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ABSTRACT 

Policy-Motivated Candidates, Noisy Platforms, and Non-Robustness 

by Johan Lagerlöf* 

A model of a two-candidate election is developed in which the candidates are mainly 
office-motivated but also to some arbitrarily small extent policy-motivated, and their 
chosen platforms are to some arbitrarily small extent noisy. The platforms’ being noisy 
means that if a candidate has chosen a particular platform, the voters’ perception is that 
she has, with positive probability, actually chosen some other platform. It is shown that (i) 
an equilibrium in which the candidates play pure exists whether or not there is a 
Condorcet winner among the policy alternatives, and (ii) in this equilibrium the candidates 
choose their ideal points, which means that the platforms do not converge.  
 
JEL classification: D64; D82 
Keywords: Electoral competition; Policy motivation; Noisy commitment; Convergence; 
Robustness 

ZUSAMMENFASSUNG 

Politikmotivierte Kandidaten, Plattformen mit Rauschen und Nichtrobustheit 

Es wird ein Wahlkampf mit zwei Kandidaten modelliert, in dem die Kandidaten im 
wesentlichen ein Interesse am Amt haben, aber auch in geringem Umfang eine bestimmte 
Politik bevorzugen. Die politischen Plattformen, für die sie sich entschieden haben, 
werden in geringem Umfang mit einem „Rauschen“ an den Wähler weitergegeben. Das 
Rauschen der Plattformen ist wie folgt zu definieren. Wenn ein Kandidat sich für eine 
bestimmte Plattform entschieden hat, dann führt das Rauschen dazu, daß der Kandidat in 
der Wahrnehmung des Wählers mit einer positiven Wahrscheinlichkeit sich für eine 
andere als die gewählte Plattform entschieden hat. Es wird gezeigt, daß: (i) ein 
Gleichgewicht existiert, in dem die Kandidaten reine Strategien spielen, unabhängig 
davon, ob es einen Condorcet-Gewinner zwischen den bestehenden politischen 
Alternativen gibt; und (ii) in diesem Gleichgewicht entscheiden sich die Kandidaten für 
ihre eigenen Ideal-Positionen, d. h. die Plattformen konvergieren nicht.  

                                                 
*  This paper was produced as part of a CEPR research network on The Evolution of Market Structure 

in Network Industries, funded by the European Commission under the Training and Mobility of 
Researchers Programme (contract No. ERBFMRXCT980203). The first steps of this research, 
however, were taken while I was visiting the Wallis Institute of Political Economy at the University 
of Rochester. I am grateful to them for their hospitality, and to Svenska Institutet and Finanspolitiska 
Forskningsinstitutet for financial support. I have benefited from helpful discussions with Juan 
Carillo, Jos Jansen, César Martinelli, Klaus Ritzberger, and seminar participants at the WZB and the 
1999 Public Choice Society Meetings in New Orleans. 



“The strong convergence results in one dimension have proven

rather robust; equally robust have been the instability results in

multiple policy dimensions.” Gary M. Miller (1997, p. 1185)

1 Introduction

Since the classic contributions of Hotelling (1929) and Downs (1957), a large

body of literature on two-candidate elections has developed. Two main

themes in this literature have been the questions: (i) Where are the equilib-

rium platforms of the candidates located? and (ii) Under what restrictions

do equilibria (in pure strategies) exist in settings that are more general than

the Hotelling-Downs model? Concerning the first question, the famous an-

swer is the so-called full-convergence result: in equilibrium, the candidates

choose the same platform, namely the favorite policy of the median voter.

As for the second question, a common conclusion in the literature is that,

if the policy space has more than one dimension, an equilibrium in which

the candidates do not randomize in their platform choices exists only under

conditions which are very stringent and which fail to hold in many natural

settings.1

This paper sheds light on the question whether these results are robust,

that is, whether the full-convergence result and the result that pure-strategy

equilibria typically do not exist in settings with more than one dimension

(or when there is no Condorcet winner among the policy alternatives) still

hold true if one alters the model only slightly. There are two things that I

simultaneously add to the standard setting, although both are needed only

in an arbitrarily small amount for my results go through. First, I assume

that the candidates do not only care about winning the election; they also

care about policy per se. Second, I assume that the candidates’ platforms are

noisy in the eyes of the voters; that is, if a candidate has chosen a particular

platform, the voters’ perception is that she has, with positive probability,

actually chosen some other platform. One may think of this assumption

as representing (exogenous) errors or misunderstandings in the transmission

1See for example Plott (1967) and McKelvey (1979) or the survey in Austen-Smith and
Banks (1999).
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of information about the true platforms from candidates via mass media to

voters.

In the literature, the most commonly used approach for obtaining non-

convergence of policy platforms is to assume that (i) the candidates have

policy-preferences and (ii) they are uncertain about the outcome of the elec-

tion. Papers that make these assumptions include Calvert (1985), Roemer

(1994), and Wittman (1983). The degree to which the platforms diverge in

these papers, however, varies continuously with the amount of uncertainty

and with the relative weight the candidates put on policy. In particular, as

either the amount of uncertainty or the weight on policy tends to zero, the

equilibrium platforms approach each other. Hence, with regard to these two

assumptions, the full convergence result is robust. As Calvert (1985: 70)

argues, this is an important result:

Such robustness against departures from the basic assumptions is

vital to the development of any positive theory. As a model of general

process, the basic multidimensional voting model serves mainly as a

tractable guide to our thinking about electoral competition (and to

more detailed modeling), and not necessarily as a direct generator

of hypotheses about real-world elections. It must assume away many

features of the real world. If the model’s conclusions are robust against

complications of that abstract picture, then it has captured the essence

of electoral competition; it is a useful abstraction.

In the present paper, however, I show that such a robustness result fails to

hold if we allow the candidates’ platforms to be noisy in the sense described

above. More precisely, if the candidates are to some arbitrarily small extent

policy motivated and if the platforms are to some arbitrarily small extent

noisy, then there is an equilibrium in which both candidates choose their

favorite policies. This means that the platforms do not converge, and this

non-convergence result is obtained by altering the original Hotelling-Downs

model only slightly. Although the literature has identified many alternative

ways of obtaining non-convergence, there is, to the best of my knowledge, no

other result of non-robustness.
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The result that the candidates choose their favorite policies is close in

spirit to that of Alesina (1988). He points out that if the candidates care

about policy to some small extent and if they are not able to precommit

to policy platforms, then the candidates will, once they have been elected,

choose their ideal policy. In the present paper, however, it is assumed that

the candidates can commit. Still, with the additional assumption that the

platforms are to some small extent noisy, it turns out that the candidates’

ideal policies have a very strong drawing power; as a result, the equilibrium

outcome is the same as in Alesina’s model.

The second main contribution of this paper is to show that the typi-

cal non-existence of pure-strategy equilibria in a setting where there is no

Condorcet winner among the policy alternatives can be remedied by, again,

assuming that the candidates are to some arbitrarily small extent policy mo-

tivated and the platforms are to some arbitrarily small extent noisy. It is

shown that, if we slightly alter the standard model in this fashion, there

is an equilibrium in which the candidates play pure; in particular, in this

equilibrium, the candidates choose their own favorite policies.

In order to facilitate an explanation of the results and the intuition behind

them, the paper starts out in Sections 2 and 3 by considering two simple

examples. The example in Section 2 concerns the full convergence result

whereas the example in Section 3 concerns the non-existence of pure-strategy

equilibria in a setting where there is no Condorcet winner among the policy

alternatives. In Section 4 a more general model is analyzed, and it is shown

that the main results from the two examples still hold true. The results

and the insights in this paper draw heavily on an important and thought-

provoking paper by Bagwell (1995) on the robustness of the first-mover-

advantage result in the industrial organization literature. Section 5 reviews

this paper and some others that extend and criticize Bagwell’s analysis. That

section also provides a concluding discussion. An appendix contains proofs

of those results that are not proven in the main body of the paper.
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2 Non-convergence of equilibrium platforms

Let us consider the following very stylized electoral-competition game played

between two candidates and one voter. The candidates first, simultaneously

and independently, choose one electoral platform each; candidate i’s (for

i ∈ {1, 2}) chosen platform is denoted by xi. The voter then votes for

one of the candidates. The candidate who wins the election (i.e., the one

who is voted for by the single voter) must implement her previously chosen

platform.2 There are three policy alternatives, Left (L), Center (C), and

Right (R). In order to make the example as simple as possible, however,

the candidates choice sets are restricted so that candidate 1 is constrained

to choose her platform x1 from the set {L,C}, and candidate 2 must choose
her platform x2 from the set {C,R}.
I will carry out the analysis under two different assumptions about the in-

formational structure of the game. The first assumption says that the voter,

prior to making his voting decision, can observe the candidates’ chosen plat-

forms perfectly. The second assumption says that the platforms are noisy;

that is, the voter can observe only an (exogenous) signal about the candi-

dates’ platforms. The signal is denoted by s = (s1, s2), where s1 ∈ {L,C}
and s2 ∈ {C,R}. The signal technology works as follows. When a candi-
date chooses a particular platform, the voter will observe a signal specifying

that same platform with probability 1− ε; if the signal does not specify the

right platform, then the other possible platform is specified (see Table 1).

The realizations of s1 and s2 are independent. The noise parameter, ε, is

strictly positive, but it should be thought of as being small; in particular it

is assumed that ε ∈ ¡0, 1
3

¤
.

Pr (s1 = es | x1 = ex) es = L es = Cex = L 1− ε εex = C ε 1− ε

Pr (s2 = es | x2 = ex) es = C es = Rex = C 1− ε εex = R ε 1− ε

Table 1: The signal technology. The probability that each “sub-signal” si is

correct equals (1− ε), and the two sub-signals s1 and s2 are independent.

2The assumption that electoral promises are binding is discussed in Section 4.
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The three players have preferences over the policy alternatives L, C, and

R, although the two candidates primarily care about being in office (we say

that a candidate “is in office” if she has won the election). In particular, each

candidate gets the incremental payoff 1 if being in office and the incremental

payoff 0 otherwise. In addition, each candidate gets the incremental payoff

a ∈ ¡0, 1
4

¢
if her favorite policy is implemented; candidate 1’s favorite policy

is L and candidate 2’s favorite policy is R. The voter gets the payoff 1 if his

favorite policy C is implemented and the payoff 0 if either policy L or policy

R is implemented. In sum, the players’ preferences are described by Table 2.

candidate 1 candidate 2 voter
1L 1 + a 0 0
1C 1 0 1
2C 0 1 1
2R 0 1 + a 0

Table 2: The players’ payoffs. The abbreviation 1C (respectively, 2C) means

that candidate 1 (respectively, 2) is in office and chooses policy C, and sim-

ilarly with the abbreviations 1L and 2R. It is assumed that a ∈ ¡0, 1
4

¢
.

Perfect observability To start with, let us analyze the model where the

platforms are perfectly observable. The solution concept that will be em-

ployed is that of subgame perfect equilibrium. Let us begin by considering

the voter’s decision for whom to vote, given that he has observed some plat-

forms x1 and x2. Let rjk be the probability with which the voter votes for

candidate 1 given that x1 = j (for j ∈ {L,C}) and x2 = k (for k ∈ {C,R}).
Clearly, if candidate 1 has chosen C and candidate 2 has chosen R, then

the voter will vote for candidate 1 (rCR = 1); and if candidate 1 has chosen

L and candidate 2 has chosen C, then the voter will vote for candidate 2

(rLB = 0). For the two remaining possible configurations of platforms, the

voter is indifferent between the candidates; this means that the probabilities

rCC and rLR can take on any value between zero and one.

We can substitute this optimal behavior on the part of the voter into

the expressions for the candidates’ expected payoffs. Doing this yields the

following 2 × 2 game matrix:
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x2 = C x2 = R
x1 = L 0, 1 rLR (1 + a) , (1− rLR) (1 + a)
x1 = C rCC , 1− rCC 1, 0

(1)

Candidate 1 is here the row player and candidate 2 is the column player.

The first expression in each cell of the matrix is candidate 1’s payoff and

the second one is player 2’s payoff. Let us first consider the special case

where the candidates get elected with equal probability whenever the voter

is indifferent between them: rCC = rLR = 1/2. The game matrix above then

simplifies to the following.

x2 = C x2 = R
x1 = L 0, 1 1+a

2
, 1+a
2

x1 = C
1
2
, 1
2

1, 0
(2)

Clearly, since a < 1, this game between the two candidates has a unique

Nash equilibrium where both of them, with probability one, choose platform

C.

For the general case where the probabilities rCC and rLR can take on

any value between zero and one, the analysis is a bit more involved, and

it is therefore relegated to the Appendix. The result, however, is in line

with the above: in any equilibrium, the candidate who wins the election

chooses platform C with probability one. Indeed, in those equilibria in which

rCC ∈ (0, 1), both candidates choose platformC with probability one. Letting
p be the probability with which candidate 1 chooses her favorite policy L,

and letting q be the probability with which candidate 2 chooses her favorite

policy R, we have the following.

Proposition 1. Consider the game where the platforms are perfectly ob-
servable. This game has a continuum of subgame perfect equilibria. In

any one of these equilibria, either:

a) (p, q, rLB, rLR, rCC , rCR) = (0, 0, 0, rLR, rCC , 1), for any rCC ∈ (0, 1) and
rLR ∈ [0, 1]; or

b) (p, q, rLB, rLR, rCC , rCR) = (p, 0, 0, rLR, 0, 1), for any p and rLR such

that p (1− rLR) (1 + a) ≤ 1; or
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c) (p, q, rLB, rLR, rCC , rCR) = (0, q, 0, rLR, 1, 1), for any q and rLR such

that qrLR (1 + a) ≤ 1.

This is an example of the full-convergence result. The candidates primar-

ily care about winning the election, and the voter will vote for a candidate

who is choosing the voter’s favorite policy C (if anyone of the candidates

is doing this). Hence, there is a pressure on the candidates to choose the

voter’s favorite policy instead of their own one. Although there always exist

equilibria in which one of the candidates is choosing her own favorite pol-

icy platform with positive probability (and sometimes even with probability

one), such a candidate must be losing the election for sure.

Noisy platforms Let us now consider the version of the model where the

candidates’ platforms are noisy, that is, where the voter only can observe the

signal s. Notice that this game has no subgames (except for the subgame

that consists of the whole game), since for any configuration of platforms the

voter will observe all possible signals with positive probability. This means

that subgame perfection does not have any bite, and I will therefore focus

attention on the set of all Nash equilibria.

Let us start with looking for an equilibrium in which both candidates

choose platform C, i.e., where (x1, x2) = (C,C). Surprisingly, it turns out

that such an equilibrium does not exist. To see why, recall that the informa-

tional structure of the game is such that the voter cannot directly observe the

candidates’ actions, only the noisy signal. By definition of a Nash equilib-

rium, however, the voter’s beliefs about the candidates’ actions are correct.

This means that in an equilibrium in which (x1, x2) = (C,C), the signal

about the candidates’ actions is completely uninformative: The voter cor-

rectly believes that both candidates have chosen platform C with probability

one, so any signal not specifying s1 = C and s2 = C must be an incorrect

signal.

To see in a simple way how the logic of the remaining part of the argument

works, let us momentarily assume that each candidate gets elected with the

same probability whenever the voter is indifferent between them; that is, if

the voter is indifferent between the candidates after having observed, say,

8



the signals s = (C,C) and s = (L,C), candidate 1 gets elected with the

same probability whether s1 = C or s1 = L. Now suppose that we are

in an equilibrium in which (x1, x2) = (C,C), and imagine that one of the

candidates, say candidate 1, deviates from her action x1 = C and instead

plays x1 = L. Then the voter will indeed observe the sub-signal s1 = L

with a much higher probability. Yet, the voter will not be able to infer that

candidate 1 has deviated; he will believe that x1 = C regardless of whether

s1 = C or s1 = L. Hence, the voter will be indifferent between the candidates

both when he has observed the signal s = (C,C) and when he has observed

the signal s = (L,C). Accordingly, candidate 1 will be winning with the

same probability if she deviates to x1 = L as if she did not and, if she indeed

wins, she will win with her favorite policy. It follows that there cannot be an

equilibrium where (x1, x2) = (C,C), since then the candidates would have

an incentive to deviate to their favorite policies.

The general case –where we allow for the possibility that the voter, when

he is indifferent between the candidates, can randomize with any probability

and where he possibly makes this probability contingent on the signal that

he observes – is a bit more involved. In the proof of Proposition 2 below,

however, it is shown that the result still goes through: there cannot be an

equilibrium where both candidates choose platform C. Indeed, it turns out

that in any Nash equilibrium of the game between the three players, both

candidates choose their favorite policies with probability one.

Before stating Proposition 2, we need to introduce some more notation.

For the voter’s voting decision I use the same notation as in the model with

perfect observability, although the voting decision is now made contingent on

the signal s and not the actual platforms. Hence, let rjk be the probability

with which the voter votes for candidate 1 given that s1 = j and s2 = k (for

j ∈ {L,C} and k ∈ {C,R}). Moreover, let r be a vector having these four
probabilities as its components; that is, r = (rLC , rLR, rCC , rCR). Finally, let

Ω be the set of all r ∈ [0, 1]4 such that inequalities (3) and (4) below are met:

rLCε+ rLR (1− ε)

1− ε− ε (1 + a)
≥ rCCε+ (1− ε) rCR
(1− ε) (1 + a)− ε

, (3)

9



1− rLR + (rLR − rCR) ε
1− ε− ε (1 + a)

≥ 1− rLC + (rLC − rCC) ε
(1− ε) (1 + a)− ε

. (4)

One can easily verify that, for example, the vectors
¡
1
2
, 1
2
, 1
2
, 1
2

¢
, (1, 1, 1, 1),

and (0, 0, 0, 0) all belong toΩ; that is, if the voter always randomizes fifty-fifty

or always votes for one of the candidates, then r belongs to Ω.

The following result is proven in the Appendix.

Proposition 2. Consider the game with noisy platforms. This game has
a continuum of Nash equilibria. In any Nash equilibrium, however,

candidate 1 chooses L with probability 1 and candidate 2 chooses R

with probability 1; the voter may vote according to any r such that

r ∈ Ω.

Hence, there are many Nash equilibria of the game with noisy platforms,

because the voter may randomize in many different ways. Yet, all of them

involve both candidates’ choosing their favorite platform. This result is in

sharp contrast to Proposition 1 and the full-convergence result in general. For

the present result to hold, the candidates must to some extent care about

policy (a > 0) and the platforms must to some extent be noisy (ε > 0).

However, the result holds for any small a and ε greater than zero.

3 No Condorcet winner

Now consider the following simple electoral-competition game played between

two candidates and three voters. The candidates are indexed by i ∈ {1, 2},
and the voters are indexed by j ∈ {1, 2, 3}. There are again three policy
alternatives, Left (L), Center (C), and Right (R), although now both can-

didates are free to choose any policy. The sequence of events is also the

same as in the previous section. First the two candidates simultaneously

and independently choose platforms, xi ∈ {L,C,R}. Then the three voters
simultaneously and independently vote for one of the candidates. The can-

didate who receives a majority of votes wins office and must implement his

chosen platform.

In a first version of the game all three voters can, prior to their voting,

observe the candidates’ chosen platforms perfectly. In a second version of the
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game, voter 2 can only observe a noisy signal s ∈ {L,C,R} about candidate
2’s platform; voter 2 can observe candidate 1’s platform perfectly, and voters

1 and 3 can observe both candidates’ platforms perfectly.3 The signal tech-

nology is similar to the one in the previous section. More specifically, when

candidate 2 chooses a particular platform, then voter 2 will observe a signal

specifying that same platform with probability 1 − ε; if the signal does not

specify the right platform, then the two other platforms have an equal chance

of being specified (see Table 3). The noise parameter, ε, is strictly positive,

but it should be thought of as being small; in particular it is assumed that

ε ∈ ¡0, 1
2

¢
.

Pr (s = es | x2 = ex) es = L es = C es = Rex = L 1− ε ε/2 ε/2ex = C ε/2 1− ε ε/2ex = R ε/2 ε/2 1− ε

Table 3: The signal technology. The probability that the signal s is correct

equals (1− ε), where ε ∈ ¡0, 1
2

¢
.

The five players’ preferences are specified in Table 4. The voters’ prefer-

ences are such that voter 1 prefers L to R and R to C; voter 2 prefers C to

L and L to R; and voter 3 prefers R to C and C to L. These preferences are

chosen to make sure that there is no policy alternative that is a Condorcet

winner. That is, if the voters vote directly on policy alternatives (and if they

vote for their favorite policy), then there is no alternative that can beat both

the other ones in a pairwise comparison: L ≺ C ≺ R ≺ L (where “≺” means
“is beaten in a pairwise comparison by”). It is also assumed that if the can-

didates have chosen the same platform, then all voters prefer candidate 1

(this is captured by the term λ ∈ (0, 1)).4 The candidates have preferences
3That is, it is only the platform of one of the candidates that is noisy, and this platform

is noisy only in the eyes of one of the three voters. This modeling choice serves two
purposes. First, it shows that only a very small amount of noise is needed for the results
to through (but it is important both which candidate’s platform is noisy and in the eyes of
which voter). Second (and perhaps more importantly), it simplifies parts of the analysis.
The more general model in Section 4 will assume that both candidates’ platforms are noisy
in the eyes of all voters.

4The assumption that the voters are biased in favor of candidate 1 is made for the sake
of tractability: it simplifies the analysis considerably since it breaks ties.

11



similar to the ones in the model of the previous section: they mainly care

about winning the election, but they also care to some extent about policy

(this is captured by the term a ∈ (0, 1)); candidate 1’s favorite policy is L,
and candidate 2’s favorite policy is R.

candidate 1 candidate 2 voter 1 voter 2 voter 3
1L 1 + a 0 1 + λ λ −1 + λ
2L a 1 1 0 −1
1C 1 0 −1 + λ 1 + λ λ
2C 0 1 −1 1 0
1R 1 a λ −1 + λ 1 + λ
2R 0 1 + a 0 −1 1

Table 4: The players’ preferences. It is assumed that a,λ ∈ (0, 1)

Perfect observability To start with, let us consider the benchmark case

where the platforms are perfectly observable. We are looking for the subgame

perfect equilibria of this game. I also impose the requirement that the voters

do not use a weakly dominated strategy. That is, even if a voter’s vote

does not change the outcome of the election, he votes for a candidate if he

prefers that candidate to the other candidate. From Table 4 it follows that

candidate 2 will win the election in three cases, namely if the platforms are

(x1, x2) = (R,L), (x1, x2) = (L,C), or (x1, x2) = (C,R). For any other

platform configuration candidate 1 will win the election.

Substituting this optimal behavior on the part of the voters into the

expressions for the candidates’ expected payoffs yields the following 3 × 3

game matrix:

L C R
L 1 + a, 0 0, 1 1 + a, 0
C 1, 0 1, 0 0, 1 + a
R a, 1 1, a 1, a

(5)

As in the model in the previous section, candidate 1 is the row player and

candidate 2 is the column player, and the first expression in each cell of the

matrix is candidate 1’s payoff and the second one is player 2’s payoff. It can

be easily verified that the strategic-form game depicted in (5) does not have
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any pure-strategy equilibrium. However, there is of course a mixed-strategy

equilibrium of this game. In fact, there is a unique equilibrium of the game in

which both candidates are randomizing over all three policy alternatives. Let

σi (xk) be the probability with which candidate i chooses platform xk. The

proof of the following proposition is fairly straightforward and is therefore

omitted.

Proposition 3. Consider the model with perfect observability. This game
has only one Nash equilibrium which is both subgame perfect and in

which the voters do not use weakly dominated strategies. In this equi-

librium the candidates behave as follows:

σ1 (xL) =
1− a2
3− a2 ; σ1 (xC) =

1− a
3− a2 ; σ1 (xR) =

1 + a

3− a2 ;

σ2 (xL) =
1

3− a2 ; σ2 (xC) =
1 + a− a2
3− a2 ; σ2 (xR) =

1− a
3− a2 .

We see that if a, the parameter that captures the candidates’ policy pref-

erences, is small, both candidates choose all three platforms with approxi-

mately the same probability (one third).

Noisy platforms Let us now consider the version of the model where

candidate 2’s platform is noisy in the eyes of voter 2. As in the previous

section, subgame perfection does not have any bite when the platforms are

noisy, and the natural solution concept is therefore Nash equilibrium. As in

the case with perfect observability, however, I also impose the requirement

that the voters do not use a weakly dominated strategy. In the rest of

this section and in the proof of Proposition 4, I will refer to such a Nash

equilibrium simply as an “equilibrium.” It turns out that in this model

there is indeed an equilibrium where none of the candidates is randomizing

in their choice of platform. In particular, there is an equilibrium in which

both candidates choose their favorite policies.

To see that such an equilibrium exists, suppose that candidate 1 indeed

chooses L and candidate 2 indeed chooses R. Voter 2 cannot observe candi-

date 2’s choice directly, only the noisy signal; he correctly believes, however,

13



that candidate 2 chooses R. This means that voter 2, given the candidates’

equilibrium behavior, will vote for candidate 1 no matter which signal s he

has observed (remember that voter 2 prefers L to R; see Table 4). Moreover,

given the candidates’ equilibrium behavior, voter 1 will vote for candidate

1 and voter 3 will vote for candidate 2. Hence, the winner is candidate 1.

It remains to check that none of the candidates has an incentive to deviate.

Candidate 1 certainly does not have such an incentive, since she is winning

with her favorite policy. Nor does candidate 2 have a (strict) incentive to

deviate since this would not make her win. The reason for this is that voter 2

cannot observe her chosen platform directly and ignores the signal. Hence, if

candidate 2 deviated to C, for example, voter 2 would not change his voting

behavior. Voters 1 and 3 can indeed observe candidate 2’s deviation; their

preferences, however, are such that they still would not change their voting

behavior (see Table 4). If deviating to L, candidate 2 certainly would not

win.

There also exists another equilibrium where both candidates play pure,

namely where both candidates choose L with probability one. Also in this

equilibrium candidate 2 loses the election with probability one. The following

is proven in the Appendix.

Proposition 4. Consider the model with noisy platforms. In this model
there is an equilibrium in which candidate 1 chooses L with probability

one and candidate 2 chooses R with probability one. There is also

an equilibrium in which both candidates choose L with probability

one. There is no other equilibrium in which none of the candidates is

randomizing in her choice of platform.

4 A general model

Consider an electoral competition with two candidates, labeled j ∈ {1, 2},
and N ≥ 1 voters, labeled i ∈ {1, . . . ,N}. The sequence of events is as fol-
lows. First the candidates simultaneously commit to platforms xj ∈ X ⊂ <d
(for some positive integer d). Second, the voters observe the chosen platforms

with some, possibly very small, noise. Formally, each voter i observes a sig-
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nal si = (si,1, si,2) ∈ S = X2, where each si,j is independently drawn from a

distribution F (· | xj) which has positive support on the whole of X. Finally,
each voter votes for one of the candidates. The candidate who receives the

largest number of votes wins office and gets his chosen policy implemented.

In case of a tie, each candidate wins with equal probability.

On the part of the candidates, only pure strategies will be considered.

Hence, a strategy for candidate j is a d-dimensional vector xj. The voters,

however, are allowed to randomize in their voting decisions. A strategy

for voter i is a mapping ri from the set of possible signals, S, to the one-

dimensional unit simplex, [0, 1]. We make the interpretation that ri (s) is the

probability that voter i votes for candidate 1 conditional on having observed

a signal s. Denote a vector of voting decisions by r = (r1, . . . , rN).

Each voter has preferences over the policy space X and the set of candi-

dates {1, 2} that can be represented by the utility function U i(x, j), where
x is the winning candidate’s policy. The candidates care about being in

office and about policy, although the latter may possibly be of only slight

importance. Candidate j’s utility if policy x is implemented and she is (re-

spectively, is not) in office is V j (x, 1) (respectively, V j (x, 0)). It is assumed

that there is an bxj ∈ X such that, for j ∈ {1, 2},

V j (bxj , 1) > V j (x, 1) all x 6= bx (6)

and that

V j (bxj, 1) > V j (bxj , 0) . (7)

Hence, both candidates have an “ideal policy” bxj; and, at least if her ideal
policy is implemented, a candidate prefers to be in office to not be in office.

From what is said above it follows that, at the stage where a candidate

is to choose her platform, she does not know what signals the voters will ob-

serve. Nor does she know what the realizations of any randomized strategies

on the part of the voters will be. Hence, the outcome of the election will be

uncertain for her.5 Given a vector of voting decisions r and a pair of plat-

forms (x1, x2), let P j (x1, x2, r) be the probability that candidate j wins the

5Yet another source of uncertainty is the above-mentioned fact that, in case of a tie, a
lottery will decide which candidate wins.
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election. The candidates and the voters are assumed to be expected utility

maximizers. Candidate j’s expected utility is denoted by EV j, where

EV j (x1, x2, r) = P
j (x1, x2, r)V

j (xj , 1) +
£
1− P j (x1, x2, r)

¤
V j (xk, 0) (8)

for j, k ∈ {1, 2} and k 6= j. Voter i’s expected utility at the stage where

he makes his voting decision is denoted by EU i. Since the candidates are

constrained to use pure strategies and, in an equilibrium, the voters correctly

anticipate the candidates’ actions, the signals that the voters observe will not

be informative. Hence, we can write voter i’s expected utility EU i as

EU i (x1, x2, r) = P
1 (x1, x2, r)U

i(x1, 1) + P
2 (x1, x2, r)U

i(x2, 2). (9)

The equilibrium concept employed is that of Nash equilibrium (conditions

E1 and E3 below). In addition it is required that none of the candidates is

in equilibrium using a strategy that is weakly dominated (conditions E2 and

E4). Formally, an equilibrium of the model described is a pair of candidate

platforms (x∗1, x
∗
2) and a list of voting decisions (r

∗
1, . . . , r

∗
N) such that: (E1)

for all j, k ∈ {1, 2} and k 6= j,

EV j (x∗1, x
∗
2, r

∗) ≥ EV j (xj , x∗k, r∗) , ∀xj ∈ X; (10)

(E2) there is no x
0
j ∈ X such that

EV j
³
x
0
j , xk, r

´
≥ EV j ¡x∗j , xk, r¢ , ∀ (xk, r) ∈ X × {1, 2}N , (11)

for all j, k ∈ {1, 2} and k 6= j, with the inequality holding strictly for some
(xk, r); (E3) for all i ∈ {1, . . . , N},6

EU i (x∗1, x
∗
2, r

∗) ≥ EU i ¡x∗1, x∗2, ri, r∗−i¢ , ∀ri ∈ {1, 2} ; (12)

and (E4) there is no r
0
i ∈ {1, 2} such that

EU i
³
x1, x2, r

0
i, r−i

´
≥ EU i (x1, x2, r∗i , r−i) , ∀ (x1, x2, r−i) ∈ X2 × {1, 2}N−1 ;

(13)

with the inequality holding strictly for some (x1, x2, r−i).

6I here use the standard notation r∗−i =
¡
r∗1 , . . . , r∗i−1, r

∗
i+1, . . . , r

∗
N

¢
. A similar notation

is also used below.
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Proposition 5. An equilibrium exists. Moreover, in any equilibrium, both
candidates choose their own ideal policies.

PROOF: Recall from the model description that the candidates are con-

strained to play pure. That is, candidate j must choose xj = x
0
j with prob-

ability one for some x
0
j ∈ X. We need to show that (i) there exists such an

equilibrium and (ii) in any such equilibrium x
0
j = bxj for all j ∈ {1, 2}. Let

us first prove (i). Suppose both candidates choose their own ideal policies

with probability one, i.e., xj = bxj. Moreover, suppose that none of the voters
makes his voting choice contingent on the signal but votes for candidate j if

U i(bxj) > U i(bxk) for k 6= j; and if U i(bx1) = U i(bx2), then voter i randomizes
in some fashion that is not contingent on the signal. Let the corresponding

vector of voting decisions be denoted by br; the probability that candidate j
wins the election is thus P j (bx1, bx2, br). We must show that none of the can-
didates and none of the voters has an incentive to deviate unilaterally from

this behavior, and that their strategies are not weakly dominated (i.e., that

conditions (E1)-(E4) are met). First, consider candidate 1. For this candi-

date not to have an incentive to deviate unilaterally, condition (E1) must be

met. This requires that

EV 1 (bx1, bx2, br) ≥ EV 1 (x1, bx2, br)⇔ P 1 (bx1, bx2, br) £V 1 (bx1, 1)− V 1 (x1, 1)¤ ≥ 0
(14)

If P 1 (bx1, bx2, br) = 0, then this inequality holds with equality. If P 1 (bx1, bx2, br) >
0, then (14) simplifies to V 1 (bx1, 1) ≥ V 1 (x1, 1), which is true by definition
of bx1. For candidate 1’s strategy not to be weakly dominated, condition (E2)
must hold. For condition (E2) not to hold, there must exist an x

0
j such that

EV 1
³
x
0
1, bx2, r´ ≥ EV 1 (bx1, bx2, r)⇔ P 1 (bx1, bx2, r) hV 1 ³x01, 1´− V 1 (bx1, 1)i ≥ 0

(15)

for all r. However, this inequality does not hold for any r such that P 1 (bx1, bx2, r) >
0. Hence, condition (E2) must hold. For candidate 2 the arguments above

are analogous. Now consider a voter. For a voter not to have a unilateral

incentive to deviate, condition (E3) must be met. If voter i’s vote cannot

change the outcome of the election, then this condition clearly holds (with
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equality). Suppose that voter i’s vote can change the outcome of the election.

Then condition (E3) requires that he votes for his favorite candidate. This

is consistent with what we postulated above about the voters’ behavior. Fi-

nally, for a voter’s strategy not to be weakly dominated, condition (E4) must

hold. This condition is met if voter i always votes for his favorite candidate

whenever U i(bx1) 6= U i(bx2). This is also consistent with the above postulated
behavior.

Let us now prove (ii). Suppose per contra that there is an equilibrium in

which x
0
1 6= bx1 (the case x02 6= bx2 follows the same logic). Now candidate 1’s

strategy, however, is weakly dominated; i.e., condition (E2) is violated. To

see this one only needs to note that whenever r is such that P 1 (x1, x2, r) >

0, candidate 1 can gain by deviating to bx; and whenever r is such that
P 1 (x1, x2, r) = 0, candidate 1’s choice of platform does not affect her payoff.

¤

5 Concluding discussion

As already mentioned in the Introduction, the results and the insights of

this paper draw heavily on Bagwell’s (1995) analysis of the robustness of

the first-mover advantage result. He investigates a noisy-leader game in

which one player moves first and then a second player, before making his

own move, observes a (possibly almost perfect) signal of the first player’s

action. Bagwell shows that, under a certain regularity condition,7 “the set of

pure-strategy Nash equilibrium outcomes for the noisy-leader game coincides

exactly with the set of pure-strategy Nash equilibrium outcomes for the asso-

ciated simultaneous-move game” (Bagwell, 1995: 272). Hence, he concludes,

the first-mover advantage is eliminated. This conclusion is criticized by van

Damme and Hurkens (1997), who show that in Bagwell’s game and under his

regularity condition, there always exists a mixed equilibrium that induces an

outcome that is close to the equilibrium outcome of Bagwell’s game without

any noise. They also suggest an equilibrium selection theory that selects this

7Namely that the player moving last has, given any action of the first player, a unique
best-reply action.
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mixed equilibrium.8

The present paper is also closely related to a recent paper by Güth, Kirch-

steiger, and Ritzberger (1998). They study an extension of Bagwell’s noisy-

leader game in which there are a set of leaders who all move simultaneously,

whereupon another set of players, the followers, observe noisy signals about

the leaders’ actions and then choose their actions simultaneously. The main

result of Güth et al. (1998) is that, for almost all games that they con-

sider, there exists a subgame perfect equilibrium outcome of the game with

no noise that is approximated by (possibly mixed) equilibrium outcomes of

games with small noise. This result, however, relies on generic payoffs, so it

does not necessarily hold true in knife-edge cases.

The contribution of the present paper has been to show what the impli-

cations of Bagwell’s result are for models of electoral competition. We have

seen that if the candidates’ platforms are just a little bit noisy and if the

candidates are to some small extent policy motivated, then: (i) there is an

equilibrium in which both candidates choose their own ideal policies, which

means that the equilibrium platforms do not converge; and (ii) even if there

is no Condorcet winner among the policy alternatives, there is an equilibrium

in which both candidates play pure.

In light of the literature review above, it is natural to ask the question how

sensitive result (i) is to the focus on pure-strategy equilibria. We know from

the more general analysis in Section 4 that the result that an equilibrium

in which both candidates choose their favorite platforms exists is robust. It

could be, however, that there also exists a mixed equilibrium in which the

candidates’ platforms approach each other as the noise gets very small. In the

simple model considered in Section 2, mixed strategies were indeed allowed

for, and it turned out that the candidates never randomize in equilibrium.

Hence, in that model it does not exist an equilibrium that approximates

8There are also a couple of other papers that, using different approaches, investigate
the problem of equilibrium selection in Bagwell’s model. Oechssler and Schlag (1997)
carry out an evolutionary-game-theory analysis of a simple version of Bagwell’s model.
They find that the pure-strategy equilibrium is selected by most evolutionary dynamics.
Huck and Müller (2000) report on an experimental test of Bagwell’s prediction. They do
not find empirical support for his result. For other work related to Bagwell’s result, see
Adolph (1996), Levine and Martinelli (1998), and Maggi (1999).
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the full-convergence result of the model in which platforms are perfectly

observable. The results of Güth et al. (1998), however, suggest that if we

generalized the model of Section 2 in some way, such a mixed equilibrium

may appear. In particular, I conjecture that if the voter in that model also

cared about the identity of the elected candidate and not only about policy,

and if he thus strictly preferred, say, candidate 1 whenever the candidates’

policies are identical, then a mixed equilibrium that approximates the full

convergence result would indeed exist.9 This kind of asymmetry, however,

makes for a much more complex model, and I can unfortunately not report

any results affirming or disaffirming the conjecture.

An important assumption that was made throughout the paper is that

the candidates can commit to electoral platforms (even though these com-

mitments are not perfectly observable). The usual justification for this as-

sumption is that, although in principle feasible, deviating from an announced

platform is prohibitively costly because of reputational concerns. Such repu-

tational concerns were formally modeled by Alesina (1988), within the frame-

work of a repeated game with an infinite horizon; see also Dixit, Grossman,

and Gul (2000) for a generalization of Alesina’s work. In Alesina’s as well as

in Dixit et al.’s framework, a political outcome “in the middle” is sustained

through punishment strategies on the part of the two candidates; the pun-

ishments are carried out by each candidate against her competitor in case

the competitor deviates. Alternatively, one could construct a similar model

where the punishments were carried out by the voters. In either case, it is

important that any deviation can be observed by the punisher.

This suggests that, also in a setting in which candidates cannot com-

9This conjecture of mine may very well be false. One reason for this is that what
Güth et al. (1998) can show is that, except for knife-edge cases, some subgame perfect
equilibrium of the game without noise can be approximated by an equilibrium of a game
with small noise. In an electoral competion game with many voters who vote strategically,
however, there are typically many subgame perfect equilibria (some of them unreason-
able). The reason for this is that in each subgame (i.e., given a pair of platforms) there
are always many Nash equilibria; for example, all voters voting for one of the candidates
is an equilibrium, because given this voting behavior no single voter can gain by a uni-
lateral deviation. This unreasonable behavior in the subgames can support equilibrium
behavior on the part of the candidates that also is unreasonable. Hence, it might be, in
principle, that only one of the unreasonable subgame perfect equilibrium outcomes can be
approximated by (possibly mixed) equilibrium outcomes of games with small noise.
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mit, the model feature that the candidates’ choices (of actual policies or of

announced policy platforms) can only be imperfectly observed may have im-

portant implications for the location of equilibrium policies. This should be

particularly true if the signals that the players observe about the candidates

actions are private to the receiver of the signal: What is the credibility of,

say, candidate 2’s (or the voters’) threat to punish if candidate 1 cannot ob-

serve candidate 2’s (noisy) observation of her action? An interesting topic

for future research would be to explore these questions in a formal model;

for a related analysis within a seller-buyer framework, see Bhaskar and van

Damme (2000). It is my hope that the insights from the analysis of the

present paper, with its single-period setting and its commitment assump-

tion, will constitute a first step in understanding those more far-reaching

questions.

Let me conclude by relating to a recent discussion in Persson and Tabellini

(2000) on the role of the commitment assumption. They refer to models

making this assumption as models of preelection politics. In such models,

“[t]he essential political action ... takes place in the electoral campaign, and

the role of the election is to select a particular policy” (p. 11). In models

of postelection politics (i.e., where electoral promises are not binding), “the

role of elections is very different .... Rather than directly selecting policies,

voters select politicians on the basis of their ideology, competence, or honesty,

or more generally, their behavior as incumbents” (pp. 12-13). Persson and

Tabellini are of the opinion that existing research has not produced a clear

consensus concerning the question whether electoral promises are binding or

unimportant, and they call for more work on this issue: “ ... progress in

the field depends on our finding a way of resolving some of these tensions,

building a bridge between pre- and postelection politics ...” (p. 14).

The results of the present paper can hopefully constitute a small contri-

bution to that research agenda by showing that, even if electoral promises

are assumed to be binding, a small amount of noise in the transmission of

these promises to the electorate can make the model look like one of post-

rather than preelection politics: The candidates’ own policy preferences have

an even stronger drawing power than has been acknowledged in the previous
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literature.

6 Appendix

Proof of Proposition 1 Let us first look for Nash equilibria of the

reduced-form game in (1) where rCC ∈ (0, 1). It is immediate from the game
matrix that (p, q) = (0, 0) is a Nash equilibrium of this game. One may

also easily verify that neither (p, q) = (0, 1) nor (p, q) = (1, 0) is a Nash

equilibrium. It turns out that under the assumption that a < 1, nor can

(p, q) = (1, 1) be a Nash equilibrium. To see this, suppose that this is indeed

a Nash equilibrium. Then for candidate 1 not to have an incentive to deviate,

we must have rLR (1 + a) ≥ 1, and for candidate 2 not to have an incentive to
deviate, we must have (1− rLR) (1 + a) ≥ 1. These two conditions together
imply that a ≥ 1 – a contradiction. Hence, when rCC ∈ (0, 1), the only
pure-strategy Nash equilibrium of the game is the one where both candidates

play C, i.e., where (p, q) = (0, 0). Since there is only one pure-strategy Nash

equilibrium, there can be no equilibrium in mixed strategies. This gives us the

result stated under a). Next, let us look for Nash equilibria of the reduced-

form game in matrix (1) where rCC = 0. First, in any Nash equilibrium

of this game, q = 0. To see this, suppose that q > 0. Then we must

have p (1− rLR) (1 + a) ≥ 1; otherwise candidate 2 will have an incentive

to play C with probability 1. This condition implies (1− rLR) (1 + a) ≥ 1
and p > 0. The condition p > 0 in turn implies that qrLR (1 + a) ≥ q;

otherwise candidate 1 will have an incentive to play C with probability 1.

This condition in turn implies that rLR (1 + a) ≥ 1, which together with the
previously derived condition (1− rLR) (1 + a) ≥ 1 imply that a ≥ 1 – a

contradiction. Given that q = 0, candidate 1 is indifferent between playing L

and C. In order to have a Nash equilibrium where candidate 2 plays C with

probability one and where candidate 1 randomizes with some probability p,

we must have p (1− rLR) (1 + a) ≤ 1. This gives us the result stated under
b). It only remains to consider the possibility that rCC = 1. This case,

however, is symmetric to the previous one; the result is stated under c). ¤
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Proof of Proposition 2 Let p be the probability with which candidate

1 chooses L and let q be the probability with which candidate 2 chooses R.

I first show that in any Nash equilibrium, p = q. Suppose, per contra, that

p 6= q. Because of symmetry, we can without any further loss of generality
assume that p < q. This implies rCC = rLR = rCR = 1. To see this, let

us calculate the voter’s expected utility if voting for candidate 1 respectively

candidate 2 upon observing the signal s = (s1, s2) ∈ {L,C} × {C,R}. The
voter uses Bayes’ rule to update his beliefs about candidate i ’s platform upon

observing the signal si:

Pr (xi = exi | si = esi) = Pr (si = esi | xi = exi) Pr (xi = exi)Pexi∈{L,C,R} Pr (si = esi | xi = exi) Pr (xi = exi) . (16)
By using the formula in (16), we get

Pr (x1 = ex1 | s1 = es1) es1 = L es1 = Cex1 = L (1−ε)p
(1−ε)p+ε(1−p)

εp
εp+(1−ε)(1−p)ex1 = C ε(1−p)

(1−ε)p+ε(1−p)
(1−ε)(1−p)

εp+(1−ε)(1−p)

(17)

and

Pr (x2 = ex2 | s2 = es2) es2 = C es2 = Rex2 = C (1−ε)(1−q)
(1−ε)(1−q)+εq

ε(1−q)
ε(1−q)+(1−ε)qex2 = R εq

(1−ε)(1−q)+εq
(1−ε)q

ε(1−q)+(1−ε)q

(18)

Now, using the above tables and the payoff matrix in Table 2 in the main

body of the paper, we get the following expressions for the voter’s expected

utility:

esi = L esi = C esi = R
EU (vote for 1 | s1 = es1) ε(1−p)

(1−ε)p+ε(1−p)
(1−ε)(1−p)

εp+(1−ε)(1−p) −−−
EU (vote for 2 | s2 = es2) −−− (1−ε)(1−q)

(1−ε)(1−q)+εq
ε(1−q)

ε(1−q)+(1−ε)q .

(19)

Using the expressions in the table in (19) it is easily verified that p < q

implies EU (vote for 2 | s2 = C) < EU (vote for 1 | s1 = C), which in turn im-
plies rCC = 1. In a similar fashion one can check that p < q also implies

rLR = rCR = 1.

23



Next, note that p < q and rCC = rLR = rCR = 1 together imply rLC < 1.

This is because if rLC = 1, candidate 1 would win with certainty no matter

which platform she chose, which means that she should choose her favorite

platform x1 = L; but this in turn implies p = 1 ≥ q.
Finally, let us show that the above implications in turn imply q = 0, which

contradicts the assumption that p < q. The equality q = 0 holds if candidate

2’s expected utility if choosing C is strictly greater that her expected utility

if choosing R:

[p (1− ε) + (1− p) ε] (1− rLC) (1− ε) > [p (1− ε) + (1− p) ε] (1− rLC) (1 + a) ε
(20)

which always holds since we know from above that rLC < 1 and by assump-

tion ε ∈ ¡0, 1
3

¢
and a ∈ ¡0, 1

4

¢
.

We have thus established that in any Nash equilibrium, p = q. Next step

is to show that in any Nash equilibrium, p = q = 1. It follows from the

arguments in the paragraphs preceding Proposition 2 that we cannot have

p = q = 0. It thus remains to show that p = q ∈ (0, 1) cannot be part of a
Nash equilibrium. Suppose, per contra, that there exists a Nash equilibrium

where p = q ∈ (0, 1). This implies that rLC = 0 and rLC = 1; this follows

from the table in (19) above. It is also implied that both candidates must be

indifferent between their two available actions. For candidate 1 we get the

following condition:¡
1− ε ε

¢µ 0 rLR (1 + a)
rCC (1 + a) 1 + a

¶µ
(1− q) (1− ε) + qε
q (1− ε) + (1− q) ε

¶
=

¡
ε 1− ε

¢µ 0 rLR
rCC 1

¶µ
(1− q) (1− ε) + qε
q (1− ε) + (1− q) ε

¶
, (21)

which (using q = p) simplifies to

rLR [p (1− ε) + (1− p) ε] [(1− ε) (1 + a)− ε]

= {rCC [(1− p) (1− ε) + pε] + p (1− ε) + (1− p) ε} [(1− ε)− ε (1 + a)]

(22)

or rLR = rCCK1 +K2, where

K1 =
[(1− p) (1− ε) + pε] [(1− ε)− ε (1 + a)]

[p (1− ε) + (1− p) ε] [(1− ε) (1 + a)− ε]
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and

K2 =
(1− ε)− ε (1 + a)

(1− ε) (1 + a)− ε
.

For candidate 2 we get the following condition:¡
p (1− ε) + (1− p) ε (1− p) (1− ε) + pε

¢
×
µ

1 + a (1− rLR) (1 + a)
(1− rCC) (1 + a) 0

¶µ
ε

1− ε

¶
=

¡
p (1− ε) + (1− p) ε (1− p) (1− ε) + pε

¢
×
µ

1 1− rLR
1− rCC 0

¶µ
1− ε
ε

¶
, (23)

which simplifies to

{(1− rCC) [(1− p) (1− ε) + pε] + p (1− ε) + (1− p) ε} [(1− ε)− ε (1 + a)]

= (1− rLR) [p (1− ε) + (1− p) ε] [(1− ε) (1 + a)− ε] (24)

or rLR = rCCK1 + 1 − K1 − K2. Notice that this equation and rLR =

rCCK1 + K2 are parallel, and they coincide if and only if K1 = 1 − 2K2.

Under the conditions that p ∈ (0, 1), ε ∈ ¡0, 1
3

¢
, and a ∈ ¡0, 1

4

¢
, however,

K1 > 0 whereas (1− 2K2) < 0. Hence, we cannot have an equilibrium in

which p = q ∈ (0, 1).
Finally, let us investigate under what conditions p = q = 1 is part of

a Nash equilibrium. This is the case if and only if candidate 1 has a weak

incentive to choose L and candidate 2 has a weak incentive to choose R, given

the other candidate’s behavior and given some r ∈ [0, 1]4. For candidate 1
we get:

(1 + a)
¡
1− ε ε

¢µ rLC rLR
rCC rCR

¶µ
ε

1− ε

¶
≥ ¡

ε 1− ε
¢µ rLC rLR

rCC rCR

¶µ
ε

1− ε

¶
, (25)

which simplifies to (3). The corresponding condition for candidate 2 must,

because of symmetry, be identical to (3) but with rLC = (1− rCR), rCC =
1− rCC, and rLR = 1− rLR. This gives us (4). ¤
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Proof of Proposition 4 The existence of an equilibrium in which both

candidates choose their favorite policies is already proven in the paragraphs

preceding Proposition 4. Let us verify that there indeed exists an equilib-

rium in which both candidates choose L with probability 1. Clearly, for this

platform configuration, candidate 1 will win the election (all three voters will

vote for her). Hence, candidate 1 will not have an incentive to deviate. Nor

does candidate 2 have a (strict) incentive to deviate to any one of the other

platforms. If candidate 2 deviated to either platform R or platform C, then

she would get voter 3’s vote but not voter 1’s, and voter 2 would not change

his voting behavior since he cannot observe the deviation. Hence, candidate

2 cannot change the outcome of the election by deviating.

Let us finally check that there is no other equilibrium in which none of the

candidates is randomizing in her choice of platform. There are seven remain-

ing platform configurations to consider: (i) (x1, x2) = (R,R), (ii) (x1, x2) =

(C,L), (iii) (x1, x2) = (C,C), (iv) (x1, x2) = (R,C), (v) (x1, x2) = (C,R),

(vi) (x1, x2) = (R,L), and (vii) (x1, x2) = (L,C). It is a straightforward

exercise to verify the following. In case (i)-(iv) candidate 1 wins. In case

(i) and (ii), however, candidate 1 has an incentive to deviate to L; in case

(iii) and (iv), candidate 2 has an incentive to deviate to R respectively to

L. In case (v)-(vii) candidate 2 wins. In case (v) and (vi), candidate 1 has

an incentive to deviate to L; in case (vii), candidate 1 has an incentive to

deviate to C or R. ¤
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