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ABSTRACT 

Repeated Contests with Asymmetric Information   

by Johannes Münster * 

The same contestants often meet repeatedly in contests. Behavior in a contest 
potentially provides information with regard to one's type and can therefore 
influence the behavior of the opponents in later contests. This paper shows that 
if effort is observable, this can induce a ratchet effect in contests: high ability 
contestants sometimes put in little effort in an early round in order to make the 
opponents believe that they are of little ability. The effect reduces overall effort 
and increases equilibrium utility of the contestants when compared with two 
unrelated one-shot contests. It does, however, also introduce an allocative 
inefficiency since sometimes a contestant with a low valuation wins. The model 
assumes an imperfectly discriminating contest. In extension I show that, 
qualitatively, results are similar in a perfectly discriminating contest (all pay 
auction). 
 
JEL Classification: C72, D72, D74, D82, M52 

ZUSAMMENFASSUNG 

Wiederholte Wettkämpfe mit asymmetrischer Information 

Dieselben Wettkämpfer treffen oft wiederholt in Wettkämpfen aufeinander. Aus 
dem Verhalten in einem Wettkampf können die Gegner Informationen über den 
Typ eines Wettkämpfers erhalten: seine Fähigkeit und Motivation zu gewinnen. 
Auf diesem Weg kann das Verhalten einen Einfluss auf das Verhalten der 
Gegenspieler in späteren Wettkämpfen haben. Dieser Aufsatz zeigt, dass dies 
zu einem Sperrklinken Effekt in wiederholten Wettkämpfen führen kann. Die 
Beteiligten strengen sich in einer frühen Runde manchmal nicht sehr an, um 
ihre Gegenspieler glauben zu lassen, dass sie nicht sehr an einem Gewinn 
interessiert sind, und so eine spätere Runde einfach gewinnen zu können. 
Dieser Effekt verringert die gesamte Leistung in dem Wettkampf. Er führt 
darüber hinaus zu einer allokativen Ineffizienz, da manchmal ein Spieler 
gewinnt, dem dies nicht viel Wert ist. 
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and an anonymous referee for helpful comments. Any errors are mine. Financial support from the 
German Research Foundation (DFG) is gratefully acknowledged (SFB-TR 15).  
 
 



1 Introduction

Contests or tournaments are ubiquitous. Examples include tournaments and,

more generally, competition for advancement and promotion within firms,

rent seeking contests, R&D races, election races, and appropriative conflicts.

In the last decades an extensive literature concerning contests has been de-

veloped.1

However, little is known about repeated contests with asymmetric infor-

mation. In many real world applications, the same contestants meet repeat-

edly in contests. For example, in many firms there are contests for becoming

the “employee of the month”, and in many universities there are “teacher of

the year” awards. Moreover, important representative jobs, like chairman-

ship of a political organization, are typically held for only a limited time.

Thus, the competition for getting such a job has the character of a repeated

contest. Rent-seeking contests, too, are sometimes repeated.

This paper begins the study of repeated contests with asymmetric infor-

mation using a stylized model of an imperfectly discriminating contest in

the tradition of Tullock (1980). Two contestants compete in a contest that

is repeated once. They observe the effort chosen by the rival in the first

round before deciding on their own effort in the second round. The con-

testants have private information about how much they value winning, or

about their abilities. Formally, I assume that each contestant has either a

high or a low valuation, where the low valuation is zero. The model describes

situations where the contestants do not know whether or not they face an

active competitor, as in Myerson and Wärneryd (2006), Münster (2006), and

Lim and Matros (2007). The valuations of the contestants are independent,

but are constant over time. Of course, this highly stylized framework pre-

1This literature has been developed in several different fields. Excellent surveys are
available. Rosen (1988) and Konrad (2007) are on contests generally. Lazear (1995)
includes a chapter on labor market tournaments. See Nitzan (1994) on rent-seeking, and
Baye and Hoppe (2003) on the strategic equivalence between rent-seeking contests and
R&D races. Recent work on research tournaments includes Che and Gale (2003) and
Fullerton and McAfee (1999). Szymanski (2003) surveys the design of sport tournaments.
Skaperdas (2003) and Garfinkel and Skaperdas (2006) review the economic literature on
appropriative conflict. In auction theory, there is a closely related literature on all pay
auctions (in the language of contest theory, an all pay auction is a perfectly discriminating
contest), see Baye, Kovenock and deVries (1996).
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cludes consideration of many interesting topics. On the other hand, it yields

a tractable model that leads to important insights into the effects that are

present in repeated contests with asymmetric information.

The main insight is that there can be a ratchet effect in repeated contests:

contestants with a high ability or a high valuation sometimes put in little

effort in an early round in order to make the opponents believe that their

ability is low - they are sandbagging. This reduces the resources spent in the

contest. With regard to labor markets, this points to a drawback of relative

performance compensation schemes. Moreover, sandbagging introduces an

allocative inefficiency, since a contestant with a low valuation now sometimes

wins in round one. However, I show that the net effect is beneficial for the

contestants. Applied to rent-seeking, this means that, when rent-seeking

activities are viewed as pure waste from a social point of view, rent dissipation

is smaller. Thus, a repeated contest can actually be used to reduce the welfare

loss due to rent-seeking. On the other hand, when rent-seeking activities are

viewed as pure transfers, allocative efficiency is the only welfare criterion and

the repeated contest therefore leads to higher welfare losses.

I show that there will be sandbagging in equilibrium if, and only if, the

proportion of low valuation contestants is low. Otherwise, expected equi-

librium effort and rent dissipation are like those in two unrelated one shot

contests with asymmetric information.

As a robustness check, I also consider the case of a perfectly discriminating

contest (an all pay auction). Results are qualitatively similar.

Contests with asymmetric information have been studied by Hurley and

Shogren (1998a), who model one-sided asymmetric information, and by Hur-

ley and Shogren (1998b) and Malueg and Yates (2004) who look at two-

sided asymmetric information. Wärneryd (2003) is an interesting paper on

the common value case. Myerson and Wärneryd (2006), Münster (2006),

and Lim and Matros (2007) study contests where the contestants do not not

how many competitors there are. None of these papers deals with repeated

contests. My paper is also related to several papers on multi-stage contests.

Rosen (1986) studies a sequential elimination tournament, and Gradstein

and Konrad (1999) compare simultaneous contests with sequential contests.

In contrast to the present paper, these papers look at sequential elimination

2



contests where it is never the case that the same two contestants meet again

in a later round. Most closely related to the present paper are Meyer (1991)

and Meyer (1992) on the optimal design of a repeated contest between a

pair of contestants, and Krähmer (2007), Mehlum and Moene (2006), and

Amegashie (2006) on infinitely repeated contests between two contestants.

In these papers, information is symmetric. Amegashie (2007) also discusses

implications for signaling in contests. Moldovanu and Sela (2006) study an

all-pay auction model of an elimination contest. They assume that the con-

testants who compete in a later round cannot directly observe the effort that

their current rivals have chosen in an earlier round, thus abstracting away

from the signaling issues at the heart of the present paper. In auction theory,

the setup used by Jeitschko and Wolfstetter (2002) is close to my paper. My

paper is also related to Hörner and Sahuget (2007) who study signaling in

a dynamic auction. These papers study auctions with a deterministic allo-

cation rule, whereas I look at an imperfectly discriminating contest, where

there is some “noise” in the determination of the winner. Finally, my paper

is related to Slantchev (2007), who studies incentives for feigning weakness

in crisis bargaining with a potential escalation to war, which is modeled as

a contest.

The paper is organized as follows. Section 2 sets out a simple model

of repeated contests with asymmetric information. Section 3 looks at the

second round contest. Section 4 studies the repeated contest. As a robustness

check, section 5 discusses the case of a perfectly discriminating contest (all

pay auction).

2 The model

There are two contestants i = a, b and two rounds t = 1, 2. In each round,

there is a prize to be won. There are two types of contestants. High valuation

types value winning the prize with v > 0, while low valuation types have a

valuation of zero. The low valuation types can also be thought of as having

a budget cap of zero in each round, or infinite bid cost (zero ability). Hence

the model is also applicable to a situation where an ability or endowment is

needed in order to be able to compete at all, and only some of the contestants
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have this ability or endowment. Denote the type of i by vi. Each contestant

knows his own type but not the type of the other contestant. The valuations

are independent across contestants but constant over time. In this model, a

contestant does not know whether or not he faces any active rival, which is

arguably a feature of many real world contests.

Let xti denote the effort that contestant i chooses in round t. Contestant

i wins in round t with probability

pti =

(
xti

xti+x
t
j
, if xti + xtj > 0,

1
2
, if xti + xtj = 0.

(1)

This contest success function is commonly used in the literature. Microeco-

nomic underpinnings have been developed by Mortensen (1982), Hirshleifer

and Riley (1992), and Fullerton and McAfee (1999). For an axiomatization

see Skaperdas (1996).2

In equation (1), it is assumed that a fair coin is flipped if no contestant

puts in any effort. In some applications, it may be more natural to assume

that a contestant cannot win if he chooses zero effort, and hence pti = 0 for

both i = a, b if xta = xtb = 0. Qualitatively, all the results below hold in this

case, too.

Contestants are risk neutral and there is no discounting.3 The objective

function of contestant i is given by

ui =
2X

t=1

¡
ptivi − xti

¢
. (2)

For notational convenience, denote the utility gained in round t by uti :=

ptivi − xti.

The timing of the game is as follows. First, nature draws the types

va and vb independently from an infinite population. The fraction of low

valuation types in the population is λ ∈ (0, 1) . Next each contestant learns
2In section 5 I consider an alternative specification: the perfectly discriminating contest

where contestant i wins round t with probability one if xti > xtj .
3Discounting would diminish the incentives to mislead opponents and thus increase the

range of parameters where there is separation in round one. However, results would not
change qualitatively.
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his own type, but not the type of his rival. Then the first contest is played:

the contestants simultaneously choose their first round efforts x1a and x1b ,

respectively. Nature draws a winner according to the contest success function.

The identity of the winner, as well as the efforts chosen, are revealed before

the second round starts. Contestants update their beliefs according to Bayes’

rule. In the second round, the contestants simultaneously choose x2a and x2b ,

respectively. Again, nature draws a winner, and, finally, payoffs are received.

Note that the contest success function is discontinuous at xta = xtb = 0.

This leads to a technical problem concerning the existence of equilibria. In

particular, the best response of a high valuation contestant to zero effort in

round two is not well defined, since any strictly positive effort ensures victory.

However, this problem is an artifact of the continuous strategy space. For

example, if efforts are amounts of money, and there is a smallest unit of the

currency, this problem does not show up. To avoid this rather uninteresting

problem, I assume that, if a contestant puts in any effort at all, then he

has to put in at least some strictly positive (but ‘small’) amount ε. That is,

xti ∈ X := {0}∪[ε,∞) for some ε > 0. I will study the game for an arbitrarily
small ε.4

In this game, a pure strategy consists of two functions x1i , x
2
i , where

x1i : {0, v} → X specifies i’s effort in t = 1 as a function of i’s type and

x2i : {0, v} ×X2 × {a, b}→ X specifies i’s effort in t = 2 as a function of i’s

type, efforts of both contestants in t = 1, and the winner in the first round.

In addition to strategies, we also have to consider the beliefs of the con-

4There are several other ways of dealing with the problem; all lead to similar conclu-
sions. (i) Following Blume and Heidhues (2006), one could allow additional efforts such
as 0+, which is identical to 0 except that 0+ wins, with probability one, against 0. This
approach will be used for the analysis of the perfectly discriminating contest in section 5
below. (ii) Another alternative is to use an endogenous tie-breaking rule, following Jack-
son et al. (2002). The only change of (1) concerns the case where x2i = x2j = 0. In the
case of a tie at zero in t = 2, the contestant with the higher valuation wins with probabil-
ity one. One might object to this tie-breaking rule because it depends on the valuations
of the contestants, which are private information and thus not observable to the contest
designer. But this difficulty can be solved by asking the contestants to report their types
and breaking the tie according to the answers. Put more formally, in case of a tie at zero
in t = 2, each contestant sends a message si ∈ {0, v} . If si = v > sj = 0, then p2i = 1.
It will become clear that reporting one’s true type is incentive compatible. There is one
further subtlety concerning existence of optimal actions off the equilibrium path which
will be dealt with below (in footnote 8).
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testants. In the first round, each contestant thinks that his opponent has a

low valuation with probability λ. Concerning the second round, let µa denote

the probability that contestant a, after having observed x1b and the identity

of the winner of round one, ascribes to the event that his opponent has a

low valuation (vb = 0). Similarly, µb is the probability b ascribes to va = 0. I

use perfect Bayesian equilibrium as the solution concept. A perfect Bayesian

equilibrium consists of strategies and beliefs for each contestant such that

(i) strategies are sequentially optimal, given the beliefs and the strategies of

the opponent, and (ii) beliefs are updated according to Bayes’ rule wherever

possible.

Finally, I assume that social welfare is given by

w =
X
i=a,b

2X
t=1

¡
ptivi − αxti

¢
. (3)

The parameter α captures a value judgement concerning how the efforts

should be evaluated. In applications to rent-seeking, α is the proportion of

rent-seeking activities that are wasted from a social welfare point of view.5

If α = 1, rent-seeking is pure waste; welfare coincides with the contestants’

utility. On the other hand, in some situations, it may be more reasonable

to view rent-seeking activities as transfers to some third party. The case

α = 0 captures the case of pure transfers. Then, allocative efficiency is all

that matters.

3 The second round contest

This section begins the analysis by studying the second round contest. Given

beliefs µa and µb, the game in round two is identical to a one-shot contest

with two-sided asymmetric information. This also provides a convenient

benchmark for the behavior in the entire two stage game.

For a low valuation contestant, choosing x2i = 0 is a strictly dominant

strategy. Thus, if a contestant with a high valuation believes that his oppo-

nent has a low valuation with probability one, he will not put in any effort

5See, for example, Baye, Kovenock and deVries (1996).
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except ε.

Consider now the case where µa < 1 and µb < 1. If a contestant has

a high valuation, he will choose a strictly positive effort in equilibrium. To

see this, suppose to the contrary that there is a contestant i ∈ {a, b} who
chooses x2i = 0. Then the best reply of the high valuation type of the other

contestant j is x2j = ε; but, given that, the high valuation type of contestant

i should choose some strictly positive x2i , a contradiction.

Hence the high valuation type of contestant a solves

max
x2a≥ε

µ
µa + (1− µa)

x2a
x2a + x2b

¶
v − x2a,

where x2b denotes the effort of the high valuation type of contestant b. Simi-

larly, the high valuation type of contestant b solves

max
x2b≥ε

µ
µb + (1− µb)

x2b
x2a + x2b

¶
v − x2b .

The first order conditions are

(1− µa)
x2b

(x2a + x2b)
2v = 1,

(1− µb)
x2a

(x2a + x2b)
2v = 1.

The objective functions are concave, and hence the first order conditions are

also sufficient for a maximum. Solving, we find that the efforts of the high

valuation types are (i = a, b; j 6= i)

x2i =

¡
1− µj

¢
(1− µi)

2¡
2− µi − µj

¢2 v. (4)

If µa < 1 and µb < 1, these expressions are strictly positive and hence the

constraints that x2i ≥ ε do not bind.

Lemma 1 Given beliefs µa < 1 and µb < 1, there is a unique equilibrium in
the second round of the game, where the efforts of the high valuation types

7



are given by equation (4). Expected utility of a high valuation type is

u2i = µiv +
(1− µi)

3¡
2− µi − µj

¢2v i = a, b; i 6= j.

Some special cases are particularly interesting. For example, if µa =

µb = 0, we are basically in a full information contest between two high

valuation contestants, and get the well known equilibrium where the effort

of a contestant equals v/4. More importantly, the following corollaries are

immediate and will be used frequently below.

Corollary 1 Consider the symmetric case where µa = µb = λ ∈ (0, 1) .
Here, the effort of a high valuation contestant is

x2i = (1− λ)
v

4
,

and expected utility of a high valuation contestant is

u2i = λv + (1− λ)
v

4
.

Corollary 2 Consider the case where 0 < µi < 1 but µj = 0 (contestant

j believes with probability one that his opponent has a high valuation). The

expected utility of the high valuation types equals

u2i = µiv +
(1− µi)

3

(2− µi)
2v,

u2j =
v

(2− µi)
2 .

4 The repeated contest

4.1 Updating of beliefs

Before the contestants enter round two, they observe all actions taken in

round one and the winner of the contest in round one, and update their

beliefs about their rivals’ type. Recall that types are drawn independently.
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Moreover, the identity of the winner does not carry any additional infor-

mation about the types once the first round efforts are known. Hence, the

updated belief µi can be regarded as a function of the rivals’ first round effort

x1j alone.

To simplify the exposition, I will impose the following simple reasonable

belief refinement:

µi = 0 if x
1
j > 0 (i 6= j). (5)

This seems reasonable because any x1j > 0 is strictly dominated for the low

valuation contestant.6 If we do not impose (5), the set of equilibria is larger,

but the additional equilibria differ from those that satisfy (5) only off the

equilibrium path.7

4.2 Separation in round one

Here I look for perfect Bayesian equilibria (henceforth, equilibria) where both

contestants “separate” in round one. A contestant i separates in round one iff

x1i (v) 6= x1i (0) with probability one. I will call an equilibrium an equilibrium

with separation in round one if both contestants separate in round one.

Suppose that both contestants separate in round one. Then we have

x1i (v) > 0 for i = a, b. From equation (5), for any x1i > 0 we have µj (x
1
i ) = 0,

and therefore i can not influence j’s belief by choosing between different

positive first round efforts. Hence the first round effort of a high valuation

contestant must maximize his payoff for this round.

Therefore, in an equilibrium with separation in round one, x1i (v) must

6Of course, any xti > 2v is strictly dominated by xti = 0 for the high valuation type,
too. However, this is not crucial - beliefs µi (x) for x > 2v do not matter.

7In particular, if some behavior in round one cannot be supported as part of an
equilibrium by beliefs that satisfy (5), it cannot be supported by any beliefs that are
consistent with the strategies. This is due to the fact that, in the model, it is always
good to be underestimated: if contestant i has a high valuation, his second round payoff
increases in µj (see lemma 1). Suppose that µj does not satisfy (5). Then, after observing
some x1i > 0 off the equilibrium path, j may assign a positive probability to vi = 0,
and hence play less aggressively in round two. On the other hand, if x1i > 0 is on the
equilibrium path, consistency with strategies implies µj

¡
x1i
¢
= 0, since any x1i > 0 is

strictly dominated for the low valuation type. This implies that the incentives to deviate
in round one from some candidate equilibrium can only be stronger when beliefs do not
satisfy (5).
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solve

max
x1i≥ε

µµ
λ+ (1− λ)

x1i
x1i + x1j (v)

¶
v − x1i

¶
for i = a, b, j 6= i. The solution to these problems is

x1i (v) = (1− λ)
v

4
,

and gives a high valuation contestant u1i = λv + (1− λ) v/4.

Now consider the second round. Given beliefs, the optimal behavior of a

high valuation type in the second round is easily described:

x2i =

(
ε, if x1j = 0,
v
4
, if x1j > 0.

Expected utility of a high valuation contestant from the second round

equals u2i = λv + (1− λ) v/4 (for ε→ 0). Summing up, we have

Lemma 2 If there is an equilibrium with separation in round one, then

strategies in this equilibrium satisfy

x1i =

(
0, if vi = 0,

(1− λ) v
4
, if vi = v,

x2i =

⎧⎪⎨⎪⎩
0, if vi = 0,

ε, if vi = v and x1j = 0,
v
4
, if vi = v, x1i > 0 and x

1
j > 0.

Beliefs in round two are

µi =

(
0 if x1j > 0,

1 if x1j = 0.

Expected utility equals

ui =

(
0, if vi = 0,

2
¡
λv + (1− λ) v

4

¢
, if vi = v > 0.
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By comparing this lemma with the results of the previous section, we

immediately come to the following proposition.

Proposition 1 In an equilibrium with separation in round one, all the ac-

tions taken in the first round are the same as those in a symmetric one-shot

contest with two-sided asymmetric information. All the actions taken in the

second round are the same as those in the corresponding one-shot contests

with full information. Expected effort in each round equals the expected effort

in a symmetric one-shot contest with two-sided asymmetric information.

Proof. The equivalence of the actions in round one follows by comparing
lemma 2 with corollary 1.

In an equilibrium with separation in round one, all private information

is revealed in round one. Hence, in round two, the equilibrium actions must

be the same as in the corresponding one-shot contests with complete infor-

mation.

By lemma 2, total expected first round effort in an equilibrium with sep-

aration in round one equals (1− λ)2 v/2, as in a symmetric one-shot contest

with two-sided asymmetric information. Ex ante expected second round ef-

fort of one contestant equals

λ0 + (1− λ)
³
λε+ (1− λ)

v

4

´
= (1− λ)2

v

4
+ (1− λ)λε.

(With probability λ, the contestant has low valuation and chooses zero effort.

With the remaining probability 1− λ he is a high valuation contestant. He

chooses ε in the second round if his opponent is a low valuation contestant,

which happens with probability λ. On the other hand, with 1− λ the oppo-

nent is also a high valuation contestant, and both choose v/4 in the second

round.) Therefore, with ε → 0, total expected effort of the second round is

(1− λ)2 v/2, too.

The following proposition 2 gives a necessary and sufficient condition for

existence of an equilibrium with separation in round one.

Proposition 2 An equilibrium with separation in round one exists if, and

only if, λ ≥ 1/2.
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Proof. A low valuation contestant never wants to deviate. A high valua-
tion contestant can neither gain by deviating in round two only, nor by devi-

ating to an x1i > 0. Therefore, we only have to check whether a high valuation

contestant wants to deviate to x1i = 0. Denote the first round payoff from the

deviation under consideration by u1i (dev) . Here, u
1
i (dev) = λv/2. Because

x1i = 0, contestant j thinks i is a low valuation contestant: µj (0) = 1.

Suppose that contestant j has a high valuation. Then he will play x2j = ε

according to the equilibrium strategy. Contestant i0s best response to x2j = ε

is x2i = −ε+
√
εv. With ε→ 0, we have x2i =

√
εv − ε→ 0, and

p2i =
−ε+√εv

(−ε+√εv) + ε
= −
√
ε√
v
+ 1→ 1.

Therefore, if j is a high valuation contestant, deviating gives contestant i a

second round utility u2i (dev) = v.8

On the other hand, if j is a low valuation contestant, x2j = 0 and x2i = ε,

so with ε→ 0 we again have u2i (dev) = v. Putting things together,

ui (dev) = u1i (dev) + u2i (dev) = λ
v

2
+ v.

Contestant i has no incentive to deviate if, and only if, ui ≥ ui (dev) , that

is,

2
³
λv + (1− λ)

v

4

´
≥ λ

v

2
+ v.

This inequality holds if, and only if, λ ≥ 1/2.
As proposition 2 shows, whether an equilibrium with separation in round

one exists depends on the fraction of low valuation contestants, but not on

the high valuation v.

To gain some intuition, consider the extreme case where λ = 0. Then

both contestants think that their opponent is a high valuation contestant.

8As shown above, the assumption that xti ∈ X = {0} ∪ [ε,∞) ensures that there is a
best reply to ε, i.e. a best reply to the best reply to zero. To ensure the existence of a
best reply to the best reply to zero in the alternative approaches discussed in footnote 4
above, one can (i) introduce another effort level 0++, which is identical to 0+, except that
0++ wins against 0+. (ii) With an endogenous tie-breaking rule, the following stipulation
for a tie at x2i = x2j = 0 works: if the reports are si = sj = v and x1i = 0 < x1j , then
p2i = 1. Note that reporting one’s true type is incentive compatible.
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By behaving according to the strategy described in lemma 2, a high valuation

contestant gets twice the payoff of a one-shot full information contest, that

is, ui = v/2. If he deviates to x1i = 0, he loses the first round with probability

1. On the other hand, he tricks his opponent into believing that he has a low

valuation, and therefore wins the second round without any effort. Therefore,

ui (dev) = v which is greater than ui = v/2.

Now consider the case where λ = 1. Here, both contestants think their

opponent has low valuation. By behaving according to the proposed strategy,

a high cost contestant gets 2v. If he deviates to x1i = 0, he loses in round one

with probability 1/2. However, he does not gain anything in terms of second

round payoff, because his opponent has a low valuation and will choose zero

effort anyway. Therefore, the contestant does not gain by deviating.

Proposition 2 shows that these considerations generalize: an equilibrium

with separation in round one exists if, and only if, λ is not too small.9 More-

over, it will become clear below that this is the only symmetric equilibrium

in this case.

4.3 Pooling in round one

A contestant i pools in round one iff x1i (v) = x1i (0) with probability one.

The following proposition is a negative result, which will turn out to be very

useful later on.

Proposition 3 There is (i) no equilibrium where both contestants pool in

round one, and (ii) no equilibrium where one contestant pools in round one

and the other contestant separates in round one.

Proof. See appendix.
The intuition behind proposition 3 is straightforward. Suppose that, con-

trary to proposition 3, there is an equilibrium where both contestants pool in

9If a contestant cannot win without putting any effort, the incentives to deviate are
lower, since he gets a payoff of zero from the first round if he chooses x1i = 0. Therefore,
the range of the parameter λ where an equilibrium with separation in round one exists is
bigger. To be more precise, in the same way as in the proof of proposition 2, it can be
proved that an equilibrium with separation in round one exists in this case if, and only if,
λ ≥ 1/3.
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round one. Then a contestant with a high valuation can win the first round

by spending only a tiny amount ε. The drawback is that, by doing this, the

contestant shows that he has a high valuation; however, this is outweighed by

the benefit of winning easily in round one. Thus, each high valuation contes-

tant would like to deviate in round one. The same logic applies also to (ii):

if only one contestant pools in round one and the other contestant separates

in round one, then the high valuation type of the separating contestant will

spend only ε in the first round, and hence the pooling contestant can still

win the first round easily. The pooling contestant would like to deviate here,

too.

4.4 Partial pooling in round one

A contestant i pools partially in round one iff i neither pools nor separates in

round one. That is, we have x1i (v) = x1i (0) with some probability q ∈ (0, 1) ,
and x1i (v) 6= x1i (0) with the remaining probability 1− q. An equilibrium with

(symmetric) partial pooling in round one is an equilibrium in which both

contestants pool partially in round one (with the same probability q).

Clearly, in any equilibrium, the low valuation types choose zero effort with

probability one. Thus, in any equilibrium with partial pooling in round one,

the high valuation types play a non-degenerate mixed strategy which puts

some mass on zero effort in the first round. With the remaining probability

mass, they might, in principle, mix over several positive first-round efforts.

However, given the updating of beliefs according to (5), a contestant cannot

influence the belief of his rival by choosing between different strictly posi-

tive efforts in round one. Thus, if a high valuation type chooses a strictly

positive effort in round one with a strictly positive probability, this effort

must maximize his first round payoff. The first round payoff is a strictly con-

cave function, whatever the strategy of the opponent may be. Thus it has

a unique maximizer. Therefore, in equilibrium, high valuation types never

mix between different strictly positive effort levels.

This implies that, in any equilibrium with symmetric partial pooling in

round one, the high valuation types mix between zero and a unique strictly

14



positive effort level in round one:

x1j (v) =

(
0, with probability q > 0,

x1j > 0, with probability 1− q,
(j = a, b) .

Thus, the optimal strictly positive first round effort of contestant i = a, b

(i 6= j) solves

u1i = λv + (1− λ)

µ
q + (1− q)

x1i
x1i + x1j

¶
v → max

x1i≥ε

The first order conditions of these problems are

(1− λ) (1− q)
x1j¡

x1i + x1j
¢2v = 1 i = a, b; i 6= j.

Solving, we get

x1i =
(1− λ) (1− q)

4
v =: x̂ (6)

Since q > 0, this is strictly positive, and hence the constraint x1i ≥ ε is not

binding.

Lemma 3 If there is an equilibrium with symmetric partial pooling in round
one, then strategies in this equilibrium are as follows:

In t=1, a high valuation contestant i chooses x1i = 0 with some uniquely

defined probability q ∈ (0, 1), and with the remaining probability (1− q) he

chooses x1i = x̂ defined in equation (6).

Beliefs in round two are

µi
¡
x1j
¢
=

(
µ, if x1j = 0,

0, if x1j > 0,
(7)

where

µ :=
λ

λ+ (1− λ) q
. (8)
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Effort of a high valuation contestant i in t=2 is

x2i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1−µ)
4

v, if x1i = x1j = 0,
(1−µ)2
(2−µ)2v, if x1i > x1j = 0,
(1−µ)
(2−µ)2v, if x1j > x1i = 0,

v
4
, if x1j > 0 and x

1
i > 0.

Low valuation contestants always choose zero effort.

Proof. Strategies for round one follow from the discussion above. Strate-
gies for round two follow from section 3. Beliefs must be consistent with the

strategies; together with (5), this implies equation (7).

The following proposition 4 gives a necessary and sufficient condition for

existence of an equilibrium with symmetric partial pooling in round one.

Proposition 4 An equilibrium with symmetric partial pooling in round one

exists if, and only if, λ < 1/2.

Proof. See appendix.
To understand the logic behind proposition 4, let me briefly sketch the

idea of the proof here. Suppose l < 1/2. By construction of the strategies,

we only have to show that there is a q ∈ (0, 1) such that a high valuation
contestant is indifferent between choosing x1i = x̂ and x1i = 0 if his opponent

behaves according to the strategies in lemma 3.

If q is (close to) zero, both contestants (almost) separate in round one. If

λ < 1/2, then we know from proposition 2 that there is no equilibrium with

separation in round one. That is, contestant i would strictly prefer to play

x1i = 0.

On the other hand, if q is (close to) one, then both contestants (almost)

pool in round one. As we have seen above, there is no equilibrium with

pooling in round one, since contestant i would prefer playing some small

positive effort to playing x1i = 0. Note that with q → 1, x̂ gets small. Thus,

i strictly prefers x1i = x̂ to playing x1i = 0.

I show in the appendix that the incentives to choose x1i = x̂ over x1i = 0 are

continuous and strictly increasing in q. Thus, we can use the intermediate

16



value theorem to conclude that there exists a unique q ∈ (0, 1) such that
i is indifferent between choosing x1i = x̂ and x1i = 0. This shows that,

if λ < 1/2, an equilibrium with symmetric partial pooling in round one

exists and is unique in this class of equilibria. Moreover, there are no other

symmetric equilibria in this case, since neither an equilibrium with pooling

nor an equilibrium with separation in round one exists. The thick line in

figure 1 below plots the equilibrium q as a function of λ.

On the other hand, if λ ≥ 1/2, an equilibrium with separation in round

one exists. Contestant i would strictly prefer to play x̂ even in the case where

j separates in round one (“mixes” with q = 0). A fortiori, if contestant j pools

partially in period one, i is strictly better off with x1i = x̂ than with x1i = 0.

Thus no equilibrium with symmetric partial pooling in round one exists if

λ ≥ 1/2.10

These results indicate that, if the fraction of low valuation contestants is

low, there is a ratchet effect in repeated contests. High valuation contestants

are sometimes sandbagging: they sometimes choose low effort in order to

make the opponent believe that they have a low valuation, which makes the

opponent less aggressive in the second round. The overall effect is that total

expected effort is decreased.

Proposition 5 In an equilibrium with symmetric partial pooling in round

one, expected overall effort is smaller than in two unconnected one-shot con-

tests with two-sided asymmetric information.

Proof. See appendix.
Expected effort in the first round is lower than in a one-shot contest for

two reasons. First, the high valuation contestants sometimes choose zero

effort. Second, even if they choose a positive effort, it is nevertheless smaller

than the effort chosen in a one-shot contest:

x̂ = (1− q)
(1− λ) v

4
<
(1− λ) v

4
.

10In the same way, one can also show that, if one cannot win without putting in any
effort, an equilibrium with symmetric partial pooling in round one exists if, and only if,
λ < 1/3.
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The reason is that the other contestant chooses zero effort with probability

q even if he has a high valuation; hence the marginal benefit of first round

effort is lower.

For the second round, the comparison is less straightforward. Depending

on the efforts chosen in round one, effort in round two may be higher or lower

than in a one shot contest. For example, if both contestants have a high

valuation and both choose x̂ in the first round, then they will both choose

v/4 in the second round, more than in a one-shot contest with asymmetric

information. However, if they choose x1a = x1b = 0, second round efforts will

be lower:

x2a = x2b =
(1− µ) v

4
<
(1− λ) v

4
.

The reason is that, after observing x1i = 0, contestant j = a, b thinks that

i 6= j has a low valuation with higher probability µ > λ.

As proposition 5 shows, the overall effect is that expected effort in the

repeated contest is unambiguously lower than in two unrelated one-shot con-

tests. Turning to rent dissipation and welfare, it is clear that lower expected

effort is beneficial for the contestants. But there is a countervailing effect:

sometimes a low valuation contestant gets the prize in round one, and thus

the allocation can be worse than in two unrelated one-shot contests. As the

following proposition shows, for the contestants the beneficial effect domi-

nates.11

Proposition 6 Expected utility is higher in the equilibrium with symmetric

partial pooling in round one than in two unrelated one shot contests.

Proof. See appendix.
Another interesting benchmark for comparison is a single contest between

two contestants, where each high valuation type values winning the prize by

2v. In such a contest, expected effort and rent dissipation is exactly as in two

unrelated one-shot contests where each high valuation type values winning

one of the contests by v. Thus, in the equilibrium with symmetric partial

pooling in round one, expected efforts are lower and equilibrium utilities are
11In the case where a contestant cannot win without putting in any effort, sometimes

no one gets the prize in round one, although one, or even both, contestants have a positive
valuation. However, it can be shown that the beneficial effect dominates in this case, too.
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higher than in a single contest where each high valuation type values winning

the prize by 2v.

The effect on welfare depends on how the efforts are treated in the social

welfare function. If α = 1 in (3), welfare is the sum of the contestants’ utilities

and the repeated contest leads to higher expected welfare. On the other hand,

if α = 0, allocative efficiency is all that matters, and the repeated contest

leads to lower expected welfare. Corollary 3 generalizes these observations.

Corollary 3 There exists an α0 ∈ (0, 1) such that expected welfare is higher
in the equilibrium with symmetric partial pooling in round one than in two

unrelated one-shot contests (or in a single contest where each high valuation

type values winning the prize by 2v) if, and only if, α > α0.

Proof. Let wr denote expected welfare in the equilibrium with symmetric

partical pooling in round one of the repeated contest. Moreover, letw0 denote

expected welfare in two unrelated contests. As argued above, α = 0 implies

that wr < w0, while α = 1 implies wr > w0. By proposition 5, expected effort

is lower in the repeated contest, thus by (3), wr −w0 is strictly increasing in

α, and the result follows from the intermediate value theorem.

Thus the repeated contest is better if rent-seeking activities are considered

sufficiently wasteful. This can be used to lessen the deadweight loss of rent-

seeking, e.g. for a monopoly position. Suppose the monopoly is given to one

of the rent seekers only for a limited amount of time, and then the question

who is going to be the monopolist is opened up again. Although this adds a

second rent-seeking contest, the total deadweight loss can be smaller due to

sandbagging in the first round.

5 A perfectly discriminating contest

In this section I consider a perfectly discriminating contest (all pay auction)

and show that, qualitatively, the results are the same as above. In a perfectly

discriminating contest, the contestant who chooses the higher effort wins with
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probability one:

pti =

⎧⎪⎨⎪⎩
1, if xti > xtj,
1
2
, if xti = xtj,

0, if xti < xtj.

(9)

Like the lottery model (1), the contest success function (9) is frequently used

in the literature (see, for example, Baye, Kovenock, deVries 1996 and Konrad

2007).

The assumption that there is a small minimum expenditure requirement

ε > 0, which proved convenient for the analysis of the imperfectly discrimi-

nating contest, is not helpful for the analysis of the all pay auction. Instead,

I will follow an approach which is used in auction theory (e.g. Blume and

Heidhues 2006): I assume that xti can be any non-negative real number and

allow two additional effort levels 0+ and 0++. These efforts are identical to

zero effort except that 0+ wins against 0, and 0++ wins against 0+ (and

against 0). The role of 0+ is similar with the role of the minimum expendi-

ture requirement ε in the analysis above: to ensure existence of a best reply

to zero effort in round two. The role of 0++ is to ensure existence of optimal

actions off the equilibrium path: 0++ is the best reply to an effort of 0+ in

round two, it corresponds to −ε +√εv, which, under (1), is the best reply
to ε in t = 2 (see proof of proposition 2).12 Both 0+ and 0++ have a cost

of zero, just as we studied the limit ε → 0 above. The rival can discern ef-

forts 0, 0+, and 0++. If we used these assumptions together with the contest

success function (1), the analysis would proceed as presented above. These

additional effort levels are just an innocuous way of dealing with difficulties

caused by the continuous strategy space.13

The second round contest As above, let us start with round two.

Consider first the symmetric case where µa = µb = γ. Here, high valua-

12Note that, under (9), there is no best reply to ε, since any higher effort wins with
probability one. This is one reason why a minimum expenditure requirement is not helpful
for the analysis of the all pay auction.
13Blume and Heidhues (2006) introduce 0+ to circumvent the technical problem that

there is no smallest real number above 0 and argue that this assumption is innocuous.
One can also use the tie-breaking rule specified in footnotes 4 and 8 together with (9).
This leads to the same results as the analysis presented in the main text.
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tion types randomize uniformly on (0, (1− γ) v] , and the payoff of a high

valuation types is γv. In particular, if γ = 0, we are basically in a com-

plete information contest, where the all-pay auction results in complete rent

dissipation and equilibrium payoffs of zero.

Now consider the case where µi ∈ (0, 1) and µj = 0 (j believes with

probability one that his opponent i has a high valuation). In equilibrium, the

high valuation type of contestant j randomizes uniformly on (0, (1− µi) v] .

The high valuation type of player i puts a mass point of µi on 0
+, and,

with the remaining probability, randomizes uniformly on (0, (1− µi) v] . Note

that i wins if his opponent has a low valuation and thus plays x2j = 0,

which has probability µi. The expected utility of the high valuation types is

ui = uj = µiv. To gain some intuition, note that i can guarantee himself an

expected utility of µiv by choosing 0
+. Therefore, i will never exert more

effort than (1− µi) v. But then the high valuation type of j can guarantee

himself an expected utility arbitrarily close to µiv by choosing an effort just

above (1− µi) v. As usual in perfectly discriminating contests, any rents over

and above these lower bounds are dissipated.

Separation in round one Suppose both contestants separate in round

one. Then, in round one the high valuation types mix uniformly over (0, (1− λ) v] ,

and their payoffs from round one are λv. In stage 2, contestant i knows the

type of his opponent. If vj = 0, i gets v by choosing 0+. If vj = v, i gets

zero. Thus i gets λv from the second round, and ui = 2λv in total. Note

that the actions and payoffs are exactly as in the corresponding one-shot con-

tests - with two-sided asymmetric information for t = 1, and with complete

information for t = 2. That is, proposition 1 holds.

When does an equilibrium with separation in round one exist? By con-

struction, the only relevant consideration is whether it pays for a high valu-

ation type of i to deviate to x1i = 0. A deviation to x
1
i = 0 gives a payoff of

λv/2 in t = 1. In t = 2, the opponent believes that i has a low valuation, i.e.

µj = 1; thus j chooses 0
+; the best reply of i is 0++ and i gets v.

Therefore, an equilibrium with separation in round 1 exists if, and only

if, 2λv ≥ (λv/2)+v or λ ≥ 2/3. Hence, qualitatively, proposition 2 is robust:
an equilibrium with separation in round 1 exists if, and only if, the fraction of
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low valuation types is sufficiently high. Note that the range of the parameter

λ where an equilibrium with separation in round one exists is smaller than

in the imperfectly discriminating contest. To understand why, note that the

utility of a deviating contestant is the same under the contest success function

(1) as under (9). But the utility in a (candidate) separating equilibrium is

higher in the imperfectly discriminating contest (1), since a high valuation

type has a strictly positive utility even if his opponent has a high valuation,

too. In contrast, under (9), rent dissipation is complete if both contestants

happen to have a high valuation.

Partial pooling in round one In any equilibrium with symmetric

partial pooling in round one, the high valuation types play as follows. In

t = 1, they choose 0 with some probability q ∈ (0, 1) and randomize uni-
formly over (0, (1− λ) (1− q) v] with the remaining probability 1− q. Thus

the distribution of the first round effort of a high valuation type is

F (x) = q +
x

(1− λ) v
for x ∈ [0, (1− λ) (1− q) v] . (10)

Suppose contestant j follows this strategy. Then the expected first round

utility of the high valuation type of i from x1i ∈ (0, (1− λ) (1− q) v] is¡
λ+ (1− λ)F

¡
x1i
¢¢

v − x1i

=

µ
λ+ (1− λ)

µ
q +

x1i
(1− λ) v

¶¶
v − x1i

= (λ+ (1− λ) q) v.

Now consider the second period utility from any x1i > 0. If x
1
j = 0, beliefs are

updated to µj = 0 and µi = µ, where µ is defined in (8). In this case, which

has probability λ+ (1− λ) q, i gets µv. On the other hand, if x1j > 0, beliefs

are updated to µi = µj = 0, and i gets zero. Thus the expected second round

utility from a strictly positive first round effort is (λ+ (1− λ) q)µv = λv.

Putting things together, the expected utility from x1i ∈ (0, (1− λ) (1− q) v]

is (2λ+ (1− λ) q) v. Note that i has no incentive to choose 0+ or 0++ in t = 1

since this gives the same expected utility.

Still assuming that j behaves according to (10), now suppose that i
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chooses x1i = 0. In t = 1, if j also chooses x
t
j = 0, i wins with probability 1/2;

i loses in all other cases. Thus, in the first round, i gets (λ+ (1− λ) q) v/2.

In the second round, if x1j = 0, beliefs are updated to µa = µb = µ and i gets

µv. On the other hand, if x1j > 0, beliefs are µi = 0 and µj = µ; again i gets

µv. Thus the expected payoff of i from x1i = 0 is (λ+ (1− λ) q) v/2 + µv.

It follows that contestant i is indifferent between x1i = 0 on the one hand,

and any x1i ∈ (0, (1− λ) (1− q) v] on the other hand, if, and only if,

(λ+ (1− λ) q)
v

2
+ µv = (2λ+ (1− λ) q) v (11)

Using (8), it is straightforward to show that equation (11) cannot be satisfied

by any q ∈ (0, 1) if λ ≥ 2/3. On the other hand, if λ < 2/3, there is a unique

q ∈ (0, 1) that solves equation (11), namely

q =
1

1− λ

³p
λ (λ+ 2)− 2λ

´
.

As above, an equilibrium with partial pooling exist if λ is sufficiently small;

qualitatively proposition 4 is robust. Figure 1 compares the equilibrium q

as a function of λ in the two different types of contests and shows that

sandbagging occurs more often in the perfectly discriminating contest.

The expected payoff in an equilibrium with symmetric partial pooling is

v
p
λ (λ+ 2). Given λ < 2/3, this payoff is bigger than 2λv, which is the

payoff in two unrelated one shot contests (or one single contest with a prize

of value 2v for the high valuation types). Hence proposition 6 above applies

to the perfectly discriminating contest as well.

As in the case of an imperfectly discriminating contest, the allocation

of the object is inefficient in an equilibrium with partial pooling, while it

is efficient in a one-shot contest. This effect decreases expected utility in

the repeated contest. As we have seen, expected equilibrium utility is nev-

ertheless higher. Therefore expected efforts must be lower. In other words,

proposition 5 and corollary 3 hold as well.
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Figure 1: Equilibrium q as a function of λ in the imperfectly discriminating
contest (thick line) and in the all-pay auction (thin line).

6 Conclusion

This paper has made a first step towards analyzing repeated contests with

asymmetric information. It analyzed a highly stylized model, with two con-

testants of two types, who play a once repeated contest. The results show that

the fraction of low valuation contestants is important. If the a priori proba-

bility of meeting a low valuation contestant is high, there will be separation in

round one. Equilibrium play will be the same as in one-shot contests: in the

first round, the same as in a one-shot contest with asymmetric information,

in the second round, the same as in the corresponding one-shot contest with

complete information. Expected effort and rent dissipation will be the same

as in two unrelated one-shot contests with asymmetric information. On the

other hand, if the a priori probability of meeting a low valuation contestant is

low, there is no separation in round one. In this case, contestants with high

valuations sometimes mimic the behavior of low valuation types in order to

induce their opponents to believe that they don’t care all that much about

winning. This sandbagging reduces expected effort and rent dissipation.
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Future research should go beyond the highly stylized two types, two con-

testants, two rounds framework analyzed here. When there are more than

two contestants, separation in round one is more likely. When an oppo-

nent believes that a contestant has a low valuation this is beneficial for the

contestant if, and only if, the opponent also thinks that there is no other

high valuation contestant around - but this is less likely if there are many

contestants. Thus, a higher number of contestants reduces incentives for

sandbagging and thus makes separation in round one more likely.

There are many open questions on repeated contests with asymmetric

information. One important simplifying assumption of the present paper is

that the low valuation types have a valuation of zero. This assumption begs

several interesting questions. For example, could it be that a low valuation

type bluffs and imitates a high valuation type? Clearly, this is an important

area for future work. In addition, it would be interesting to study the case

where only the identity of the winner can be observed, but not the efforts

chosen.

7 Appendix

7.1 Proof of proposition 3

(i) There is no equilibrium where both contestants pool in round
one. Towards a contradiction, suppose there is an equilibrium where both

contestants pool in round one. This implies x1i (v) = x1i (0) = 0, p
1
i = 1/2,

and µi (0) = λ since no information is revealed. The payoff of a contestant

with high valuation is (see corollary 1)

ui =
v

2
+

µ
λ+

(1− λ)

4

¶
v.

Now consider what happens if a high valuation contestant deviates to

x1i = ε. Then he gets u1i (dev) = v in the first round. In the second round,

contestant j thinks that i has a high valuation, that is, µj = 0. On the other

hand, contestant j0s valuation is not known to i, and µi = λ. The equilibrium
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payoff to contestant i is (by corollary 2 above)

u2i (dev) = λv +
(1− λ)3

(2− λ)2
v.

Therefore,

ui (dev) = v + λv +
(1− λ)3

(2− λ)2
v.

It follows that

ui (dev)− ui =
1

4
v
−3λ3 + 9λ2 − 12λ+ 8

(2− λ)2
> 0 for all λ ∈ [0, 1] .

Therefore, there is no equilibrium where both contestants pool in round one.

(ii) There is no equilibrium where one contestant pools in round
one and the other contestant separates in round one. Suppose to the

contrary that there is such an equilibrium. Assume without loss of generality

that a pools14, whereas b separates. Then we must have x1a (v) = 0 and

x1b (v) = ε. Therefore, u1a =
1
2
λv if va = v.

In the second round, a knows the type of b, and we have

u2a =

⎧⎪⎨⎪⎩
v, if va = v and vb = 0,
v

(2−λ)2 , if va = vb = v,

0, if va = 0.

(See corollary 2 for the second line.) Expected utility of contestant a therefore

equals (if va = v)

ua =
1

2
λv + λv +

(1− λ)

(2− λ)2
v.

Now consider what happens if the pooling contestant a deviates to a

positive x̃1a. The optimal positive effort is the best reply to b0s first round

strategy. Hence

x̃1a = argmax
x1a≥ε

½
λv + (1− λ)

x1a
x1a + ε

v − x1a

¾
=
p
(1− λ) εv − ε

14Here, and in the sequel, I omit “in round one” if this is clear from the context.
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With ε → 0, we get x̃1a → 0 and p1a → 1, and thus u1a (dev) = v. In the

second round, we now have a game of complete information, and the ex ante

expected second round payoff of contestant a is u2a (dev) = λv + (1− λ) v/4.

Therefore,

ua (dev) = v + λv + (1− λ)
v

4
.

It follows that

ua (dev)− ua =
1

4
v
−3λ3 + 17λ2 − 28λ+ 16

(2− λ)2
> 0 for all λ ∈ [0, 1] .

Thus the pooling contestant a wants to deviate. Therefore, there is no equi-

librium where one contestant pools in round one and the other contestant

separates in round one.

7.2 Proof of proposition 4

(i) If λ < 1/2, the strategies and beliefs described in lemma 3 are
an equilibrium for some unique q ∈ (0, 1). Consider the high valuation

contestants. Deviating only in t = 2 does not pay. This follows from section

3. By construction, deviating to another strictly positive effort in round one

does not pay, either.

It remains to show that there is a unique q ∈ (0, 1) such that a high
valuation contestant is indifferent between 0 and x̂ in the first round. Suppose

contestant j behaves according to the proposed partial pooling strategy, and

vi = v. Let us first determine the payoff of i from playing x1i = 0. If contestant

i plays x1i = 0, he gets

u1i =
1

2
(λ+ (1− λ) q) v,

since he wins in t = 1 with probability 1/2 if contestant j also plays x1j = 0,

and loses for sure if contestant j plays x1j = x̂. Now consider the second round.

If contestant j plays x1j = 0, which happens with probability λ+(1− λ) q, we

have a symmetric situation in t = 2: neither contestant knows the opponent’s

type, and they both have beliefs µi = µj = µ as defined in equation (8). In
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that case, the expected payoff of i is

E
¡
u2i
¯̄
x1i = x1j = 0

¢
= µv + (1− µ)

v

4
.

On the other hand, if contestant j plays x1j = x̂ (this happens with probability

(1− λ) (1− q)), then we have an asymmetric situation where µi = 0 while

µj = µ. Then

E
¡
u2i
¯̄
x1i = 0, x

1
j > 0

¢
=

v

(2− µ)2
.

Putting things together, the expected payoff of i if he plays x1i = 0 is

ui (0) : =
1

2
(λ+ (1− λ) q) v +

(λ+ (1− λ) q)
³
µv + (1− µ)

v

4

´
+ (1− λ) (1− q)

v

(2− µ)2
.

Now let us determine the payoff of i from playing x1i = x̂. In the first

round, i gets

u1i = (λ+ (1− λ) q) v + (1− λ) (1− q)
v

4
.

Turning to the second round, if contestant j plays x1j = 0, which happens

with probability λ + (1− λ) q, we have an asymmetric situation in t = 2

where µj = 0 and µi = µ. In this case,

E
¡
u2i
¯̄
x1i = x̂, x1j = 0

¢
= µv +

(1− µ)3

(2− µ)2
v.

On the other hand, if contestant j plays x1j = x̂ (this happens with probability

(1− λ) (1− q)), then we have µa = µb = 0, and therefore u
2
i = v/4. Putting

things together, the expected payoff of i if he plays x1i = x̂ is

ui (x̂) : = (λ+ (1− λ) q) v + (1− λ) (1− q)
v

4
+

+(λ+ (1− λ) q)

Ã
µv +

(1− µ)3

(2− µ)2
v

!
+

+((1− λ) (1− q))
v

4
. (12)
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Define d (q) := ui (x̂)− ui (0) . We can establish the following lemma.

Lemma 4 1. d (q) is continuous for all q ∈ [0, 1] .

2. d (0) < 0 if, and only if, λ < 1
2
.

3. d (1) > 0.

4. d (q) is strictly increasing in q for all λ ∈ (0, 1) and all q ∈ (0, 1) .

Proof.

1. Obvious.

2. If q = 0, then µ = 1. Therefore, ui (0) = 1
2
λv + v, and ui (x̂) =

2
¡
λv + (1− λ) v

4

¢
. Hence d (0) =

¡
λ− 1

2

¢
v which is negative if, and

only if, λ < 1
2
.

3. If q = 1, then µ = λ. Therefore, ui (0) = 3
4
v+ 3

4
λv, and ui (x̂) = v 5−3λ

(2−λ)2 .

Hence

d (1) =
1

4
v
−3λ3 + 9λ2 − 12λ+ 8

(2− λ)2

which is positive for all λ ∈ (0, 1) .

4. We can write d (q) = d1 (q) + d2 (q) where

d1 (q) = (λ+ (1− λ) q) v + (1− λ) (1− q)
v

4
− 1
2
(λ+ (1− λ) q) v,

d2 (q) = (λ+ (1− λ) q)

Ã
µv +

(1− µ)3

(2− µ)2
v

!
+ ((1− λ) (1− q))

v

4

−
µ
(λ+ (1− λ) q)

³
µv + (1− µ)

v

4

´
+ (1− λ) (1− q)

v

(2− µ)2

¶
.

To give an interpretation of these functions, d1 (q) > 0 is the first round

gain from choosing positive effort, while d2 (q) < 0 is the second round

loss which occurs since j knows that vi = v if i chooses positive effort

in the first round.
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In what follows, I will show that d1 and d2 are strictly increasing in q.

Differentiating d1, we have

d10 (q) =
1

4
(1− λ) v > 0.

Substituting equation (8) into d2, we get

d2 (q) = −1
4
λv

¡
3λ− 3λ2 + 6qλ2 − 10qλ+ 4q

¢
(λ+ 2q (1− λ))2

.

Differentiating,

d20 (q) =
1

2
λv (1− λ)

¡
6λ2 − 10λ+ 4

¢
q + (4− 3λ)λ

(λ+ 2q (1− λ))3
.

Note that (4− 3λ)λ > 0 for all λ ∈ (0, 1) . Therefore, if 6λ2−10λ+4 ≥
0, we have d20 (q) > 0. On the other hand, if 6λ2 − 10λ+ 4 < 0, then¡
6λ2 − 10λ+ 4

¢
q+(4− 3λ)λ ≥

¡
6λ2 − 10λ+ 4

¢
+(4− 3λ)λ = 3λ2−6λ+4 > 0

for all q ∈ [0, 1] and all λ ∈ (0, 1) . Thus we have d20 (q) > 0 in this

case, too.

Nowwe can apply the intermediate value theorem to the preceding lemma:

if λ < 1/2, there exists a unique q ∈ (0, 1) such that d (q) = 0. Therefore, if
λ < 1/2, the strategies and beliefs described in lemma 3 are an equilibrium

for the unique q ∈ (0, 1) that solves d (q) = 0.

(ii) If λ ≥ 1/2, there is no equilibrium with symmetric partial pool-
ing. If λ ≥ 1/2, we have d (0) ≥ 0, with strict inequality unless λ = 1/2.
Since d0 (q) > 0, we can conclude that d (q) > 0 for all q ∈ (0, 1) . Hence,
if contestant j partially pools, contestant i always has a strictly higher util-

ity from playing x̂ in t=1. Therefore no equilibrium with symmetric partial

pooling in round one exists if λ ≥ 1/2.
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(iii) Uniqueness. Suppose there are other equilibria with symmetric par-

tial pooling in round one. By lemma 3, these differ from the one described

above only in the probability q with which a high valuation contestant chooses

zero effort in round one, and in the related positive first round effort x̂. How-

ever, as we have seen above, there is a unique q that solves d (q) = 0. Thus,

the equilibrium is unique in the class of equilibria with symmetric partial

pooling in round one. Moreover, when λ < 1/2, no equilibrium with sepa-

ration in round one exists, and of course no pooling equilibrium. Hence the

equilibrium is unique in the class of symmetric equilibria.

7.3 Proof of proposition 5

Expected efforts in the first round of the equilibrium with symmetric partial

pooling in round one are

E
¡
x1a + x1b

¢
= 2 (λ0 + (1− λ) (q0 + (1− q) x̂))

= (1− q)2 (1− λ)2
v

2
.

Now consider the second round effort of a contestant i. This is zero for a low

valuation type. For a high valuation type, we have the following possibilities.

Case 1: contestant j has a low valuation. The second round effort of

contestant i depends on his own first round effort:

• If x1i = 0, then x2i = (1− µ) v/4.This subcase has probability (1− λ)λq :

contestant i has a high valuation, hence the factor (1− λ) ; contestant

j has a low valuation, hence the λ; and i has played x1i = 0 in round

one, hence the q.

• If x1i = x̂, then x2i = (1− µ)2 v/ (2− µ)2 . This subcase has probability

(1− λ)λ (1− q) .

Case 2: contestant j has a high valuation. The second round effort of

contestant i depends on his own first round effort, and on the first round

effort of contestant j:

• If x1i = x1j = 0, then x2i = (1− µ) v/4. This subcase has probability

(1− λ)2 q2.
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• If x1i = 0 and x1j = x̂, then x2i = (1− µ) v/ (2− µ)2 . This subcase has

probability (1− λ)2 q (1− q) .

• If x1i = x̂ and x1j = 0, then x2i = (1− µ)2 v/ (2− µ)2 . This subcase has

probability (1− λ)2 q (1− q) , too.

• If x1i = x1j = x̂, then x2i = v/4. This subcase has probability (1− λ)2 (1− q)2 .

Putting things together, it follows that the expected effort of a contestant

is (each line corresponds to one of the bullet list items above)

E
¡
x2i
¢
= (1− λ)λq

(1− µ) v

4
+

(1− λ)λ (1− q)
(1− µ)2 v

(2− µ)2
+

(1− λ)2 q2
(1− µ) v

4
+

(1− λ)2 q (1− q)
(1− µ) v

(2− µ)2
+

(1− λ)2 q (1− q)
(1− µ)2 v

(2− µ)2
+

(1− λ)2 (1− q)2
v

4
.

Substituting µ from equation (8) into the last equation we find that

E
¡
x2i
¢
=

¡¡
6λ2 − 8λ+ 4

¢
q2 +

¡
4λ− 6λ2

¢
q + λ2

¢
(1− λ)2

4 (λ+ 2q (1− λ))2
v.

Total expected effort therefore equals

E
¡
x1a + x1b + x2a + x2b

¢
= (1− q)2 (1− λ)2

v

2
+

+

¡¡
6λ2 − 8λ+ 4

¢
q2 +

¡
4λ− 6λ2

¢
q + λ2

¢
(1− λ)2

2 (λ+ 2q (1− λ))2
v.

In two unconnected one-shot contests with two sided asymmetric infor-

mation, expected effort equals (1− λ)2 v (see corollary 1). For notational
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convenience, define

f (q) :=
¡
4λ2 − 8λ+ 4

¢
q2 +

¡
−12λ2 + 20λ− 8

¢
q + (11λ− 8)λ.

The difference in expected effort is

E
¡
x1a + x1b + x2a + x2b

¢
− (1− λ)2 v = (1− λ)2 q

f (q) q − 4λ2

2 (λ+ 2q (1− λ))2
v.

We have to prove that this is negative for the unique q that solves d (q) = 0.

It suffices to show that f (q) < 0 for all q ∈ [0, 1] . Note that, for all λ ∈
[0, 1/2] , we have f (0) = (11λ− 8)λ < 0 and f (1) = (λ+ 2) (3λ− 2) <
0. Moreover, f (q) is convex in q for all λ ∈ [0, 1/2] . Therefore, f (q) ≤
max {f (0) , f (1)} < 0 for all q ∈ [0, 1] . This completes the proof.

7.4 Proof of proposition 6

Clearly, low valuation contestants always get zero utility. Denote the ex-

pected utility of a high valuation contestant in two unrelated one-shot con-

tests with asymmetric information by u0. From corollary one, we have

u0 = 2
³
λv + (1− λ)

v

4

´
.

In the equilibrium with partial pooling in round one, expected utility of a

high valuation contestant is given by ui (x̂) , see equation (12). The difference

is

ui (x̂)− u0 = (λ+ (1− λ) q) v + (1− λ) (1− q)
v

4

+ (λ+ (1− λ) q)

Ã
µv +

(1− µ)3

(2− µ)2
v

!
+((1− λ) (1− q))

v

4

−2
³
λv + (1− λ)

v

4

´
.

After substituting µ from equation (8) into the last equation, some tedious
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algebra leads to

ui (x̂)− u0 =
1

2
qv

¡
−6λ3 + 18λ2 − 18λ+ 6

¢
q2 + 4λ (1− λ)2 q + λ2 (1− λ)

(λ+ 2q (1− λ))2

This is positive if, and only if, the numerator on the right hand side is positive.

Note that
¡
−6λ3 + 18λ2 − 18λ+ 6

¢
> 0 for all λ < 1. Hence ui (x̂) > u0 for

all q ∈ (0, 1) , and thus for the equilibrium q. This completes the proof.
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