gradient in BMI at 

either the underweight or obese threshold for men. This result is consistent with the findings 

from the alternative measures that there were large differences for men in terms of the 

prevalence of overweight, but essentially no differences in terms of the severity.  

 For women, the OLS – UQR comparison is more an issue of magnitude of the estimates. 
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Across all years, and for both models with and without controls, the OLS estimates of the income 

gradient are negative and statistically significant (p-values < 0.01). This is also true of the UQR 

estimates evaluated at both the overweight and obese thresholds (p-values < 0.01). This indicates 

a very robust finding consistent with the traditional income gradient in health (i.e. increases in 

income associated with better health outcomes). The primary difference is that the UQR 

estimates evaluated at the obesity threshold are much larger than the OLS estimates. For 

example, the obesity UQR estimate is about twice the size of the OLS estimate in the 1970s, and 

about 45 percent greater than OLS in the most recent estimates.22 

 

4. Conclusion  

Understanding the correlation between income and BMI is important for policies aimed at the 

nutritional intake of poor persons as well as policies aimed to reduce the prevalence of 

overweight and obesity. Current portrayals of the relationship between income and BMI in the 

popular press, policy briefings, and in some limited cases, academic writing, suggest that the 

poor have much higher rates of overweight and obesity. The basic descriptive statistics do not 

support this assertion. NHANES data from 2003-06 indicate no statistically significant 

differences in the prevalence of overweight or of obesity for the poor and nonpoor.  

 This paper examines continuous measures of overweight, and thereby helps to explain, in 

part, the conventional wisdom that the poor are more overweight. The choice to use these 

measures is based primarily on a desire to reflect research indicating that the severity (or 

probability) of negative health outcomes associated with being overweight are increasing in 

BMI. If one considers the overweight severity measures, which accounts for both the mass and 

spread of the BMI distribution above the overweight threshold, then the conventional wisdom 

                                                 
22 The OLS estimates are about the same magnitude as the UQR estimates evaluated at BMI=25.  
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holds – the overweight severity for the poor is statistically greater than that for the nonpoor. The 

depth index helps to explain this by revealing that the overweight and poor exceed the 

overweight threshold (BMI=25) by 29 percent, while the nonpoor and overweight exceed this 

threshold by 26 percent.  

 The regression analysis provides further evidence that the relationship between BMI and 

income is more closely linked to conventional wisdom than is suggested by the cross-tabulations. 

While the paper shows that the OLS estimate of the marginal effect is negative at the conditional 

mean (consistent with the conventional wisdom), the UQR estimates show that OLS is masking 

important variation. In particular, OLS gets the sign wrong for the underweight, and significantly 

underestimates the magnitude of the negative correlation for the obese. When considering the 

adult population using recent data, the OLS estimate from regressing BMI on income indicates 

that a one unit increase in income (e.g. increasing income from the poverty line to twice this 

level) reduces the average BMI by .22 points. The UQR estimates reveal that at the underweight 

threshold (BMI=18.5), a one unit increase in income increases BMI by .11 points and at the 

obese threshold (BMI=30), the same increase in income reduces BMI by .40 points.  

 This paper provides evidence that the cross tabulation of overweight and poor provides a 

very incomplete picture of the relationship between income and BMI by indicating essentially no 

association between poverty and overweight and obesity status. Making policy decisions based 

on this though would lead to poor choices. The distribution-sensitive measures of overweight 

indicate that the overweight poor are the most overweight. The UQR estimates further suggest 

that there is a positive income gradient in BMI for the underweight and a negative gradient for 

the obese (much larger in magnitude than that estimated by OLS), which matches the standard 

health and wealth gradient, and conventional wisdom.  
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 Table 1: Overweight and Obese by Income 

  
OWα  Indices of  
 Overweight 

1971-74 1976 -80 1988 -94 1999 -02 2003 -06  % Change 
1971-2006

Panel A: Overweight, BMI > 25      
Overweight, Poor 48.3 46.5 55.7 64.4 64.7  28% 
 (1.54) (1.40) (1.40) (1.41) (1.53)   
Overweight, 46.5 45.9 53.9 65.4 67.5  45% 
Not Poor (0.77) (0.84) (1.09) (1.03) (1.09)   
Difference :  1.8 0.6 1.8 -1.0 -2.8   
(% points)        
Panel B: Obese, BMI > 30      
Obese, Poor 19.8 19.0 26.8 34.6 34.2  62 % 
 (1.09) (1.02) (1.38) (1.28) (1.23)   
Obese, Not Poor 13.3 13.5 21.3 29.5 33.9  155% 
 (0.55) (0.41) (0.87) (1.12) (1.17)   
Difference: 6.5*** 5.5*** 5.5*** 5.1* 0.3   
(% points)                
Note: For all analysis in this paper, poor is defined as less than or equal to 130% of the poverty 

line. Statistical significance indicated with *, **, or *** for p-values less than 0.1, 0.05, and 

0.01, respectively. Standard errors corrected for complex sample design using the NHANES 

pseudo design variables. All years exclude pregnant and breastfeeding women. 
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Table 2: Adult Overweight by Income 
  

OWα  Indices of  
 Overweight 

1971 - 
1974 

1976 -
1980 

1988 -
1994 

1999 -
2002 

2003 -
2006 

% Change 
1971-2006 

Panel A: Poor (< 130% poverty line)     
OW0 Prevalence 48.3 46.5 55.7 64.4 64.7 34% 
 (1.54) (1.40) (1.40) (1.41) (1.53)  
OW1 Depth 10.4 10.2 13.6 18.8 18.5 77% 
 (0.46) (0.48) (0.68) (0.68) (0.71)  
OW2 Severity 4.4 4.3 6.1 9.7 10.3 135% 
 (0.35) (0.39) (0.51) (0.62) (1.06)  
Panel B: Nonpoor ( ≥ 130% poverty line)     
OW0 Prevalence 46.5 45.9 53.9 65.4 67.5 45% 
 (0.77) (0.84) (1.09) (1.03) (1.09)  
OW1 Depth 7.5 7.4 11.1 15.6 17.5 133% 
 (0.22) (0.18) (0.43) (0.55) (0.53)  
OW2 Severity 2.3 2.3 4.4 6.6 7.9 237% 
 (0.14) (0.10) (0.33) (0.41) (0.37)         
Note: All overweight measures are multiplied by 100. Standard errors for OW0, OW1, and OW2 

are also multiplied by 100 and in parentheses. See notes for Table 1.  
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Table 3: Adult Overweight by Sex and Income 
  
OWα  Indices of  
 Overweight 

1971 - 
1974 

1976 -
1980 

1988 -
1994 

1999 -
2002 

2003 -
2006 

% Change 
1971-2006 

Panel A: Poor Men (<130% poverty)    
OW0 Prevalence 43.8 42.8 51.5 63 62.7 43% 
 (2.18) (1.99) (1.97) (2.05) (2.30)  
OW1 Depth 7.0 6.8 10.2 15.6 13.9 98% 
 (0.5) (0.44) (0.68) (0.92) (1.00)  
OW2 Severity 2.2 2.1 3.6 7.5 7.6 252% 
 (0.30) (0.27) (0.48) (0.93) (2.25)  
Panel B: Nonpoor Men (≥130% poverty)    
OW0 Prevalence 54.9 52.4 60.4 69.6 74.5 36% 
 (1.20) (0.92) (1.29) (1.05) (1.21)  
OW1 Depth 7.5 7 10.6 14.5 17.2 128% 
 (0.28) (0.21) (0.44) (0.56) (0.55)  
OW2 Severity 2.0 1.7 3.6 5.5 6.8 246% 
 (0.19) (0.08) (0.34) (0.47) (0.32)  
Panel C: Poor Women (<130% poverty)    
OW0 Prevalence 51.7 49 59 65.5 66.4 29% 
 (1.94) (1.75) (1.91) (1.92) (1.71)  
OW1 Depth 12.9 12.5 16.4 21.3 22.3 73% 
 (0.64) (0.79) (0.94) (0.81) (0.93)  
OW2 Severity 6.0 5.8 8.0 11.4 12.6 108% 
 (0.51) (0.67) (0.68) (0.77) (0.89)  
Panel D: Nonpoor Women (≥130% poverty)    
OW0 Prevalence 38.3 39.3 47.3 60.8 60.2 57% 
 (0.89) (1.12) (1.29) (1.60) (1.54)  
OW1 Depth 7.5 7.8 11.6 16.7 17.8 138% 
 (0.33) (0.32) (0.59) (0.70) (0.67)  
OW2 Severity 2.7 3.0 5.1 7.8 9.0 234% 
 (0.21) (0.21) (0.47) (0.52) (0.57)         
Note: See note for Table 2. 
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Table 4: BMI and Income 

Multivariate OLS and Unconditional Quantile Regression Estimates 
 
Income gradients, OLS and 
UQR estimators 

 1971 
 -74 

1976 
 -80 

1988 
 -94 

1999 
2006 

 

Panel A: All Adults, BMI   
OLS  -.10***  -.09*  -.20**  -.22***      
  (.02)  (.05)  (.08)  (.03)  
Quantile: Underweight   .06  .11***  .02***  .11**          
  (.05)  (.02)  (.00)  (.04)  
Quantile: Overweight  -.10**  .01  -.14**  -.02       
  (.05)  (.03)  (.06)  (.03)  
Quantile: Obese  -.44***  -.63***  -.40**  -.40***      
  (.09)  (.10)  (.17)  (.04)  
Sample size  11,994 11,005 13,208 14,123  
Panel B: Males, BMI   
OLS  .10*  .08  -.06  .07*          
  (.05)  (.07)  (.08)  (.04)  
Quantile: Underweight   .11  .07  .03**  .13          
  (.12)  (.11)  (.02)  (.15)  
Quantile: Overweight  .13**  .22***  -.05  .29***         
  (.05)  (.03)  (.08)  (.06)  
Quantile: Obese  -.17  -.33***   -.24  -.01      
  (.23)  (.07)  (.15)  (.07)  
Sample size  4,632 5,276 6,351 7,213  
Panel C: Females, BMI   
OLS  -.29***  -.28***  -.33***  -.48***      
  (.03)  (.03)  (.07)  (.02)  
Quantile: Underweight   -.04  .11***  -.03***  .05        
  (.05)  (.01)  (.01)  (.06)  
Quantile: Overweight  -.37***  -.28***  -.27***  -.36***      
  (.10)  (.05)  (.06)  (.11)  
Quantile: Obese  -.68***  -.68***  -.52***  -.69***      
  (.13)  (.08)  (.18)  (.02)  
Sample size  7,362 5,729 6,857 6,910  
       
Note: Weighted OLS and Unconditional Quantile Regressions of BMI on income, age, square of 

age, race and education levels. OLS standard errors are corrected for stratification and clustering. 

UQR standard errors are bootstrap estimates (reps=1,000), accounting for clustering.  Bold 

indicates p-value < 0.05; * p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.   
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Table 5: BMI and Income 

Bivariate OLS and Unconditional Quantile Regression Estimates 
 
Income gradients, OLS and 
UQR estimators 

 1971 
 -74 

1976 
 -80 

1988 
 -94 

1999 
2006 

 

Panel A: All Adults, BMI   
OLS  -.14***  -.15***  -.17***  -.17***      
  (.02)  (.03)  (.06)  (.05)  
Quantile: Underweight   .09**  .12***  .04  .12**          
  (.03)  (.02)  (.05)  (.05)  
Quantile: Overweight  -.11**  -.05***  -.09  .00       
  (.05)  (.01)  (.06)  (.03)  
Quantile: Obese  -.65***  -.81***  -.40**  -.33***      
  (.10)  (.07)  (.16)  (.09)  
Sample size  12,397 11,295 13,274 14,134  
Panel B: Males, BMI   
OLS  .13**  .13***  .05  .16***         
  (.05)  (.05)  (.06)  (.03)  
Quantile: Underweight   .11  .11  .04  .14          
  (.11)  (.10)  (.03)  (.12)  
Quantile: Overweight  .26***  .30***  .15**  .45***     
  (.05)  (.02)  (.06)  (.08)  
Quantile: Obese  -.25  -.32***  -.11  .11       
  (.22)  (.05)  (.14)  (.09)  
Sample size  4,793 5,406 6,392 7,219  
Panel C: Females, BMI   
OLS  -.43***  -.45***  -.39***  -.47***      
  (.03)  (.03)  (.07)  (.06)  
Quantile: Underweight   .01  .11***  -.01  .07         
  (.03)  (.02)  (.04)  (.06)  
Quantile: Overweight  -.57***  -.50***  -.38***  -.44***       
  (.11)  (.03)  (.08)  (.07)  
Quantile: Obese  -1.00***  -1.11***  -.66***  -.70***    
  (.12)  (.04)  (.17)  (.05)  
Sample size  7,604 5,889 6,882 6,915  
       
Note: Weighted OLS and Unconditional Quantile Regressions of BMI on income. OLS standard 

errors are corrected for stratification and clustering. UQR standard errors are bootstrap estimates 

(reps=1,000), accounting for clustering. Bold indicates p-value < 0.05; * p-value < 0.1, ** p-

value < 0.05, *** p-value < 0.01.    
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Figure 1: BMI density from 1971-1974 and 1999-2006 

 
Notes: The Epanechnikov kernel is used to estimate the density functions with the smoothing 

parameter set to 0.75.  
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Figure 2: BMI density in 1999-2006 by poverty status 

 
 
Notes: Poor persons are those with incomes less than 130 percent of the poverty line, nonpoor 

are those with incomes greater than 130 percent. The Epanechnikov kernel is used to estimate the 

density functions with the smoothing parameter set to 0.75 for the nonpoor and 1.5 for the poor. 
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Appendix Figure 1: Income Estimates, Comparing NHANES to CPS 
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Sources: NHANES 1999-2000, 2001-02, 2003-04, 2005-06 and Current Population Survey 1999 
and 2006 (March Supplements) 
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Appendix Table 1: BMI and Income 

Bivariate OLS and Unconditional Quantile Regression Estimates 
 
Income gradients, OLS and 
UQR estimators 

 1971 
 -74 

1976 
 -80 

1988 
 -94 

1999 
 -02 

2003 
 -06 

Panel A: All Adults, BMI   
OLS  -.14  -.15  -.17  -.23  -.11       
  (.02)  (.03)  (.06)  (.03)  (.11)  
Quantile: Underweight   .09  .12  .04  .14  .09            
  (.03)  (.02)  (.05)  (.05)  (.11)  
Quantile: Overweight  -.11  -.05  -.09  -.05  .04        
  (.05)  (.01)  (.06)  (.03)  (.04)  
Quantile: Obese  -.65  -.81  -.40  -.37  -.28       
  (.10)  (.07)  (.16)  (.10)  (.07)  
 Sample size  12,397 11,295 13,274 6,816 7,318 
Panel B: Males, BMI   
OLS  .13  .13  .05  .08  .24           
  (.05)  (.05)  (.06)  (.05)  (.02) 
Quantile: Underweight   .11  .11  .04  .13  .15           
  (.11)  (.10)  (.03)  (.09)  (.17) 
Quantile: Overweight  .26  .30  .15  .34  .56           
  (.05)  (.02)  (.06)  (.07)  (.07) 
Quantile: Obese  -.25  -.32  -.11  .03  .18        
  (.22)  (.05)  (.14)  (.12)  (.01) 
 Sample size  4,793 5,406 6,392 3,468 3,751 
Panel C: Females, BMI   
OLS  -.43  -.45  -.39  -.50  -.44      
  (.03)  (.03)  (.07)  (.05)  (.19) 
Quantile: Underweight   .01  .11  -.01  .10  .03           
  (.03)  (.02)  (.04)  (.06)  (.03) 
Quantile: Overweight  -.57  -.50  -.38  -.43  -.47      
  (.11)  (.03)  (.08)  (.09)  (.02) 
Quantile: Obese  -1.00  -1.11  -.66  -.73  -.68       
  (.12)  (.04)  (.17)  (.12)  (.15) 
 Sample size  7,604 5,889 6,882 3,348 3,567 
       
Note: Weighted OLS and Unconditional Quantile Regressions of BMI on income. OLS standard 

errors are corrected for stratification and clustering. UQR standard errors are bootstrap estimates 

(reps=1,000), accounting for clustering. Bold indicates p-value < 0.05.  
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Appendix Table 2: BMI and Income 

Multivariate OLS and Unconditional Quantile Regression Estimates 
 
Income gradients, OLS and 
UQR estimators 

 1971 
 -74 

1976 
 -80 

1988 
 -94 

1999 
 -02 

2003 
 -06 

Panel A: All Adults, BMI   
OLS  -.10  -.09  -.20  -.32  -.12       
  (.02)  (.05)  (.08)  (.03)  (.05) 
Quantile: Underweight   .06  .11  .02  .13  .08           
  (.05)  (.02)  (.00)  (.04)  (.06) 
Quantile: Overweight  -.10  .01  -.14  -.08  .03        
  (.05)  (.03)  (.06)  (.03)  (.01) 
Quantile: Obese  -.44  -.63  -.40  -.50  -.27      
  (.09)  (.10)  (.17)  (.04)  (.03) 
 Sample size  11,994 11,005 13,208 6,806 7,317 
Panel B: Males, BMI   
OLS  .10  .08  -.06  -.05  .19         
  (.05)  (.07)  (.08)  (.09)  (.01) 
Quantile: Underweight   .11  .07  .03  .12  .13           
  (.12)  (.11)  (.02)  (.07)  (.19) 
Quantile: Overweight  .13  .22  -.05  .15  .42          
  (.05)  (.03)  (.08)  (.04)  (.07) 
Quantile: Obese  -.17  -.33  -.24  -.17  .12       
  (.23)  (.07)  (.18)  (.09)  (.02) 
 Sample size  4,632 5,276 6,351 3,463 3,750 
Panel C: Females, BMI   
OLS  -.29  -.28  -.33  -.56  -.41      
  (.03)  (.03)  (.07)  (.02)  (.08) 
Quantile: Underweight   -.04  .11  -.03  .06  .01         
  (.05)  (.01)  (.01)  (.07)  (.05) 
Quantile: Overweight  -.37  -.28  -.27  -.31  -.40      
  (.10)  (.05)  (.06)  (.10)  (.06) 
Quantile: Obese  -.68  -.68  -.52  -.81  -.59      
  (.13)  (.08)  (.13)  (.09)  (.04) 
 Sample size  7,362 5,729 6,857 3,343 3,567 
       
Note: Weighted OLS and Unconditional Quantile Regressions of BMI on income, age, square of 

age, race and education levels. OLS standard errors are corrected for stratification and clustering. 

UQR standard errors are bootstrap estimates (reps=1,000), accounting for clustering. Bold 

indicates p-value < 0.05.  




