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ABSTRACT 

Rent, Risk, and Replication – Preference Adaptation in Winner-Take-All Markets  

by Karl Wärneryd* 

We study the evolution of an economy where agents who are heterogeneous with 
respect to risk attitudes can either earn a certain income or enter a risky rent-seeking 
contest. We assume that agents behave rationally given their preferences, but that the 
population distribution of preferences evolves over time in response to material pay-
offs. We show that, in particular, initial distributions with full support converge to 
stationary states where all types may still be present, risk lovers specialize in rent-
seeking, and the available rents are perfectly dissipated. 
 
Keywords: Preference evolution, risk attitudes, contests, winner-take-all markets 
JEL classification: C72, D72, D80 

ZUSAMMENFASSUNG 

Rente, Risiko und Replikation – Präferenz-Anpassung in „Der-Sieger-bekommt- 

alles“ Märkten 

Der Autor untersucht die Entwicklung einer Volkswirtschaft, in der sich die Akteure in 
ihrer Einstellung zu Risiken unterscheiden. Sie können entweder ein bestimmtes 
Einkommen erlangen oder sich in einen riskanten Rent-Seeking-Wettbewerb (Wett-
bewerb zum Erlangen einer Rente) begeben. Angenommen wird rationales Verhalten 
der Akteure bei gegebenen Präferenzen an, wobei sich die Verteilung der Präferenzen 
innerhalb der Bevölkerung als Antwort auf die materiellen Ergebnisse des Wettbewerbs 
entwickelt. Es wird gezeigt, daß im einzelnen, die ursprünglichen Verteilungen mit 
ganzer Unterstützung gegen stationäre Zustände konvergieren, in welchen noch immer 
alle Typen präsent sein können. Dabei spezialisieren sich risikofreudige Individuen auf 
Rent-seeking und die erzielbaren Renten sind perfekt gestreut. 
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1 Introduction

In their popular book, Frank and Cook (1995) argue that Western economies

increasingly have the characteristics of winner-take-all markets. Consider the

market for opera singers. Before 20th century advances in recording tech-

nology there were local markets for opera singers, allowing also mediocre

talents to earn a living. Today anybody anywhere can buy the performances

of the world�s foremost singers on CD. Hence only the best survive, and all

the resources spent on, e.g., singing lessons, by hopefuls in contending for

market leadership are wasted from a social point of view. This phenomenon

of wasteful competition, more generally, is also known as rent-seeking (Tul-

lock 1967; Krueger 1974), and also encompasses such things as patent races,

lobbying to obtain a monopoly in a product market, and outright theft.

Frank and Cook seem to suggest that winner-take-all markets are a rela-

tively new but increasingly important type of social interaction. It may be ar-

gued, however, that rent-seeking is as old as human social life itself. Consider

the incentives for males to hunt in hunter-gatherer societies. Hawkes (1990,

1993) argues that the expected net nutritional beneÞt of hunting�a risky

activity subject to the congestion externalities typical of rent-seeking�is

largely negative. Hunting is primarily wasteful display behavior designed to

attract female mates. In this paper, we adopt the view that contests of this

nature have been a stable feature of human societies for a long time, dur-

ing which preferences have been the subject of evolutionary selection, genetic

and cultural. Since participation in a winner-take-all market is risky, individ-

ual attitudes toward risk are of central importance. Given that evolutionary

pressures operate on the distribution of risk attitudes, we ask, among other

things, whether evolution is likely to promote risk-taking and hence the social

wastefulness pointed to by Frank and Cook.

Economic theories traditionally start with a set of agents with given pref-

erences confronted by an interactive decision problem. When studying the

evolution of an economy in the long run, however, it seems reasonable to
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think that preferences may change�for instance, because the set of agents

participating in the economy changes. If the material reward structure de-

Þned by the particular decision problem changes at a slower rate than the

distribution of preferences in the economy, it seems likely that the latter

would adapt to the conditions deÞned by the former.

In this paper we shall assume that each individual acts rationally given

his preferences and an interaction situation deÞned in terms of objective,

material payoffs. But different individuals may have different preferences,

and we shall assume that the population distribution of preference types

evolves in the direction of locally higher material payoffs.

In the context of decision-making under uncertainty, näõve intuition per-

haps suggests that preference evolution would weed out every type except the

risk neutral one, since the risk neutral agent maximizes expected material

payoffs and therefore evolutionary Þtness. To see that this is not so, consider

a situation where agents can choose between two activities, one safe and one

risky. The risk neutral agent will choose the risky activity when its expected

material payoff is higher. But then so will all risk lovers. They will receive

the same objective payoff, and thus have the same evolutionary Þtness, as

the risk neutrals. Conversely, if a risk neutral agent chooses the safe activity,

then so will all risk averse agents. If equilibrium payoffs are dependent on

the relative frequencies of various types in the population the superiority of

risk neutrality becomes even less obvious.

The main argument of this paper is that if the population distribution

of risk attitudes evolves over time in the direction of locally higher material

payoffs, then in the long run it will adjust to an equilibrium where rents

are exactly dissipated. Thus any type of risk attitude may survive in the

long run, but typically the stationary state reached will be associated with

an in-period equilibrium that is in effect the same as if everybody were risk

neutral.

The intuition behind the stationarity argument is the following. Consider

a process of natural selection of preference types that makes types that are
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locally more successful in material terms grow in relative number. At a sta-

tionary state of such a system, that is, one where the relative numbers of

different types do not change, the material payoffs from all activities under-

taken by members of the population must be equal. Now say there are two

available activities, one that yields a certain payoff and another that is risky.

Suppose there is a stationary state such that both activities are undertaken.

Then, since the equilibrium expected payoffs from the two activities are equal

at the stationary state, it is necessarily the case that only risk neutrals and

risk lovers would be engaged in the risky activity. In the rent-seeking econ-

omy, rents are perfectly dissipated since the payoffs from the two activities

are equalized. It remains for us to show that the economy would in fact

converge to such a stationary state.

The rest of the paper is organized as follows. Section 2 introduces a

static model of an economy where agents, who may have different attitudes

to risk, choose between, on the one hand, a certain income and, on the other,

participation in a risky rent-seeking contest, where the expected value of

participation is dependent on the number of others who also enter. The

model is solved for a unique Nash equilibrium.

In Section 3 we study the dynamic case. The static equilibrium derived

previously allows us to determine the material payoffs to every risk attitude

type at any point in time. We assume that the replicator dynamics operates

on the preference distribution based on these material rewards, and show that

if the starting distribution is extreme in the sense that it lacks risk neutrals

and either risk lovers or risk averse agents, in the long run the system will

converge to a stationary state where only the type closest to risk neutrality

in the starting distribution has survived. If the initial distribution is not

extreme in this sense, the system converges to a stationary state where all

types present at the beginning may have survived. In the static equilibrium

associated with this stationary state rents are perfectly dissipated in the

rent-seeking contest.

In dealing with preference evolution, this paper is related to contributions
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by Bester and Güth (1998), Cooper (1987), Dekel and Scotchmer (1999),

Karni and Schmeidler (1986), Robson (1996a, 1996b), Rogers (1994), Rubin

and Paul (1979), To (1999), and Waldman (1994). Some of these connections

are explored in Section 4. Finally, Section 5 summarizes the argument and

concludes the paper.

2 Static Equilibrium

We study an economy with two activities. The activity S(afe) yields the

individual a certain payoff of w > 0 units of money, which may be thought of

as the agent�s initial wealth. The activity R(isky) yields a material payoff of

r > w with probability p and nothing with probability 1−p. If an individual
enters the risky activity he foregoes the certain payoff of w, which may there-

fore be viewed as his investment. Let xS ∈ [0, 1] be the population proportion
of agents who choose the safe action, and xR := 1 − xS the proportion who
choose the risky investment. We assume the probability of getting a positive

payoff from the risky activity declines in the total population proportion of

agents who enter the activity according to the speciÞcation

p(xR) :=

(
1 if xR ≤ ρ
ρ/xR otherwise,

where ρ ∈ (0, 1) is an exogenously given parameter. We interpret the risky
activity as participation in a rent-seeking or winners-take-all contest with

free entry, where ρ is the measure of contestants that can walk away with

prizes. Think of ρ as the analogue in population measure terms of an integer

number of prizes in a room. If fewer than ρ individuals enter the room,

every person who enters gets a prize. If more than ρ people enter the room,

some rationing of prizes must take place. If the individuals are identical with

respect to arrival times, physical strength, etc, this discrimination must be

essentially random, so that the probability of the single individual ending up
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with a prize is equal to the ratio of available prizes to the number of people

entering the room.

The following assumption, which is maintained throughout, will turn out

to guarantee the existence of an interior equilibrium, in the sense of an equi-

librium where both activities are undertaken.

Assumption 1 We have w/r >
√
ρ.

Observe that this implies w/r > ρ.

Participation in the risky contest is socially wasteful in material terms

if more is invested in aggregate than what the total of available prizes is

worth. This simple model thus captures the essence of many more speciÞc

discussions of productive versus unproductive activities. In addition to the

examples discussed previously, consider the potentially wasteful inßuence ac-

tivities in organizations studied by, e.g., Milgrom (1988) and Milgrom and

Roberts (1988, 1990). Within an organization, the individual may concen-

trate either on performing his currently allotted tasks, or spending time on

political activities to get a promotion.

Let x?R be the equilibrium proportion of participants in the rent-seeking

contest. If all agents were risk neutral, enough would enter to make the

expected material payoffs from the two activities equal in an interior equi-

librium. If we have w/r > ρ there is a unique interior equilibrium such

that

w = p(x?R)r,

or, equivalently, x?Rw = ρr. Since xRw is the per capita amount foregone

by rent-seekers, that is, invested into the rent-seeking activity, and ρr is

the per capita potential rent, this means the rents are perfectly dissipated

in equilibrium. In general, let δ := xRw/(ρr) be the dissipation rate, with

δ? = x?Rw/(ρr) its equilibrium value. We say that rents are underdissipated

if δ < 1, perfectly dissipated if δ = 1, and superdissipated if δ > 1.

This deÞnition of rent dissipation is the standard one in the literature.

It is rather irrelevant from a welfare perspective, however, when individuals
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are other than risk neutral. A correct measure of rent dissipation in this case

should take into account the costs and beneÞts of bearing risk. In general, the

material dissipation rate deÞned above and a risk-adjusted one will diverge.

We return to this issue below.

We turn now to the case where individuals are not necessarily risk neutral.

We assume the economy has an uncountable inÞnity of individual agents,

each of whom has measure zero, with a total mass of 1. We shall assume

that all individuals have constant relative Arrow-Pratt risk aversion. This

implies that an agent of type α may be taken to have the expected utility

function

uα(m) := m
1−α.

We have that α < 0 corresponds to risk love, α = 0 to risk neutrality, and

α > 0 to risk aversion.1 For convenience, we restrict α to values in the

interval A := (−1, 1).
Suppose everybody had the same risk attitude value �α. In equilibrium,

enough would enter the risky activity to make the expected utilities from the

two activities equal. That is, we would have that

w1−α̂ = p(x?R)r
1−α̂,

which implies that

δ? =
µ
w

r

¶α̂
.

We therefore have that

δ? Q 1 as �α R 0.

In particular, we note that the equilibrium rate of rent dissipation when

everybody is of the same type is independent of ρ. Furthermore, this case

1Alternatively, we could eschew the use of explicit utility functions and order the in-

dividuals according to the p values that would make them indifferent between the two

activities. This approach has the disadvantage of not allowing any deÞnition of global risk

neutrality.
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illustrates the divergence between the rate of dissipation in material terms

and a risk-adjusted one which evaluates the risky prospect at its certainty

equivalent. Since in equilibrium each individual is indifferent between the

two activities, the risk-adjusted rate of dissipation must always be equal to

one if all individuals are of the same type.

In the most general case, different individuals may have different risk

attitudes. We assume the risk attitude parameter is distributed in the popu-

lation according to the right continuous, nondecreasing distribution function

F :R→ [0, 1]. The function value F (α) is then the population proportion of

individuals whose types are α or less. More generally, if E ⊂ R is an arbitrary

set, we write F{E} for the mass on E.
We allow the population distribution of the risk attitude parameter to be

discontinuous because under the evolutionary dynamic to be imposed later

even a continuous starting distribution may eventually evolve into a discon-

tinuous distribution. Since we shall track the evolution of static equilibria,

we must be able to deÞne equilibrium also given such discontinuous distri-

butions.

Since F is monotonic, it has countably many mass points or atoms, corre-

sponding to its discontinuities. We assume that F has no mass outside of the

interval A, so that we have F (α) = 0 for α ≤ −1 and F (α) = 1 for α ≥ 1.
We deÞne α := sup{α:F (α) = 0} and α := min{α:F (α) = 1}, the lower
and upper bounds, respectively, of the interval on which F is concentrated.

We shall also make use of the function F (α−) := limα0↑α F (α0), the left hand
limit of F at α. If F (α−) < F (α), then α is an atom of F . If for any open

interval E containing a point α we have F{E} > 0, then α is said to be a
point of increase of F . Denote by S(F ) the set of points of increase of F ,

called the support of F . The distribution F may or may not possess an as-

sociated density. (In other words, F behaves like a probability distribution.

See, e.g., Feller 1971 for details.)

Consider now the decision problem of an individual of type α. Clearly,
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he will prefer to keep his certain income if

w1−α > p(xR)r1−α.

Since there is no type that would prefer the safe activity if nobody entered

the risky activity, this condition is equivalent to

α >
log(w/(rp(xR)))

logw/r
.

The right-hand side of this expression is a number independent of the agent�s

decision, since his decision has no measurable effect on xR. It deÞnes a

threshold value for the risk aversion parameter such that all agents with α-

values below the threshold would like to engage in the risky activity, and

all agents with α-values above the threshold would like to keep their certain

income. Individuals of exactly the threshold type are indifferent, and may

therefore rationally undertake either activity. We stress that, in particular,

it is not necessarily the case that all risk averse stay out of the contest and

all risk lovers enter.

Suppose everybody enters the rent-seeking contest. In order to ensure

that both activities are always undertaken in equilibrium, we shall assume

that there is no type that would prefer the risky activity if everybody enters.

A sufficient condition for this to hold is that

log(w/(ρr))

logw/r
< −1,

which is equivalent to Assumption 1.

An equilibrium is a situation such that all individuals are acting rationally.

If F is continuous, the equilibrium measure of rent-seekers is the Þxpoint x?R
such that

x?R = F

Ã
log(w/(rp(x?R)))

logw/r

!
.

We now generalize this idea to the case where F may be discontinuous. Let

F̄ (α) := [F (α−), F (α)].
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Figure 1: Rent-seeking equilibrium.

The correspondence F̄ is singleton-valued everywhere except at the atoms of

F , where it Þlls in the holes in the distribution. Now deÞne

g(xR) := F̄

Ã
log(w/(rp(xR)))

logw/r

!
.

The equilibrium proportion of entrants into the rent-seeking contest is then

a Þxpoint of g, that is, we have that x?R is deÞned by the inclusion

x?R ∈ g(x?R).

Since g is a closed correspondence from the unit interval into itself, with

nonempty convex and compact values, by Kakutani�s Þxpoint theorem it

has a Þxpoint. Furthermore, the Þxpoint can easily be seen to be interior

in the sense that ρ < x?R < 1 (remember Assumption 1, which guarantees

that g(1) = {0}). Thus both activities will always be undertaken in equilib-
rium, regardless of what the population distribution F looks like. Finally,

the equilibrium must be unique since g is nonincreasing in the sense that

max g(x0R) ≤ min g(xR) for x0R > xR. Figure 1 shows an example situation.
We summarize these observations in the following Proposition.
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Proposition 1 Under Assumption 1 there is a unique equilibrium measure

of rent-seekers x?R ∈ (ρ, 1).

The equilibrium proportion of rent-seekers uniquely determines the equi-

librium threshold type

α? =
log((w/(ρr))x?R)

logw/r
.

In case α? is an atom of F , some α?-type individuals may have to do one

thing and others the other. For completeness, we must specify exactly how

they divide themselves in equilibrium. Let k? be the proportion of α?-types

who enter the rent-seeking contest, with

k? =

 x?R − F (α?−)
F (α?)− F (α?−) if F (α?)− F (α?−) > 0
1 otherwise.

That is, if F is continuous at α? we assume, with no loss of generality, that

all α?-types rent seek.

The degree of rent dissipation in equilibrium is determined by the pro-

portion of risk lovers and risk neutrals in the population.

Proposition 2 In equilibrium,

1. if the proportion of risk lovers is greater than ρr/w, then some risk

lovers stay out of the contest and there is superdissipation of rents,

2. if the proportion of risk lovers is less than or equal to ρr/w and the

proportion of risk lovers and risk neutrals is greater than or equal to

ρr/w, then all risk lovers enter, all risk averse stay out, and there is

perfect dissipation, and

3. if the proportion of risk lovers and risk neutrals is less than ρr/w, then

some risk averse agents enter the contest and there is underdissipation.
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Figure 2: A counterexample.

Proof. First note that the proportion of risk lovers in the population is

F (0−) and the proportion of risk lovers and risk neutrals is F (0). We

also have F (0−) = min g(ρr/w) and F (0) = max g(ρr/w). Suppose we

have F (0−) > ρr/w. Since min g(xR) is nonincreasing in xR, we must

have min g(xR) > ρr/w for all xR ≤ ρr/w. It follows that x?R > ρr/w,

δ? > 1, and α? < 0. Conversely if we have F (0) < ρr/w. Finally, if we have

ρr/w ∈ [F (0−), F (0)] = g(ρr/w), we must have x?R = ρr/w, δ? = 1, and

α? = 0. 2

It is not the case, however, that a distribution with more risk lovers

necessarily has a higher proportion of rent-seekers in equilibrium than a dis-

tribution with fewer risk lovers. Figure 2 shows a counterexample. The dis-

tribution corresponding to g2 has a higher proportion of risk lovers than the

distribution corresponding to g1 (i.e., we have min g2(ρr/w) > min g1(ρr/w)),

but the Þxpoint of g2 is lower than the Þxpoint of g1.

The intuition for these results is the following. If there are �too few� risk

lovers and risk neutrals, they can all enter without exhausting the rent and

making the net expected value of rent-seeking negative. Therefore also some
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w/r ρ

.1 .2 .3 .4 .5 .6 .7 .8

.4 -.325963

.5 -.452599 -.126616

.6 -.556963 -.244605 7.34845 10−17

.7 -.640905 -.352106 -.108907 .102019

.8 -.707261 -.447494 -.213419 9.0768 10−17 .196401 .37851

.9 -.75927 -.53003 -.311118 -.10155 .0995213 .292825 .478999 .6586

Table 1: Values of α? under the uniform distribution.

w/r ρ

.1 .2 .3 .4 .5 .6 .7 .8

.4 1.34807

.5 1.3685 1.09173

.6 1.32911 1.13309 1.

.7 1.25683 1.13381 1.03961 .964267

.8 1.17096 1.10501 1.04878 1. .957121 .919007

.9 1.08328 1.05743 1.03332 1.01076 .989569 .969619 .950785 .932962

Table 2: Dissipation rates under the uniform distribution.

risk averse types will want to enter. How many of these latter will enter

the rent-seeking contest is determined by the exact nature of the population

distribution, however. For instance, if the risk averse individuals are predom-

inantly very risk averse, then relatively few of them will enter. Conversely if

there are �too many� risk lovers and risk neutrals. Therefore the equilibrium

measure of rent-seekers is not a function simply of the proportion of risk

lovers and risk neutrals.

Although we cannot solve for α? analytically, we may use numerical meth-

ods to compute it for selected parameter values and distributions. Table 1

shows Þxpoint values when F is assumed to have the uniform density on A.2

Table 2 shows the corresponding dissipation rates. We note that while

2The FindRoot function of Mathematica by Wolfram Research, Inc, was used to com-

pute this example. Any use of numerical methods necessarily involves approximation. One

may readily verify that for (w/r, ρ) equal to (.6, .3) or (.8, .4), α? must actually be exactly

equal to 0.
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the Þxpoint values range quite widely, the dissipation rates are always close

to or equal to one.

As noted above, measuring the rate of dissipation in material terms is

welfare-irrelevant when individuals have different attitudes toward risk. A

better measure takes into account, e.g., that some individuals get utility from

risk-taking in itself. To adjust the dissipation rate for risk, note that the

certainty equivalent of the risky activity to an individual of type α is equal

to p(xR)
1/(1−α)r. In equilibrium, we may thus measure the risk-adjusted rate

of dissipation as the ratio of per capita investment to the per capita certainty

equivalent of rent-seeking of the rent-seekers, that is, as

�δ? := x?Rw

rÃ ρ
x?R

!1/(1−α?)

(x?R − F (α?−)) + lim
α0↑α?

Z α0

−1
r

Ã
ρ

x?R

!1/(1−α)

dF (α)

−1

.

(1)

We note that the risk-adjusted equilibrium rate of dissipation cannot be

greater than what it would be if all rent-seekers were of type α?, nor less

than what it would be if all rent-seekers were of type α. That is, we have

that
x?Rw

x?Rr(ρ/x
?
R)

1/(1−α)
≤ �δ? ≤ x?Rw

x?Rr(ρ/x
?
R)

1/(1−α?)
. (2)

Clearly, when all rent-seekers are risk lovers, the risk-adjusted rate of dis-

sipation is bounded above by a number strictly less than the material rate

of dissipation. We also know that if all individuals are risk averse, the risk-

adjusted rate of dissipation is bounded below by a number strictly greater

than the material rate of dissipation. The remaining cases are ambiguous.

We thus have the following observation.

Proposition 3 Suppose we have α? < 0. We then have �δ? < δ?; i.e., the

material dissipation rate overestimates rent dissipation. On the other hand,

suppose we have α > 0, i.e., that all individuals are risk averse. We then have
�δ? > δ?; i.e., the material dissipation rate underestimates rent dissipation.
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w/r ρ

.1 .2 .3 .4 .5 .6 .7 .8

.4 .835865

.5 .899058 .832272

.6 .940053 .893058 .852768

.7 .966282 .936303 .908557 .882136

.8 .982912 .966293 .949862 .933367 .916547 .899087

.9 .993403 .986584 .979476 .971996 .96403 .955413 .945886 .934979

Table 3: Risk-adjusted dissipation rates under the uniform distribution.

In case F has a density f , the risk-adjusted equilibrium dissipation rate

reduces to

�δ? = x?Rw

Z α?

−1
r

Ã
ρ

x?R

!1/(1−α)

f(α)dα

−1

.

Table 3 shows the risk-adjusted rates of dissipation when F is the uniform

distribution. We note that while they are also always close to one, they

are always less than one, and furthermore less than the material dissipation

rate except for one case. Since in each case a majority of the individuals who

enter the risky activity are risk lovers, who derive utility from risk taking, the

material dissipation measure typically overestimates the degree of dissipation.

3 Evolution

The literature on evolutionary game theory (see, e.g., Mailath 1998 for a

survey) typically assumes that individuals are genetically or culturally pro-

grammed with certain behaviors or strategies. The population representa-

tion of a strategy then evolves in response to the payoffs it generates at a

moment in time. A commonly used model of this process is the replicator

dynamics (see, e.g., Maynard Smith 1982, Hofbauer and Sigmund 1988, or

Weibull 1995), a model of asexual genetic reproduction.

In contrast, we shall assume that individual agents are carriers of pref-

erences, rather than behaviors, and that they behave rationally given their

15



preferences. Preferences, in turn, are assumed to evolve according to an

adapted version of the replicator dynamics, with the material payoffs gen-

erated at a moment in time our measure of the evolutionary Þtness of a

preference type.3

It is implicit, of course, in this approach that we assume the rent-seeking

game is the only stable situation relevant for the evolution of risk attitudes.

That is, although individuals might face other games where risk attitude

comes into play, we assume these are of negligible importance. Broadly, such

situations fall into two categories: One where the probability distribution of

payoffs is dependent on how many individuals pursue a given activity, and

one where it is not. Our analysis is intended to cover the former case of

frequency-dependent risk. The second case has no strategic aspects.

There are inÞnitely many agents of every measurable type, and we assume

the stochastic trials are independent. We therefore invoke the law of large

numbers and treat expected payoffs as actual average payoffs.4 Let µt(α) be

the average payoff to individuals of type α at time t. Then

mt{E} :=
½
(1/Ft{E}) RE µt(ξ)dFt(ξ) if Ft{E} > 0
0 otherwise.

is the average Þtness at time t of individuals whose types lie in the interval

E ⊂ A and m̄t := mt(1) average Þtness in the population as a whole. In

particular, we write

mt(α) :=
½
(1/Ft(α))

R α
−1 µt(ξ)dFt(ξ) if α > α

0 otherwise.

3A referee points out that if material payoffs are thought of as, e.g., money, then the

dependence of reproductive success on monetary income may be highly nonlinear. The

main purpose here, however, is to distinguish between subjective utilities, which seem

unlikely to be the direct basis for any form of evolutionary selection, and evolutionary

Þtness. Hence one can equivalently think of the objective payoffs as being speciÞed directly

in terms of offspring, biological or cultural.
4Although it is a common practice, it is well known that doing so with a continuum of

individuals is not without problems. See, e.g., Judd (1985) or Boylan (1992).
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for the average Þtness at time t of individuals whose types are α or less.

The natural extension of the replicator dynamics to the case of a contin-

uous trait is to require that every subinterval of types grow in mass propor-

tionally to the relative average payoff of types in the interval, i.e., that we

have that

Ft+1{E} = mt{E}Ft{E}/m̄t for all measurable E ⊂ A.

This is easily seen to be equivalent to the dynamics

Ft+1(α) = θ(Ft)(α) := mt(α)Ft(α)/m̄t for all α ∈ A.

This deÞnes a discrete dynamical system on the set F of right-continuous

population distributions on A.5

Now let

mSt := w

and

mRt := ρr/x
?
Rt.

We assume that in each period, the economy converges to the unique static

equilibrium described in Section 2. This equilibrium determines the Þtness

of each type, which in turn determines the next-period distribution of types.

Since in the static equilibrium we have that

µt(α) =


mRt if α < α?t
k?mRt + (1− k?)mSt if α = α?t
mSt if α > α?t ,

the replicator dynamics may be written

Ft+1(α) =

(
mRtFt(α)/m̄t if α < α?t
(mRtx

?
Rt +mSt(Ft(α)− x?Rt))/m̄t otherwise,

5For a discussion of the continuous-time replicator dynamics with a continuous trait,

see Oechssler and Riedel (2001).
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where m̄t = x
?
RtmRt + (1− x?Rt)mSt.

It is easy to see that Ft remains in F under the evolutionary dynamic θ.

A stationary state is a distribution F ? such that θ(F ?) = F ?. There are thus

two types of stationary states. Either F ? has all its mass concentrated on a

unique atom, or the Þtnesses resulting from the two activities are equal.

Proposition 4 Let F ? be a stationary distribution under θ. Let m?
R and

m?
S be the equilibrium fitnesses associated with F ?. Then we either have

F ?(�α) = 1 and F ?(�α−) = 0 for some �α, or m?
R = m

?
S.

(See the Appendix for a proof.)

Definition 1 We say a distribution F is extreme if either α0 < 0 (in which

case it is left extreme) or α0 > 0 (in which case it is right extreme).

An extreme distribution is one where either only risk lovers or only risk

averse have positive measure. Thus the admittedly immoderate distribution

where only risk neutrals have positive mass is not considered extreme.

Proposition 5 Every left extreme (right extreme) initial distribution con-

verges to a stationary distribution that has all its mass concentrated on the

unique atom α0 (α0).

(See the Appendix for a proof.)

A different way of expressing the result is to say that an extreme starting

distribution evolves to one where only the type closest to risk neutrality

has survived. It follows that the long-run dissipation rate when the initial

distribution is left extreme (right extreme) is equal to (w/r)α0 > 1 ((w/r)α0 <

1). The long-run risk adjusted dissipation rate in this case is equal to 1, since

in the long run all individuals of the surviving type are indifferent between

the two activities.

The replicator dynamics operating on an extreme starting distribution is

unlikely, however, to be a good model of preference evolution, as it never

18



allows the later introduction of types that were not present at the beginning.

Both biological and cultural evolution are likely to be subject to shocks or

mutations. In the case of cultural evolution, one source of mutation may be

experimentation where individuals randomly assume attitudes that have not

been tried before. A reasonable way to control for the effects of mutation

without modelling it explicitly is to study what happens to initial distribu-

tions that have full support, or at least where not everybody is either risk

averse or risk loving. This guarantees that both these broad categories of

preferences are allowed to have an effect.

Proposition 6 Every nonextreme initial distribution converges to a station-

ary state where the population proportion of rent-seekers is ρr/w, all risk

lovers enter the rent-seeking contest, all risk averse stay out, and rents are

perfectly dissipated.

(See the Appendix for a proof.)

From the inequality (2) we see that, in contrast with the case of an ex-

treme starting distribution, the long-run risk adjusted dissipation rate is

always less than or equal to 1. We also get a lower bound on the long-run

risk adjusted dissipation rate, so we know thatq
w/r ≤ lim

t→∞
�δ?t ≤ 1.

As an example, consider the case where the starting distribution consists

of two atoms, α0 < 0 and α0 > 0. The long-run distribution will then

also consist of these two atoms, with a mass of ρr/w on α0. Therefore

the long-run risk adjusted dissipation rate in this special case reduces to

limt→∞ �δ?t = (w/r)
−α0/(1−α0) < 1.

Under certain circumstances we may directly Þnd the long-run distri-

bution of risk lovers, and thus an explicit expression for the long-run risk-

adjusted dissipation rate.
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Proposition 7 Let F0 be nonextreme and continuous at zero, and suppose

we have {λα?0:λ ∈ [0, 1]} ∩ S(F0) ∩ (−1, 0] = ∅. Then the long-run risk-

adjusted rate of dissipation is given by

lim
t→∞

�δ?t =

ÃZ 0

−1
(w/r)α/(1−α) 1

F0(0)
dF0(α)

!−1

.

Proof. We have Ft+1(α) = mRtFt(α)/m̄t for all α ≤ 0 and all t, from

which follows that limt→∞ Ft(α) = (
Q∞
t=0mRt/m̄t)F0(α) for α ≤ 0. Since

F0 is continuous at zero we know from Proposition 6 that limt→∞ x?Rt =
limt→∞ Ft(0) = (

Q∞
t=0mRt/m̄t)F0(0) = ρr/w, so we must have limt→∞ Ft(α) =

(ρr/w)(F0(α)/F0(0)) for α ≤ 0. The Proposition follows by insertion into

(1). 2

We note, in particular, that the long-run risk-adjusted rate of dissipation

in this case is independent of ρ. The condition on the support of F0 guaran-

tees that the trajectory of α?t does not pass through regions where risk lovers

have positive mass. The reason we require this is that we cannot (at least not

easily) characterize the limiting distribution of risk lovers if the evolutionary

dynamics requires certain types to both grow and diminish in representation

at different times. A sufficient condition for the Proposition to hold is that

we have α?0 > 0.

Table 4 shows long-run risk-adjusted dissipation rates when the initial

distribution is the uniform distribution on A. Values for the cases where

ρr/w < .5 cannot be computed using this formula, but the numbers in bold-

face give lower bounds according to (2).

That the set of stationary states is globally attracting does not necessarily

mean that a particular stationary state is asymptotically stable. There is no

guarantee that if we start at a stationary distribution and perturb it slightly,

the system will return to that particular stationary state. Proposition 6 only

guarantees stability in the face of a particular perturbation, namely, in the

direction of the incoming trajectory. We may usefully distinguish, however,

between the dynamic stability of a particular stationary distribution and that
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w/r ρ

.1 .2 .3 .4 .5 .6 .7 .8

.4 .632456

.5 .707107 .707107

.6 .774597 .774597 .852768

.7 .83666 .83666 .83666 .895225

.8 .894427 .894427 .894427 .933367 .933367 .933367

.9 .948683 .948683 .948683 .948683 .968082 .968082 .968082 .968082

Table 4: Long-run risk-adjusted dissipation rates under the uniform initial

distribution.

of certain of its aggregate properties. Thus we have trivially already proved

that the long-run stationary population proportion of rent-seekers is stable

in the following sense.

Corollary 1 Consider a stationary nonextreme distribution, i.e., one where

the proportion of rent-seekers is ρr/w. Perturb this distribution in such a

fashion that the resulting perturbed distribution is also nonextreme. Then the

system will in the long run return to a stationary state where the proportion

of rent-seekers is ρr/w.

We note that the permissible perturbations may be quite dramatic. In

particular, if we limit attention to the set of nonextreme distributions, which

includes the distributions that have full support, then the long-run proportion

of rent-seekers is globally stable.

4 Related Literature

The idea that preferences may in the long run be shaped by the decision prob-

lem they are applied to is not new to this paper. Early discussions are found,

e.g., in the work of Gary Becker. For instance, Becker and Michael (1973)

say that

[P]erhaps that common preference function has evolved over

time by natural selection and rational choice as that preference
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function best adopted to human society. That is, in the short

run the preference function is Þxed and households attempt to

maximize the objective function subject to their resource and

technology constraints. But in the very long run, perhaps those

preferences survive which are most suited to satisfaction given the

broad technological constraints of human society (e.g., physical

size, mental ability, et cetera).6

In a recent series of applications to speciÞc problems (e.g., Güth and Yaari 1992,

Bester and Güth 1998, and Güth and Nitzan 1997), Werner Güth terms the

idea the indirect evolutionary approach. While the approach in these papers

is explicitly game-theoretical, which translates into frequency-dependent Þt-

ness functions in the evolutionary context, the evolutionary literature on risk

attitudes has hitherto taken a slightly different road.

Cooper (1987), Karni and Schmeidler (1986), and Rubin and Paul (1979)

are early examples of attempts to derive expected utility maximization and

metarational risk attitudes from evolutionary foundations. Karni and Schmei-

dler show that maximizing the probability of survival in a setting of sequential

risky choices may imply expected utility maximization in the von Neumann-

Morgenstern sense. Similarly, Cooper derives the Savage axioms of rational

choice under uncertainty. Rubin and Paul are concerned with explaining

risk-taking behavior among adolescent males. Such behavior may maximize

Þtness if there is an income threshold below which no females can be at-

tracted. These contributions are all non-game-theoretical in the sense that

the Þtnesses of different behaviors are assumed independent of their relative

representation in the population. It is therefore implicit that only one type

of behavior may survive in the long run.

6The reference to a common preference function is because this discussion occurs in

the context of a presentation of the so-called Z-good theory, which involves the idea that

individuals have the same ultimate preferences but different technologies for satisfying

them.
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In a similar vein, Robson (1996a) shows that behavior violating expected

utility maximization may win out in the long run if it distinguishes between

gambles with idiosyncratic and aggregate risk. The idea here is that the law of

large numbers will guarantee the survival of a type that favors a gamble with

positive expected payoff and independent trials across individuals, whereas

a gamble that has the same expectation but gives the same outcome to

all individuals who take it may be associated with a positive probability

of extinction of its adherents. Another paper, Robson (1996b), is game-

theoretical in the sense that it extends the Rubin and Paul framework in

such a way that relative income matters.

Dekel and Scotchmer (1999) continue the tradition of the papers men-

tioned earlier, but come closest to the present analysis in that they study

a winner-take-all game. They study two different setups. In the Þrst, indi-

viduals representing gambles are randomly matched in groups, with only the

group winner receiving a positive Þtness increment. In the second setup, all

individuals in the population compete simultaneously. In the latter setting,

which has some similarities with that of the present paper, the forces favoring

risk-taking behavior are weaker.

All the papers mentioned have in common that they focus on conditions

for a behavioral rule (which in these cases is identiÞed with a probability

measure on offspring) to be the unique ultimate survivor. In contrast, the

present paper shows that different types of attitudes to risk, and the implied

diffferent behaviors associated with them, may coexist in the long run.

5 Concluding Remarks

In this paper, we started by studying a simple rent-seeking economy with a

population of agents of different risk attitude types. We solved this static

model for a unique equilibrium and related the degree of rent dissipation in

equilibrium to the population composition of risk attitude types. In doing so,
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we slightly generalized existing results on risk attitudes and rent dissipation.

We also noted, however, that the orthodox notion of rent dissipation, which

evaluates the degree of resource waste due to rent-seeking as if all agents

were risk neutral, is misleading when different attitudes to risk are present.

We therefore also provided a risk-adjusted measure of dissipation.

We then studied the implications of preference evolution based on mate-

rial payoffs. In contrast with some other contributions to the theory of risk

attitude evolution, based on non-game-theoretical approaches, we found that

both risk lovers and risk averse types can plausibly coexist in the long run.

These broad categories of risk attitude types will specialize, however, in such

a fashion that only risk lovers undertake the risky rent-seeking activity in the

long run. In general terms, this is an example of how preference evolution

may lead to as-if risk neutrality in the sense of an aggregate result that mim-

ics the outcome that results if all agents are risk neutral. From a rent-seeking

perspective, it means that rents will be perfectly dissipated in material terms

in the long run. We also showed, however, that if the different valuations of

the risky prospect of different preference types is taken into account, then

the risk-adjusted degree of rent dissipation is always less than perfect in the

long run.

A natural question is to what extent the coexistence result is due to the

restriction to two activities. Might it not be the case that if there was an even

riskier, third alternative, then the most risk-loving types would gamble away

their evolutionary prospects on this activity? We shall be satisÞed here with

the observation that if the levels of risk associated with different activities

are endogenous, as in the present paper, then it may still be the case that

there is an interior equilibrium that equalizes expected material payoffs. The

population distributions associated with this equilibrium are then stationary.

Thus coexistence is not simply an artifact of having just two activities. The

full investigation of these possibilities must await future research.
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Appendix

Proof of Proposition 4. Consider Þrst the case where there is �α such

that F ?(�α) = 1 and F ?(�α−) = 0. Then clearly we have µ?(�α) = m̄?, so we

have θ(F ?)(α) = 1 for all α ≥ �α and θ(F ?)(α) = 0 for all α < �α. Thus F ?

is stationary. Consider next the case where F ? puts positive mass on more

than one type, and suppose we have m?
R 6= m?

S. Then there is at least one

type such that all agents of that type choose the same activity. Call this type

�α, and assume without loss of generality that the activity chosen is R. Then

we have θ(F ?)(�α) = m?
RF

?(�α)/m̄? 6= F ?(�α), so F ? is not stationary. 2.

Proof of Proposition 5. We prove this for the case of a left extreme initial

distribution F0. The right extreme case is, of course, entirely analogous.

We have α?0 ≤ α0 < 0. Furthermore, it must hold that α
?
t ≤ αt ≤ α0 < 0

for all t > 0, so that mRt < mSt for all t > 0. Consider now Ft+1(α) for any

α < α0 and any t > 0. If we have α < α?t , then we have either Ft+1(α) =

Ft(α) = 0 or Ft+1(α) = mRtFt(α)/m̄t < Ft(α). If we have α0 > α ≥ α?t , then
Ft+1(α) = (mRtx

?
Rt+mSt(Ft(α)−x?Rt))/m̄t < Ft(α). Therefore we must have

limt→∞ Ft(α) = 0 for all α < α0, and clearly limt→∞ Ft(α0) = 1. 2

Proof of Proposition 6. The major part of this proof consists in showing

that limt→∞ α?t = 0, or, equivalently, that limt→∞ x?Rt = ρr/w. If we have

α?0 = 0, we are done. Suppose we have α
?
0 < 0, which implies x

?
R0 > ρr/w and

mS0 > mR0. We have max gt+1(x
?
Rt) = Ft+1(α

?
t ) = (mRtx

?
Rt +mSt(Ft(α

?
t ) −

x?Rt))/m̄t < Ft(α
?
t ) for all t such that α

?
t < 0. For any t with α?t < 0,

there must then exist n > 0 such that max gt+n(x
?
Rt) < x?Rt, which implies

x?Rt+n < x?Rt. That is, though x
?
Rt may stay the same for periods, it must

eventually fall as long as we have x?Rt > ρr/w.

We next show that there cannot be equilibrium overshooting; that is, we

cannot have x?Rt+1 < ρr/w and x
?
Rt > ρr/w at any t. For suppose this was

the case. Since we have α?t < 0, we have that

Ft+1(0) =
mRt −mSt

m̄t
x?Rt +

mSt

m̄t
Ft(0) = 1 +

mSt

m̄t
(Ft(0)− 1).
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We now note that x?Rt+1 < ρr/w implies Ft+1(0) < ρr/w, which in turn

implies that
mSt

m̄t
(Ft(0)− 1) < ρr

w
− 1.

But since by assumption we have x?Rt > ρr/w, which implies Ft(0) ≥ Ft(0−) >
ρr/w and mSt > mRt, the left hand side of this expression is strictly greater

than the right hand side. We thus have a contradiction.

Therefore we must have limt→∞ x?Rt = ρr/w. The case where α
?
0 > 0 is

completely analogous. 2
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Bester, H., and Güth, W. (1998). �Is Altruism Evolutionarily Stable?�

Journal of Economic Behavior and Organization 34, 193�209.

Boylan, R. T. (1992). �Laws of Large Numbers for Dynamical Systems

with Randomly Matched Individuals,� Journal of Economic Theory 57,

473�504.

Cooper, W. S. (1987). �Decision Theory as a Branch of Evolutionary Theory:

A Biological Derivation of the Savage Axioms,� Psychological Review 94,

395�411.

Dekel, E., and Scotchmer, S. (1999). �On the Evolution of Attitudes Towards

Risk in Winner-Take-All Games,� Journal of Economic Theory 87, 125�

143.

Feller, W. (1971). An Introduction to Probability Theory and its Applications,

volume II. New York: John Wiley & Sons.

Frank, R. H., and Cook, P. J. (1995). The Winner-Take-All Society. New

York: The Free Press.
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