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Abstract   The paper considers some of the issues emerging from the discrete wavelet analysis 
of popular bivariate spectral quantities such as the coherence and phase spectra and the 
frequency-dependent time delay. The approach utilised here is based on the maximal overlap 
discrete Hilbert wavelet transform (MODHWT). Firstly, via a broad set of simulation 
experiments, we examine the small and large sample properties of two wavelet estimators of 
the scale-dependent time delay. The estimators are the wavelet cross-correlator and the wavelet 
phase angle-based estimator. Our results provide some practical guidelines for the empirical 
examination of short- and medium-term lead-lag relations for octave frequency bands. Further, 
we point out a deficiency in the implementation of the MODHWT and suggest using a 
modified implementation scheme, which was proposed earlier in the context of the dual-tree 
complex wavelet transform. In addition, we show how MODHWT-based wavelet quantities 
can serve to approximate the Fourier bivariate spectra and discuss issues connected with 
building confidence intervals for them. The discrete wavelet analysis of coherence and phase 
angle is illustrated with a scale-dependent examination of business cycle synchronisation 
between 11 euro zone countries. The study is supplemented by a wavelet analysis of the 
variance and covariance of the euro zone business cycles. The empirical examination 
underlines the good localisation properties and high computational efficiency of the wavelet 
transformations applied and provides new arguments in favour of the endogeneity hypothesis 
of the optimum currency area criteria as well as the wavelet evidence on dating the Great 
Moderation in the euro zone. 
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1 Introduction 

Wavelet analysis is a kind of frequency study that enables us to examine local 
signal properties efficiently. It is a relatively new mathematical construct with a 
broad range of applications in statistics, data compression and image processing. 
But this approach has also found its place in modern time series analysis as it 
makes it possible to analyse time series that are subject to structural breaks, 
outliers, local trends and changing cyclical patterns or those that show other 
transient characteristics. The distinguishing feature of this technique among other 
time-frequency methods is an endogenously varying time window, i.e. the ability 
to analyse short oscillations with narrow time windows and longer cycles with 
wider windows. Thus, wavelet methodology is thought to constitute the next 
logical step in spectral analysis, one that elaborates on the time localisation 
properties of frequency methods. The methodology is known to have a significant 
impact on, e.g., geophysics, oceanography and medicine. However, it is much less 
popular among economic sciences, with business cycle studies becoming one of 
the most pronounced exceptions (see, among others, Jagrič and Ovin 2004; 
Crowley and Lee 2005; Raihan et al. 2005; Crowley et al. 2006; Gallegati and 
Gallegati 2007; Yogo 2008; Aguiar-Conraria and Soares 2009, 2010).1  

In the paper we consider some of the issues emerging from the discrete 
wavelet analysis of popular bivariate spectral quantities such as the amplitude, 
phase and coherence spectra and the frequency-dependent time delay. The 
approach, introduced by Whitcher and Craigmile (2004), is based on a non-
decimated version of the dual-tree complex wavelet transform of Kingsbury (1998, 
2001) and Selesnick (2001), known as the maximal overlap discrete Hilbert 
wavelet transform (MODHWT) (see also Whitcher et al. 2005). Following 
Percival and Walden (2000), we concentrate exclusively on discrete wavelet 
analysis treating it as a natural way of handling discrete time series, especially in 
economics, where additionally we often operate on frequency bands instead of a 
single frequency such as in the case of a business cycle examination. The non-
decimated (maximal overlap) version of the wavelet transform, known also as the 
continuous discrete wavelet transform (Antoniadis and Gijbels 2002), is defined 
_________________________ 
1 Another promising area of applications arises in finance and includes examining comovements 
between financial time series, risk management and forecasting (see, e.g., Gençay et al. 2002; Wong 
et al. 2003; Fernandez 2008; Rua, Nunes 2009). 
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for all (discrete) time units and octave frequency bands (or dyadic scales). The 
MODHWT-based methodology encompasses the analysis performed with the 
usual maximal overlap discrete wavelet transform (MODWT) and goes beyond it 
producing quantities which directly correspond to the bivariate Fourier spectra. In 
our theoretical considerations we start with pointing out the need to modify the 
implementation scheme of the MODHWT in a way suggested in the context of the 
dual-tree complex wavelet transform of Kingsbury and Selesnick (see, e.g., 
Selesnick et al. 2005). Further, we show how the wavelet quantities can serve to 
approximate the Fourier cross-spectra and discuss issues connected with 
constructing confidence intervals (CIs) for them. Finally, via a broad set of 
simulation experiments we examine the small and large sample properties of two 
wavelet estimators of the scale-dependent time delay – a quantity measuring the 
causal distance between time series on a scale-by-scale basis. The estimators are: 
the wavelet cross-correlator (WCC) and the wavelet phase angle (WPA)-based 
estimator. Our results provide some practical guidelines for the empirical 
examination of short- and medium-term lead-lag relations for octave frequency 
bands, pointing out the better small sample performance of the WPA-based 
estimator, especially in the case of low signal-to-noise ratios (SNRs). In the 
empirical analysis of business cycle variability and synchronisation in the euro 
zone we utilize the two ‘continuous discrete’ wavelet transforms: the maximal 
overlap DWT and the MODHWT. From the point of view of an economist willing 
to study business cycles, the MODWT and MODHWT offer the following: 

− A model-free (non-parametric) approach to examining the frequency 
characteristics of economic processes, i.e. short-, medium- and long-run 
features in the series. In particular, because of their non-parametric nature, 
wavelets enable us to examine non-linear processes without the loss of 
information. 

− Good time-frequency resolution, and because of this, efficiency in terms of the 
computations needed to extract the features. This enables the precise 
examination of a time-varying frequency content of time series in an efficient 
way. 
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− The decomposition of the variance and covariance of stationary processes 
according to octave frequency bands.2 In particular, the wavelet variance gives 
a simplified alternative to the spectral density function, which uses just one 
value per octave frequency band. The same is true for the wavelet co- and 
quadrature spectra, which give piecewise constant approximations to the 
appropriate Fourier cross-spectra on a scale-by-scale basis (see section 2.4). 

− Precise timing of the shocks causing and influencing business cycles. 
− Low computational complexity.3 
− The examination of trended, seasonal and integrated time series without prior 

transformations. In particular, we do not need to deseasonalise the data, as 
seasonal components are left automatically in lower decomposition levels, 
unless one is interested in examining very short cycles less than two years in 
length. In addition, there is no need for the prior elimination of deterministic 
and stochastic trends because wavelet filtering usually embeds enough 
differencing operations. 

− The efficient estimation of short-term lead-lag relations for different frequency 
bands.  

− Global and local (short-term) measures of association for business cycle 
components such as wavelet correlations and cross-correlations, wavelet 
coherence and wavelet phase angle. 

Recent studies on business cycle synchronisation within the euro zone (see, 
e.g., de Haan et al. 2008; Gonçalves et al. 2009; and references therein) usually 
provide evidence in favour of the endogeneity hypothesis of the optimum currency 
area criteria as stated in Frankel and Rose (1998), according to which (intra-
industry) trade intensification and monetary integration lead to more correlated 
business cycles. Our empirical examination covering 11 euro zone member 
countries tries to contribute to the debate by looking at synchronisation patterns 
_________________________ 
2 See Percival (1995) for the variance. The covariance case is examined by Whitcher (1998) (see also 
Whitcher et al. 2000). 
3 The conventional discrete wavelet transform (DWT) can be computed using an algorithm that is 
faster than is the well-known fast Fourier transform (FFT) – Mallat’s pyramid algorithm based on a 
mirror filters cascade and downsampling by two, which requires only O(N) multiplications. By 
contrast, the computational complexity of the MODWT is O(Nlog2N), which is exactly the same as 
the FFT (Percival and Walden 2000: 159), while the MODHWT consumes twice as many operations. 
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alone, decomposed on a scale-by-scale basis. The study documents a rise in 
synchronisation between business cycles after the first steps towards European 
integration were taken in the second half of the 1980s. In addition, changes in 
business cycle variability are examined, thus providing new evidence on dating the 
Great Moderation and staying in agreement with the hypothesis of an early start of 
the process (Blanchard and Simon 2001).  

The structure of the paper is as follows. In the next section, we briefly 
introduce the wavelet transform in its conventional and non-decimated (maximal 
overlap) versions as well as the wavelet analysis of variance and covariance. Next, 
we present the MODHWT and discuss more deeply the wavelet bivariate spectral 
analysis, its connections with the Fourier analysis as well as certain 
implementation problems. Section 3 presents the results of the simulation analysis 
comparing two wavelet methods of examining lead-lag relations for octave 
frequency bands, while Section 4 summarises our empirical findings. Finally, the 
last section offers brief conclusions. 

2 Wavelet Analysis 

Wavelet transformation consists in decomposing a signal into the shifted and 
scaled versions of a basic function )(xψ , called the mother wavelet. There are 
different kinds of this decomposition depending on the wavelet transform applied. 
The continuous wavelet transform (CWT) enables us to recognise local features in 
the data, especially in the case of signals defined over the entire real axis, although 
it results in an excessive redundancy of information. The DWT provides a 
parsimonious representation of the data and is particularly useful in discrete time 
series processing, especially in noise reduction and information compression. The 
MODWT removes certain deficiencies of the conventional discrete transformation 
by considering all time units, while – similarly to the DWT – octave frequency 
bands are analysed. 
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2.1 Conventional and Maximal Overlap DWTs 

The conventional DWT of a real-valued function  is defined as follows: )(xf

∫
∞

∞−
= dxxxfW tjtj )()( ,, ψ , (1)  

where ,  and the wavelet daughters Jj ,,2,1 K= 12,,1,0 −= − jJt K )(, xtjψ  are 
dyadically shifted and scaled versions of the mother wavelet, i.e.:  

( )txx jj
tj −= −− 22)( 2/

, ψψ .   (2) 

For certain functions )(xψ  with good localisation properties, { })(, xtjψ  is an 

orthonormal basis in . The function )(2 ℜL )(xψ  is usually defined via another 
function (the scaling function or father wavelet), )(xφ  that, applied to the signal 
after shifting and scaling analogous to (2), produces another set of coefficients in 
the form: 

∫
∞

∞−
= dxxxfV tjtj )()( ,, φ . (3) 

These are known as scaling coefficients. For a given j, the wavelet coefficients 
 are computed as differences in moving averages of the previous scaling 

coefficients and are associated with scale , while their squares contribute 
to the decomposition of the energy of the signal on the time-frequency plane. By 
contrast, the level j scaling coefficients are moving averages of scale . 
These two types of coefficients give the multiresolution decomposition of the 
original function in the form: 

tjW ,
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jλ

j
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The functions  and  are known as approximations (smooths) and 

details. The highest level approximation  represents the smooth, low-
frequency component of the signal, while the details , , …,  
are associated with oscillations of length 

)(xS j )(xD j

)(xS J

)(1 xD )(2 xD )(xDJ

42 − , 84 − , …, 122 +− JJ . 
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In filtering notation, the DWT is defined via quadrature mirror filters: the low-
pass (scaling) filter  and the high-pass (wavelet) filter .1,...,0}{ −= Lllg 1,...,0}{ −= Lllh 4 

When processing discrete signals we consider a vector of length  in the 
form . Then the highest possible decomposition level is J and 
the number of wavelet and scaling coefficients of the conventional DWT for level 

 is 

JN 2=
),,,( 110 ′= −Nxxx Kx

Jj ,...,2,1= 1,,, 42 KNN , respectively. By contrast, the MODWT produces the 
same number of wavelet and scaling coefficients at each decomposition level ( tjW ,

~  

and tjV ,
~ , accordingly) as it does not use downsampling by two. The coefficients 

are appropriately scaled in order to retain variance preservation. They are given as 
follows: 

12,,0,1
0 mod]1)1(2[,, −== −−

= −−+∑ jJL
l Nltljtj txhW j

j K , (5) 

1,,0,~2 1

0 mod)(,,
2/ −== ∑ −

= − NtxhW jL

l Nltljtj
j K , (6) 

12,,0,1
0 mod]1)1(2[,, −== −−

= −−+∑ jJL
l Nltljtj txgV j

j K ,  (7) 

1,,0,~2 1
0 mod)(,,

2/ −== ∑ −

= − NtxgV jL
l Nltljtj

j K ,  (8) 

where and are the j-th level wavelet and scaling filters of length 

 obtained by convolving together the following j filters 
(Percival and Walden 2000: 95–96): 

}{ ,ljh }{ ,ljg

1)1)(12( +−−= LL j
j

(A) for : }{ ,ljh

_________________________ 
4 We concentrate on compactly supported orthonormal wavelets (see Daubechies 1992). 
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(B) for : }{ ,ljg

filters 1, …, j–1 as in (A) 

1
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2
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1
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}{ ,ljh  is a bandpass filter with a nominal passband jj f 2/12/1 1 ≤≤+ , while 

 is a low-pass filter with the cut-off frequency . In the notation above 

we assume that 

}{ ,ljg 12/1 +j

}{}{ ,1 ll hh ≡  and }{}{ ,1 ll gg ≡ . We further use also: 
2

~ lh
lh = , 

2
~ lg

lg = , 2
,, 2

~ j
ljlj hh = , 2

,, 2~ j
ljlj gg = . 

  For further considerations, we provide relationships between the 
transfer functions of the above filters with the following correspondence: 

 
)()();()(  and
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11
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. 

Then, we have (Percival and Walden 2000: 154): 

)()( 2
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∏
−

=

−=
2

0

1 )2()2()(
j

l

lj
j fGfHfH ,  (11b) 
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∏
−

=

=
1

0
)2()(

j

l

l
j fGfG . (11c) 

The same relationships also hold for the transfer functions of 
)~{},

~
{),~{},

~
{ ,, ljljll ghgh , which we further denote as )(~),(~),(~),(~

⋅⋅⋅⋅ jj GHGH . 

Among the most popular real wavelet and scaling filters are the compactly 
supported orthonormal Daubechies filters: the extremal phase (dL) and least 
asymmetric (laL) filters. The two families are characterised by the smallest filter 
length L for a given number of vanishing moments (VMs).5 In addition, the 
extremal phase scaling filters have the fastest build-up of the energy sequence, 
while the least asymmetric filters are approximately linear phase. 

2.2 Wavelet Analysis of Variance and Covariance 

For the stochastic process , the time-dependent wavelet variance is defined as: tY

)~Var()Var(
2

1)( ,,
2

tjtj
j

jt WW ==
λ

λσ . (12) 

Assuming that (12) does not depend on time,6 we arrive at the variance 
decomposition across scales in the form: 

∑ ∑
∞

=

∞

=

==
1 1

2
, )()Var(1

2
1)Var(

j j
jtj

j
t WY λσ

λ
. (13) 

_________________________ 
5 Roughly speaking, VMs are responsible for eliminating artefacts because of the wavelet function as 
well as for the degree of approximation to an ideal bandpass filter, and they make it possible to 
interpret the filters as generalised differences of adjacent observations with the number of embedded 
difference operations equal to the number of VMs (see Daubechies 1992: 153; Mallat 1998: 166; 
Percival and Walden 2000: 483). The number of VMs for the Daubechies filters equals half the filter 
length. 
6 The assumption is also fulfilled for non-stationary processes if they are integrated of order d and 
the width of the wavelet filter, L, is sufficient to eliminate non-stationarity. In the case of Daubechies 
wavelet filters, the condition is: L ≥ 2d (see, e.g., Percival and Walden 2000: 304). In order to have 

0}~{ , =tjWE , we further assume that L > 2d. 
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The wavelet variance at level j, corresponding to scale , ,  

explains the variation of oscillations of a length approximately in the interval 
. Similarly, the wavelet covariance and wavelet correlation are introduced. 

For the stochastic processes  and , the time-varying wavelet covariance is 
defined as: 

12 −= j
jλ )(2

jλσ
j2 –

12 +j

tX tY

)~,~Cov(),Cov(
2

1)( ,,,,
Y

tj
X
tj

Y
tj

X
tj

j
jt WWWW ==

λ
λγ . (14) 

As in the case of the variance decomposition (13), if the wavelet covariance does 
not depend on time, it produces a decomposition of the covariance between  and 

 across scales 
tX

tY jλ : 

∑
∞

=

∞

=

==
1 1

,, )(),Cov(1
2
1),Cov(

j j
j

Y
tj

X
tj

j
tt WWYX λγ

λ ∑ . (15) 

Next, let us define the (time invariant) wavelet correlation coefficient for scale jλ  
via: 

)()(
)(

)(
21 jj

j
j λσλσ

λγ
λρ = . (16) 

The quantity above measures the strength and direction of linear dependence 
between two processes for a given decomposition level j (scale jλ ). Finally, the 
wavelet cross-covariance and cross-correlation are given as:  

)~,~Cov(),Cov(
2

1)( ,,,,
Y

tj
X
tj

Y
tj

X
tj

j
j WWWW τττ λ

λγ ++ == , (17) 

)()(
)(

)(
21 jj

j
j λσλσ

λγ
λρ τ

τ = . (18) 

As mentioned in section 2.1, MODWT-based estimators have generally better 
statistical properties compared with their DWT-based counterparts. Firstly, 
MODWT coefficients produce better estimates of the wavelet variance in terms of 
efficiency. Secondly, they give an estimator of the wavelet covariance whose 
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variance does not depend on the true time lag between time series. Furthermore, 
decimation by two affects the lag-resolution of the DWT-based estimators of the 
wavelet cross-covariance and cross-correlation, so they should not be used in 
practice (see Percival and Walden 2000: 308–310; Gençay et al. 2002: 252–253). 
For these reasons, we concentrate on estimation using the MODWT coefficients. 

An unbiased estimator of the wavelet variance is defined as: 

∑
−

−=

=
1

1

2
,

2 ~
~
1)(ˆ

N

Lt
tj

j
j

j

W
N

λσ , (19) 

where tjW ,
~  are the MODWT wavelet coefficients,  is the 

length of the wavelet filter for scale 

1)1)(12( +−−= LL j
j

jλ  and 1~
+−= jj LNN  is the number of 

wavelet coefficients unaffected by the extrapolation method at the end of the 
sample.  

Estimates of wavelet covariance and wavelet correlation are computed via the 
following formulas:  
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λρ = , (21) 

while an unbiased estimate of the wavelet cross-covariance is obtained via: 
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 (22) 

Methods of constructing CIs for the quantities described in this section are 
discussed by Percival (1995) and Whitcher (1998) (see also Percival and Walden 
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2000; Serroukh et al. 2000; Whitcher et al. 2000; Gençay et al. 2002). All the 
above estimators may be based on only a portion of wavelet coefficients, which 
provides estimates of the local versions of the wavelet quantities. A good time 
resolution is exactly what the non-decimated DWT offers and – together with 
certain simplifications in obtaining global spectral estimates – is the most 
important characteristic of the approach presented here. The same holds for the 
MODHWT-based quantities described in §2.4. 

2.3 MODHWT 

The MODHWT makes use of a recently introduced class of filters based on Hilbert 
wavelet pairs (HWPs) and utilises a non-decimated (maximal overlap) version of 
the dual-tree complex wavelet transform of Kingsbury (1998, 2001) and Selesnick 
(2001).7 The approach was advocated by Whitcher and Craigmile (2004) (see also 
Whitcher et al. 2005). The filters in a HWP are approximate Hilbert transforms of 
each other and, as in the case of the usual DWT, form a basis for the collection of 
orthogonal bandpass filters. This time, however, the approximate analyticity of the 
filters enables us to compute the quantities that directly correspond to the 
appropriate bivariate Fourier spectra.8  

Let  and be conjugate quadrature mirror filters. The father and 
mother wavelets are obtained via: 

}{ 0
lh }{ 0

lg

∑∑ −=−=
l

l
l

l lthtltgt ).2(2)();2(2)( 000000 φψφφ  (23) 

Now consider another pair of such filters:  and  that define another 
couple of father and mother wavelets:  and . We say that  is the 
Hilbert transform of  if: 

}{ 1
lh }{ 1

lg
)(1 tφ )(1 tψ )(1 tψ

)(0 tψ

,
0),(
0),()( 0

0
1

⎩
⎨
⎧

<Ψ
>Ψ−

=Ψ
ffi
ffif  (24) 

_________________________ 
7 For an introduction, see Selesnick et al. (2005). 
8 Their continuous (in both time and scale) counterparts have long been known in applications of 
wavelet analysis – see, e.g., Torrence and Compo (1998). 
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where  and  are the Fourier transforms of  and , 
respectively. This means that the wavelets are 

)(0 fΨ )(1 fΨ )(0 tψ )(1 tψ

2
π  out of phase with each other. The 

following theorem was proved by Selesnick (2001):9  
If transfer functions of two scaling filters fulfil the condition: 

5,0||,)()( )(01 <= − fefGfG fiθ ,  (25) 

where ff πθ =)( , then the corresponding wavelets are a Hilbert transform pair.  

The condition (25) says that the digital filter  should be a half-sample delayed 
version of , i.e. 

}{ 1
lg

}{ 0
lg 01

2
1−= ll gg . As a half-sample delay cannot be implemented 

with finite impulse response filters, only approximate solutions are available.  
In following sections, we use mainly the HWP filters introduced by Selesnick 

(2002). All the filters we apply below have the following property: the filters in 
the Hilbert pair are of the same length and have the same squared gain functions. 
In Selesnick’s so-called ‘common factor approach’, firstly an all-pass filter with an 
approximately constant fractional group delay is constructed and then orthonormal 
filters are built via a linear system of equations and spectral factorisation. Under a 
specified degree of approximation (L) to the half-sample delay, the design 
procedure produces short filters with a given number of VMs (K). The length of 
each HWP(K, L) filter equals )(2 LK + . In our study, we apply mid-phase 
solutions for HWP(3, 3), HWP(4, 2), HWP(3, 5) and HWP(4, 4) and denote them 
‘kKlL’. An alternative approach introduced by Kingsbury (2001) produces the so-
called Q-shift (quarter-shift) filters, which are approximately linear phase and 
whose wavelets in the Hilbert pair are mirror images of each other. For 
comparison purposes, in our simulation analysis we also use the 6-tap Q-shift filter 
of Kingsbury (2001) with one VM and the 12-tap Q-shift filter of Tay et al. (2006) 
with five VMs and denote them ‘kin’ and ‘tkp12’, respectively.  

Figure 1 shows two examples of Selesnick’s approximately analytic wavelets 
with their corresponding phase difference functions )( fθ .  

_________________________ 
9 The converse of the theorem is also true, so Selesnick’s condition is both sufficient and necessary – 
see Selesnick et al. (2005) and references therein. 
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Figure 1. Example HWPs and phase differences for scaling filters 

 

It is clear that the functions )( fθ  fulfil the condition stated in Selesnick’s 
theorem only for frequencies below 0.3–0.4. However, this is not of much worry 
as the condition concerns the approximately half-band low-pass scaling filters, 
while the transfer functions of the wavelet filters are obtained via 

)()( 2
1)1(2 fGefH Lfi −−= −− π  and are not much affected either. As such, the HWPs 

can be seen as short-term versions of the cosine and sine waves forming the classic 
Fourier transform.  

The MODHWT consists in a simultaneous application of a pair of wavelet 
(and scaling) filters in their non-decimated (maximal overlap) forms. As a result, 
two sequences of coefficients are obtained, which are the real and imaginary parts 
of the final wavelet coefficients. In other words, the following filters are used: 

,~~~
;~~~
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ljljlj
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gigg
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+=
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where 2
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,

~,~,~,~
j

lj
j

lj
j

lj
j

lj g
lj

g
lj

h
lj

h
lj gghh ==== . These filters produce the 

complex wavelet and scaling coefficients in the following form: 

;~~~~ 1
,

1

0

0
,,, tj

L

l
tjjtjltj WiWXhW ∑

−

=
− +==  (27) 

.~~~~ 1
,

1

0

0
,,, tj

L

l
tjjtjltj ViVXgV ∑

−

=
− +==  (28) 
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As discussed in Selesnick et al. (2005), the simplest approach towards 
invertible analytic wavelet transform is via DWT post-processing. However, this 
results in a slightly higher computational complexity as in such a case we operate 
on two parallel complex wavelet transforms. Furthermore, performing the Hilbert 
transform as the first one is not recommended since then we lose the possibility of 
optimising it for all scales simultaneously. The dual-tree complex wavelet 
transform of Kingsbury and Selesnick is based on two real orthogonal wavelet 
filters with the Hilbert transform built into them. Thanks to this the Hilbert 
transform automatically adapts to the wavelet scales. This feature makes the 
approach particularly attractive compared with other time-frequency methods 
producing instantaneous amplitudes, phases and frequencies such as the classic 
demodulation method (see, e.g., Granger and Hatanaka 1964; Priestley 1981) or 
the modern Hilbert-Huang transform (see Huang and Shen 2005). 

2.4 Wavelet Analysis of Coherence and Phase Angle 

This section includes our theoretical considerations and starts with a detailed 
description of the relationship between the MODHWT-based wavelet spectra and 
the appropriate Fourier quantities. The wavelet analogues of Fourier spectral 
characteristics of bivariate time series were introduced by Whitcher and Craigmile 
(2004). Let X

tjW ,
~  and Y

tjW ,
~  be the complex-valued wavelet coefficients obtained via 

filtering  and . Assuming that the wavelet filters applied have enough VMs 
to eliminate any deterministic trend components in the series, the time-varying 
wavelet spectrum of  for scale 

tX tY

),( tt YX jλ  is defined as: 

( ) ( )( )[ ]
( ) ([ ]

),,(),(

~~~~~~~~

~~~~~~),(
0

,
1

,
1

,
0

,
1

,
1

,
0

,
0

,

1
,

0
,

1
,

0
,,,

tQitC
WWWWiWWWWE

WiWWiWEWWEtS

jXYjXY

Y
tj

X
tj

Y
tj

X
tj

Y
tj

X
tj

Y
tj

X
tj

Y
tj

Y
tj

X
tj

X
tj

Y
tj

X
tjjXY

λλ

λ

−=

−−+=

−+==

)  (29) 

where ),( tC jXY λ  and ),( tQ jXY λ  denote the time-varying wavelet cospectrum 
and quadrature spectrum (quad-spectrum), respectively. If the wavelet cospectrum 
and quadrature spectrum do not depend on time, it is possible to relate them to the 
appropriate Fourier quantities. Let the process  be covariance stationary 
with an absolute summable cross-covariance sequence. We will denote its cross-

),( tt YX
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spectral density function as )()()( fQifCfS XYXYXY −= .10 The wavelet 
cospectrum for scale jλ  is then: 

( )

,)()(~

)()(~~~~~)(

21

21

21

21

21

201
,

1
,

0
,

0
,

∫

∫

−

−

+

+=+=

dffSfH

dffSfHWWWWEC

XYj

XYj
Y

tj
X
tj

Y
tj

X
tjjXY λ

  (30) 

where )(~ 0 fH j  and )(~ 1 fH j  are the transfer functions of scale jλ  MODWT 

wavelet filters }
~

{ 0
,ljh  and }

~
{ 1

,ljh . As in our case the two squared gain functions in 
(30) are identical, we obtain: 

)(2)()(~2)()(~2)(
21

21

20
21

21

20
jXYXYjXYjjXY dffCfHdffSfHC λγλ === ∫∫

−−

,  (31) 

where )( jXY λγ  denotes the scale jλ  wavelet covariance computed with the filter 

}
~

{ 0
,ljh  (or, equivalently, }

~
{ 1

,ljh ). Further, assuming that the wavelet filter is long 
enough to be considered a good approximation to an ideal bandpass filter, we 
have: 

∫
+

≈
j

j

dffCC XYjXY

21

21 1

)(4)(λ .  (32) 

As the quantity: 
_________________________ 

10 For wavelet filters with enough VMs, the discussion concerning wavelet co- and quadrature 
spectra can be directly generalised to the case of non-stationary processes with stationary backward 
differences. To this end, we consider two integrated processes:  whose 

differences of order  and , respectively, are jointly stationary. Then, following Whitcher and 

Craigmile (2004), we define 

)(~),(~ YtXt dIYdIX

Xd Yd

YX dfidfi
WZ

XY ee
fS

fS
)1()1(

)(
)( 22 ππ −− −−

= , where 

. Note, however, that the generalisation does not apply to the part of our 

analysis that utilises the complex scaling coefficients 
t

d
tt

d
t YZXW YX Δ=Δ= ,

tjV ,
~

. 
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∫
+

+

j

j

dffC XY
j

21

21

1

1

)(2  (33) 

is the average value of  in the interval )( fCXY ],[
2
1

2
1

1 jj+ , we can interpret 

)( jXYjj CC λλ= , Jj ,,1K= , as the average values of the Fourier cospectrum 

over the frequency bands ],[],[
2
1

2
1

2
1

2
1

11 jjjj ++ ∪−− . If it is possible to assume that 

the Fourier cross-spectrum is piecewise constant over the octave frequency bands, 
estimators of  may serve to consistently estimate the Fourier cospectrum.jC 11 In 
any case however, the wavelet quantities discussed here provide piecewise 
constant approximations to their Fourier counterparts and summarise the 
information included in the cross-spectrum in a way similar to the wavelet 
variance in the univariate spectral analysis (see Percival 1995). 

In order to obtain similar results for the wavelet quadrature spectrum, we recall 
the analyticity property of the HWP. The condition (24) is equivalent to: 

.
0,)(
0,)()()(

2

2

0

0
)(01

⎪⎩

⎪
⎨
⎧

<Ψ

>Ψ=Ψ=Ψ
−

fef
fefeff

i

i
fi

π

π

ξ  (24*) 

Making use of this and utilising the approximations: )2()(~ 00 ffH j
j Ψ≈ , 

)2()(~ 11 ffH j
j Ψ≈  (see Percival and Walden 2000: 476), we obtain: 

_________________________ 
11 Note that such an assumption is valid only for rather special kinds of relationships such as the 
‘fixed angle lag’ relationship (Granger and Hatanaka 1964: 98) with a constant amplitude spectrum 
over the frequency bands of interest or a linear regression without delay.  
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 (34) 

Unfortunately, it turns out that the first approximation assumed in (34) is of 
little use for the first several decomposition levels, as the approximately analytic 
mother wavelets  and  are most helpful in describing the behaviour of 
the associated wavelet filters at level j as 

)(0 tψ )(1 tψ
∞→j . In order to obtain more practical 

results, one is advised to apply different orthogonal quadrature mirror filters in the 
first stage of Mallat’s pyramid algorithm, namely filters approximately satisfying 
the condition: 0

1
1 ~~

−= ll gg  (see Selesnick et al. 2005). This condition is different 
(and easier to implement) than is the half-sample delay requirement: 01

2
1

~~
−= ll gg . 

To see that it solves the approximation problem let us consider in more detail 
the implementation of the MODHWT. We will now discriminate between the level 
1 and level j (j = 2, 3, …) filters. We maintain the previous notation for the transfer 
functions of the remaining filters, while the transfer functions of the first level 
scaling and wavelet filters will be denoted as: )(~),(~),(~),(~ 11011101 fHfHfGfG , 
respectively. For the first level scaling filters, we have: 

)(~)(~ 01211 fGefG fi π−= .  (35) 

www.economics-ejournal.org  17 



 

Using this and (11a), for the first level wavelet filters, we obtain:12

 )(~)(~ 01211 fHefH fi π−= .  (36) 

The imaginary part of the second stage wavelet filter is given as: 

)(~)221(~)(~)2(~)(~ 011)12(21111
2 fGfGefGfHfH Lfi −−== −− π .  (37) 

If the level 2 scaling filters approximately satisfy the half-sample delay condition, 
we further obtain the following approximation for :  0>f

[ ] ( ) )(~)(~)2(~)(~2~)(~ 0
2

01001
2
10)1(41

2
222 fHefGfHefGfGefH iiLfi ππππ −−+−− ==−−= , 

 (38) 

while the appropriate relation for 0<f  is obtained via complex conjugation. 
Therefore, at the second decomposition level we do not need to substitute for 

)(~ 0 fH j  and )(~ 1 fH j  in (34) and the approximation is valid. A similar relationship 
holds for all the subsequent stages. To see this let us consider the j-th 
decomposition level and the frequencies satisfying 12

1|| −< jf . We start by writing: 

).2(~)4(~)2(~)(~)2(~)(~ 211111111 fGfGfGfGfHfH jj
j

−−= K   (39) 

For  the first factor in (39) is given as: 0>f
( )
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π
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 (40) 

and the whole expression is then: 

_________________________ 
12 Here we assume that the level one real and imaginary filters have the same (even) length. We 
change this assumption further in our computations by considering the imaginary filters to be of 
length L + 1, where L is even and equals the length of the real parts of the filters. This, however, does 
not change the result that follows. 
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The first stage complex scaling filter is easily obtained via the translation of 
any real scaling filter by one sample and using it as the imaginary part of the 
resulting filter. Then, the complex wavelet filter is computed via the quadrature 
mirror relationship applied separately to these two parts. Because the transfer 
functions at the first stage of the wavelet decomposition obviously do not satisfy 
the analyticity property, all the quantities computed with the help of the wavelet 
quad-spectrum should basically be interpreted starting from the second level. 
However, this does not cause a problem for business cycle studies, which are 
typically based on monthly or quarterly data. 

As in the case of the cospectrum, the wavelet quad-spectrum enables us to 
compute the average value of its Fourier analogue in the interval ],[

2
1

2
1

1 jj + , , 

via the following relationship: 
jQ

j

j
j

j
XYjXY

QQ
dffQQ

j

j λ
λ ==≈

−∫
+

1

df21

21 2
)(4)(

1
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Finally, we arrive at the following approximation to the Fourier cross-spectrum:  

)()( jXYjXY SfS λλ≈   for ],[
2
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2
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1 jjf +∈ . (43) 

To approximate the Fourier cross-spectrum in the interval [ ]11 21,21 ++− JJ  

we can use the complex scaling coefficients tJV ,
~  instead of the wavelet 

coefficients tjW ,
~ . Similar computations to those given above lead to: 
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(44) 
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where  is the average value of the Fourier cospectrum in the interval 1+JC
[ ]11 21,21 ++− JJ . For the imaginary part of the spectrum, firstly we notice that 

from (11c), (25) and (35) we have: 
Jfi

JJ efGfG 201 )(~)(~ π−= . Then, we obtain: 
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   (45) 

where in the last equality it is assumed that the value of the Fourier quad-spectrum 
in the interval ],0[ 12

1
+J  is constant and equal to . 1+JQ

Next, as in Whitcher and Craigmile (2004), we consider the time-varying 
wavelet cross-amplitude spectrum: 

[ ] 2122 ),(),(),(),( tQtCtStA jXYjXYjXYjXY λλλλ +== ,  (46)  

the time-varying wavelet phase spectrum (wavelet phase angle – WPA): 
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and the time-varying wavelet magnitude squared coherence:13
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where 
2

,
~),( X

tjjX WEtS =λ  and 
2

,
~),( Y

tjjY WEtS =λ  denote the time-varying 

wavelet spectra equal to twice the wavelet variance, . The Schwartz 
inequality for complex random variables guaranties that 

)(2
jt λσ

1),(0 ≤≤ tK jXY λ . 

_________________________ 
13 We refer to this as the wavelet coherence or wavelet coherence spectrum. Its square root is called 
the wavelet coherency. 
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Let us consider a simple example of a stationary bivariate process – a linear 
regression with delay in the form: 

 ttt XY ηα τ += − ,  (49) 

where  and tX tη  are stationary processes, uncorrelated with each other at all 
leads and lags. Then, the Fourier quantities take the following values: 

)()2cos()( fSffC XXY τπα= , )()2sin()( fSffQ XXY τπα= , 

)()( fSfA XXY α= , 
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)( 2
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X
XY α= , τπθ ffXY 2)( −= . 

Furthermore, we can use also the time delay: ττ π
θ =−= f

f
XY

XYf 2
)()(  as well as the 

gain: α==
)(
)()(

fS
fAfG

X

XY
XY . Assuming that the wavelet transform produces a 

bandpass white noise, the wavelet co-, quad- and amplitude spectra are the 
following: 
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where the last approximation takes place for high enough decomposition levels 
j.14 The wavelet coherence is given as: 
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and for higher decomposition levels this can be approximated via: 
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λ ≈ . (54) 

Assuming that the individual Fourier spectra are approximately piecewise constant 
over octave frequency bands, for high enough scales the wavelet coherence should 
provide an acceptable approximation to the appropriate Fourier quantity. The 
wavelet phase spectrum is: 
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In order to obtain a wavelet estimator of the parameter τ,  we also introduce a 
quantity which we call the wavelet time delay. This is defined as: 

0
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2
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jXY
jXY fπ

λθ
λτ −= , (56)

  

where  is the centre frequency of the octave band, computed as the arithmetic 

mean of the upper and lower cut-off frequencies, i.e. 
0jf

22
3

0 += jjf . Then, in our 

example we have: τλτ ≈)( jXY . Similarly, the wavelet gain is defined as: 

_________________________ 

14 Assuming that xx ≈sin  for 
8
π

≤x , the last approximation will work for  (j = 2, 3, …) 

– comp. Percival and Walden (2000: 344). 

22 −≤ jτ
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and in the example above for  we get: 22 −≤ jτ αλ ≈)( jXYG . 
A slightly more general situation arises in the case of the so-called time delay 

estimation problem described as follows. We consider two spatially separated 
sensor measurements,  and , of an unobserved signal . Let us assume that 
the processes satisfy: 

tX tY tS

,
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Yttt

Xttt
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η
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+=

−

 (58) 

where , tS Xtη  and Ytη  are stationary and mutually uncorrelated at all leads and 
lags. Then: 

)(Cov),Cov(),Cov( ταα τ −== −++ kSSYX Skttktt  

and 

)()( 2 fSefS S
fi

XY
τπα −= . 

From this we obtain that the phase spectrum is as in the previous example, i.e. 

τπθ ffXY 2)( −= . Similarly, πτλθ 12
3)(

+
−≈ jjXY  and the wavelet time delay is 

τλτ ≈)( jXY . 

The estimators of (46)–(48) and (56) are obtained by replacing the wavelet 
cospectrum and quad-spectrum as well as the wavelet individual spectra with their 
estimates computed via smoothing in time. This smoothing is particularly 
necessary for the estimation of the wavelet coherence. In Whitcher and Craigmile 
(2004), a simple two-sided moving average is suggested, and this is the approach 
taken here as well. 

Figures 2 and 3 present the mean estimates of the wavelet coherence, phase 
spectrum and time delay for samples ranging from 10 to 500 wavelet coefficients 
not affected by the boundary, obtained with the k4l2 HWP filter for the linear 
regression with delay (49) with 1=τ . Figure 2 illustrates the case, when the first 
stage filters are different and fulfil the one-sample delay condition. The la12 

www.economics-ejournal.org  23 



 

Daubechies filter was applied in the real part of the first stage complex filter. For 
comparison purposes, the appropriate results obtained without this modification 
are also presented (see Figure 3). As we can see, the modified procedure gives 
acceptable results starting from scale two, while the simplified method introduces 
more bias in both the coherence and time delay estimations, especially at the 
second decomposition level. Another observation concerns the small sample bias 
of the wavelet coherence estimator, which clearly increases with the scale.  
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Figure 2. Estimates of the wavelet coherence, wavelet phase spectrum and wavelet time 
delay with the modified method; the first stage filters are la12 and its one-sample shifted 
version and the complex filter for the higher levels is k4l2; figures present the theoretical 
Fourier quantities (thin dotted lines) together with the mean estimates of the 
corresponding wavelet quantities obtained with 500 replications for samples consisting of 
10, 20,  …, 500 wavelet coefficients unaffected by the boundary for the linear regression 
model with delay τ = 1, α = 1 and t  and tX η  being two independent AR(1) processes 
with autoregressive parameters 0.8 and unit error variances (thick solid lines). 
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Figure 3. Estimates of the wavelet coherence, wavelet phase spectrum and wavelet time 
delay with the simplified method; k4l2 is applied at each decomposition level; see Figure 
2 for more details.  
 

To construct CIs for the wavelet coherence the multivariate process in the 
form: 

( ) ( ) T
Y

tj
X
tj

Y
tj

X
tj

Y
tj

X
tjtj WWWWWW ⎥⎦

⎤
⎢⎣
⎡ ℑℜ= ,,,,

2
,

2
,,

~~,~~,~,~P   (59) 

is considered together with the function:  

( )
ab

dcdcbag T
22

],,,[ +
= .  (60) 

Then, assuming that 0)( >jXYK λ  and applying the delta method, the following 
result holds (Whitcher and Craigmile 2004): 

( ) ))0(,0(~)()(ˆ~
, jabcjXYjXYj RANKKN λλ − ,  (61) 
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where , )()0()()0( ,,,, tjjabcd
T

tjjabc gSgR PP ∇⋅⋅∇= )(, ⋅jabcdS  is the  spectral 

matrix for  and 

44 ×

tj ,P ( )Tdcbag ],,,[∇  denotes the vector of partial derivatives. As 
suggested by Whitcher and Craigmile (2004), an estimate of the large sample 
variance jjabc NR ~/)0(,  of  can be obtained by replacing )(ˆ

jXYK λ )( ,tjg P∇  with 

 and  with an estimate utilising the sample cross-covariance of 
elements of the vector process . Then, an approximate large sample CI for the 
wavelet coherence has the form: 
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K αςλ , (62) 

 is the (1–α/2)-quantile of the standard normal distribution.  where 
2
ας

To construct confidence intervals for the WPA we assume that 0)( ≠jXYC λ  
and take: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛= −

c
ddcbag T 1tan],,,[ . (63) 

Then, applying the delta method, we arrive at: 

( ) ))0(,0(~)()(ˆ~
, jabcjXYjXYj RANN λθλθ − ,  (64) 

where the large sample variance, , is computed as previously by utilising 
an appropriate vector of partial derivatives equal to: 

)0(, jabcR

( )
T

T

dc
c

dc
ddcbag ⎥⎦

⎤
⎢⎣
⎡

++
−=∇ 2222 ,,0,0],,,[ .  

Then, the confidence intervals are given in the form similar to (62). Multiplying 
them by a constant will produce approximate CIs for the wavelet time delay. 
Finally, assuming that the wavelet gain (57) is positive, similar reasoning to the 
presented above will provide approximate CIs for this quantity. 

Estimates of the large sample variance of the wavelet spectra estimators can be 
obtained via nonparametric kernel methods. We examined the properties of two 
kernel estimators: one based on the popular Bartlett kernel and the other based on 
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the truncated (rectangular) kernel, which however can provide negative values of 
the estimates. The speed of convergence of the kernel estimators to the 
experimentally driven true values depends on the kind of the wavelet spectrum, the 
type of the bivariate data-generating process and the scale of the analysis. We 
concentrated on a linear regression with delay, for which different stationary 
AR(1) models for  and tX tη  were considered. For lower scales – λ = 2 (4) – good 
results in terms of unbiasedness were obtained, even in samples of length as small 
as N = 50 (75) wavelet coefficients, while for λ = 8 acceptable approximations 
started with N = 200, and even more data were necessary for λ = 16. The 
experimentally determined best values of the truncation parameters M are both 
sample size- and scale-dependent.15  

2.5 Wavelet Estimation of the Time Delay – a Simulation Study 

In this section, we summarise the results of our simulation experiments examining 
the statistical properties of two wavelet estimators of the time delay parameter. We 
concentrate on model (49) and analyse mainly the small sample performance of 
the estimators in order to recommend a method for examining short- and medium-
term lead-lag relations for octave frequency bands. In particular, such a method 
might be of interest in business cycle studies, as it should be useful when 
analysing changing patterns of business and growth cycle synchronisation. The 
estimators compared are: the wavelet cross-correlator (WCC) that is based on 
maximising the values of the cross-covariance estimates, i.e.:  

)~,~Cov(maxarg)(Covmaxargˆ ,,~~
Y

ktj
X
tjkWWk

WCC
j WWkY

j
X
j

+==τ ,  (65) 

and the estimator of the wavelet time delay (56), i.e.: 

_________________________ 

15 For exactly the same DGP and data lengths as in the case of the estimates in Figures 2 and 3, 
acceptable results in larger samples were obtained with  for the rectangular kernel and 

 for the Bartlett kernel, where j = 2, 3, … denotes the decomposition level. More 
details of this examination are available upon request. Owing to a programming error, the 
conclusions from this part of our simulations differ slightly compared with those reported in a 
previous version of the paper. 

jM 25,1 ⋅=
jM 25,2 ⋅=
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τ −= , (66) 

which we call further the WPA-based delay estimator. It is worth stressing that we 
do not maximise the absolute value of the cross-covariance in (65) since a large 
negative covariance would be interpreted as an anti-phase relationship. 

The Cramér-Rao lower bound on the variance of any unbiased time delay 
estimator was derived as (see Carter 1987): 

∫
− −

= 5,0

5,0

2

2

)(1
)()2(

1min
df

fK
fKfN π

σ  , (67) 

where  is the Fourier coherence of the processes under study (in our case, 
the wavelet coefficients 

)( fK
X
jW~  and Y

jW~ ). Formula (67) predicts that the variance of 
an optimal estimator decreases with the value of coherence, the signal bandwidth 
and the centre frequency. For the WCC, it is known that for jointly stationary 
processes and large enough data samples the Cramér-Rao lower bound is 
automatically achieved in the case of the signal and noise processes with spectra 
that are flat over the same range of frequencies and zero outside this range (see 
Scarbrough et al. 1981, Carter 1987). If the spectra of  and tX tη  are relatively 
featureless within octave frequency bands, the MODWT wavelet coefficients of 

 and  will be approximately bandpass white noises and the WCC becomes 
efficient asymptotically. However, the actual performance of the asymptotically 
efficient estimator can be much worse, especially for low SNRs (see the 
simulation results in Scarbrough et al. 1981, Carter 1987). Regarding the 
estimators based on the Fourier phase angle, it has been proven that they are fully 
consistent with other asymptotically optimal methods after regression analysis is 
applied to the phase data (see Piersol 1981).  

tX tY

When discussing the properties of the estimators (65) and (66), it is worth 
underlining that the WPA-based method enables us to estimate delays that are not 
integer multiples of the sampling period In addition, it guarantees a maximal time 
localisation limited only by the length of the applied filter. By contrast, the WCC 
makes it possible to estimate delays that are longer than half of the centre period, 

0 , it is asymptotically unbiased, even for the first stage of analysis, and it can 
be based on shorter filters, as the approximately analytic complex wavelet filters 

/1 jf
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are usually longer than are the real filters with similar squared gain functions. The 
length of the wavelet filter plays a crucial role in empirical examination, since it 
directly influences the number of wavelet coefficients that are unaffected by the 
extrapolation method at the ends of the sample and, therefore, determines the 
maximal number of decomposition levels as well as the precision of estimation. 

In our simulations, the following data generating process was used: 
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Figures 4–6 present the comparisons of small sample biases, root mean square 
errors and large sample standard errors of the two estimators for the cases: 1=α ; 

1=τ ; 8,0== γβ ; 4,3,2,1,2
1

2

1 ==
σ

σSNR , and the following wavelet filters: la12 

for the WCC and la12 (first stage) + k4l2 (higher stages) for the WPA-based 
estimator.16 The search range for the WCC was τ+±10 . In each case, 1000 
replications were run.17 In the presentation, we also include the outcomes for the 
first decomposition level, largely because to some extent they are comparable to 
the other stages. The findings resulting from the experiments are summarised 
below:18

• For wide ranges of SNRs and scales, the WPA-based estimator is better 
than the WCC in small samples (see Figure 5). For the majority of 
outcomes, the relative efficiency of the two methods defined as )RMSE(

)RMSE(
WCC
WPA  

_________________________ 
16 These wavelet filters were chosen because of their popularity and also to guarantee maximal 
similarity in the implementation of the WCC and WPA methods: la12 and k4l2 are of the same 
length (L = 12) and have similar squared gain functions. However, basically the same results were 
obtained for, e.g., la8 + k3l3, la12 + k4l4 and real part of k4l2 + k4l2. Selesnick’s HWP(K, L) filters 
outperformed the two Q-shift filters that were also considered, i.e. kin and tkp12.  
17 All computations, including the empirical part, were executed in Matlab. Numerical codes are 
available by e-mailing the author. 
18 We also comment shortly on other experiments we performed. More detailed results are available 
upon request. 
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increases with the scale, the sample size and partially also with the SNR. 
In large samples (see Figure 6), the WCC dominates the WPA-based 
estimator or their performance is similar. In small samples, the relative 
efficiency of these methods depends largely on the search range for the 
WCC, although for similar ranges of delays for both methods the WPA-
based estimator gives better results. 

• In larger samples, the root mean square errors for both estimators increase with 
the scale. It is generally advisable to assume smoothing windows with a length 
proportional to the scale (comp. Cohen and Walden 2010). In addition, we can 
see that even in large samples in the case of high decomposition levels and low 
SNRs both estimates can be very imprecise. 
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Figure 4. Small sample bias of time delay estimators; lines with and without markers 
correspond to the WPA and the WCC methods, respectively; samples consist of 15, 30, 45, 
…, 255 wavelet coefficients unaffected by the boundary. 
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Figure 5. Root mean square errors of time delay estimators in small samples; lines with 
and without markers correspond to the WPA and the WCC methods, respectively; samples 
consist of 15, 30, 45, …, 255 wavelet coefficients unaffected by the boundary. 
 
 
• For low SNR, both estimators show small sample bias, although with opposite 

signs: the WPA-based estimator – towards 0, while the cross-correlator – in the 
opposite direction (see Figure 4). This suggests that when an estimate of the 
time delay parameter is needed, the usual biased estimator of the cross-
covariance might be preferred in small samples. Our other experiments also 
demonstrate that the small sample bias of the WCC largely depends on 
whether the search range for the WCC is symmetric around the true value of 
the delay. 
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Figure 6. Standard errors of time delay estimators in large samples; lines with and without 
markers correspond to the WPA and the WCC methods, respectively; samples consist of 
300, 400, …, 2500 wavelet coefficients unaffected by the boundary.  
 

• In a different set of simulation experiments, in which the WPA-based 
estimator (66) is replaced with its integer-valued counterpart: 
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the outcomes in small and moderate samples are even more in favour of the 
WPA-based estimator as (66*) removes the bias caused by the centre 
frequency imprecision. 
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• Other experiments not presented here indicate that if the bivariate data 
generating process is jointly stationary, including observations affected by the 
periodic extension at the end of the sample can give better small sample results 
with both methods at higher scales, where the number of affected coefficients 
is large. This, however, does not take place for non-stationary processes with a 
stationary delay, which exhibit a slowly varying local mean. In such a case, a 
periodic extension with level adjustment should provide better results. 

• All the above observations are unchanged across different wavelets, although 
the outcomes obtained with the WPA-based method depend on the analytic 
properties of the HWP filters. Good analytic wavelets, however, produce 
almost identical results (for example, k4l2, k3l3). Different values of β and γ 
(including the non-stationary case) do not change the conclusions either. 

The main finding of this section is that in business cycle studies, which are 
typically based on relatively short time series, the WPA-based methodology seems 
to be particularly attractive and can be used at least as a supplementary method. It 
is worth stressing that, in addition to its good localisation properties, the WPA-
based estimator is also simple and efficient computationally. For these reasons, we 
believe it can be recommended for empirical analysis on business cycle 
synchronisation. 

3 Empirical Examination 

In the empirical study we use quarterly GDP volume estimates from the OECD 
Quarterly National Accounts (measure: VOBARSA) covering the period from the 
first quarter of 1960 till the second quarter of 2010 (202 observations) for the 
following 11 countries: Austria, Belgium, Finland, France, Germany, Greece, 
Ireland, Italy, the Netherlands, Portugal and Spain. In addition, the OECD GDP 
volume for the euro area (16 countries) is used, which covers the shorter period 
from 1995 till the end of the sample (62 observations). The examination is divided 
into two parts. In the first part, the local wavelet variance analysis is performed, 
while the second deals with the local and global wavelet analysis of 
synchronisation. 
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3.1 Business Cycle Variability 

Our examination of business cycle variability was performed with the help of the 
d4 Daubechies wavelet filter of length 4, which guarantees very good localisation 
properties. The results are presented in Figures 7 and 8.  
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Figure 7. Running wavelet variance for scales 2, 4, 8 and 16 corresponding to oscillations 
with period lengths 4–8 (1–2 years), 8–16 (2–4 years), 16–32 (4–8 years) and 32–64 (8–16 
years); results obtained with d4 Daubechies filter of length 4 and windows of 30 wavelet 
coefficients unaffected by circularity after aligning them to the observations in the sample; 
step = 1. 
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Figure 8. Running wavelet variance for scales 2, 4, 8 and 16 corresponding to oscillations 
with period lengths 4–8 (1–2 years), 8–16 (2–4 years), 16–32 (4–8 years) and 32–64 (8–16 
years), except for the euro zone data, where scales 2 and 4 are only considered; results 
obtained with d4 Daubechies filter of length 4 and windows of 30 wavelet coefficients 
unaffected by circularity after aligning them to the observations in the sample; step = 1. 
 

Firstly, we notice very similar patters of volatility changes across countries in 
our sample, except for Finland (scales 4 and 8) and Ireland (all scales). 
Furthermore, the contributions of different scales to the total variance as well as 
the estimates of the wavelet variance alone vary little across the economies. For 
some countries, we observe a systematic decline in the variance at all 
decomposition levels, which started at the beginning of our sample, as is the case 
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for Germany (except for the more volatile period around the reunification as well 
as for the highest scale) and Spain. It is seen that the oil price shocks of 1973 and 
1979 were captured almost entirely by the shortest components of business cycle 
fluctuations. Thanks to this, the scale 8 wavelet variance provides a clearer view of 
the Great Moderation, revealing that the process might have started well before the 
mid-1980s (comp. Aguiar-Conraria and Soares 2010 for similar evidence for the 
United States obtained with the continuous wavelet methodology). Moreover, the 
most recent perturbations (the financial crisis of 2007–2009) are becoming 
apparent at the lowest decomposition level as can be seen in the case of the euro 
area GDP. 

3.2 Business Cycle Synchronisation 

Business cycle synchronisation in the euro area was examined with the help of 
local wavelet correlations, global and local wavelet coherences and global and 
local wavelet time delays. Figure 9 presents the running wavelet correlations for 
scales 4, 8 and 16 computed after the MODWT based on d4 wavelet had been 
applied to the observations. We decided to treat Germany as the reference country 
because of the high correlation between its scale 4 wavelet coefficients and those 
for the euro zone compared with the appropriate correlation for France and the 
euro zone (see Figure 9). The most interesting finding is that for the majority of 
countries in the sample we observe a systematic increase in the strength of the 
instantaneous relationships between the business cycles of the examined countries 
starting from the second half of the 1980s, especially for scales 4 and 8 
corresponding to oscillations with period lengths below 4 and 8 years, 
respectively. The change in the patterns of the dynamic correlations agrees with 
the introduction of the Single European Act, which was signed in 1986 and came 
into effect in 1987. It may also be observed that for the highest scale considered 
(cycles of 8 years and above) there often is the opposite tendency, i.e. a cyclical 
divergence. For Greece, this seems to take place also at scale 8. 

www.economics-ejournal.org  36 



 

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Austria

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Austria

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Austria

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Belgium

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Belgium

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Belgium

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Finland

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Finland

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Finland

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-France

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-France

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-France

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Greece

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Greece

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Greece

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Ireland

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Ireland

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Ireland

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Italy

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Italy

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Italy

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Netherlands

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Netherlands

1985
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Netherlands

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Portugal

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Portugal

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Portugal

197219851997
-1

-0.5

0

0.5

1

S
ca

le
 4

Germany-Spain

1972 1985 1997
-1

-0.5

0

0.5

1

S
ca

le
 8

Germany-Spain

1977 1985 1993
-1

-0.5

0

0.5

1

S
ca

le
 1

6

Germany-Spain

1999 2004
-1

-0.5

0

0.5

1
S

ca
le

 4

Germany-Eurozone

1999 2004
-1

-0.5

0

0.5

1

S
ca

le
 4

France-Eurozone

 
Figure 9. Running wavelet correlation for scales 4, 8 and 16 corresponding to oscillations 
with period lengths 8–16 (2–4 years), 16–32 (4–8 years) and 32–64 (8–16 years), except 
for the euro zone data, where scale 4 is only considered; results obtained with d4 
Daubechies wavelet filter of length 4 and windows of 40 wavelet coefficients unaffected 
by circularity after aligning them to the observations in the sample; step = 1. 
 

Figures 10 and 11 present the results of the complex discrete wavelet analysis 
performed with the modified method described in section 2.4, based on the k4l2 
wavelet filter for levels 2–4 and the la12 Daubechies filter together with its one-
sample shifted variant in the first stage of the analysis. The global examination 
shows moderate to high dependencies at all leads and lags between Germany and  
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Figure 10. Wavelet coherence and wavelet time delay for scales 2, 4 and 8 (decomposition 
levels 2, 3 and 4) corresponding to oscillations with period lengths 4–8 (1–2 years), 8–16 
(2–4 years) and 16–32 (4–8 years) together with large sample 90% CIs; the first stage 
filters are la12 and its one-sample shifted version and the complex filter for the higher 
levels is k4l2; only wavelet coefficients unaffected by circularity are considered; the 
Bartlett kernel is used in variance estimation with the truncation parameter M = 10. 
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Figure 11. Running wavelet coherence and wavelet time delay for scales 4 and 8 
corresponding to oscillations with period lengths 8–16 (2–4 years) and 16–32 (4–8 years); 
the first stage filters are la12 and its one-sample shifted version and the complex filter for 
the higher levels is k4l2; data windows consist of 30 non-boundary wavelet coefficients for 
scale 4, and 40 – for scale 8, circularly shifted to align them to the real data; step = 1. 

 
the majority of countries in the sample at the third decomposition level (for shorter 
cycles). For Austria and the Netherlands, high correlations are also present at the 
fourth level. These two countries’ cycles show the strongest relationship with the 
German business cycle. Positive delays mean that the German cycle is behind the 
other countries’ cycles, as is the case for the long French cycle and the short Irish 
cycle. Instantaneous dependencies with the German business cycle take place for 
countries such as Belgium, the Netherlands, Greece and Italy as well as for the 
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lower decomposition levels for almost all countries in the sample. The local 
analysis in Figure 11, performed  in windows of a scale-dependent size, reveals 
that the shorter cycles are becoming more synchronised from the middle of our 
sample, while in the case of the longer cycles the lead-lag relations are quite stable 
over time (partially because only a couple of coefficient windows were available), 
although the wavelet coherences are rising.  

The overall conclusion from the real and complex wavelet analysis is that the 
synchronisation between euro zone business cycles started to rise after the first 
important steps toward European integration were taken. This is in line with the 
endogeneity hypothesis of the optimum currency area criteria as stated by Frankel 
and Rose (1998). Finally, Figure 12 presents a comparison of local wavelet time 
delay estimates obtained using the WCC and WPA methods. It turns out that these 
methods produce largely similar results. 

4 Conclusions 

The non-decimated real and complex discrete wavelet transforms provide a 
summary of the evolutionary spectral and cross-spectral properties of processes 
under scrutiny with high computational efficiency, good localisation properties 
and without an excessive redundancy of information that occurs when using the 
continuous wavelet methodology. These features together with a fresh look at an 
old problem seem to be the main reasons why the approach might be worth 
considering in business cycle examination.  

The paper discussed some of the questions arising in the discrete wavelet 
analysis of popular bivariate spectral quantities such as the amplitude, coherence 
and phase spectra and the frequency-dependent time delay. In particular, we 
showed how the wavelet bivariate spectra can serve to approximate the 
corresponding Fourier quantities and discussed certain implementation issues. Our 
simulation study of the properties of two wavelet estimators of the time delay 
parameter pointed out the practical relevance of the wavelet phase angle-based 
estimator suggested here, which can be used at least as a supplementary method of 
examining short- and medium-term lead-lag relations for octave frequency bands.  
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Figure 12. Running wavelet estimates of time delay for scales 4 and 8 corresponding to 
oscillations with period lengths 8–16 (2–4 years) and 16–32 (4–8 years); the solid blue line 
is the result obtained with the WPA-based estimator and the dashed red line – with the 
WCC; in the WPA-based method the first stage filters are la12 and its one-sample shifted 
version and the higher level filter is k4l2; the WCC is based on la12; the search ranges for 
the WCC are [–6, 6] and [–12, 12] for scales 4 and 8, respectively; data windows consist of 
30 wavelet coefficients unaffected by circularity for scale 4, and 40 – for scale 8, the 
coefficients were circularly shifted to align them to the real data; step = 1; the numbers on 
the horizontal axis are the mid-points of the subsamples. 
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The complex discrete wavelet methodology was illustrated with an 
examination of business cycle synchronisation in the euro zone. The study was 
also supplemented with a wavelet analysis of the variance and covariance of 
European business cycles. The empirical examination gives some new arguments 
in favour of the endogeneity hypothesis of the optimum currency area criteria as 
well as the early start of the Great Moderation in Europe. 
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