
Konrad, Kai A.

Working Paper

Bidding in hierarchies

WZB Discussion Paper, No. SP II 2003-27

Provided in Cooperation with:
WZB Berlin Social Science Center

Suggested Citation: Konrad, Kai A. (2003) : Bidding in hierarchies, WZB Discussion Paper, No. SP II
2003-27, Wissenschaftszentrum Berlin für Sozialforschung (WZB), Berlin

This Version is available at:
https://hdl.handle.net/10419/51131

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/51131
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 WISSENSCHAFTSZENTRUM BERLIN 
 FÜR SOZIALFORSCHUNG 
 
 SOCIAL SCIENCE RESEARCH 
 CENTER BERLIN 
 

ISSN Nr. 0722 � 6748 
 

 
Research Area 
Markets and Political Economy 

Research Unit 
Market Processes and Governance 

Forschungsschwerpunkt 
Markt und politische Ökonomie 

Abteilung 
Marktprozesse und Steuerung 

 

Kai A. Konrad 
 
 

Bidding in Hierarchies  

WZB � Wissenschaftszentrum Berlin 
 
 

SP II 2003 � 27 

December 2003 
 



 

ii 

Zitierweise/Citation: 
 
Kai A. Konrad, Bidding in Hierarchies, Discussion Paper  
SP II 2003 � 27, Wissenschaftszentrum Berlin, 2003. 
 
Wissenschaftszentrum Berlin für Sozialforschung gGmbH, 
Reichpietschufer 50, 10785 Berlin, Germany, Tel. (030) 2 54 91 � 0 
Internet:  www.wz-berlin.de  



 

iii 

ABSTRACT 

Bidding in Hierarchies  

by Kai A. Konrad 

This paper reconsiders the comparison between hierarchical contests and 
single-stage contests. A condition is given that characterizes whether and when 
the aggregate equilibrium payoff of contestants is higher in the single-stage 
contest, and when the single-stage contest is more likely to award the prize to 
the contestant who values it most highly. The outcome depends on inter- and 
intra-group heterogeneity, and is not driven by free-rider incentives. 
 
Keywords: Contest, hierarchies, rent dissipation 

JEL Classification: D72, D74 

ZUSAMMENFASSUNG 

Das Bieten in Hierarchien 

Diese Arbeit untersucht das Bietverhalten in einstufigen Turnieren und in 
sogenannten hierarchischen Turnieren, in denen zunächst Gruppen um einen 
Preis konkurrieren und anschließend die Mitglieder der siegreichen Gruppe um 
den Preis konkurrieren. Im Gegensatz zu existierenden Ergebnissen, wonach 
der Gesamtturnieraufwand in einstufigen Turnieren höher ist als in hierarchi-
schen Turnieren, ergibt sich bei heterogenen Bietern eine Bedingung, die 
beschreibt, ob und wann die aggregierten gleichgewichtigen Aufwendungen der 
Turnierteilnehmer im nicht-hierarchischen Wettkampf größer sind und wann ein 
nicht-hierarchischer Wettkampf den zu gewinnenden Preis mit höherer Wahr-
scheinlichkeit an einen Wettkämpfer vergibt, der den Preis besonders hoch 
schätzt. Für das Zustandekommen der Ergebnisse ist nicht das Trittbrett-
fahrerverhalten von Gruppenmitgliedern, sondern die Heterogenität innerhalb 
der Gruppen im Verhältnis zur Heterogenität innerhalb der Gruppen von beson-
derer Bedeutung. 
 



1 Introduction
If the winner of a contest enters another contest in which the prize allo-
cated in the previous contest is again contested, a problem with respect to a
contestant�s willingness to invest in winning the Þrst contest that is similar
to the hold-up problem in investment decisions is generated. The incentive
to compete for the prize in the early round is reduced by the fact that the
winner now enters another contest and has to spend further resources before
winning anything. Various applications such as Wärneryd (1999), who con-
siders resource allocation within federations, Inderst, Müller and Wärneryd
(2002), who consider the allocation of free cash ßow inside organizations, and
Müller and Wärneryd (2001), who consider distributional conßict between
shareholders of corporations, all draw on a particularly interesting structure
that is as follows. There are two contest stages. In an inter-group contest,
several groups of individual contestants Þrst compete for a prize. Once the
prize is shared out among these groups, the individual members of a group
compete in an intra-group contest for receiving what the group gained in
the inter-group contest. The central result is that the coordination problem
within members of groups in the inter-group contest and the problem that
the group prize will be subject to the future within-group contest can reduce
total contest effort. This suggests that, compared to a big single-stage con-
test in which all individual contestants compete with each other directly, a
hierarchical structure can reduce wasteful contest effort.
The result is an important contribution to the recent literature on en-

dogenous property rights that is outlined in Skaperdas (2003). It applies
to situations in which the allocation of resources is not well determined by
costlessly enforceable property rights and suggests that there is a motiva-
tion for generating hierachical structures through which the resources are
channelled. The analysis is, however, limited to contest success functions for
which the probability of winning is a continuous function of efforts and is
typically measured by the ratio of own effort to aggregate effort, like in the
ratio function introduced by Tullock (1980) for rent-seeking contests, and the
result is obtained where contestants are homogenous, or for some moderate
heterogeneity.
In this paper I consider a contest success function through which the

contestant who makes the highest effort wins with certainty1 and I will focus
on the role heterogeneity within, and across, competing groups.2 It turns

1This contest success function has also received a considerable amount of attention in
the literature. See, e.g., Hirshleifer and Riley (1992), Hillman and Riley (1989), Baye,
Kovenock and deVries (1996).

2The strong disincentives to spend effort in an all-pay auction if the prize of winning
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out that the key result in the abovementioned work may reverse: depending
on the heterogeneity within and between groups, a hierarchical structure
may increase the degree of rent dissipation. Moreover, contests are also
used consciously as devices to identify the most productive contestant or
the contestant who values the prize most highly. I Þnd that hiearchies will
typically reduce the quality of a contest as a mechanism for this purpose and
may single out contestants who have a very low valuation of the prize.
A related literature also considers an inter-group contest for a prize, and

the problem of allocating the prize within the winning group. Unlike the
considerations here, however, the allocation of the prize is determined by
exogenous rules, and not as the outcome of an intra-group contest following
the inter-group contest (see, e.g., Katz, Nitzan and Rosenberg 1990, Nitzan
1991a, 1991b, Davis and Reilly 1999). Most of this literature considers a
Tullock (1980) contest success function. A recent paper by Baik, Kim and
Na (2001) reconsiders the questions that are addressed in Katz, Nitzan and
Rosenberg (1990) for a contest success function without noise. In some sense,
our paper also complements the analysis by Baik, Kim and Na (2001), using
their contest success function. Baik, Kim and Na (2001) consider a prize
that is a public good for the whole group that wins the prize. Hence, there
is no need to consider the intra-group allocation of the prize. I consider a
prize that is not a public good within the group and assume that there is an
intra-group contest for the allocation of the prize, once the group obtained
the prize in the inter-group contest.

2 The analysis of hierarchy
Suppose there are n groups that constitute the set N = {1, ...n}. Each group
i ∈ N consists of mi ≥ 1 members that constitute the setMi. In a Þrst stage
the groups compete in what is called the inter-group contest for a given prize.
Group members make contributions to a group�s effort in winning the prize,
with xij ≥ 0 the effort by member j of group i. Efforts of group members
sum up to the group�s total effort xi =

Pj=mi

j=1 xij. The group that exhibits
the highest aggretate xi wins the prize. More precisely, let L be the set of
groups l ∈ L with xl ≥ xr for all r ∈ N . Then the probability pi that group
i wins is zero if i /∈ L and equal to 1/(#L) if i ∈ L, where #L denotes the
number of elements of L.
Once the prize is allocated to one of the groups, the members within this

must be defended in a later contest have already been discussed in a framework with
symmetric Þrms and a consumer group bidding in the rent-seeking for monopoly framework
by Ellingsen (1991).

2



group compete for the prize in an intra-group contest that is structurally
the same as the one among groups. Let group i win the prize. Then each
member j chooses some yij ≥ 0. Now let Li be the set of individuals in group
i with yil ≥ yir for all r ∈Mi. Then the probability qj that member j wins is
zero if j /∈ Li and equal to 1/(#Li) if i ∈ Li . Note that yij is not a function
of the person�s contribution xij to group effort: it is the equilibrium effort
chosen in the subgame described by the intra-group contest.
Finally, individuals may differ with respect to their valuation of the prize.

Let uij be the value that player j in group i attributes to winning the prize.
Let the members of each group be sorted according to their cost of within-
group contest effort: uij > ui(j+1) for all i and all j. To simplify the exposi-
tion, let these inequalities hold strictly.
Consider the equilibrium in the continuation game that emerges once

a group i has been determined as the winner of the prize. The payoff of
contestant j in the group i in case i wins the prize is

vij = qj(yi1, ...yimi
)uij − yij for all j ∈Mi.

The contest among group members in this case has a well-known unique
equilibrium outcome that has been described in detail by Baye, Kovenock and
deVries (1996): only the contestants i1 and i2 who are the contestants with
the highest and second highest uij, respectively, expend effort and randomize
their efforts according to cumulative distribution functions of effort that are
described as follows:

Fi1(yi1) =
yi1
ui2

for yi1 ∈ [0, ui2] (1)

and
Fi2(yi2) = (1− ui2

ui1
) +

yi2
ui1

for yi2 ∈ [0, ui2] (2)

and Fij(yij) = 1 for yij ≥ ui2 for i = 1, 2. Hence, contestant i1 has a payoff
equal to (ui1 − ui2) and all other contestants have zero payoff. Uniqueness
holds if ui2 > ui3 as was assumed here. (See Baye, Kovenock and deVries
(1996) for a proof).
Only one player in each group has a net beneÞt frommaking his group win

the contest. For group i this is the group member with the highest uij in this
group. By an appropriate numbering of group members, this was member
j = 1 in each group. Hence, this contestant i1 in group i attributes a value
to the outcome of his group winning the prize equal to ui1(1− ui2

ui1
). Only this

player will make contributions; accordingly, the group contributions to the
contest between groups are xi = xi1. This makes the problem of Þnding the

3



equilibrium in the contest between groups equivalent to a contest between n
contestants i1, one from each group i.
The payoff functions of these n contestants can be stated as

vi1 = pi(x1, ...xn)(ui1 − ui2)− xi.
The equilibrium for the case of n contestants with these objective functions
is again the one for the standard all-pay auction as in Baye, Kovenock and
deVries (1996). Consider the numbering of groups (re-) numbered such that
ui1 − ui2 ≥ u(i+1)1 − u(i+1)2 for all i = 1, ...n and assume that u21 − u22 >
u31−u32, that is, the inequality holds strictly with respect to the two groups
for which this term is second and third largest.3 Then this contest again has
a unique equilibrium and this equilibrium is described as follows. All i1 with
i > 2 spend xi = 0. The active contestants in group 1 and 2 choose mixed
strategies that are described by cumulative density functions of x1 and x2
with

G1(x1) =
x1

u21 − u22 for x1 ∈ [0, u21 − u22]
and

G2(x2) =

·
1− u21 − u22

u11 − u12

¸
+

x2
u11 − u12 for x2 ∈ [0, u21 − u22],

and G1(x) = G2(x) = 1 for x > u21 − u22. Accordingly, the payoff of all
contestants except group member 1 of group 1 is zero, and the payoff of this
contestant is equal to

v∗11 = u11 − u12 − (u21 − u22). (3)

This is summarized as a proposition.

Proposition 1 The equilibrium payoffs in the two-stage contest are zero for
all players except for player 1 in group 1. This player has an equilibrium
payoff v∗11 as in (3). The prize is allocated to four players with positive
probability: players 1 and 2 in groups 1 and 2.

In the contest the maximum payoff for the contestants is obtained if the
bidder with the highest valuation receives the prize and no contestant makes a
bid. In the equilibrium this is not the outcome because the contestants spend
positive amounts of effort and because the prize does not necessarily end up
with the contestant with the highest valuation of the prize. Hence, from the

3This assumption avoids a multiplicity of equilibria in the all-pay auction that is dis-
cussed more fully in Baye, Kovenock and deVries (1996).
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contestants� perspective, there is some dissipation of the prize. Proposition
1 shows that the amount dissipated is smaller if player 1 in group 1 values
the prize much more highly than other members in his group, and if the
difference in valuation is smaller in the only group that actively competes,
which, by appropriate numbering of groups, is group 2, and if the difference
in valuations of the prize for players 1 in the groups 1 and 2 is high. The
stage-two contests between members of the winning group dissipate all rent
except for the payoff-difference between the contestants whose valuation of
the prize is highest within the respective group, and this remaining rent
goes to the group member whose valuation of the prize is the highest. This
explains why only they make contributions to the group efforts, and why no
one else participates in the attempt to make the own group win. Hence, the
contest between groups is essentially a contest between these single members
who value the prize most highly within their groups, one member from each
group. These members� stakes in trying to get the prize allocated to their own
group are determined by their lead in their respective within-group contest.
This lead generates the rent they can appropriate if the prize is awarded to
their group.

3 Flat or steep hierarchies?
The outcome in the two-stage contest maps the situation in a hierarchy in
which the prize is Þrst allocated among several groups (the upper layer of
the hierarchy, e.g., the states in a federation, or large organizational units
in Þrms) and then allocated among the members of the group that wins the
Þrst contest (e.g., interest groups within the state that wins the prize, or
sub-units of the organizational unit in the Þrm that wins the prize). To see
whether hierarchies are advantageous for reducing total contest effort in an
organization and for allocating the prize to the agents who value it most, this
outcome must now be compared with the situation in which a single stage
contest among all contestants represents the situation without a hierarchy.
Baye, Kovenock and deVries (1996) can again be used to describe the out-

come of the big single-stage contest. All contestants receive a payoff equal to
zero, except for the contestant whose valuation of the prize is highest. This
agent receives a rent that is determined by the difference between his own
valuation and the second highest valuation. Let {...un...} be the set of valua-
tions of the prize for all individuals, the same individuals who were allocated
among differnent groups in the hierarchical two-stage contest. Let uf and us
be the �Þrst� and �second� highest valuation of the prize, respectively. Then
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this individual f �s equilibrium payoff is equal to

v∗f = uf − us. (4)

In general, it is not clear whether the payoff v∗f exceeds, or falls short of, v
∗
11.

It is not even clear whether f and s coincide with players 1 in the respective
groups 1 and 2. Comparing (4) with (3) immediately yields

Proposition 2 The aggregate equilibrium payoff for the contestants is higher
(dissipation is lower) in the single-stage contest if

uf − us > u11 − u12 − (u21 − u22). (5)

For the aggregate equilibrium payoff of contestants in the two-stage game
the heterogeneity within groups at the upper end of the distribution of prize
valuations matters, but only for the groups with the largest heterogeneity
at the upper end of prize valuations. Groups were sorted by the amount of
heterogeneity at the upper end, i.e., by the difference in valuation between
the contestants with the two highest valuations within each group. Whether
hierarchies improve the contest outcome from the perspective of the con-
testants as a group depends on how heterogenous the contestants are, and
how they are allocated between the groups.
The contestants f and s need not belong to the groups 1 and 2. However,

they induce
u11 − u12 ≥ uf − us (6)

where equality can hold only if f and s both belong to group 1. This fact
makes the most heterogenous group 1 at least as heterogenous as the group
of all contestants, and, taken in isolation, this reduces rent dissipation as can
be shown from (3). However, whether this heterogeneity is sufficient to make
rent dissipation lower in the two-stage game than in the single-stage game
depends on the heterogeneity of the second-most heterogenous group, and
this heterogeneity increases rent dissipation.
For instance, if f and s belong to group 1, they must be identical with

group members 1 and 2 in this group 1. Therefore, applying (5) yields that
the two-stage contest cannot have a lower dissipation than the single-stage
contest if f and s belong to group 1. Another example may illustrate the
opposite case in which rent dissipation in the two-stage game is much lower
than in the one-stage contest. Let there be four contestants with valuations
vf = 1002, vs = 1001, v3 = 1000 and v4 = 1. In the single-stage game,
contestants� aggregate rent equals 1002-1001=1. Now let f and 4 in group 1
and s and 3 in group 2 and consider the two-stage game. Now the aggregate
rent is equal to (1002− 1)− (1001− 1000) = 1000.
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I now turn to the selection properties of the two-stage constest. As dis-
cussed, in some contexts, contests or tournaments are used to select candi-
dates for a task, and the organizer of the contest would like to allocate the
task to the person who beneÞts most from it, or has the lowest cost of per-
forming the task. It has been argued that, despite their second-best nature,
contests may be used as selection devices if the contestants know each other�s
valuation or ability, but the contest organizer does not. The question is then
whether the two-stage contest is more likely to allocate the prize to the con-
testant who values it most highly. The single-stage contest performs very
well: with probability 1 the prize is obtained by one of the contestants who
value the prize most highly, and the larger the difference in their valuation
of the prize, the more likely it is that the contestant who has the highest
valuation obtains the prize.
The two-stage contest performs worse:

Proposition 3 (i) In the two-stage game the probability that the contestants
with the two highest valuations of the prize win the prize is always smaller
than 1. (ii) For any distribution of prize valuations, an allocation of con-
testants among groups exists such that the contestant with the lowest valua-
tion of the prize can win the prize with positive probability. (iii) For some
distribution of contestants the contestant with the second-lowest valuation can
win the prize with a probability that is arbitrarily close to 1.

Proof. Consider (i). In the two-stage game four contestants 11, 12, 21
and 22 can win the prize with strictly positive probability. Accordingly, the
probability that any two of them wins the prize is smaller than 1. Note that
contestants f and s need not even belong to this group. Consider (ii). Let
umin be the smallest valuation. Now choose a group with two contestants
with valuations u11 = uf and u12 = umin. Clearly this group will be group
#1, and the contestant with valuation umin will win with positive probability
equal to umin

2uf
(1− u21−u22

2(uf−umin)) > 0. The proof of (ii) is by way of an example.
Let there be four contestants. Suppose, for instance, that u21 = u22 + ² and
u11 = u12+∆ < u21. Then the prize is allocated to group 1 with a probability
that converges towards 1 as ² → 0, and once the prize is allocated to group
1, it goes to player 1 or player 2 in this group with positive probabilities.
But both value the prize less than the two contestants who have the highest
valuation of the prize among all players in group 2. ¤
For illustration, suppose, for instance, that there are only two groups 1

and 2, and two contestants in each group, with u11 = 2, u12 = 1, u21 = 1000
and u22 = 1000− ² with ² ∈ (0, 1). As ² converges towards 0, the probability
that group 1 wins converges towards 1, implying that the prize goes to one
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of the contestants in group 1 who has a very low valuation of the prize.
Intuitively, the bids that contestants make in the contest between groups
depend only on the rent a contestant will obtain if his group wins the absolute
valuation of the prize. This rent does not depend on a contestant�s absolute
valuation of the prize, but only on the difference between his valuation and
the valuation of other members of this contestant�s group. In the numerical
example, this rent will be equal to 2− 1 for contestant 11 and equal to ² for
contestant 12, and zero for all other contestants. Hence, only contestants 11
and 21 will make positive bids in the inter-group contest. But if ² is small, 21
will bid very little, even though his absolute valuation of the prize is much
higher than that of contestant 11. Accordingly, the prize is very likely to
go to group 1, the group with contestants who both have comparatively low
valuations of the prize.

4 Conclusions
It has been pointed out in the literature that multi-stage contests for prizes in
which groups compete for a prize Þrst, and then the prize is allocated among
the members of the winning group by a second contest, can reduce total rent
dissipation because the repetition of conßict generates a hold-up problem,
and a free-rider problem in the contest between groups. In this paper, I
analysed whether these results are robust to asymmetries and to different
contest technologies. I Þnd that hiearchies and the multi-stage contests they
may generate need not do well. They may cause total effort to be higher and
result in a more inefficient allocation of the prize.

5 References
Baik, Kyung Hwan, In-Gyu Kim and Sunghyun Na, 2001, Bidding for a
group-speciÞc public-good prize, Journal of Public Economics, 82, 415-429.
Baye, Michael R., Dan Kovenock and Casper deVries, 1996, The all-pay

auction with complete information, Economic Theory, 8, 291-305.
Davis, Douglas D., Robert J. Reilly, 1999, Rent-seeking with non-identical

sharing rules: An equilibrium rescued, Public Choice, 100, 31-38.
Ellingsen, Tore, 1991, Strategic buyers and the social cost of monopoly,

American Economic Review, 81, 648-657.
Hillman, Arye L. and Riley, John G., 1989, Politically contestable rents

and transfers, Economics and Politics, 1, 17-39.

8



Hirshleifer, Jack and John G. Riley, 1992, The Analytics of Uncertainty
and Information, Cambridge University Press, 369-404.
Inderst, Roman, Holger Müller, and Karl Wärneryd, 2001, Distributional

conßict in organizations, mimeo.
Katz, Eliakim, Shmuel Nitzan, and Jacob Rosenberg, 1990, Rent-seeking

for pure public goods, Public Choice, 65, 49-60.
Müller, Holger, and Karl Wärneryd, 2001, Inside versus outside owner-

ship: a political theory of the Þrm, RAND Journal of Economics, 32, 527-41.
Nitzan, Shmuel, 1991a, Collective rent dissipation, Economic Journal,

101, 1522-1534.
Nitzan, Shmuel, 1991b, Rent-seeking with non-identical sharing rules,

Public Choice, 71, 43-50.
Skaperdas, Stergios, 1996, Contest success functions, Economic Theory,

7, 283-290.
Skaperdas, Stergios, 2003, Restraining the genuine homo economicus: why

the economy cannot be divorced from its governance, Economics and Politics
(forthcoming).
Tullock, Gordon, 1980, Efficient rent seeking, in: J.M. Buchanan, R.D.

Tollison and G. Tullock, Toward a Theory of the Rent-seeking Society, Texas
A&M University Press.
Wärneryd, Karl, 1998, Distributional conßict and jurisdictional organi-

zation, Journal of Public Economics, 69, 435-50.

9


