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ABSTRACT 

Group Contest Success Functions    

by Johannnes Münster * 

This paper extends the axiomatic characterization of contest success functions 
of Skaperdas (1996) and Clark and Riis (1998) to contests between groups. 
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JEL Classification: C70, D72, D74 

ZUSAMMENFASSUNG 

Group Contest Success Functions 

Eine "contest success function" beschreibt, wie in einem Wettkampf die 
Gewinnwahrscheinlichkeiten von den Einsätzen der Beteiligten abhängen. 
Dieser Aufsatz verallgemeinert die auf Skaperdas (1996) und Clark und Riis 
(1998) zurückgehende axiomatische Fundierung von contest success functions, 
indem er Wettkämpfe zwischen Gruppen untersucht.  
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1 Introduction

Contests often take place between groups. In lobbying and rent-seeking con-

tests, many lobbyists work together on the same side. In R&D races, groups

of researchers team together in order to develop new technologies earlier than

rival teams. Further examples are wars and sport tournaments. By now there

is a substantial literature on group contests.1

Skaperdas (1996) provides, in an important paper, an axiomatic char-

acterization of contest success functions. He deals with contests between

individuals. Clark and Riis (1998) generalize Skaperdas (1996) by dropping

the assumption of symmetry. The purpose of the present paper is to extend

these axiomatic foundations to contests between groups. In a group contest,

each member of a group can invest time, resources, or effort in order to in-

crease the probability of his group winning.2 I propose a set of axioms for

group contests that are close analogues to those studied by Skaperdas (1996)

and Clark and Riis (1998). In particular, if each group consists of only one

individual, then the axioms are similar to the axioms in Skaperdas (1996).

Following Clark and Riis (1998), however, I allow for asymmetries. This is

natural for group contests since groups may have different sizes.

Skaperdas (1996, Theorem 1) shows that, under a set of reasonable ax-

ioms, the probability of individual i winning a contest is given by

f (xi)P
j f (xj)

whenever the denominator is positive, where xj is the effort of individual

j, and the function f : R+ → R+ is sometimes referred to as the impact
function. The axioms laid out below generalize this to group contests and

1For surveys, see Garfinkel and Skaperdas (2006, Section 7), Corchón (2007, Section
4.2), and Konrad (2007, Sections 6.4 and 7).

2A related situation arises in multi-activity contests between individuals as studied in
Epstein and Hefeker (2003), Arbatskaya and Mialon (2007), and Caruso (2006). Here,
each individual chooses several activities that help in winning the contest.
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allow for asymmetries (Theorem 1). Under these axioms, whenever at least

one individual chooses a strictly positive effort, the probability of group g

winning is given by
fg (xg)P
k fk (xk)

, (1)

where for each group k, xk denotes the vector of efforts of the mk members

of group k, and fk : Rmk
+ → R+ is a non-negative and strongly increasing

function.

Moreover, Skaperdas (1996, Theorem 2) shows that, if the contest success

function if homogenous of degree zero, his axioms imply a Tullock contest

success function. The generalization to a group contest given here (Theorem

2) results in a contest success function of the form given in (1), where all the

impact functions fk are homogeneous of the same degree. I also generalize

the axiomatic foundation of a logistic contest success function (Theorem 3).

Finally, I consider an axiom stating that the probability of success remains

unchanged if the effort of one individual increases by some amount while

the effort of another individual belonging to the same group decreases by

the same amount. This leads to functional forms for group contest success

functions that have frequently been used in the literature.3 If the contest

success function is homogeneous of degree zero, a natural generalization of

the Tullock contest success function results: the impact functions in (1) are

multiples of a power function of the sum of the efforts of the group’s members.

A similar statement holds for the logistic contest success function.

This paper has grown out of appendix 8.1 of Münster (2004). It is related

to other axiomatic work on contest success functions such as Blavatskyy

(2004) on contests with ties, Arbatskaya and Mialon (2007) and Rai and

Sarin (2007) on multi-activity contests, and to other approaches to contest

3A partial list is: Katz, Nitzan and Rosenberg (1990), Nitzan (1991), Katz and
Tokatlido (1996), Skaperdas and Syropoulos (1997), Wärneryd (1998), Esteban and Ray
(2001), Müller and Wärneryd (2001), Garfinkel (2004a, 2004b), Baik (2007), Inderst,
Müller and Wärneryd (2007), Münster (2007), Münster and Staal (2007).
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success functions such as Epstein and Nitzan (2006, 2007) and Jia (2008).

Rai and Sarin (2007) is perhaps the most closely related; they independently

cover similar ground as Theorems 1 and 2 below, but do not discuss the

generalization of the logistic contest success function, or the summation case.

2 Main axioms

There are n individuals andG groups. Each individual is a member of exactly

one group. Group g has mg ≥ 1 members,
PG

g=1mg = n. The set of groups

is denoted by Γ = {1, ..., G} . The inter-group contest effort of individual i in
group g is xig ∈ R+. For the purpose of the present paper, it is immaterial
whether these efforts are chosen by the individuals or enforced by the groups.

Let xg =
¡
x1g, ..., xmgg

¢
be the mg−vector of efforts of the members of group

g, x = (x1, ...,xG) the n−vector that collects all individual efforts, x−g the
(n−mg)−vector of the efforts of all players who do not belong to group
g, and x−ig the (n− 1)−vector of all efforts except the effort of player i in
group g. Sometimes the convenient notation

¡
xg,x−g

¢
= (xig,x−ig) = x will

be used. Moreover, for any M ⊂ Γ, let xM denote the
³P

g∈M mg

´
−vector

of the efforts of members of groups g that belong to M.

For any group g ∈ Γ, it is assumed that there exists a function pg : Rn
+ →

R+, where pg (x) can be interpreted as the probability that group g wins the
contest. Alternatively, pg (x) can also be interpreted as the share of some

rent that group g gets. I will refer to pg as the contest success function

(abbreviated CSF).

Axiom 1 (Probability)
PG

g=1 pg (x) = 1 and pg (x) ≥ 0 for all g ∈ Γ.

Axiom 2 (Monotonicity) For all g ∈ Γ and all i ∈ {1, ..,mg} : if x̂ig > xig,

then

i) pg (x̂ig,x−ig) ≥ pg (xig,x−ig), with strict inequality unless pg (xig,x−ig) = 1,

and

ii) for all k 6= g, k ∈ Γ : pk (x̂ig,x−ig) ≤ pk (xig,x−ig) .

3



A1 says that pg (x) is a probability. A2 says that it is strictly increasing

in the effort of any member of the group; the only exception being that the

group already wins with probability one, in which case the probability of

winning stays constant when the effort of a member increases. Moreover,

a group’s probability of winning is weakly decreasing in the efforts of the

individuals who belong to the other groups. A2 implies that, if xig > 0 for

some i in group g, then pg (x) > 0. This rules out the perfectly discriminating

CSF (or all-pay auction) considered in Baik, Kim and Na (2001) and Konrad

(2004), where a group wins with probability one if the sum of the efforts of

individuals in this group is higher than the sum of the efforts of the members

of any competing group. This CSF, however, can be viewed as the limit of

the CSF axiomatized in Proposition 2 below.4

Skaperdas’ (1996) third axiom is a symmetry assumption. I do not impose

any symmetry for the main results. For completeness, however, I discuss the

impact of assuming symmetry.

Axiom 3 (Between-group-anonymity) A contest success function satisfies

between-group-anonymity if, whenever mg = mk,

pg
¡
xg,xk,xΓ\{g,k}

¢
= pk

¡
xk,xg,xΓ\{g,k}

¢
.

A3 says that the contest is fair between groups of equal size and the

identities of the groups do not matter per se. It should be contrasted with

anonymity within groups:

Axiom 3’ (Within-group-anonymity) A contest success function satisfies

within-group-anonymity if, for any group g ∈ Γ and for any bijection ψ :

{1, ...,mg}→ {1, ...,mg} ,

pg (xg,x−g) = pg (x̂g,x−g) ,

4Similarly, A2 implies that the impact function cannot be Cobb Douglas, weakest link,
or best shot. These impact functions, however, are limit cases of a family of CES functions
consistent with Theorem 2 below.
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where x̂g =
¡
xψ(1)g, ..., xψ(mg)g

¢
is the vector of efforts of the members of

group g after a permutation according to ψ.

Between-group-anonymity (A3) and within-group-anonymity (A3’) are

different, even if all groups are of equal size. For example, suppose that

G = m1 = m2 = 2, and consider the CSF

p1 (x) =

(
a(bx11+x21)

a(bx11+x21)+(bx12+x22)
, x 6= 0,

1
2
, otherwise.

Here, and in the following, 0 = (0, ..., 0) denotes the vector of appropriate

length where every component is equal to zero. If a = b = 1, both A3 and

A3’ hold; if a = 1 6= b, only A3 holds; if a 6= 1 = b, only A3’ holds; finally, if

a 6= 1 and b 6= 1, neither A3 nor A3’ holds.5

The next two axioms concern the CSF for a contest among fewer groups.

Axiom 4 (Subcontest consistency) Let pMg (x) be group g’s probability of

winning a subcontest played by a subset M ⊂ Γ consisting of at least two

groups. Then for all g ∈M,

pMg (x) =
pg (x)P

k∈M pk (x)
∀x s.t. xM 6= 0.

Axiom 5 (Subcontest independence) pMg (x) is independent of the efforts of
individuals belonging to groups not in M .

A4 implies that contests among fewer groups or more groups are qualita-

tively similar. Note that the equation is well defined since xM 6= 0, i.e. there
is some k ∈ M and i ∈ {1, ...,mk} s.t. xik > 0, and thus, by A2, pk (x) > 0.
A5 is related to the independence of irrelevant alternatives in the context of

individual probabilistic choice.

5In the context of a multi-activity contest, within-group-anonymity seems a strong
assumption, since the activities may have a different impact on the winning probabilities.
One may want to model this in the CSF, as in Epstein and Hefeker (2003).
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For the main results, A1, A2, A4 and A5 are assumed to hold. The

approach is to derive the CSF for any subcontest of some bigger contest. In

this way, A4 and A5 can also be used to derive the CSF for a contest between

only two groups.

Axioms 1-5 reformulate the assumptions in Skaperdas (1996) for an inter-

group contest. In particular, if there is only one individual in each group,

A1-A5 are similar to the corresponding axioms in Skaperdas (1996). For

further motivations and discussions of the axioms, see also Clark and Riis

(1998) and Corchón (2007).

3 Results

Following Jehle and Reny (2001, p. 437), a function f : Rk
+ → R+ is said to

be strongly increasing whenever ẑi ≥ zi for all i ∈ {1, ..., k} and ẑj > zj for

at least one j ∈ {1, ..., k} implies f (ẑ1, ..., ẑk) > f (z1, ..., zk) .

Theorem 1 Suppose the contest success function satisfies A1, A2, A4, and
A5. Let M be any proper subset of Γ consisting of at least two groups. Then,

for each g ∈M, there exists a non-negative and strongly increasing function

fg : Rmg

+ → R+ such that

pMg (x) =
fg (xg)P

k∈M fk (xk)
∀x s.t. xM 6= 0. (2)

Proof. Since M is a proper subset of Γ, there exist a group a ∈ Γ\M. Fix

any xa = a 6= 0. Then by A2, pa (xa,x−a) > 0. Thus by A4,

pMg (x) =

pg(xa,x−a)
pa(xa,x−a)P

k∈M
pk(xa,x−a)
pa(xa,x−a)

∀x s.t. xM 6= 0, xa = a 6= 0. (3)
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By A4, for any group k ∈M,

p
{a,k}
k (xa,x−a)

p
{a,k}
a (xa,x−a)

=

pk(xa,x−a)
pk(xa,x−a)+pa(xa,x−a)

pa(xa,x−a)
pk(xa,x−a)+pa(xa,x−a)

=
pk (xa,x−a)

pa (xa,x−a)
∀x s.t. xa = a 6= 0.

All the expressions are well defined since xa = a 6= 0. By A5, p{a,k}k (xa,x−a)

and p
{a,k}
a (xa,x−a) depend only on xa and xk. By fixing xa = a 6= 0, one

can thus define, for each k ∈M, a non-negative function fk : Rmk
+ → R+ by

fk (xk) =
pk (a,x−a)

pa (a,x−a)
.

Next I show that fk is strongly increasing. Suppose x̂ik > xik. From A2,

pa (x̂ik,x−ik) ≤ pa (xik,x−ik) , moreover

pk (x̂ik,x−ik) > pk (xik,x−ik) ∀x−ik s.t. xa = a 6= 0,

since pk (xik,x−ik) < 1 follows from xa = a 6= 0 by A2 and A1. Therefore,

pk (x̂ik,x−ik)

pa (x̂ik,x−ik)
>

pk (xik,x−ik)

pa (xik,x−ik)
∀x−ik s.t. xa = a 6= 0.

Thus fk is strongly increasing.

By (3),

pMg (x) =
fg (xg)P

k∈M fk (xk)
∀x s.t. xM 6= 0, xa = a 6= 0.

By A5, pMg (x) does not depend on xa, therefore

pMg (x) =
fg (xg)P

k∈M fk (xk)
∀x s.t. xM 6= 0.

7



In the literature on contests between individuals, the function fg is some-

times called the impact function. I follow this terminology. In the present

setting, the impact function aggregates the individual efforts chosen by mem-

bers of a group to a single number.

Note that, if a CSF is of form (2), and for the case xM= 0 some tie-

breaking rule that is consistent with the axioms is assumed, then the CSF

fulfills A1, A2, A4, and A5 everywhere on its domain. Similar converse

statements hold for all the results derived below.

The implications of adding anonymity to A1, A2, A4 and A5 are straight-

forward. Between-group-anonymity (A3) requires that, if mg = mk, then

fg (z) = fk (z) for all z ∈ Rmg

+ . In contrast, within-group-anonymity (A3’)

requires that, for each group, the impact function fg is symmetric.

3.1 Homogeneity

To derive a Tullock CSF, Skaperdas (1996) assumes that the CSF is homo-

geneous of degree zero. A6 generalizes this for group contests.

Axiom 6 For all λ > 0 and all g ∈ Γ, pg (λx) = pg (x) .

A6 implies that, if all individuals double their efforts, the probabilities of

success remain unchanged. Moreover, the CSF is independent of the unit of

measurement, which seems an attractive property.

Theorem 2 If the contest success function satisfies A1, A2, A4, A5, and
A6, then it satisfies (2) and the impact functions fk are homogeneous of the

same degree r > 0.

Proof. From A4 and A6, if xM 6= 0, then pMk (λx) = pMk (x) for all λ > 0

and all k ∈M. Thus by Theorem 1, for all xk ∈ Rmk
+ \ {0} and all λ > 0, the

impact functions satisfy

fk (λxk)

fk (xk)
=

fk (λ1)

fk (1)
,

8



where 1 = (1, ..., 1) is the mk-vector where every component is equal to one.

Define F (xk) = fk (xk) /fk (1) . Then

F (λxk) = F (λ1)F (xk) . (4)

In particular, if xk = t1 where t > 0,

F (λt1) = F (λ1)F (t1) .

Define G (λ) = F (λ1) . Note that G is a strictly increasing function of a

single variable. Moreover, G (λt) = G (λ)G (t) .

In order to transform this equation into a Cauchy equation (cf. Aczél

1969), substitute λ = exp (λ0) and t = exp (t0) to get

G (exp (λ0 + t0)) = G (exp (λ0))G (exp (t0)) .

Let H (s) = G (exp (s)). Then H (λ0 + t0) = H (λ0)H (t0) . Finally, let h (s) =

ln (H (s)) to get

h (λ0 + t0) = h (λ0) + h (t0) . (5)

Since G is strictly increasing, h is strictly increasing and thus continuous

almost everywhere. Under this condition, the only solution to (5) is given by

h (s) = rs where r > 0 (Aczél 1966, p. 34). Thus H (s) = exp (rs) ,

G (s) = H (ln s) = exp (r ln (s)) = sr,

and F (λ1) = G (λ) = λr. Inserting this in (4) gives F (λxk) = λrF (xk). By

definition of F (xk) ,

fk (λxk) = F (λxk) fk (1) = λrF (xk) fk (1) = λrfk (xk) .

The above argument shows that, for any group k ∈M, whenever xk 6= 0,
fk (λxk) = λrf (xk) , where r > 0. From A6, r is the same for all groups.

9



Now suppose that xk = 0 for some k ∈ M. Fix some xg 6= 0 for each

g 6= k, and some λ 6= 1. Then pMk (λx) = pMk (x) and

fk (0)

fk (0) + λr
P

g∈M,g 6=k fg (xg)
=

fk (0)

fk (0) +
P

g∈M,g 6=k fg (xg)
.

Since λr 6= 1 and
P

g∈M,g 6=k fg (xg) > 0, it follows that fk (0) = 0. Therefore,

fk is homogeneous of degree r on Rmk
+ .

To see the relation to the axiomatic foundation of a Tullock CSF for con-

tests between individuals (Skaperdas 1996, Theorem 2), note that a function

f : R+ → R+ of a single variable is homogeneous if and only if it can be
written as f (x) = axr, where a = f (1) and r is the degree of homogeneity

(Carter 2001, p. 351). Thus, if every group consists of only one individual,

Theorem 2 immediately gives a Tullock CSF.

A1-A6 are compatible with several functional forms of the impact func-

tions. For example, the impact functions can be CES functions

fg (xg) =

Ã
mgX
i=1

xαig

! r
α

, r > 0, α 6= 0. (6)

Other potentially interesting impact functions can be seen as limit cases,

since they are limits of (6) but lead to a violation of A2. A case in point

is the Cobb-Douglas function, which violates the strict inequality in A2 (i),

but only when pg (x) = 0. Other cases are fg (xg) = min
©
x1g, ..., xmgg

ª
and fg (xg) = max

©
x1g, ..., xmgg

ª
, which are related to Hirshleifer’s (1983)

weakest-link and best-shot technologies for the production of public goods.6

6Some of the examples of private supply of public goods given by Hirshleifer (1983) to
motivate these technologies are actually about contests between groups. Consider missile
defence: only one rocket needs to hit an incoming ICBM in order to destroy it. See also
Clark and Konrad (2007).
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3.2 An alternative to homogeneity

Relying on data from Dupuy (1987), Hirshleifer (1989, 1991) argues for a

logistic CSF. He points out that the logistic CSF fits some ‘stylized facts’

from military warfare, in particular, that being just a little stronger than

one’s rival provides a big advantage. For contests between individuals, the

logistic CSF can be derived by assuming that the probabilities of success do

not change if a constant is added to the effort of each individual (Skaperdas

1996, Theorem 3). To generalize this to group contests, consider the following

alternative to A6. Let 1 = (1, ..., 1) denote the vector of appropriate length

where every component is equal to one.

Axiom 7 For all λ > 0, and all g ∈ Γ,

pg (x+ λ1) = pg (x) .

Theorem 3 If the contest success function satisfies A1, A2, A4, A5, and
A7, then it satisfies (2) and the impact functions fk satisfy, for all λ > 0,

fk (λ1+ xk) = exp (rλ) fk (xk) (7)

where r > 0 is a parameter.

Proof. From A4 and A7, for all λ > 0 and all k ∈M,

pMk (x+ λ1) = pMk (x) ∀x s.t. xM 6= 0. (8)

11



Suppose that fk (0)=0. Then one can derive a contradiction as follows: when-

ever xh 6= 0 for some group h ∈M\ {k} ,

0 =
fk (0)

fk (0) +
P

g 6=k,g∈M fg (xg)

= pMk (0,x−k)

= pMk (1,x−k + 1)

=
fk (1)

fk (1) +
P

g 6=k,g∈M fg (xg + 1)

> 0.

The right hand side of the first line is well defined since xh 6= 0. The second
line is from Theorem 1, the third from (8), the fourth from Theorem 1, and

the inequality from the strong monotonicity of fk. It follows that fk (0) > 0.

By Theorem 1 and (8), for all xk ∈ Rmk
+ ,

fk (λ1+ xk)

fk (xk)
=

fk (λ1)

fk (0)
.

Define F (s) = fk (s) /fk (0) . Thus

F (λ1+ xk) = F (λ1)F (xk) . (9)

For xk = k1 where k > 0, F ((λ+ k)1) = F (λ1)F (k1) . Let G (s) =

F (s1) . Then G (λ+ k) = G (λ)G (k) . Finally, let H (s) = ln (G (s)) to get

H (λ+ k) = H (λ) + H (k) . Since H is strictly monotone, it is continuous

almost everywhere, and the only solution is H (s) = rs. Thus

F (s1) = G (s) = exp (H (s)) = exp (rs) .

12



Inserting this in (9), F (λ1+ xk) = exp (rλ)F (xk) . Thus by definition of F,

fk (λ1+ xk) = F (λ1+ xk) fk (0) = exp (rλ)F (xk) fk (0)

= exp (rλ) fk (xk) .

The relation between Theorem 3 and the corresponding axiomatization of

a logistic CSF for contests between individuals is pointed out in the following

lemma.

Lemma 1 Suppose that f is a function of a single variable, f (0) > 0, and

f satisfies (7). Then, for all t ≥ 0, f (t) = a exp (rt) , where a = f (0) is a

positive constant.

Proof. In (7), let xk = 0 to get f (λ) = exp (rλ) f (0) . The lemma follows
by substituting t for λ.

By Lemma 1 and Theorem 3, in the case mg = 1 for all g, the only

CSF satisfying A1, A2, A4, A5, and A7 is the logistic CSF proposed by

Hirshleifer (1989, 1991). With groups consisting of several players, (7) is

satisfied, for example, by fk (xk) = exp (
Pmk

i=1 xik). This functional form will

be studied in more detail in the next section. It is, however, not the only

functional form satisfying (7). Another example is as follows. Let mg = 2

and fg (x1g, x2g) = exp
¡
sin (x1g − x2g) + (x1g + x2g)

r
2

¢
where r > 2.

3.3 Summation

Many papers have assumed that only the sum of the efforts of the individuals

in the same group matters. To give an axiomatic foundation for this, consider

the following axiom.

Axiom 8 Fix any ∆ > 0 such that ∆ ≤ xig for all i ∈ {1, ...,mg} . Define

x̂ijg :=
¡
x1g, ..., x(i−1)g, xig −∆, x(i+1)g, ..., x(j−1)g, xjg +∆, x(j+1)g, ..., xmgg

¢
.
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Then

pg (xg,x−g) = pg
¡
x̂ijg ,x−g

¢
for all i, j ∈ {1, ...,mg} and all g ∈ Γ.

In words, A8 says that if one member of group g puts in more effort while

another member of the same group reduces his efforts by the same amount,

the probability of group g winning is unaffected. A8 seems reasonable, for

example, when efforts are amounts of money that are pooled within a given

group. It is less reasonable in other applications, such as team sports. A8

implies within-group-anonymity (A3’), but not vice versa: for example, (6)

with α 6= 1 satisfies A3’, but not A8.

Proposition 1 If the contest success function satisfies A1, A2, A4, A5, and
A8, then it satisfies (2) and

fg (xg) = φg

Ã
mgX
i=1

xig

!
(10)

where φg : R+ → R+ is non-negative and strictly increasing.

Proof. By Theorem 1 and A8,

fg (xg) = fg

Ã
1

mg

mgX
i=1

xig, ...,
1

mg

mgX
i=1

xig

!
.

Defining

φg

Ã
mgX
i=1

xig

!
= fg

Ã
1

mg

mgX
i=1

xig, ...,
1

mg

mgX
i=1

xig

!
completes the proof.

A CSF as characterized in Proposition 1 has been used in Skaperdas

(1998) and in Inderst, Müller, and Wärneryd (2007). Adding Homogeneity

(A6) results in the following generalization of the Tullock CSF:

14



Proposition 2 If the contest success function satisfies A1, A2, A4, A5, A6,
and A8, then it satisfies (2) and

fg (xg) = ag

Ã
mgX
i=1

xig

!r

(11)

where ag, r > 0 are parameters.

Proof. From Proposition 1 and Theorem 2, we have (10) and that φg is ho-
mogeneous. Proposition 2 follows from the fact that a homogeneous function

of one variable is a multiple of a power function (Carter 2001, p. 351).

CSFs as characterized in Proposition 2 have been used, for example, in

Skaperdas (1998), Garfinkel (2004a, 2004b), Inderst, Müller, and Wärneryd

(2005), and Münster (2007). The limiting case where r → ∞ is the all-

pay auction considered in Baik, Kim and Na (2001) and in Konrad (2004).

Münster and Staal (2007) use a logistic CSF as characterized in the following

Proposition 3.

Proposition 3 If the contest success function satisfies A1, A2, A4, A5, A7,
and A8, then it satisfies (2) and

fg (xg) = ag exp

Ã
r

mgX
i=1

xig

!
(12)

where ag, r > 0 are parameters.

Proof. From Theorem 3, Proposition 1, and Lemma 1.

Assuming A8 can make a difference for equilibrium characterizations and

comparative static results in models of group contests. For each group, the

impact fg (xg) can be thought of as a public good for group g. If it is assumed

that groups cannot enforce individual efforts, given x−g, members of group

g play a game of private provision of a public good. The impact function fg

describes the production technology of the public good; it is similar to what

15



is called the social composition function in the literature on private provision

of public goods. Properties of the social composition function are impor-

tant for results concerning free riding and comparative statics, in particular

concerning inequality (see Hirshleifer 1983, Cornes 1993, Ray, Baland, and

Dagnelie 2007). Clearly, this is relevant for models of group contests.

4 Conclusion

This paper extends Skaperdas’ (1996) and Clark and Riis’ (1998) axiomatic

foundation of contest success functions to contests between groups. It thereby

gives a foundation to many contest success functions that have frequently

been used in the literature on group contests.
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