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Massimo Guidolin
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Abstract

We examine whether simple VARs can produce empirical portfolio rules similar to those obtained

under a range of multivariate Markov switching models, by studying the effects of expanding both

the order of the VAR and the number/selection of predictor variables included. In a typical stock-bond

strategic asset allocation problem on US data, we compute the out-of-sample certainty equivalent returns

for a wide range of VARs and compare these measures of performance with those typical of non-linear

models that account for bull-bear dynamics and characterize the differences in the implied hedging

demands for a long-horizon investor with constant relative risk aversion preferences. In a horse race in

which models are not considered in their individuality but instead as an overall class, we find that a

power utility investor with a constant coefficient of relative risk aversion of 5 and a 5-year horizon, would

be ready to pay as much as 8.1% in real terms to be allowed to select models from the MS class, while

analogous calculation for the whole class of expanding window VAR leads to a disappointing 0.3% per

annum. We conclude that most (if not all) VARs cannot produce portfolio rules, hedging demands, or

out-of-sample performances that approximate those obtained from equally simple non-linear frameworks.

Key words: Predictability, Strategic Asset Allocation, Markov Switching, Vector Autoregressive

Models, Out-of-Sample Performance.

JEL codes: G11, C53.

1. Introduction

Since the seminal contributions by Brennan et al. (1997) and Kandel and Stambaugh (1996), the empirical

finance literature on normative long-run dynamic asset allocation under predictable returns (i.e. how much

should a risk-averse investor weight each available asset) has exclusively devoted its attention to the port-

folio implications of linear predictability models. In a linear predictability model, asset returns are simply

∗We would like to thank Jerry Coakley, “Paul” Moon Sub Choi (a discussant), Paolo Colla, Carlo Favero, René Garcia,

Abraham Lioui, Patrick Minford, Francesco Saita, Andrea Sironi, Nick Taylor, and participants at the INFINITI Conference

on International Finance, Dublin 2010, the 3rd International Conference on Computational and Financial Econometrics,

Limmasol 2009 and seminar participants at Bocconi University Milan (Finance dept.), Cardiff Business School, EDHEC Nice,

and Essex School of Business.
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forecast by past values of a selected number of predictor variables (such as the dividend yield, the term

spread, and the default spread, besides lagged values of the returns themselves) within a vector autoregres-

sive (VAR) framework. The linearity consists of the fact that usually a movement today in one or more of

the predictors, commands a proportional response in the expected (predicted) value of future asset returns.

However, another strand of the empirical finance literature has in the meantime stressed that returns on

most asset classes do contain predictability patterns that are not simply linear, as they involve non-linear

patterns (such as regimes, thresholds, self-exciting mean reversions, conditional heteroskedasticity, etc.)

that often make not only expected asset returns but also higher-order moments predictable.1

Although linear models are key benchmarks in empirical finance and their simplicity makes them obvious

choices in many applications, their use in asset allocation applications has often relied on two often-implicit

premises. First, that although most normative papers have to be taken as indicative examples of how

practical portfolio choice ought to proceed, even when the scope of the investigation is extended beyond

the class of small-scale (i.e. with 3-4 predictors at most) VAR(1) models typical in this literature (see e.g.

Barberis, 2000, and Lynch, 2001), some more complicated VAR must surely exist that is of practical use in

terms of consistently improving realized portfolio performances. This means that some VARs can be found

that can efficiently summarize the overall balance of predictability in asset returns and that would make

the modeling of any residual non-linear effects of second-order importance, at least in terms of impact on

portfolio weights and performance. Second, that although more complicated, large-scale VAR() models

may yield complex portfolio strategies, surely simple, small-scale VAR(1) models must be illustrative

already of the first-order effects of linear predictability on dynamic portfolio selection, for instance in

terms of implied hedging demands. Our paper tackles both these conjectures at their roots and provides

a systematic examination of whether, when, and how small- and medium-scale VAR() models typical of

the empirical finance literature may deliver dynamic portfolio choices that: (i) are able to approximate the

portfolio choices typical of an investor that exploits both linear and non-linear predictability patterns in

the data, and (ii) that compete in terms of realized portfolio performance with more complicated models

able to capture also any non-linear predictability patterns.

As econometricians would expect on theoretical grounds, our relatively large set of small- and medium-

scale (up to 7 predictors are included) VAR() models (with  = 1, 2, 4, and 12) fails to imply portfolio

choices that approximate those from a rather simple (one may say, naive) non-linear benchmark, represented

by a plain vanilla 3-state Markov switching (MS) model.2 This is of course only an ex-ante perspective

1The literature on non-linearities in finance is rather voluminous and always growing. A few basic elements are discussed in

the books of Campbell et al. (1997) and in Granger and Terasvirta (1993). A much smaller set of papers has also investigated

the implications for optimal portfolio choice of non-linear dynamics in asset returns, such as Ang and Bekaert (2002, 2004),

Detemple et al. (2003), Guidolin and Timmermann (2008a). Additional references relevant to specific issues of implementation

are reported in the main body of the paper.
2This alludes to the well-known result (Wold decomposition theorem) that all covariance stationary vector time series may

be represented as VARMA processes with appropriate structure. Aside from that the empirical portfolio choice literature

seems to only reflect a role for VARs (as opposed to VARMAs), we note that the evidence against the null of covariance

stationarity in financial time series is massive and leaves little uncertainty on the usefulness of this result. In fact, no general
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on the problem: “different” does not imply “worse” in the view of an applied portfolio manager and what

could be wrong is not the family of VARs, but the proposed non-linear benchmark. More importantly,

VARs systematically fail to perform better than non-linear models in recursive (pseudo) out-of-sample

tests, in the sense that VARs generally produce lower realized certainty equivalent returns (i.e. risk-adjusted

performances that take into account of the curvature of the utility function under which the portfolio choice

program has been solved) than multi-state models. This means that VARs cannot provide approximation

results either ex-ante or ex-post.

The easiest way to summarize in quantitative terms the many results in this paper is with reference

to the “class-level” horse race we have performed in Section 5.2. Even if we consider an investor that is

actually contemplating resorting to a VAR modeling strategy to support her long-horizon SAA decisions, it

is very unlikely that this investor will actually decide to specify and estimation one particular VAR model

and to stick to it over time. An investor is likely to use statistical criteria to judge the likely performance of

competing VAR models at each point in time, with the possibility of occasionally switching among different

VARs. We have therefore endowed our VAR investor with the ability to recursively track over time the

value of two information criteria, the AIC and the BIC, to decide which VAR model should be used for

her asset allocation decisions. To favor comparability, we have applied an identical logic to the Markov

switching class. We find that a power utility investor with coefficient of relative risk aversion of 5 and

a 5-year horizon, would recursively select among MS models using a BIC minimization, over all possible

classes (sets) of VARs. In fact, while this investor would be ready to pay up to 8.1% in real, annualized

terms to access portfolio strategies in the MS set, the corresponding real CER is at most 0.3% for VARs.

These results are obtained with reference to a strategic asset allocation (SAA) application that appears

to have played a key role in the literature on empirical portfolio choice (see Brennan et al., 1997, Barberis,

2000, Guidolin and Timmermann, 2007): a standard risk-averse (power utility, with constant relative risk

aversion) investor wants to allocate at time  her wealth across three macro-asset classes, i.e., stocks (as

represented by a standard value-weighted index), long-term, default risk-free government bonds, and 1-

month Treasury bills. We use monthly US data for the long period 1953-2008 which also includes the recent

financial crisis. We focus on long-horizon portfolio choices (up to 5-year an horizon) of an investor that

recursively solve a portfolio problem in which utility derives from real consumption (i.e., cash flows obtained

from dividend and coupon payments and from disinvesting securities in the portfolio) and rebalancing is

admitted at the same frequency as the data (see Barberis, 2000, and Lynch, 2001). This means that even

when the problem solved is characterized by a 60-period ahead horizons (5 years), the investor decides at

time  knowing that at times +1 +2 ..., up to +59 she will be allowed to change the structure of her

portfolio weights to reflect the fact that at least in principle new information will arrive to her all these

future points, possibly requiring a need to re-shuffle portfolio weights. Such a portfolio problem seems to

be most appropriate one, not only for its past role in the development of the literature but also for the

VAR(MA)-type approximation result is known for strictly (as opposed to covariance-) stationary processes.
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specific features of our research design. First, a long-horizon is key when discussing the economic value of

predictability or — as in our case — of the relative economic value of different types of models in capturing

whatever predictability is expressed by the data under investigation. Second, our attention to a problem

with continuous/frequent rebalancing of portfolio weights and in which investors care for real consumption

streams and real portfolio returns is also consistent with the way predictability is exploited in practice, i.e.

with full awareness of the fact that its existence not only affects today’s choice but will keep affecting them

in all subsequent periods.

Finally, we stress that thrust of our exercise does not consist of investigating the different portfolio

implications and out-of-sample performance of linear vs. non-linear models, as this operation has already

appeared in the literature for specific linear and non-linear frameworks (see e.g. Detemple et al., 2003,

Guidolin and Timmermann, 2007). In essence, these papers try and measure the economic loss from model

misspecification in (density) forecasting applications by resorting to portfolio choice metric, as in Bauwens,

Omrane, and Rengifo (2010). On the contrary, our point in this paper is to oppose a large set of VARmodels

potentially spanning a large portion of the models that have appeared in the literature to one single, and

also relatively simple, non-linear framework which is selected to be of a Markov switching type as this class

model has proven relatively popular and intuitive in the recent finance literature (see e.g. Perez-Quiros and

Timmermann, 2000). The large family of VARs is obtained by investigating the forecasting performance,

the implied dynamic recursive portfolio choices, and the resulting recursive out-of-sample performance of

all VARs one can form using 7 predictors besides lagged values of asset returns themselves (in principle

this is a total of 3,628 different VARs, taking into account that all VARs also include lagged values of asset

returns and the one candidate VAR is obtained by including only such lagged values), and experimenting

with 4 alternative lag orders throughout,  = 1, 2, 4, and 12. The seven predictors used are typical in the

finance literature and include a few typical macro-finance variables, i.e., the dividend yield, the riskless

term spread, the default spread between Baa and Aaa corporate bonds, the CPI inflation rate, the nominal

riskless 3-month T-bill rate, the rate of growth of industrial production, and the unemployment rate. Our

question is whether it is easy to select a VAR that may approximate portfolio choices and performance that

would be given by a slightly more carefully chosen model, in this case with Markov switching features. As

we have stated already, it then turns out that under many realistic circumstances it is actually impossible

(hence it is really not that easy) to achieve this goal, in the sense that VARs do not appear fit to pick-up

non-linear predictability patterns. Although this may seem obvious ex-ante to some of our Readers, what

is not obvious is that in recursive out-of-sample tests such non-linearities seem to be then real and strong

enough to condemn most (sometimes all) VARs to disappointing long-run portfolio ex-post performances.

The rest of the paper is structured as follows. Section 2 describes the research design of our paper.

Although this is generally the case, an empirical exercise such as ours suffers from the fact that all results are

the product of the choices we have made in terms of model construction, portfolio choice, and performance

measurement. Therefore it is important to try and be as specific as possible on these details, if the goal is to
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persuade a Reader that our findings are relevant. Section 3 describes the data in our application and devotes

some space to both the 3-state Markov switching benchmark employed in this paper to summarize both

linear and non-linear predictability patterns and some common features of the adopted VARs. This section

also shows that VARs manifest some problems already at the stage of offering sufficiently accurate forecasts

of future returns, in particular stock returns. Section 4 computes and presents optimal portfolio weights and

hedging demands under the two classes of models entertained in this paper. Section 5 computes realized,

recursive out-of-sample portfolio performances. Section 6 performs an important robustness check and asks

whether our results may mostly derive by the fact that the non-linear framework specified in Section 3 is fit

to capture predictability in second moments, a task obviously impossible to any VAR. Section 7 concludes.

2. Methodology

This Section documents the models and performance indices used in the rest of our analysis, cutting

comments and references to the minimum. We also provide details on the portfolio selection problem and

required solution methods.3 Finally but crucially, we describe in detail our recursive (pseudo-) out of

sample research design.

2.1. Econometric Models

In this paper we perform recursive estimation, assessment of forecasting accuracy, and portfolio weight

calculation and assessment for three groups of models. First and foremost, we entertain a large class of

VAR() models. These VARs consists of a linear relationship linking r+1, a  × 1 vector of risky real
assets at time +1, and y+1, a  × 1 vector of predictor variables at time +1, to lags of both r+1 and
y+1. For instance, in the case of a VAR(1), we have"

r+1

y+1

#
= μ+A

"
r

y

#
+ ε+1 ε+1 ∼  (0Ω) (1)

where μ is a ( +)× 1 vector of intercepts, A is a ( +)× ( +) coefficient matrix, and ε+1 is a

( +)× 1 vector of IID, Gaussian residuals. The representation of a VAR(1) in equation (1) is without
loss of generality as any  order VAR can be re-written as a VAR(1) (see Hamilton, 1994). In this paper

we consider multiple values of ,  = 1, 2, 4, and 12. Note that — if one accepts to always include the

lagged values of real asset returns in (1) — for given value of  there are 2 different VARs we can obtain

according to which of the  predictors are included in [r0+1 y
0
+1]

0.

The second class of models consists of non-linear models of the -state Markov switching class with

constant transition probabilities (collected in a  ×  matrix P)

r+1 = μ+1
+ ε+1 ε+1 ∼  (0Ω+1) (2)

3References to the econometrics of dynamic portfolio selection can be found in Brandt (2004). The solution of dynamic

portfolio choice problems under linear and non-linear predictability is described in Guidolin and Timmermann (2007, 2008b),

as well as in Detemple et al. (2003) and Brandt (2004).
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where the latent Markov state +1 = 1 ...,  and μ is a  × 1 vector of state dependent intercepts.
One may also allow for the  × covariance matrix of residuals Ω to be state dependent, implying the

variance of the asset returns is also state-dependent, i.e.,   [r+1|+1] = Ω+1 . Under (2) asset returns

are predictable because their density (visibly, the first two moments, although this property extends beyond

means, variances, and covariances) are predictable.4 This obviously derives from the fact that in general–

unless particular configurations of the Markov transition matrix apply–Markov chains are predictable

processes. Since the state is a complicated non-linear function of all past data before time , such a

predictability pattern is best thought of as a non-linear one. There is another sense in which MS implies

non-linear predictability: because what is (at most) predictable is when and how the markets will switch

from one regime to others, these switches may be described as “jumps” in the joint density of the data

and as such jumps are best described as non-linear phenomena. In the following, we refer to (2) as MSIH

when Ω is state-dependent, and as MSI when Ω is constant over time.

The third class of models is obtained at the intersection between the first two classes–these are Markov

switching VAR() models with structure (e.g., in the simplest case of  = 1)"
r+1

y+1

#
= μ+1

+A+1

"
r

y

#
+ ε+1 ε+1 ∼  (0Ω+1) (3)

where once more the latent state +1 = 1 ...,  follows a first-order Markov chain. Clearly, (3) allows the

coexistence of both linear and non-linear predictability patterns, as well as of rich interaction effects among

the two (see Guidolin and Timmermann, 2007, for further details), the former driven by the classical vector

autoregressive structure, the latter by the predictability of the driving Markov state process. However,

the fact that the VAR matrices themselves may be a function of the state +1, potentially adds to the

complexity of the predictability patterns that may be captured. In the following, we refer to (3) as

MSVARH() when Ω is state-dependent, and as MSVAR() when Ω is constant over time.

Finally, we also consider a further benchmark class widely adopted in the empirical finance and fore-

casting literature, a simple Gaussian IID model:

r+1 = μ+ ε+1 ε+1 ∼  (0Ω) (4)

which is obviously the single-state restriction of (2). Under (4) asset returns are not predictable. In fact,

under appropriate definitions of continuously compounded asset returns (cum dividend), it is easy to show

that (4) derives from a simple random walk with drift process for log-asset values.

4The predictability of the regimes and hence of the joint  +-ahead density of the data implies that not only moments

but more generally densities are predictable under a MS model. See Perez-Quiros and Timmermann (2001) and Guidolin and

Ono (2006) for additional details.

6



2.2. The Portfolio Choice Problem

Consider the portfolio and consumption decision of a finite horizon investor with time-separable utility,

constant relative risk aversion (CRRA) who maximizes the expected utility of lifetime consumption

max
{ }−1:=1:=1

X
=1



"

1−


1− 
|Z
#

 ∈ (0 1)    1 (5)

where the discount factor  = 09975 is the subjective rate of time preference (corresponding to an annual-

ized real discount rate of less than 3%), the coefficient  measures relative risk aversion,  is the investor’s

consumption at time  and Z is the relevant vector of state variables at time .
5 The investor consumes a

proportion of wealth,  ≡ , allocating the remainder to an investment portfolio consisting of the 

real risky assets. The return on the portfolio, +1 is then given by
P

=1 +1 where the weights, ,

allocated to each risky asset must sum to unity, i.e.
P

=1  = 1. The intertemporal budget constraint

faced by the investor is

+1 = ( − ) (1 + +1) = (1− )+1 (6)

where +1 is the gross portfolio return, +1 ≡ 1 + +1. It is easy to show (see Ingersoll, 1987) that

the Bellman equation faced by the investor for a CRRA utility function that can be derived from (5) and

the budget constraint (6) is

 (Z )
1−


1− 
= max



(

1−
 

1−


1− 
+

 (1− )
1−  1−



1− 

h
 (Z+1 + 1)

1−
+1 |Z

i)
 (7)

where  (Z ) is a function that can be computed numerically. Given that this optimization problem is

homogeneous of degree (1− ) in wealth, the solution is invariant in wealth. Hence the Bellman equation

can be simplified to:

 (Z )

1− 
= max



(

1−


1− 
+

 (1− )
1−

1− 

h
 (Z+1 + 1)

1−
+1 |Z

i)
 (8)

Equation (8) can then be solved by backward iteration, starting with  =  − 1 and setting  (Z   ) = 1
and then computing  (Z  ) by solving the optimization problem in equation (8) using  (Z+1 + 1) from

the previous iteration. The backward, recursive structure of the solution reflects the fact that the investor

incorporates in the optimal weights computed at time  the fact that such weights will be revised in the

future at times  + 1  + 2 ...,  +  − 1 as new information becomes available through the vector of

state variables Z. A variety of solution methods are applied in the literature on portfolio allocation under

predictable returns. Following Guidolin and Timmermann (2007, 2008b) we employ Monte Carlo methods

for integral (expected utility) approximation. Appendix A provides additional details on the numerical

methods used in the solution of the portfolio problem.

5In the case of a VAR(), Z ≡ [r0 y0 r0−1 y0−1 ... r0−+1 y0−+1]0 so that the state vectors consists of a combination of
lagged value of asset returns and predictor variables. In a MSI/MSIH framework Z consists instead of the vector of state

probabilities estimated at time . Finally, in a MSVAR/MSVARH model, Z consists of both the lagged values of asset returns

and predictors, and of the vector of state probabilities.
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2.3. Measuring Forecasting Performance in Recursive Out-of-Sample Experiments

Our (pseudo) out-of-sample (OOS) experiment has a recursive, expanding structure. This means that at

the first iteration we estimate all models (e.g., in the case of VARs these are 512 different linear frameworks)

using data for the period 1953:01-1973:01 and then proceed to compute: (i) forecasts at horizons  = 1 12,

and 60 months; (ii) portfolio weights at horizons  = 1 and 60 months, in the latter case with continuous

(i.e., monthly, at the same frequency as the data) rebalancing. The forecasts are produced for both point

returns and cumulative returns. For instance, the forecasts will refer to returns predicted for 1978:01, the

sum of returns for all months between 1973:02 and 1978:01, and the portfolio weights will be the optimal

ones for the period 1973:02-1978:01, when rebalancing can be performed at the end of every month. At

this point, the estimation sample is extended by one additional month, to the period 1953:01-1973:02,

producing again forecasts at horizons  = 1 12, and 60 months and portfolio weights at horizons of 1 and

60 months. This process of recursive estimation, forecasting, and portfolio solution is repeated until we

reach the last possible sample, 1953:01-2008:12 (even though in this case the OOS predictive or portfolio

performance cannot be computed as our sample ends in 2008:12).6

We also implement a rolling forecasting scheme based on a 10-year window. The 10-year window is

selected to allow the estimation of somewhat large models, such as VAR(4) including all predictors (these

imply 465 parameters with 1,200 available observations). At the first iteration we estimate all models

using data for the period 1963:02-1973:01 and then proceed to compute forecasts and portfolio weights

at horizons at horizons  = 1 12, and 60 months. At this point, the estimation sample is updated by

adding one additional month at the end of the sample and dropping the first month at the beginning of

the sample, so that the resulting period becomes 1963:03-1973:02, producing again forecasts and portfolio

weights at the usual horizons. This process of recursive estimation, forecasting, and portfolio solution is

repeated until we reach the last possible sample, 1998:01-2008:12.

We define the time  forecast error at horizon  for the real return on asset  (stocks, bonds, 1-month

T-bills) as:



+ ≡ 


+ − ̂


+  (9)

where ̂

+ is the generated-step ahead forecast and 


+ is the realized return. In the case of cumulative

returns, we have instead that:



 ≡

Y
=1

(1 + 

+)−

Y
=1

(1 + ̂

+)

To evaluate the OOS forecast performance we employ four standard metrics (for simplicity we do not to

distinguish between 

+ and 


):

6We need to stress that this OOS experiment does not represent a genuine OOS design since a few (although rather marginal)

features of the experiment are designed exploiting end-of-sample hindsight, for instance concerning the most appropriate

number of regimes in the specification of the non-linear benchmark (see Section 3.1 for details). Whenever we talk about

out-of-sample results we have this important caveat in mind.
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1. Root Mean Squared Forecast Error (RMSFE). The RMSFE is computed as



 ≡

vuut 1

 −

−X
=1

(

+)

2 (10)

where  is the total sample size available for the recursive OOS prediction exercise.

2. Forecast Error Bias. The bias is simply the signed sample mean of all forecast errors:



 ≡

1

 −

X
=1



+ . (11)

A large, signed value of the bias indicates a systematic tendency of forecasts to either over- or under-

predict asset returns.

3. Forecast Error Variance (FEV). While the definition is straightforward,



 ≡

1

 −

−X
=1

(

+)

2 −
"

1

 −

X
=1



+

#2
=

1

 −

−X
=1

(

+)

2 − [ ]2 (12)

one useful fact is that 

+[


 ]
2 =


  i.e. large MSFEs (poor performance) may derive

from either high forecast error variance or from large average bias. We normally report forecast error

standard deviation, i.e., the square root of FEV.

4. Mean Absolute Forecast Error (MAFE). Similar to the RMSFE, the difference being that signs

are neutralized using absolute values rather than by squaring:



 ≡

1

 −

X
=1

¯̄̄


+

¯̄̄
. (13)

As it is well known, this statistic is more robust to the presence of outliers than the RMSFE.

2.4. Performance Measurement

To evaluate recursive OOS portfolio performance we focus on two key measures. First, we calculate the

certainty equivalent return (CER), defined as the sure real rate of return that an investor is willing to accept

rather than adopting a particular risky portfolio strategy. We (numerically) compute/solve for CER as:

X
=1



"
̂
1−
 (ω̂)

1− 

#
=

X
=1



"
̃
1−


1− 

#
 ̃ =

1− 1−

1− (1−)(−+1)
 (14)

where ̃ is the monthly consumption flow an investor receives under a constant investment opportunity

set simply composed of a riskless real asset that yields a monthly certainty equivalent of . Second, we

also compute the out-of-sample Sharpe Ratio for each portfolio strategy, defined as the mean OOS excess

portfolio return divided by the standard deviation.
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3. Data and Preliminary Evidence

We use monthly data on real asset returns and a standard set of predictive variables sampled over the

period 1953:01-2008:12. The data are obtained from CRSP and FRED
R°
at the Federal Reserve Bank

of St. Louis. The real asset return data are the CRSP value weighted equity return, the 10-year bond

return and the 30-day Treasury bill return, all deflated by the CPI inflation rate. The predictive variables

are the dividend yield on equities (computed as a moving average of the past 12-month dividends on the

CRSP value-weighted index divided by the lagged index), the short-term interest rate (3 month Treasury

bill yield), the CPI inflation rate, the term spread defined as the difference between long- (10 year) and

short-term (3 month) government bond yields, the default spread defined as the difference between the

yields on Baa and Aaa corporate bonds, the rate of industrial production growth, and the unemployment

rate. Our choice of predictor variables is governed by the existing literature on return predictability which

provides evidence of the forecasting ability of the dividend yield (e.g., Fama and French, 1988, 1989),

short-term interest rates (see Campbell, 1987, Detemple et al., 2003, Ang and Bekaert, 2007), inflation

(e.g., Fama and Schwert, 1977, Campbell and Vuolteenaho, 2004), the term and default spreads (Campbell,

1987, Fama and French, 1989), industrial production (e.g., Cutler et al., 1989, Balvers et al., 1990) and the

unemployment rate (see Boyd et al., 2005). Notice that 7 predictors and 4 alternative values of  imply

that 4× 27 = 512 alternative VAR models, as initially stated.
Descriptive statistics for asset returns and predictor variables are reported in Table 1. Mean real

stock returns are close to 0.59% per month with mean real long-term bond returns around 0.23% implying

annualized returns of 7.1% and 2.8% respectively. Estimates of volatility imply annualized values of around

15% for real stock returns and 7.7% for real bond returns, yielding unconditional Sharpe ratios of 0.11

and 0.06 respectively. In annualized terms (these are useful for comparisons to be performed later), these

correspond to Sharpe ratios of 0.39 and 0.21, respectively. Real asset returns are characterized by significant

skewness and kurtosis and are clearly non-Gaussian, as signalled by the rejections of the (univariate) null

of normality delivered by the Jarque-Bera test.

The rest of this Section is devoted to a number of related sets of estimation results that need brief

comment as a way of introducing the main results in Sections 4-6. In Section 3.1 we outline some evidence

on the nature and strength of the linear predictability patterns — as picked up by simple VARs typical of the

empirical finance literature — that characterize our data on US stock and bond real returns. The objective

here is not (and it could not be) to provide an exhaustive quantification of what linear predictability implies,

but to at least provide some evidence for how this predictability may appear in a VAR vs. MSI and MSVAR

models. This gives us the opportunity to collect signals of misspecifications in linear models and to discuss

(at least in an ex-ante perspective) what types of VARs are most likely to succeed in forecasting US

real asset returns. In fact, in Section 3.2 we use the estimates from a simple two-state MSVAR model

to document the presence of structural instability in VAR models. In Section 3.3 we briefly discuss the

properties and implications of our estimates of a simple three-state MSI model. In Section 3.4 we do the
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same with reference to models in MSVAR class. The number of details and depth of description is kept

to a minimum because the goal of our paper is not to analyze the portfolio choice implications of Markov

switching models (a task already undertaken by Ang and Bekaert, 2002, and Guidolin and Timmermann,

2007, 2008a) but instead whether standard VAR models can approximate the portfolio implications of

MSI and/or MSVAR. Section 3.5 presents a few results on the OOS forecasting performance of Markov

switching vs. the VARs models entertained in this paper.

3.1. Linear Predictability

Figure 1 plots the own- and cross-correlograms functions for real stock, bond, and T-bill returns (up to lag

24), where the cross-correlograms are computed with reference not only to lagged real asset returns but

also to lagged values of the 7 predictors used in this paper.7 The shaded regions show the interval of values

on the vertical axis for which the cross-correlation coefficients fail to be statistically significant (i.e., the

null of the coefficient being equal to zero cannot be rejected) at a size of 5% (i.e., absence of predictability).

Values of the cross-serial coefficients which are statistically significant are also highlighted by using larger

font. Clearly when the plots report values outside the shaded range, we are facing statistically significant

(positive or negative) cross-correlation coefficients which may be exploited for prediction purposes and that

should be picked up a carefully built VAR.8 Although each of the panels in Figure 1 contain a large amount

of information, some general lessons may be visualized already. First, there is very little predictability in

real stock returns. The number of markers that fall outside the (rather large) shaded region is modest, only

about a couple dozens out of 250. In particular, there is solid evidence that past values of the dividend

yield forecast future real stock returns and that occasionally lagged real bond returns and the term spread

may display some forecasting power. While these serial correlations are all positive, there is weak evidence

that high inflation in the past forecasts subsequent, lower real stock returns.

There is stronger evidence of linear predictability in real bond returns. Even though the shaded region

of no statistical significance is narrower in this case, there are indications that past values of the term

spread, the default spread, the short nominal rate, and 1-month real T-bill returns predict higher real

returns on long-term government bonds. In many cases, these linear patterns are very persistent over time,

i.e., it is long lags of the predictors that forecast real bond returns. Also, the first two lags of inflation

forecast lower subsequent real bond returns. Finally, Figure 1 makes it clear that — as one would expect

7A cross-correlogram function plots the value of the (sample) cross-correlation coefficient, ̂[ ] ≡ [ −](̂ ̂ )

between variables  and  , as a function of the lag parameter  = 0, 1, ..., 24. When  and  coincide we have a (own-) serial

correlation function; when  = 0 we obtain the simultaneous correlation coefficient between  and  (which is not relevant

for prediction purposes); for completeness of information, these coefficients (not reported elsewhere in this paper) are marked

on the vertical axis of Figure 1, using a bigger font when the coefficient is statistically significant. Clearly, ̂0[] = 1 by

construction and such trivial values are not plotted in Figure 1.
8However, it is obvious that the estimated (OLS) coefficients of a VAR will not simply correspond (or be proportional)

to these cross-serial correlation coefficients. The multivariate nature of a VAR estimation problem breaks down the simple

connection between cross-serial correlations and AR coefficients.
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in the light of the literature — real 1-month T-bill returns are massively predictable. In this case, almost

all predictors as well as lagged values of real bill returns themselves forecast real bill returns. In fact, it

is much quicker to comment on which predictors fail to work for real 1-month T-bills: only past values of

IP growth, the term spread, real bond and stock returns have weak predictive power. Naturally, a useful

VAR ought to be able to pick up these linear predictability patterns and exploit them for SAA purposes.

3.2. Instability in VARs

It has been widely documented in the empirical finance literature that most patterns of linear predictability

tends to be massively unstable over time: the predictors that forecast asset returns today are hardly the

same as those that will forecast the same asset return series at a later point; moreover, even assuming

the same predictor maintains some its forecasting power over time, it is common to find that the specific

strength and “sign” of this predictability are often subject to sudden reversals (see e.g., Guidolin and

Ono, 2006, and Paye and Timmermann, 2008). This pervasive instability also plagues the VAR models

examined in this paper. However, dealing with 512 different linear predictability models, it is unusually

hard to pin down the patterns and intensity of such instability. At an informal level, we have recursively

estimated and examined parameter estimates for a range of VARs that appear to have been commonly

employed in the literature, such as parsimonious VAR(1) models including each of the 7 predictors, one at

the time, or a VAR(1) model that includes all the predictors proposed in this paper. For instance, Figures

4-6 present recursive OLS coefficient estimates (on an asset-by-asset basis) obtained from a VAR(1) under

two alternative assumptions on the predictors: either all our 7 predictors appear or each of the 7 predictors

appear one-by-one, in isolation.9 In practice the plots span 8 different VARs among the 512 we recursively

estimate in this paper. Although these are only 8 VARs, they are useful benchmarks to adopt. We have also

plotted recursive coefficient estimates for either “intermediate” (i.e., with a number of predictors between 2

and 6, in different combinations) or “larger” VARs (i.e., including most or all predictors and characterized

by a higher number of lags) and found qualitatively similar results. In particular, each panel in Figure 4

plots two recursive coefficient series (the solid lines), each with its implied (parametric) 95% confidence

bands (the dotted lines): one series is obtained from the full VAR(1) model and the other from the single-

predictor VAR(1), when the predicted variable is real stock returns. When both sets of 95% confidence

intervals fail to include zero (which is an indication of strength of the predictable pattern in a statistical

sense), the corresponding period is shaded to stress this is an interval in which linear predictability was

present and this finding does not rely on the fine details of the VAR model estimated (hence the choice

to require that the intervals do not include zero for both types of VARs plotted). The visual impression

offered by Figure 4 on linear predictability of real stock returns is rather stark: there is little predictability

in real stock returns and such forecastability essentially ends around 1987 to never re-emerge again. While

lagged real bond returns and — to a lesser extent — the lagged term spread had predicted subsequent stock

9However, in both cases all lagged real asset returns series have been included as predictors.
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market dynamics in the 1970s and early 1980s, such patterns have disappeared during the 1990s and recent

years. The predictability from the lagged dividend yield to stock returns much debated in the empirical

finance literature has been hardly present for real stock returns, with an isolated episode between 1979 and

1981, even though the p-value of the dividend yield coefficient remains between 0.05 and 0.10 for most of

the 1980s and early 1990s (which is consistent with the evidence in papers such as Kandel and Stambaugh,

1996, and Barberis, 2000).

Figure 5 shows instead that–even though it comes with a very small sub-set of predictors–linear

forecastability of real bond returns is stronger than in Figure 4 and that it has being increasing over

time, appearing to peak after the early 1990s. Clearly, it is lagged real stock returns and the term spread

(a variable that is important to understand the dynamics of real bond returns within the expectations

hypothesis) that accurately predict subsequent real returns. There is also some weaker, episodic evidence

that lagged real T-bill returns (but again, only late in the sample) may forecast long-term real bond returns,

which makes sense within frameworks such as the expectations hypothesis. Figure 6 illustrates that, as one

would expect, real 1-month bill returns are massively predictable and that this holds throughout our sample

period, although the exact identity of the predictors undergoes a few changes. First of all, starting in 1981,

there is an increasingly strong autoregressive component in real bill returns, with an AR(1) coefficient that

goes from -0.1 in 1973 to 0.35 by the end of 2008. However, also the lagged nominal rate (in the 1970s)

and the lagged term spread (after the 1980s) forecast future real bill returns. Although only episodically,

also lagged real stock returns and dividend yields have some forecasting power for real bills. Obviously, the

evidence in Figures 4-6 is broadly consistent with the patterns already noted in Figure 1 when commenting

on cross-serial correlation coefficient patterns. However, it is hard to forget that such a compelling evidence

of time-variation in the sign, magnitude, and statistical significance of the estimated coefficients does point

towards the existence of pervasive misspecification problems with the family of VAR spanned by the 8

models presented in Figures 4-6. Finally, we notice that with very few (or no) exceptions, macroeconomic

predictors such as the default spread, industrial production growth, and unemployment rate are never

among the predictors for which the estimated coefficients are statistically significant.

In formal terms, we have exploited the convenience of MSVAR models to use a two-state homoskedastic

MSVAR(1) model to try and summarize such instability. We stress that in this Section, the goal is not

propose a Markov switching benchmark to be held firm throughout the rest of the paper. Section 3.3

proceeds to a rigorous model specification search to isolate the most sensible Markov switching models.

In this section the goal is to simply provide some intuitions for the nature and pervasiveness of the time-

variation that affects linear predictability as this may be captured by a simple VAR(1). We have estimated

using the EM algorithm the two-state MSVAR(1)"
r+1

y+1

#
= [+1μ1+(1−+1)μ2]+[+1A1+(1−+1)A2]

"
r

y

#
+ε+1 ε+1 ∼  (0Ω) (15)

where +1 = 1 2 and y+1 includes the 7 predictors. To save space and also to avoid confusing a Reader

with reference to the further MSVAR estimates that are reported in Section 3.4, we have not tabulated
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the estimates of the 277 parameters that such a seemingly innocuous MSVAR(1) implies.10 We limit

ourselves to report the most interesting parameter estimates when they are useful to shed light on instability

issues. The first interesting finding is that–even though (using appropriately corrected likelihood ratio-

type tests) there is statistical evidence of regimes in the data, for instance the Davies (1977) statistic is

170.2 with a p-value of 0–the underlying two-state Markov chain is hardly persistent, with estimated values

Pr{+1 = 1| = 1} = 046 and Pr{+1 = 2| = 2} = 051 and implied persistence of approximately

2 months for both regimes. This means that (15) does capture instability, but not persistent patterns

in the changes of linear, VAR-predictability. As we shall see in Sections 3.3-3.4, this may be a result of

a need to specify a higher number of regimes, as it is likely to be required in a multivariate modelling

exercises to rather different asset return series spanning both equity and bond markets (as in Guidolin

and Timmermann, 2006). Second, the implied instability in linear predictive relationships is massive. For

instance, the row of Â1 that captures any predictability in real stock returns in regime 1 is (absolute values

of robust t-stats are in parenthesis below the estimated coefficients; we have boldfaced coefficients that are

significant with a p-value of 0.10 or less)

−1 −1 −−1 Div. Yield Short Nom. Rate Term Default CPI Inflation IP growth Unempl.

0.252 0.051 2.808 0.008 -0.008 -0.004 0.005 1.557 -0.0001 0.005

(084) (039) (397) (274) (257) (113) (043) (046) (087) (182)

while the row of Â2 that captures any predictability in real stock returns in regime 2 is:

−1 −1 −−1 Div. Yield Short Nom. Rate Term Default CPI Inflation IP growth Unempl.

-0.090 0.180 9.941 0.001 -0.005 0.004 -0.007 9.379 0.000 -0.0004

(161) (136) (267) (040) (158) (130) (082) (256) (019) (015)

Clearly, there is “more” predictability in the first regime than in the second, at least in the sense that

3 predictors (the dividend yield, the short-term nominal rate, and the unemployment rate, plus lagged

values of the real short-term rate) forecast one-step ahead real stock returns in the first regime, against one

predictor only–and a different one, CPI inflation (besides lagged values of the real short-term rate)–in the

second regime. Moreover, a number of coefficients switch signs across different states, although we have no

case of switches of sign that preserve statistical significance. For instance, the dividend yield has a famous

history as being unreliable and weak among the commonly used predictors of stock returns. The results

from (15) stress one possible cause for such a reputation: approximately half of the time, the dividend yields

is characterized by an economically small and imprecisely estimated effect on subsequent stock returns.

Similarly, past inflation does forecast higher subsequent real stock returns, although this occurs only half

of the time, so that the overall, unconditional “loadings” of real stock returns on inflation will be small and

imprecisely estimated, as it has been documented by scores of papers. We have also plotted and examined

plots over our sample period of predicted, one-step ahead VAR coefficients connecting real asset returns to

10Even though estimation proved possible (with 277 parameters and 6,710 observations we have an acceptable saturatio

ratio of 24 observations per parameter), it proved very difficult in numerical terms, with considerable evidence of instability

due to the presence of local maxima in the log-likelihood function.
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predictors (and lagged values of real returns on other asset) and compare them to analogous plots in which

one conditions on knowledge of the future regime. The difference is striking: in general, the one-step ahead

predicted coefficients tend to be economically small and hardly relevant. However, if one were to condition

on perfect-foresight knowledge of the prevailing regime one-month ahead, we have that a few predictors

(especially in state 1) would make forecasting possible and somewhat more reliable.11

3.3. Regimes in US Real Asset Returns

Following common practice in the literature on optimal portfolio choice under Markov switching, as a first

step we have estimated and compared a range of homoskedastic Markov models as distinguished by the

number of regimes they require, , and by the number of lags of predictors and real asset returns they

employ, .12 Of course, when  ≥ 1 different models will also be determined by which predictors they end
up including. Table 2 reports summary statistics for a range of estimated models along the dimensions of

 = 12, 3, and 4 and  = 0 1, 2. In the case of  = 1–the standard VAR models–we report only a

few cases for  = 1 and 2 just to provide some ideas on the relative fit provided by single- vs. multi-state

models. All the VAR models with  = 2, 4, and 12 have information criteria that largely exceeds the tightly

parameterized models with  = 1 in the Table. The statistics in Table 2 are the maximized log-likelihood

function, an approximate nuisance parameter-adjusted likelihood ratio that tests the null of  = 1 against

  1 three alternative information criteria (i.e., the Bayes-Schwartz, Akaike, and Hannan-Quinn criteria)

that trade off in-sample fit for parsimony, where the latter is considered as an indicator of likely predictive

accuracy, and the (saturation) ratio between the total number of observations used in estimation and the

total number of parameters estimated. In the case of the information criteria, we have boldfaced the

three best (yielding the lowest criteria) models according to each of the three criteria. Homoskedasticity

is maintained throughout because we would like at this stage to maximize the degree of comparability

between portfolio performance obtained from Markov switching and VAR models, where the latter are

models of predictability in the conditional mean only.

11Results for real bond returns are

−1 −1 −−1 Div. Yield Short Nom. Rate Term Default CPI Inflation IP growth Unempl.

-0.055 0.015 -2.649 -0.003 0.001 0.002 -0.007 -3.423 -0.0001 0.001

(187) (021) (160) (188) (090) (130) (138) (206) (108) (068)

in the case of Â1 and

−1 −1 −−1 Div. Yield Short Nom. Rate Term Default CPI Inflation IP growth Unempl.

-0.092 0.111 -0.314 0.003 0.004 0.004 0.011 -1.821 0.000 -0.003

(336) (176) (016) (224) (235) (318) (272) (096) (047) (226)

as far as Â2 is concerned. Clearly, real bond returns are much more predictable, especially in regime 2, which is consistent

with Figure 1. Detailed estimates and results for 1-month real T-bill returns are available from the Authors upon request.
12Initially, all models estimated are homoskedastic. Section 6 discusses the estimation and portfolio implications of more

complex, heteroskedastic models. In this case, we elect to make second moments depend on the same Markov state as the

mean parameters as this seems common in the literature (e.g., Kim et al., 1998, Guidolin and Timmermann, 2006).
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A few obvious findings stand out without a need for a careful examination of Table 2. First, indepen-

dently of the specific Markov switching model considered, it is clear that for all values of  the null of  = 1

is always resoundingly rejected with p-values that are basically nil. The evidence in Section 3.2 makes this

finding not surprising: even rather poor Markov switching models–in the sense that their driving Markov

state fails to be persistent–do fit the data in-sample better than simple VAR models do. The column

devoted to Davies-style LR tests shows that low p-values are systematically achieved when testing the

number of regimes. Second, when both  ≥ 2 and  ≥ 1 it is very easy to build richly parameterized

models with hundreds of parameters. Although our data series are sufficiently long to allow to (try and)

estimate some of these large-scale models, it is clear that when the saturation ratios decline below 20, one

should not put much faith in the resulting estimates, while it is common to find that a stunning fraction

of the conditional mean parameters estimated fails to be statistically significant.

When it comes to model selection, Table 2 shows that–as one would expect–BIC selects very parsimo-

nious models, to the point that only one Markov switching model is among the best three models according

to BIC, while the other two models are parsimonious VAR models. The three-state model selected by BIC

is also rather parsimonious, a MSI model with 21 parameters only (against the 26 typical of the VARs

in the Table). On the other hand, the notoriously lax AIC tends to select heavily parameterized multi-

state models, ranging from the intermediate-size three-state MSVAR(1) that use principal components as

predictors (see Section 3.4 for additional details) to some larger three-state MSVAR(1) that includes all

predictors (in practice, a three-state version of (15) from Section 3.2). The H-Q criterion sits in between,

although for our data it tends to yield selections that are similar to AIC. However, H-Q agrees with BIC

in returning a simple three-state MSI as a framework that efficiently trades-off fit for parsimony. In fact,

under BIC such a model turns out to be the one that yields the lowest BIC, -17.15. As a comparison,

keeping fixed the simple MSI structure of the model, the BIC takes values of -16.91 for  = 1, of -17.01

for  = 2 and -17.06 for  = 4. The appropriateness of a three-state MSI model is confirmed by Davies

(1977)-corrected likelihood ratio tests that take into account nuisance parameter issues in standard LR

tests applied to MSH (see Garcia, 1988). We note that in multivariate applications involving US stock and

bond returns more than two regimes may be required for a correct modeling of their joint density appears

to be common in the literature, see e.g., Guidolin and Timmermann (2006) or Guidolin and Ono (2006).

Table 3, panel B, shows standard QMLE parameter estimates of the three-state model (see Hamilton,

1994, and Guidolin and Ono, 2006, for additional details on estimation and forecasting in a Markov

switching framework). Panel A reports single-state estimates as a benchmark. In this application, the

single state model is the Gaussian IID benchmark. Intuition for the properties of the model can be easily

gained by commenting the parameter estimates within each regime. The first regime is a bear state in

which expected real returns are negative (for 1-month nominal bills and long-term bonds) or zero (stocks,

in the sense that the bear state mean parameters fail to be statistically significant). The bear state is

moderately persistent with an average duration of approximately 4 months; when the US financial markets
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leave the bear state, this is usually to switch to the intermediate, normal regime. Notice that differently

from other papers in the Markov switching literature, the bear state is in no sense an extreme or “rare

events” regime, as it characterizes almost 14% of all long samples one could simulate from the estimated

MSI, which in our case is almost 8 years of data. The second regime is a normal state with positive,

statistically significant but also moderate mean real returns on all assets. This regime is highly persistent

with an average duration in excess of 16 months and characterizes more than 80% of any long sample. The

third regime is a bull state, in which all assets yield high real returns, even though the dominant asset

class in terms of mean real returns is long-term government bonds. Clearly, the data under investigation

lead to the specification of this third regime because they need the flexibility to specify heterogeneous

dynamics for bond and T-bill real returns during bull regimes vs. normal states. Further checks confirm

that the poor performance of simpler, two-state models fitted to our data largely derives from this need

to allow for differential dynamics in stock and bond/bill returns. This third regime is also persistent, with

an average duration of almost 5 months. Finally, we notice that the estimated transition matrix in Table

2 has a rather special structure, by which regimes 1 and 2 and to some extent 2 and 3 “communicate” on

a frequent basis, while regimes 1 and 3 do not, in the sense that from regime 1 it is difficult to switch to

regime 3 and vice versa. The fact that the third state has some persistence but in a sense isolated from

regime 1 explains why regime 3 has an ergodic probability of less than 6%.

Figure 2 completes our description of the MSI model by plotting the smoothed (full-sample, ex-post)

probabilities for each of the three regimes. The figure shows plots which are entirely consistent with the

interpretation provided above. The first (bear) state characterizes a non-negligible portion of the data

and picks up relatively long-lived episodes that consist of either well-known US recessions as dated by

the NBER or of periods of crisis in the US financial markets with declining interest rates and negative

realized stock and bond returns (e.g., 1974-1975, 1978-1980, 2001-2002, and more recently most of 2008).

The second (normal) state is exceptionally persistent and has in fact characterized long chunks of the

recent US financial history, such as most of the 1960s and the great moderation period 1990-1999. Finally,

the third (bull) state is characterized by three obvious episodes, which are the long period (1981-1986)

of declining inflation and short-term rates in the US after the inflationary bouts of the late 1970s, 2005-

2006, and (interestingly) the final months of 2008. These are periods of declining short-term rates and of

increasing long-term bond prices that lead — consistently with our characterization of the regime — to high

and statistically significant real bond returns.

Figure 3 plots the recursive estimates of the mean coefficients under MSI and helps visualize the key

result that the nature (e.g. the interpretation of the regimes) of the three-state model tends to be amazingly

stable over time, in spite of our recursive implementation. Although one of the dangers is for MSI to make

some sense over the full sample but to produce increasingly awkward results when estimated on much

shorter samples (e.g. 1953:01-1973:01, our first estimation sample), these dangers seem not materialize in

our application: MSI produces stable mean estimates and–with one minor exception concerning real stock
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returns for a few months in 1985 (when the mean real stock return was identical in regimes 2 and 3)–the

interpretation of the regimes has remained the same we have provided in this section. Of course, stability of

the coefficient estimates within a multi-state framework is a good indication of absence of misspecification

and bodes well for the forecasting properties and performance of the model in OOS tests.

3.4. Markov Switching VARs

Table 2 clearly shows that when MSVAR() models are specified using the original predictors, their statis-

tical performance is unsatisfactory. Based on the evidence in Section 3.2, we know that two-state models

will perform poorly because our data seem to actually need Markov switching models with 3 or more

states. However, any three- or four-state MSVAR that employs any significant number of the original

predictors normally ends up to be richly parameterized. In fact, we could not even estimate any three-

and four-state MSVAR() models with  ≥ 2 when two or more predictors were included because of insur-
mountable numerical difficulties. However, Table 2 presents also summary statistics for a further, special

class of MSVAR models that–differently from other MSVAR models that appear in the Table–use not

the predictors of some of sub-sets of them to form predictions of asset returns, but instead first distill our 7

predictors in a relatively small number of principal components and then augments the Markov switching

model to include  principal components"
r+1

pc
()
+1

#
= μ+1

+

X
=1

A+1

"
r+1−
pc

()
+1−

#
+ ε+1 ε+1 ∼  (0Ω) (16)

where pc
()
 is a  × 1 vector that collects  principal components extracted from the full set of 

predictors y, with  ≤  . The intuition for why (16) may represent a useful tool to predict real asset

returns is that it is possible that the reason for why either the large-scale VARs (characterized by large

) and especially any MSVAR() including many predictors fail to deliver appealing information criteria,

is that in any (MS)VAR for a vector of  + variables, any increase in either  or  determines an

enormous increase in the number of parameters that need to be estimated, see e.g., Ludvigson and Ng

(2007). By resorting to    principal components to replace the 7 predictors we are entertaining, we

aim at shrinking the number of parameters while at the same time minimizing the information loss.13

We have applied standard (based on correlation matrix decompositions) principal component (PC)

methods to y, obtaining that the first three components are able to summarize more than 73% of the

total variability of y. In particular, the first PC accounts for 34%, the second for 25%, and the third for

14%. To save space we do not report in detail the loadings of each of the first 3 PCs on each of 7 original

predictors.14 However, our task is made simple by the fact that PC1-PC3 have a rather straightforward

13There is a growing literature that has argued that in the presence of large sets of predictors, a few principal component

may deliver substantial OOS forecastability shielding from the perils of over-parameterizations, see, e.g., Heij, Groenen, and

van Dijk (2008), Stock and Watson (2002). Our innovation here consists in proposing and estimating a Markov switching

mapping between a small number of factors and the variables to be predicted, in the spirit of Bai and Ng (2008).
14Detailed results are available upon request from the Authors.
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structure. PC1 loads positively with approximately equal weights on four of the seven predictors, the

dividend yield, the nominal 1-month T-bill rate, the default spread, and the unemployment rate. PC2

loads positively and with high coefficients on the term spread and (to a lesser extent) the unemployment

rate, while it loads negatively on 1-month T-bills and the inflation rate. Finally PC3 can be basically

identified with the IP growth rate. Interestingly, all the seven predictors are reflected by at least one

PC, and in fact in only one case (the unemployment rate), a predictor is positively correlated with two

different PCs. The nominal short-term rate is also the only predictor that would cause a spread between

two different PCs (1 and 2), in the sense that a higher short-term rate will increase PC1 while reducing

PC2. The ability of  = 3   = 7 to summarize more than 73% of the total variability in y suggests

constructing three new PC variables to replace y implies that with less than half of the original number

of variables it is possible to capture almost three-quarters of the original information.15

The fourth panel of Table 2 confirms that our intuition is correct: the MSVAR() models that we

build using PC1-PC3 perform considerably better than all MSVAR models that include any sub-set of

the original predictors. In fact, two information criteria (AIC and H-Q) indicate that MSVAR(1) models

using PC1 and PC2 are quite competitive in terms of trade-off between fit and parsimony.16 In particular

a MSVAR(1) that uses PC1 as its only predictor is the model selected by H-Q over any other competing

model in spite of its relatively medium-scale size (76 parameters), which is a remarkable finding. We

therefore focus our attention on this MSVAR benchmark in the OOS forecasting and portfolio exercises

performed in this paper.

Table 4 reports QMLE estimates of (16) when  = 1 and PC1 is the selected summary of the original

predictors. Interestingly, the three regimes carry the same interpretations as the regimes in Table 3.

However, the regimes are now considerably more persistent. Regime 1 is a bear state in which real T-bill

and stock returns are negative (-0.07 and -1.43 percent per month), while real bond returns are essentially

zero.17 In this regime, PC1 predicts all asset returns with coefficients that are statistically significant.

Additional, past real stock returns predict their own future and also subsequent real bond and T-bill

returns.18 Linear predictability is rather pervasive and the associated VAR coefficients are estimated with

precision. This regime has an average duration of almost 21 months and it characterizes approximately

22% of any long sample. Regime 2 is a normal state that characterizes almost 59% of the sample because

of its extreme persistence. In this regime, unconditional mean real returns are positive for all the assets,

15In fact, the simplification is even greater: for instance, a VAR(1) matrix for  = 3-dimensional system contains 9

coefficients vs. 49 in the case of a  = 7-dimensional system.
16In this case we were also able to estimate a few MSVAR(2) models, especially when only PC1 and PC3 were used as

predictors. However, all these models are relatively large and severely penalized by the BIC and H-Q information criteria.

The three models appearing in Table 2 are the most promising ones in an ex-ante perspective. We have also compared these

models with MSVAR() models that employ only one predictor at the time, finding that these are dominated by the PC-based

MSVARs. This is to be expected because PCs are able to collect much more information that individual predictors.
17These estimates of unconditional mean returns are computed as within-regime numbers, ̂[r| = ] = (I− Â)

−1̂.
18In Table 4, the regime-dependent VAR(1) matrix have to be read horizontally. For instance, in state 1 the estimate of

-0.0009 illustrates the effect of a change of PC1 at time  on the + 1 value of real T-bill returns.
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although they are modest in the case of bonds (0.09% per month, against 0.12 and 1.08% for T-bills and

stocks, respectively). Because of its high persistence, when markets enter in regime 2, they stay there for

almost 41 months on average. In this state, there is less VAR-type predictability, even though PC1 keeps

forecasting both real T-bill and stock returns. Finally, regime 3 is a bull state characterized by positive

and high unconditional, within-regime mean returns (0.08 and 1.44% per month in the case of T-bills and

stocks, respectively), although the bull characterization is particularly strong in the case of bonds (0.89%

per month). Also this regime is persistent, with an average duration of 22 months, so to characterize almost

20% of any long sample. Interestingly, in this regime there is hardly any linear predictability left, with the

minor exception of real 1-month T-bill returns being forecastable using past real returns on other assets.

Figure 7 shows the smoothed probabilities computed from the estimates in Table 4. Clearly, the

considerable regime persistence uncovered from the MSVAR(1)-PC1 model yields a low number of state

switches as identified by the smoothed probability series. The bear regime characterizes a number of

periods of financial crisis (such as late 1987, or the Summer of 1998) and economic recession (such as

1961, 1973-1974, 2001-2008). The only surprising finding is that most of the recent 2001-2008 period

would be characterized as a bear period. However, that was also the case of Figure 2, where the smoothed

probabilities for 2002-2008 strikingly resemble those from 1973-1980. US financial markets have historically

been most of the time in the normal state, with some long spells that have stretched for almost a decade

without interruptions (the last long spell was the 1989-1998 great moderation period). Finally, the Figure

shows two bull periods, 1969-1972 and 1979-1986. The final months of 2008 would have been characterized

by a strong bull rebound to the long crisis of 2001-2008. Interestingly, Figure 7 appears to be a less jagged,

smoother version of Figure 2 that conveys the same basic regime classification. In fact the correlations

between smoothed probabilities series of the MSI model in Section 3.2 and the MSVAR(1)-PC model in

this section are all positive and statistically significant (ranging from 0.42 to 0.50).

3.5. Some Evidence on Forecasting Accuracy

Before proceeding to the recursive computation of optimal SAA weights and of the resulting portfolio

performance, it is prudent to examine the forecasting performance of the models using traditional criteria

(such as recursive RMSFE). The rationale for this brief diversion is two-fold. First, this is an important pre-

liminary check because it would be wasteful to engage in extensive portfolio calculations opposing a family

of VARs to a MSI/MSVAR reference model whenever the latter represents a poor econometric framework

unable to produce accurate forecasts. Although, the issue of the performance of Markov switching models

in forecasting applications is a much debated one with conclusions that seem to depend on the specific

applications (see Guidolin et al., 2009 for a number of examples), one cannot rule out a priori that in

spite of its excellent in-sample fit to our SAA data, MSI and MSVAR may fail to be serious competitors in

applications that rely on its predictive performance. Second, because we shall adopt a criterion — such as

portfolio choice with continuous rebalancing under power utility — that hardly relies only (or even mostly)
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on point forecasts, a possibility exists that even though MSI and/or MSVAR under-perform the VARs as

a forecasting device for the mean, they may represent a useful engine for portfolio choice because it may

forecast either higher-order moments (e.g., skewness and kurtosis, besides the mean, as in Guidolin and

Timmermann, 2008a) or the entire joint density of real asset returns, which is the object of interest of the

portfolio problem introduced in Section 2.3.

Although in practice we have computed recursive forecasts and assessed overall predictive performances

for horizons of 1-, 12-, and 60-months and (in the case of 12- and 60-month horizons) we have extended

these calculations to the case in which the object of the forecast is not the real return 

+ but the

cumulative real return, 

 ≡

Q
=1(1 + 


+) − 1, Tables 5 and 6 only report forecasting performances

for the case of  = 12 months.19 Results for the  = 60 horizon were qualitatively similar.20 In the tables,

we have listed and reported the forecasting performance for the best 10 forecasting models (among all the

VARs we have experimented with, the no-predictability Gaussian IID benchmark that forecasts using a

simple recursive sample mean, and of course MSI and MSVAR(1)-PC1) in an overall sense, i.e., scoring

all models for their performance in predicting stocks, bond, and T-bill returns.21 We also report a few

additional benchmarks, such as the best performing rolling window VAR, the best performing large-scale

VAR (defined as  ≥ 4, both rolling and expanding), and of course MSI and MSVAR(1)-PC1. Table 5
shows that at least in our SAA application, MSI represents a serious option to any investor interested in

12-month ahead forecasting performance: MSI has the second lowest RMSFE among all models as far as

stock and bond returns are concerned, and the best RMSFE in the case of T-bills. The finding for MAFE

is similar, apart from the fact that MSI yields now the lowest MAFE for both bonds and T-bills. In the

case of stocks and bonds, the lowest RMSFE is instead guaranteed by the MSVAR(1)-PC1 model. In fact,

the RMSFE improvement of MSVAR(1)-PC1 over MSI appears massive in the case of stocks, in the order

of 40%. However, MSVAR(1)-PC1 performs poorly when it comes to forecast 1-month real T-bill returns,

and this responsible for the overall mediocre ranking of the model. MSI provides substantial improvements

in RMSFE when compared to linear models, in the sense that its RMSFE is between 14% and 16% lower

than the best performing VAR for all asset classes. These improvements come from the uniform ability

of MSVAR(1)-PC1 and MSI to reduce the sample standard deviation of forecast errors, while slightly

19The choice of a particular forecast horizon is difficult. On the one hand, most of the forecasting literature naturally

focusses on the  = 1 case, which is however irrelevant for long-horizon portfolio optimizers. On the other hand, even if our

goal is to assess portfolio performance at  = 60, such a long horizon appears odd in the forecasting literature and implies a

severe loss of data. The choice of  = 12 in Tables 5-6 is a trade-off between these two considerations.
20These are available upon request from the Authors. The results for  = 1 month are different, in the sense that MSI fails

to be among the best forecasting models. This is interesting because it confirms that when the predictive exercise is performed

in ways that differ from Guidolin et al. (2009) (they focus on simple MSI and MSIH predictive univariate regressions), then

some results typical of the earlier literature may be still be found. However, for  = 12 months, our exercise confirms Guidolin

et al.’s findings on US data.
21We provide for each model three scores, one per asset, which equals the rankings of the model across all assets (e.g., 1 to

the best model, 2 to the second best, etc.). For instance, the best VAR in Table 5 receives scores/ranks of 36, 9, and 39 on

forecasting real T-bill, bond, and stock returns, which indicates that it is not particularly accurate for any of the assets, but

very robust throughout. The overall rank is based on the sum of these scores, with the best models receiving the lowest total

score (3 is the minimum and 990 is the maximum).
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better models can usually be found in terms of minimization of the overall (absolute) bias. The last row

of Table 5 stresses that a few differences exist between in-sample results on which predictor coefficients

are often statistically significant, and what actually pays out in reducing RMSFE in OOS experiments:

the term spread and the rate of growth IP and the unemployment rate are the predictors that enter the

best performing VARs. Below the tenth position in the ranking, it is clear that rolling window VARs and

large-scale VARs all have a hard time providing accurate forecasts.

Results in Table 6 on prediction of cumulative returns are still largely favorable to MSI (which is still

ranked as the best predicting model), but are more articulate. As far as cumulative real stock returns

are concerned, MSVAR(1)-PC1 remains the best model in terms of both RMSFE and MAFE; the good

performance is the result of a low sample standard deviation of forecast errors. MSI is the second best model

and it still represents a discrete improvement over the best VAR models. However, the best “cumulative”

predictors for real bond and 1-month T-bill returns are VAR models that actually cannot predict real stock

returns and that as such are heavily penalized by our overall ranking system, ending up with an overall rank

of 59 and 226, respectively. Furthermore, while MSI and MSVAR(1)-PC1 are much worse than the best

predicting VAR for real bond returns (their RMSFE are only 4-5% higher than the best VARs), MSI and

especially MSVAR(1)-PC1 have big problems at predicting real 1-month T-bill returns (e.g., the RMSFE

of MSI is a full 30% higher than the RMSFE of the best performing VAR). The variables that work in

making VARs good predictors are the same as in Table 5, although in the case of cumulative returns the

unemployment rate seems to be less important and some role is now played by the dividend yield. All in all,

the evidence in Table 6 is also indicative that it remains possible for a relatively large set of VAR models to

encounter difficulties at producing similar forecasts to (hence, portfolio weights) and better realized SAA

performance than Markov switching models, which justifies the rest of our investigation.

4. Optimal Strategic Asset Allocation and Hedging Demands

4.1. Recursive Portfolio Weights

Figure 8 plots and compares recursive optimal portfolio weights (for  = 1 month and 5 years) for two

models, MSI and a VAR(1) in which all predictors are included to maximize its overall forecasting power.

The left hand plots also report optimal weights under the Gaussian IID (no predictability) benchmark.

The recursive exercise is performed on an expanding window over the period 1973:01 - 2008:12, as planned,

therefore also including the deep financial crisis of 2008. These weights are computed under the assumption

of  = 5. Clearly, while VAR(1) implies rich and persistent dynamics in optimal portfolio weights for both

short- and long-run horizons, the variability of asset allocations is likewise strong and interesting under

MSI, as one would expect given the fact that this models actively draws inference from the nature of

the current regime and forecasts -step ahead market states. In fact, in the case of MSI, asset demands

often “jump”, reflecting possible switches in the perception of the current regime and–as a result–in the
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forecasts of future market states. In particular, both linear and non-linear predictability patterns induce

strong time variation in optimal weights for a long-horizon (5-year) investor. Here, it is evident that while

under MSI the differences between short- and long-run portfolios exist but are generally modest (which

means that hedging demands are small, see below), under VAR(1) the opposite occurs: VAR-type linear

predictability induces large and persistent differences between optimal decisions by short-horizon investors

vs. long-horizon ones.

Even though MSI induces high, regime-linked variations in optimal weights, there are some general

trends in portfolio weights that appear both in the left- and right-hand columns of Figure 8. For instance,

the optimal demand stocks tends to be non-negative most of the time under both models, with the exception

of the period 1977-1981 which–at least in qualitative terms–appears in both models. Similarly, there is a

common peak in the demand for 1-month T-bills in correspondence of the same period. In any event, the

plots are easier to use to comment on the substantial differences between optimal weights under MSI and

VAR(1): as one would expect, the dynamics are rather different in the two cases and it is evident that even

a medium-scale VAR(1) model cannot produce the rich, regime-like dynamics in SAA that a MSI model

naturally implies. For instance, while MSI implies average weights to stocks that are high by historical

norms (around 110%) between 1992 and 1998 this fails to occur under a VAR which for these periods

implies instead weights that are either close to unconditional means or actually below such a historical

norm. Finally, Figure 8 also offers the first chance to comment two issues briefly touched upon in the

Introduction. First, it is clear that while starting in the early 1980s a MSI implies an average demand

for stocks that oscillates around a small positive percentage commitment, VAR produces generally high

weights that for a long-horizon investor are never below 100% after the late 1980s. Many papers in the

empirical SAA literature have complained that this latter implication (for a sensible coefficient of risk

aversion such as  = 5) seems hardly plausible. Second, the figure shows that while MSI implies a demand

for long-term bonds that is generally positive (even though modest and with occasional negative spikes) for

both short- and long-run investors, a VAR has odd and counter-factual (i.e. inconsistent with equilibrium)

implications by which the demand for bonds ought to be strongly trending but also be characterized by an

embarrassingly negative average for short horizons throughout the 1980s and 1990s.

Figure 9 has a structure identical to Figure 8 but compares the weights of MSVAR-PC1 with those

characterizing the best performing OOS expanding window VAR (see Section 1), a simple VAR(1) in

which there is only predictor, the dividend yield (henceforth called VAR-DY). This creates the impression

of higher volatility of asset demands under MSVAR-PC1, which is however not completely correct if we

take into account the differences in scales between the plots in Figures 8 and 9 (see also Table 7). Clearly,

MSVAR-PC1 implies weights that combine the properties (regime switching-like variation) of MSI with

the typical, high frequency persistent dynamics of VAR models. The figure also highlights that a simpler

VAR-DY produces uniformly positive (negative) and large hedging demands for stocks (1-month T-bills),

while this is not the case for MSVAR-PC1.
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Table 7 translates these visual impressions for the case  = 5 into summary statistics for our overall

sample period. The table reports three types of summary statistics: the mean of recursive portfolio

weights, their sample standard deviation, and their 90% empirical range, i.e., the values of the weights that

leave 5% of the recursive weights in each of the two tails. The latter measure is offered to avoid undue

reliance on sample standard deviations as measures of dispersion when the weights have distributions

which are non-normal. These statistics are computed and presented for the MSI and MSVAR-PC1 models,

the Gaussian IID benchmark, and a variety of VAR models that are selected in consideration of their

pseudo-out-of sample performance at a 60-month horizon in terms of CERs (see Section 6).22 Table 7

illustrates the existence of major differences across the three types of models (Markov switching, VAR, and

no predictability benchmark) according to all types of summary statistics. Interestingly, MSI and MSVAR-

PC1 give qualitatively similar outcomes, especially in terms of mean allocations. In the case of recursive

mean weights, the differences concern only long-term bonds and 1-month T-bills: while the Gaussian IID

benchmark a relatively low demand for long-term bonds (16%) and the MS models an intermediate-level

demand (29-40%), the VARs imply rather heterogeneous demands that go from levels of 30% below the

typical Markov switching allocations to means in excess of 100% which are typical of rolling window VAR

models, where the 10-year scheme occasionally brings to a perception of very high Sharpe ratios, like

in the mid-1980s and recently the 2001-2008 period. Similarly, while both the MS models and the IID

benchmark deliver on average positive and modest demands for 1-month T-bills (between 9 and 18%), most

VAR models make it optimal to actually leverage the portfolios by borrowing at the 1-month real T-bill

rate.23 Finally, although the finding does not concern all the VAR models we have entertained, we notice

that a majority of VARs do imply a higher demand for stocks than MS models and the no-predictability

benchmark do, say between 80 and 100% on average vs. average allocations between 50 and 70% in the

case of MS and IID strategies. This finding echoes the common complaint (see Ang et al., 2005) that asset

allocation models calibrated to standard preferences and linear predictability models easily generate “too

high” a demand for stocks. Clearly, this is not the case under Markov switching, non-linear predictability.

Table 7 also reports sample measures of dispersion of recursive portfolio weights. Here the finding is

clear: given its structure, MSI and MSVAR-PC1 deliver weights which display approximately only half the

weight volatility that is typical of VARs. The volatility of portfolio weights of MSVAR-PC1 and MSI are

also rather similar, which may be taken as indication that the variability in portfolio decisions will mostly

originate from regime switching and not from the linear predictability that is captured by the cross-serial

correlations between real asset returns and the first principal component. These findings also apply to

the 90% empirical range of optimal weights.24 These results show that the widespread belief that regime

22Table 7 only concerns optimal weights computed for the case of  = 5. The results for  = 2 and 10 are qualitatively

similar. These additional tables are available upon request from the Authors.
23The weights mentioned in the main text are the 1-month optimal weights, since this allows a three-way comparison

involving the Gaussian IID results. However, most VARs imply a long-run demand for stocks that largely exceeds the 1-month

weight and a long-run demands for 1-month T-bills that are negative and large. Hedging demands for long-term bonds tend

to be negative but also modest.
24As one should expect, the recursive Gaussian IID weights are always the least volatile for all assets and according to all

24



switching asset allocation frameworks may imply “excessively” volatile portfolio weights may be misleading

when applied to long-run SAA under rebalancing.

4.2. Hedging Demands

Figure 10 shows the recursive hedging demands for the period 1973:01-2008:12 implied by Figures 8 and 9,

for the four competing models covered by these figures. Also in this case, we need to take the results from

the “full” VAR(1) (in which all predictors appear) and VAR-DY as representative of the type of hedging

demands that may be typically obtained under linear predictability. The VAR hedging demands are not

severely affected by the details of the linear framework used: the hedging demand for stocks is large (in

excess of 50% over the entire 1973-2008 sample period) and stable, consistent with results reported by

Barberis (2000) and Campbell et al. (2003) among the others. On the contrary, hedging demands for

1-month T-bills and long-term bonds contain massive drifts and are considerably volatile in the case of

the full VAR(1) model. The negative VAR hedging demand for T-bills under the VARs is at first trending

down, for instance falling below -100% in the case of VAR-DY, and then trends up, settling to a negative

level between -20 and -60%. The VAR hedging demands for long-term bonds are instead quite different

across the “full” and DY models, with a lot of variation in the former case and none in the latter.

Markov switching hedging demands are completely different, in at least two ways. First, they are

generally very small when compared to VAR hedging demands. This is consistent with the findings in

Ang and Bekaert (2002) and Guidolin and Timmermann (2007) with reference to international portfolio

diversification and SAA, respectively. Second, the MS hedging demands are also obviously stationary

over time and tend to simply fluctuate around zero. Third, MSI and MSVAR-PC1 hedging demands are

qualitatively similar. However, this does not imply that MS hedging demands are zero such that MS

non-linear predictability is irrelevant: stocks generally command a positive hedging demand with spikes

up to 80%, while long-term bonds usually imply negative but modest hedging demands. These differences

between MS and VAR hedging demands are made more explicit in Table 7.25 For instance, MSI delivers

a positive, +3% hedging demand stocks, i.e., the presence of Markov regimes ends up making an investor

less cautious in the long-run than in the short-run, which skews her demand towards stocks; the MSI

hedging demand for T-bills is also positive on average (+6%) and is negative for long-term bonds (-9%).

Interestingly, different VAR models may imply differences in average hedging demands for long-term bonds

(although these are generally modest) and especially 1-month T-bills, although it is clear that the average

hedging demand for stocks is always positive and often large (also in excess of 100%). Additionally, while

the variability of hedging demands is always modest for the Markov switching models, there is much more

heterogeneity over time for hedging demands under linear predictability.

The results in Figures 8-10 and Table 7 provide compelling evidence that a model that accounts for

measures.
25By construction, the Gaussian IID benchmark implies zero hedging demands in the presence of continuous rebalancing,

see Samuelson (1969).
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regimes in financial markets delivers recursive, optimal SAA weights that — both in terms of average

weights and of their dispersion over time — cannot be approximated by any of the VAR models we have

experimented with. The differences are particularly striking for what concerns the level and variability of

optimal stock weights and in terms of the implied hedging demands that ought to protect a  = 5 investor

from stochastic changes in investment opportunities. Since we have experimented with a rather large and

encompassing range of VAR models typical of what is commonly found in the empirical literature, this is

prima facie evidence that simple linear predictability framework may be unable to capture all modes of

predictability commonly found in the data, including those summarized by regime switching dynamics.

5. Realized Recursive Portfolio Performance

Our finding in Section 4 that VAR models typically produce dynamic (short- and long-run) SAA weights

and hedging demands that depart from the implications of a model that accounts for non-linear patterns

is suggestive that naive linear frameworks may be too simple to pick up and exploit predictability patterns

that are in the data and that may be important in applied portfolio applications. However, these results are

suggestive at best: because a model that fits the data better in-sample than another model does not have

to out-perform the latter in OOS experiments, a portfolio manager will always want to examine evidence

on the recursive, OOS performance of both models before selecting one or — as we aim at — conclude that

either of them may be “too simplistic” to be useful. This is exactly what we set out to do in this section:

use the recursive experiment outlined in Section 2.3 to assess whether VAR models can yield realized OOS

performance that is equivalent (or even superior) to MSH models. In particular, Section 5.1 presents the

overall OOS portfolio performance results for the complete set of models examined in Sections 3 and 4.

Section 5.2, proceeds to a conceptually tighter and better defined “horse race” between classes of models,

that allows us to oppose the set of all VARs to the two different Markov switching frameworks–MSI and

MSVAR-PC1–that we have developed and estimated.

5.1. Overall Performance

Before proceeding further and examine the results of recursive portfolio experiments, it is necessary to

briefly discuss two issues with our research design. First, one wonders whether it is sensible to expect

that one single (albeit carefully selected, in accordance to the literature) regime switching “champion”

may outperform the full set of 896 VARs we have opposed it to. Although there is no unique, compelling

answer to this question, two considerations are relevant. In the light of the main research question of this

paper, one is tempted to reply that yes: one model out of the set MSI, MSVAR-PC1 ought in principle to be

the best performing among all models. The existence of even a few models that might out-perform both the

MS frameworks would imply that at least some (even if few) VARs could deliver portfolio choices similar

or better than MS, which must be a result of the fact that these VARs will be obviously able to capture
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regime dynamics (or the portion of it that ought to matter for SAA decisions). However, even though both

MSI and MSVAR-PC1 were selected as a result of careful model specification search, it cannot be claimed

that the rich and ever growing family of Markov switching model for asset returns can be completely

represented and summarized by either MSI/MSVAR-PC1 or by the set of models appearing in Table 2.

Therefore one may also consider in a light unfavorable to VARs the finding that MSI/MSVAR-PC1 may

out-perform a large portion (say 95 or even 99%) of the VARs we have experimented with, according to

the idea that if VARs can adequately summarize regime-type dynamics in financial markets, then most

of them ought to be able to perform the task, independently of their fine-tuning. In this case — because

(1− 095)× 896 ' 45 and (1− 099)× 896 ' 9 — we should find that either MSI or MSVAR-PC1 or both is
a “top 50” or even a “top 10” model among all the ones we have tried in our experiments. Second, it must

be stressed that even though in what follows we present realized portfolio performances for both 1-month

and 5-year horizons, it is sensible to think that the latter sets of results should carry more importance than

the former as our stated goal has been to test whether VARs can approximate the performance of models

with regimes in the perspective of long-horizon investors. Armed with these considerations, we proceed to

present and comment empirical results.

Table 8 reports the key results of the paper.26 For the case of  = 5, to save space we report the best 7

performing models (plus benchmarks, when these are not among the top 10) when all models recursively

estimated are ranked according to their real CER. The top panel concerns the 60-month horizon, while the

lower panel the 1-month horizon. The models that we report below the 7th position in the CER ranking

are selected because they are either benchmarks or representative of wider classes of models, i.e., MSI

or MSVAR-PC1 should they fail to be among the top 7 models, the Gaussian IID benchmark, the best

performing rolling window VAR (this claim reflects the finding that in general expanding window VARs

outperform rolling window VARs), and at least one non-small scale VAR (we class small scale VARs as all

those with  = 1 or those with  = 2 4 with only one predictor). In the view of a long-horizon ( = 60

months) investor, MSI ranks first out of all the models with an annualized CER of 8%; the attached 95%

confidence interval is relatively tight, [4.9%, 8.7%], which means that it is likely that a  = 5 investor

would be ready to pay at least an annualized real, constant return of almost 5% to have access to SAA

decisions using the MSI model. This means that our set of VARs fails to include any models that produce

CERs which exceed the CER of MSI. In particular, a rather simple VAR that includes only lagged real

asset returns and the dividend yield produces a lower CER of 3.7% with a bootstrapped 95% confidence

interval of [-3.9%, 11.6%]. However, it is clear that the two confidence intervals for MSI and the best VAR

do overlap, which may be taken an indication that there is no strong statistical evidence against the null

hypothesis that the two models may give identical CER performance. Interestingly, the richer MSVAR-PC1

model severely underperforms both MSI and the 5 VARs that appear in the top panel of Table 8. Its CER

rank is 33, which still places MSVAR-PC1 among the best 5% of all the models we have experimented with

26In Tables 8 and 9, the reported 95% confidence bands have been computed by applying a block bootstrap to each of the

recursive, realized performance statistics.
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in this paper. However, the CER of MSVAR-PC1 is largely disappointing, 2.4% and with a 95% confidence

interval ([1.5%, 5.1%] that even its upper bound is at best comparable to lower bounds from the CER of

MSI and the best performing VARs.27 Table 8 also shows the median performance statistics for all 896

VAR models entertained in our paper, distinguishing between expanding and rolling window VARs. The

former class performs slightly better than the second, but it is striking to notice that both median real

CER measures from VAR models are negative, an indication that a  = 5 investor would required to be

paid in order to accept to perform her SAA using the median VAR model, both in the expanding and in

the rolling-window implementations. In other words, blindly exploiting linear predictability (as captured

by median performance) incredibly leads to results that are inferior not only to ignoring predictability of

all kinds, but also to a passive 100% investment in an asset that gives a constant zero real rate (i.e. which

simply protects against inflation dynamics).28 Clearly, MSI performs considerably better than the median,

representative VAR SAA strategy. Interestingly, the no predictability benchmark turns out to be a serious

candidate in a long-horizon portfolio perspective, yielding an attractive real CER of 5.5%, which is however

inferior to the 8% that can be accessed exploiting a non-linear portfolio strategy.29

There is clear structure in the VARs that deliver good portfolio performance: these are very parsimo-

nious models with few lags ( = 2 at most, but the majority of the top 20 performers are  = 1) and in

which only four predictors appear in a variety of combinations: the dividend yield, the default spread, IP

growth, and the unemployment rate. Between the possible dimensions of parsimony in our experiment (

vs. choice of ), the latter is more important than the former, in the sense that  = 2 sometimes yields

interesting performance, but always under the condition that very few predictors are included.

There are also some notable differences in the way in which good realized real CERs are obtained

across models, and especially from MS vs. VARs. In particular, MSI gives a lower mean than all other

top-performing VARs (e.g., an annualized real 11.1% vs. 22.2% per annum for the best VAR) but also a

sensibly lower volatility (e.g. 21.2% per year vs. 53.7% for the best performing VAR). These differences

translate in the fact that MSI in fact yields a very appealing Sharpe ratio (0.46 in annualized terms vs. 0.39

for the best VAR), which is second only to the Sharpe ratio for the no predictability benchmark (0.57) but

typically much higher than the typical (median) Sharpe ratio among all VAR models (0.10 at best). How

is it possible that MSI implies a higher realized OOS CER than the Gaussian IID model does, even though

the latter model is characterized by a higher Sharpe ratio? Here we need to notice that especially with a

27That MSVAR models may disappoint in recursive OOS portfolio experiments fails to come as a complete surprise. Guidolin

and Timmermann (2007) report suggestive evidence that MSVARH models that include the dividend yield do not always out-

perform simpler MSIH models.
28Such inflation-indexed assets exist, at least as a first approximation (e.g. TIPS) and a zero real return can be reasonably

taken to be their lower bound for realized real returns. Table 8 reports median performances and not mean performances

because of the presence of a few obviously bad models (in general, these are the  = 12 models) that produce either negative

mean portfolio returns and/or high volatility and therefore largely skew the distribution of portfolio performances.
29The Gaussian IID is characterized by a 95% confidence interval of [4.9%, 6.2%] which implies the existence of an overlap

with the intervals for the best VARs and MSI. However, the confidence interval for the no predictability benchmark fails

to include the CER for MSI. This can be taken as evidence that ignoring predictability would be harmful to long-horizon

investors. This is consistent with the bulk of the literature on SAA under predictability, e.g. Barberis (2000) and Lynch (2001).
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long-horizon, a power utility investor is different from a mean-variance investor who simply maximizes her

portfolio Sharpe ratio. Equivalently, it is well known (see Campbell and Viceira, 2002) that classical mean-

variance preferences fail to provide a good approximation to constant relative risk aversion preferences for

long-investment horizons, i.e. that isolastic preferences are not locally mean-variance for large  . What can

then account for the difference between the Sharpe ratio and the CER-based rankings? The difference must

be represented by the role of higher-order moments (skewness, kurtosis, etc. of realized consumption flows

financed by the investment strategy), for which a power utility investor cares over and above caring for the

mean and the variance. In fact, Table 8 shows that while MSI has positive skewness that is rather close

to the asymmetry exhibited by the best VARs, MSI also has the minimal kurtosis among all predictability

models investigated. Because excessive kurtosis (i.e., fat tails) in realized portfolio returns hurts a power

utility investor, the implication is that MSI is rewarded by a relatively high CER not because of stability

per se, but mostly because MSI is a way for a long-run investor to make sure that no excessively poor

performances falling in the extreme left tail are obtained.30 Additionally, the Gaussian IID model displays

thin tails which are a positive attribute to a power utility investor, but is also characterized by a rather

symmetric distribution of final long-run wealth cumulants, which is inferior to the large and substantial

positive skewness coefficients found under MSI.

The lower panel of Table 8 reports on model performance for the best 7 models when the horizon is

short. Although this is admittedly less interesting for our paper, here MSI comes in second in the ranking,

with a moderate real CER of 5.9% per annum. The most interesting implication of the table is however

rather tangential to our main point: in the case of  = 1 month, the best realized recursive performance

is obtained when all predictability patterns (linear and non-linear) are simply ignored and short-term

SAA is implemented using a no predictability benchmark with constant means, variances, and covariances.

The Gaussian IID real annualized CER is 6.3% and it is in fact the only CER whose bootstrapped 95%

confidence interval ([2.4%, 10.3%]) fails to include zero or values close to zero which an investor can easily

purchase in the financial market by simply buying inflation-protected securities. We can summarize this

finding as follows: a short-term  = 5 should rather ignore predictability than try to use it for portfolio

choice; however, conditional on her decision to choose portfolio weights using any predictability patterns,

then VARs can neither approximate the portfolio weights computed under MSI nor obtain a comparable

recursive OOS performance. It is of some interest to also stress that the acceptable real CER performance

of MSI is now generated by properties of portfolio returns which are quite different from those commented

for the  = 60 months case. Now MSI gives the second best annualized volatility (13.1%), although its

realized mean performance remains lower than most VARs (7.6% against median VAR performances of

16-18% per annum). This delivers a MSI Sharpe ratio that is now the highest achievable Sharpe ratio

30This claim relies on a difference between variance (the second moment) and kurtosis (the fourth moment scaled by the

second), which may be used to illustrate tail thickness above what is allowed under a normal distribution. In general, VAR

models tend to produce appreciable Sharpe ratios and positive skewness, but also high excess kurtosis in performance, which

means that a VAR model may occasionally “betray” and produce large, negative performance outliers in the left tail which

will be wealth-destructive for a long-run investor.
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(0.48). Although the results in the lower panel of Table 8 strengthen our earlier conclusion that it is hard

for VARs to compete with models that take into account regimes, we leave for future research the task

of exploring why ignoring predictability may actually lead to better 1-month recursive performance than

in the case predictability is taken into account. Finally, MSVAR-PC1 yields another rather disappointing

CER performance of 1.9% with a very wide confidence interval roughly centered around zero.

Table 9 expands the range of portfolio performance results by presenting panels with structure and

contents similar to Table 8, but concerning now the cases of  = 2 and 10. This addresses the potential

concern that our earlier results may be driven by a special (even though, rather typical) assumption on the

coefficient of relative risk aversion. In the case of a low risk aversion long-horizon investor, MSI is ranked

first on the basis of the annualized real CER (10.2% vs. 4.8% for the best VAR). However, once more the

bootstrapped 95% confidence band for MSI ([4.9%, 15.2%]) largely overlaps with the real CER confidence

band for the best VARs (e.g., [-2.5%, 12.4%] for the best performing VAR), so that it is hard to actually

distinguish MSI from the top 5 models.31 In this case, MSI has the best Sharpe ratio among all models

(0.87), which indicates that for a low risk aversion investor, MSI performs well both in a mean-variance

space and in a power utility space in which all moments matter. In the case of low risk aversion, also

MSVAR-PC1 becomes a rather competitive model and it comes in third in the CER ranking, however after

the Gaussian IID benchmark. However, the CER of MSVAR-PC1 is still only two-third the CER of the

more parsimonious MSI, 6.4%. Many other comments expressed with reference to Table 8 apply also in

this case. For instance, the best performing VARs are relatively parsimonious models. The lower panel of

Table 9 deals instead with the case of a high risk-aversion investor with  = 10. In this case, MSI is again

the best performing model for long-horizon SAA purposes, with an annualized real CER of 6.2%. Once

more, the no predictability benchmark is a serious competitor for a long-horizon investor, with a 4.7% real

CER. None of these results obtain for  = 10 and a 1-month horizon, where one VAR actually proves

useful and better than both MSI and MSVAR-PC1 (even though the bootstrapped confidence interval of

the latter remains wide enough to include top CER performances).

5.2. A Horse Race Between Classes of Models

While Tables 8-9 highlight the best performing models based on the CER ranking, they suffer from the fact

that while the MS performances always appear in the tables, by design, the VAR models covered changes

as the parameters of the exercise, specifically  and , change across the various panels. Therefore, it

would be useful to have a more compact way to summarize and compare the recursive OOS portfolio

performances not of each specific econometric model against all other models, but instead in terms of some

large macro-classes of models–i.e. all the expanding-window VARs, all the 10-year rolling window VARs,

the two Markov switching models, and the Gaussian IID benchmark. Such an experiment actually offers

31On the contrary, to tell MSI apart from the median expanding and rolling-windown VARs is easy, as these generates

disappointing -0.5% and -0.7% annualized real CERs, respectively.
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one additional advantage that does not purely relate to the presentation of the results but that is instead

linked to an interesting economic intuition. Consider an investor that is actually contemplating resorting to

a VAR modeling strategy to support her long-horizon SAA decisions. It is very unlikely that this investor

will actually decide to specify and estimation one particular VAR model and to stick to it over time. Yet

this is what our performance assessment in Section 6.1 has assumed. Instead, an investor is likely to use

statistical criteria to judge of the likely performance of competing VAR models at each point in time, with

the possibility to occasionally switch among different VARs in case this statistical measure of likely OOS

performance happens to deteriorate. One may say that such an investor would resort to switching among

different VARs instead of building a model of (Markov) switching VAR dynamics as we have done with

MSVAR-PC1 in Section 3.4.

As shown by the work by Pesaran and Timmermann (1995, 2000) on switching algorithms to exploit

predictability through simple trading strategies, there are a number of ex-ante statistical criteria that an

investor may use to determine how and when she would switch from a VAR model to a different one. In

this section, we have decided to keep the task simple and endow our VAR investor with the ability to

recursively track over time the value of two information criteria already discussed with reference to Table

2, the AIC and the BIC. AIC and BIC are selected over H-Q because the latter is known to generally

return indications that are halfway (in terms of parsimony of the selected models) between AIC and BIC.

In a sense, we believe that AIC and BIC may span the set of all possible choices. AIC and BIC are selected

over in-sample criteria, such as the R-square and the adjusted R-square, because information criteria have

been often described as tools to preview the predicting performance of models. Our strategy is as follows.

Within the recursive scheme already illustrated in Section 2.3, at each point in time  we model the investor

as deciding on which VAR model should be used for her asset allocation decisions between  and + based

on either AIC or BIC. In fact, to derive distinct evidence on the class-level performance of expanding and

rolling-window VARs, we have modeled two different investors, the first selecting among VARs estimated

on an expanding window and the second focussing instead on rolling window VARs. Finally, to favor

comparability, we have applied an identical logic to the Markov switching class, even though in this case

our investor is actually selecting at each point in time between MSI and MSVAR-PC1 only.

Tables 10 and 11 report the recursive OOS portfolio performance following the same structure as Tables

8 and 9. However, by construction, Tables 10 and 11 only feature 7 competing strategies: 1) Switching

expanding window VAR set, when the selection criterion is AIC; 2) Switching rolling window VAR set,

when the selection criterion is AIC; 3) Switching expanding window VAR set, when the selection criterion

is BIC; 4) Switching rolling window VAR set, when the selection criterion is BIC; 5) Markov switching set,

when the selection criterion is AIC; 6) Markov switching set, when the selection criterion is BIC; 7) the

Gaussian IID benchmark. Before commenting on the OOS performance, let us provide some information

on the nature of the switches of the models selected under strategies 1)-6) above. Under 1) the investor

would use 64% of the time a model in which real asset returns are predicted using 12 lags of the returns
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themselves (this strategy produces the lowest AIC for a stunning period of almost 23 consecutive years,

between 1985 and 2007), 14% of the time a VAR(12) in which the term spread is the only predictor, and

10% of the time a VAR(12) in which all predictors are included. The remaining 12% of the time is spent

using VAR(2) and VAR(12) models with few predictors and with the term spread often entering the mix

of predictors. Under 2) the investor would use 49% of the time a model in which real asset returns are

predicted using 12 lags of the returns themselves (once more the strategy dominates for long periods, for

instance 1978-1995), 21% of the time a VAR(2) in which the term spread is the only predictor, and 18%

of the time VAR(2) models in which the term spread is always included (in half of the cases with the

short-term nominal bill rate, in the other half with CPI inflation) as predictor. The remaining 12% of

the time is spent using VAR(2) and VAR(12) models with few predictors and with the term spread often

entering the mix of predictors.32 The structure of the strategies 5) and 6) is easy to describe. Under a

AIC criterion, MSVAR-PC1 is selected 95% of the time. MSI is selected only between 1973 and 1974 and

then again in sporadically during the 1980s. Under a BIC criterion MSI is always selected with only 11

exceptions, which occur randomly over our sample (but 3 times during the turbulent 2008).

The results in Tables 10 and 11 completely agree with those already commented in Tables 8 and

9, but are obviously easier to interpret because each row represents now a feasible as well as sensible

portfolio strategy based on classes of models, as defined by their econometric structure and whether they

are estimated on rolling vs. expanding data sets. For an investor with  = 5 and a long, 5-year horizon,

the best “class strategy” is based on MS models when these are recursively selected by BIC minimization,

which effectively means MSI most of the time. In fact, MS-BIC is ranked first in Table 10 with performance

statistics that are very close to MSI in Table 8, for instance the CER is 8.1% vs. 8.0% for MSI. Similarly,

the no predictability Gaussian IID benchmark is second in the ranking with a CER of 5.5%, which is by

construction identical to the one in Table 8. Interestingly, ignoring predictability implies a CER higher than

the CER of MS-AIC (2.6%), which is a mixture of MSI and MSVAR-PC1 tilted in favor of the latter model.

However, the key result in Table 10 is the overwhelming evidence that MS models, however they may be

recursively selected, outperform the four VAR-class strategies. For instance, the best VAR-class strategy

(expanding window, with BIC selection) yields a disappointing real CER of 0.3% with a wide bootstrapped

confidence interval that includes negative real CERs. Similarly to Table 8, the strong performance of MS-

BIC is not only (or even mostly) the result of a good performance in a simple mean-variance (Sharpe ratio)

space, as the Gaussian IID model yields a somewhat higher Sharpe ratio (0.57 vs. 0.45) and yet a lower

CER caused by the superior skewness properties of MS-BIC.

32Under 3) the investor would use 85% of the time a VAR(4) model that includes all predictors, 6% of the time a VAR(4) in

which the predictors are the dividend yield, the short-term nominal rate, the term spread, IP growth, and unemployment, and

5% of the time a similar VAR(4) in which the default spread replaces IP growth. The remaining 4% of the time is spent using

similar VAR(4) models that include 3-4 predictors at the time. Under 4) the investor uses the same models, but with slightly

different frequencies, for instance 83% of the time a a VAR(4) model that includes all predictors, 8% of the time a VAR(4) in

which the predictors are the dividend yield, the short-term nominal rate, the term spread, IP growth, and unemployment. In

this case there is a small residual of 3% of the time spent using similar VAR(4) models that include 3-4 predictors at the time.
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The bottom panel of Table 10 shows another result that should by now be somewhat familiar: a 1-

month horizon investor would derive a higher CER (6.3%) from ignoring predictability altogether–linear

and nonlinear–than by either adopting the MS-BIS class strategy (6.0%) or the best among all the VAR-

class strategies, which in fact yield zero or negative real CERs. Table 11 repeats the exercise underlying

Table 10, but assuming two alternative values for  2 and 10. The implications for the CER rankings across

classes of models are identical to Table 10 and consistent with the results in Table 9. For instance, also for

low and high risk aversion levels, while a long-horizon investor would prefer MS-BIC over any other class

of models–and in particular over strategies that are allowed to switch among different VARs–a 1-month

investor would optimally disregard all evidence of predictability and use a simple Gaussian IID model.

6. The Role of Regime Switching Volatilities and Correlations

So far, Sections 3-5 have entertained a systematic comparison of a range of VAR models with two specific,

three-state Markov switching model in which second moments are assumed to be constant over time. This

appears to be consistent with the fact that by construction, the VAR models that have been featured in the

bulk of the literature are themselves homoskedastic. However, it turns out that a model specification search

similar to the one performed in Section 3.3 and expanded to include heteroskedastic MS models in which

also the covariance matrix is allowed to change as a function of the same Markov states driving conditional

mean parameters, often leads to select heteroskedastic MS models. Therefore in this Section we briefly

investigate the recursive OOS portfolio performance of heteroskedastic MS models. Moreover, it may be

interesting to try and tease out from the data what the economic value of modeling Markov switching

in second moments may be when separated from the pure value of switching dynamics in expected real

returns. Before proceeding further, let us stress that in an ex-post perspective, it would be incorrect (or at

least, naive) to expect that heteroskedastic MS would always perform worse than homoskedastic MS models

in recursive OOS experiments. Although in-sample it would be sensible (yet, this is not a necessity in the

domain of non-linear models) to expect that homoskedastic MS provide a worse fit than heteroskedastic

ones, it is well-known that sometimes simpler and more parsimonious models may perform better than

richer models in OOS evaluation. As a result, it is important to stress that we are not performing the

exercise in this Section only with the goal of showing that homoskedastic MS does not “fall too far behind”

heteroskedastic MS models. To save space, we only report results for our baseline design in which  = 5

although findings for  = 2 and 10 are qualitatively similar to those reported below.

As a first step, we have expanded Table 2 to also include MSIH and MSVARH models. For simplicity,

we have omitted from the resulting Table 12 all the single-state models, for which there is no obvious

generalization to heteroskedastic versions, unless one resorts to ARCH-type modeling strategies. For com-

pleteness, we have replicated in Table 12 the same statistics for the homoskedastic models from Table 2.

As in Table 2, we have boldfaced the best three models selected by each information criterion. One find

is striking: whatever the information criterion, the top three models always consist of heteroskedasticity
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MS models only. However, once one switches to consider heteroskedastic MS in place of the homoskedastic

ones, the set of models that are selected are similar to the ones that have emerged in Table 2. In particular,

both BIC and H-Q both highlight the virtues of a three-state MSIH, which is the heteroskedastic analog

to the MSI model examined in Section 3.3. Interestingly, the strength of the sample evidence in favor of

MSVARH models weakens when compared to what we had found in Table 2. In the light of these results,

we next examine the recursive portfolio implications of a MSIH model.

Table 13, panel B, shows QMLE parameter estimates of this three-state model. Panel A reports single-

state estimates as a benchmark (these are by definition identical to the single-state estimates in panel A of

Table 3. Intuition for the properties of the model can be gained by commenting the parameter estimates

within each regime. The first regime is a bear state in which expected real returns are negative (for 1-month

nominal bills) or zero (for stocks and bonds, in the sense that the bear state mean parameters fail to be

statistically significant). In the bear state, stocks are more volatile than they are unconditionally (in panel

A of the table). The bear state is quite persistent with an average duration of almost 19 months. When the

US financial markets leave the bear state, this is usually to switch to the intermediate, equity bull regime.

Notice that differently from other papers in the Markov switching literature, the bear state is in no sense

an extreme or “rare event” regime, as it characterizes more than 37% of all long samples one could simulate

from the estimated MSIH. The second regime is a bull state with positive mean real returns on all assets,

although the expected real return on stocks is particularly high and statistically significant. In this regime,

all assets are less volatile than in the unconditional, single-state case. This regime is highly persistent with

an average duration of 34 months and characterizes half of any long sample. This means that in almost

half of the time, the US financial markets are characterized by positive real returns on all assets and

moderate volatility, which fits historical experience. The third regime is another bull state, but with three

interesting features: the dominant asset class in terms of mean real returns is long-term government bonds,

while stocks have an estimated mean coefficient which fails to be significant at conventional levels. Bond

and stock markets are more volatile in this state than in the single-state, unconditional benchmark; real

returns on long-term bonds are highly correlated with both stocks (0.42) and 1-month T-bills (0.40). We

have labeled this regime as a “bond bull state” with high volatility. Clearly, the data lead to specifying this

third regime because they need the flexibility to specify heterogeneous dynamics for bond and stock returns

during bull regimes. This third regime is also highly persistent, with an average duration of 21 months.

Finally, the estimated transition matrix in Table 13 has a rather special structure, by which regimes 1

and 2 and 3 and 1 “communicate” on a frequent basis, while regime 2 appears somewhat “isolated”. As a

result, regime 2 is considerably persistent. The fact that the third state is very persistent but in a sense

isolated from regime 2 explains why regime 3 has an ergodic probability of less than 13%.

Figure 11 completes our description of the MSIH model by plotting the smoothed probabilities for each

of the three regimes. The figure is consistent with the interpretation provided above. The first (bear) state

characterizes a non-negligible portion of the data and picks up relatively long-lived episodes that consist of
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either well-known US recessions as dated by the NBER (e.g., 1974-1975, 1978-1980, 2001-2004, and more

recently 2008) or of periods of crisis in the US financial markets with declining interest rates and negative

realized stock and bond returns (such as the early 1970s, 1987-1988, and the international bond market

crisis of 1998). The second (bull) state is exceptionally persistent and has in fact characterized long chunks

of the recent US financial history, such as most of the 1960s, 1989-1997, and 2000 with some additional

spikes during the 1980s. Finally, the third state is characterized by three obvious episodes, which are the

long period (1981-1986) of declining inflation and short-term rates in the US after the inflationary bouts

of the late 1970s, 2006, and (interestingly) the final months of 2008 and early 2009. These are periods

of declining short-term rates and of increasing long-term bond prices that lead — consistently with our

characterization of the regime — to high and statistically significant real bond returns.

Figure 12 shows recursive optimal portfolio weights (for  = 1 month and 5 years) derived from the

MSIH model. These weights are computed under the assumption of  = 5. Similarly to Figure 8, one

can recognize typical MS-style regime dynamics in implied weights. Also under MSIH, the differences

between short- and long-run portfolios exist but are generally modest (which means that hedging demands

are small, see below). If these plots are compared to the VAR ones in Figures 8 and 9, one can iterate

the comment that even a medium-scale VAR(1) model cannot produce the rich, regime-like dynamics in

SAA that a MSIH model generates. For instance, while MSIH implies an average demand for stocks that

oscillates around a moderate, positive percentage commitment, VAR produces generally high and wildly

oscillating stock weights that for a long-horizon investor easily go from -200 to +400% in a few months

only. As in Guidolin and Timmermann (2007) the reason for these more stable, less extreme long-run

asset allocations under MSIH comes from the tendency of MSIH to attach considerable importance to the

shape of its implied ergodic joint density for real asset returns when the horizon is sufficiently long, which

has stabilizing and “moderating” effects on portfolio structure. Figure 12 also shows the recursive hedging

demands for the period 1973:01-2009:12. The MSIH hedging demands are generally small when compared

to VAR hedging demands and are once more stable over time.

Finally, we have computed and tabulated OOS performance statistics for recursive realized portfolios

over the period 1973:01-2008:12 (or the shorter period implied by  = 60 months). Focussing on the

baseline case of  = 5 we have obtained that MSIH leads to a 5-year portfolio strategy that returns a real

CER of 4.7% that would place MSIH in third place in the CER ranking of Table 8, after MSI and the

Gaussian IID benchmark. The corresponding confidence interval is [3.4%, 6.0%] which tends to overlap

to the other confidence intervals we have reported in Table 8. Interestingly, the Sharpe ratio of MSIH

is substantially lower than most other models in Table 8 (0.23) so that the positive CER performance

of MSIH entirely derives from its ability to inform portfolio strategies of the behavior of asset returns in

the tails of their joint conditional density, which leads to a modest, almost nil excess kurtosis of realized

performances (0.38 only). This stable performance translates into high and significantly positive real

CERs to a  = 5 power utility investor. We have also examined the performance of the MSIH strategy at
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a short-horizon and/or assuming  = 2 10. The general indication we have drawn is that that the results

reported in Section 5 in no way depended on the choice of restricting the covariance matrix of real asset

returns to be constant over time, in spite the strong indications of heteroskedasticity contained in the data.

Additionally, MSIH is clearly superior to all the VAR models entertained in this paper, while Figure 12 has

shown that the implied dynamics of portfolio weights bears little or no resemblance to what an investor

would have computed in real time using any of the VAR models we have considered. However, it is also

interesting that the real CER of MSIH turns out to be inferior to that of clearly misspecified models, such

as MSI and the no predictability IID benchmark. This may depend on either the presence of substantial

misspecifications in the way time-variation in the covariance matrix of the returns is captured or on the

fact that MSIH is a substantially heavier (more richly parameterized) model than MSI is, generating a

need to estimate 12 additional parameters. We leave to future research to investigate what the sources of

the inferior performance of MSIH may turn out to be.

7. Conclusion

This paper has asked whether it is possible for a large class of VAR models–as defined by the predictors

included, their lag structure, and whether they are estimating on a rolling or an expanding window of data–

that forecast real asset returns to imply dynamic SAA choices and realized, ex-post performances similar

to decisions and performances typical of (slightly) more complicated nonlinear econometric frameworks

in which the existence of regimes is accounted for. After identifying the nonlinear framework with a

simple three-state MS model of the type recently employed by Ang and Bekaert (2002, 2004) and Guidolin

and Timmermann (2007, 2008b), we have obtained a clear negative answer to our main research question:

simple VARs are not “sufficient” in either an economic or a statistical sense to summarize the predictability

present in U.S. data over the period 1953-2008. Our key result is that in a simple, recursive portfolio

experiment no fraction of the VARs estimated can produce SAA choices for long-horizon investors that

compete with those obtainable under a three-state MSI model. This result does not depend on the assumed

level of relative risk aversion and on the details of the MS models considered, in the sense that also MS

models that are richer than a three-state MSI–specifically, a MSVAR model that captures both linear and

nonlinear predictability patterns as well as instability in the relationships among real asset returns and

predictors–generally outperform simple linear predictability frameworks.

In an attempt to offer a “clean” summary for the differential performance of MS and VAR strategies, we

have performed a horse race in which models (both MS and VARs) are not considered in their individuality,

but instead as an overall class. In practice, we allow an investor to select over time different models within

either the MS or the VAR class on the basis of their recursively computed information criteria (AIC and

BIC). We find that a power utility investor with  = 5 and a 5-year horizon, would be ready to pay 8.1%

in real terms to be allowed to select models from the MS class, while analogous calculation for the class

of expanding window VAR yields a disappointing 0.3% per annum. This difference of almost 780 basis
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points can be taken as a strong indication that taking nonlinearities into accounting in SAA problems may

handsomely pay out.

We have disregarded transaction costs: it is possible for a model to imply a superior OOS performance

just because the strategy implies frequent and radical portfolio rebalancing, e.g., a more activist stance

that aggressively times market regimes. In reality, it may be dubious that such a strategy may actually

outperform more passive, and less trading-intense strategies as most investors would have to pay enormous

fractions of their wealth in the form of fees, commissions, and bid-ask spreads. Although this an interesting

avenue for further research, we can offer two preliminary thoughts. First, a casual investigation of Figures

4 and 5 (taking their left-scales into account), reveals that MS strategies do not imply more aggressive

trading than VAR models do. Admittedly, there is a visible trade-off between the infrequent large changes

in MS allocations and the continuous variability in the more persistent VAR weights. Second, Tables 6 and

7 have been built with this concern in mind. Although not commented so far, the last column of Tables

6-7 reveals that MS models (especially MSI) imply much less trading (as shown by the average monthly

turnover statistics) than VARs do. So the concern above seems to rest on thin grounds.33

There are a number of details of our experiment that could have been different. Our investor may

have cared for the utility of final wealth only (i.e., the problem may have no interim consumption, as in

Avramov, 2002); her preferences could have been different (e.g., Epstein-Zin’s preferences as in Campbell

et al., 2003, or the wide set of preferences in Ait-Sahalia and Brandt, 2001); many investors would probably

impose constraints when solving their portfolio problem, such as short-sale constraints. Of course, it would

be sensible to repeat our exercise after either expanding the family of VARs considered (e.g., by adding

other predictors, like Ludivgson and Ng’s, 2007, ) or adopting alternative nonlinear benchmarks (for

instance smooth transition regressions as in Guidolin et al., 2009, or MS models with time-varying transition

probabilities as in Ang and Bekaert, 2002). We leave these extensions for future research.

Appendix: Solution of asset allocation problems by Monte Carlo methods

Markov Switching Model

Given the optimization problem is solved backwards at each time  (since the portfolio can be rebalanced

every month), such that 
¡
π
+1 + 1

¢
is known for all values of  = 1 2      on a discretization grid.

Here () is not a function of the state variables Z+1 but the regime probabilities π+1. Computing a

Monte Carlo approximation of the expectation



h
{ωR+1}1− 

¡
π
+1 + 1

¢i
requires drawing  random samples of asset returns {R+1(π


+1)}=1 from the +1 one-step joint density

conditional on the period- parameter estimates θ̂ =

µn
μ̂  Ω̂

o
=1

 P̂

¶
assuming that, at each point π



is updated to π+1(π

). The algorithm consists of the following steps:

33Additionally, Table 5 has shown that both the standard deviation and the range of variation of MS weights (especially

MSI) are inferior to those of VAR models.
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1. For each possible value of the current regime  simulate  returns {R+1(+1)}=1 in calendar
time from the regime switching model:

R+1 () = μ+1
+ ε+1 ε+1 ∼ 

¡
0Ω+1

¢


The simulation enables regime switching as governed by the transition probability matrix P̂. For

example, starting in state 1, the probability of switching to state 2 between  and +1 is ̂12 ≡ e01P̂e2,

while the probability of remaining in state 1 is ̂11 ≡ e01P̂e1. Hence, at each point in time, P̂ governs

possible state transitions.

2. Combine the simulated returns {R+1}=1 into a random sample size , using the probability

weights contained in the vector π

 :

R+1(π

) =

X

=1
(π

e)R+1 ( = )

3. Update the future regime probabilities perceived by the investor using the standard Hamilton-Kim

filtering formula

π+1

¡
π


¢
=

¡
π


¢0
P̂¯ η

³
R+1(π


); θ̂

´
³¡
π


¢0
P̂¯ η

³
R+1(π


); θ̂

´´
ι



This gives an × matrix
©
π+1

¡
π


¢ª
=1
, whose rows correspond to simulated vectors of perceived

regime probabilities at time + 1.

4. For all  = 1 2      calculate the value π̃
+1 on the discretization grid ( = 1 2    ) closest to

π+1(π

) using the distance measure

P−1
=1

¯̄
π
+1e − π+1e

¯̄
, i.e.

π̃
+1(π


) ≡ argmin

−1X
=1

|xe − π+1e | 

Knowledge of the vector
©
π̃
+1

¡
π


¢ª
=1

allows us to build
n
(π

()
+1  + 1)

o
=1
, where π

()
+1 ≡

π̃
+1(π


) is a function of the assumed, initial vector of regime probabilities π


.

5. Solve the program

max
(


)
−1

X
=1

n
[ωR+1]

1−
³
π
()
+1  + 1

´o
For large values of this provides an arbitrarily precise Monte Carlo approximation to[{ωR+1}1−

¡
π
+1 + 1

¢
]. The value function evaluated at the optimal portfolio weights ω̂(π


) gives (π


 )

for the th point on the initial grid. We also check whether ωR+1 is negative and reject all

corresponding sample paths.

The algorithm is applied to all possible values π
 on the discretization grid until all values of (π


 )

are obtained for  = 1 2     . It is then iterated backwards. We take (π
+1 +1) as given and use the

actual vector of smoothed probabilities π. The resultant vector ω̂ gives the optimal portfolio allocation
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at time , while (π ) is the optimal value function. In our application,  is selected as 52 = 25 which

fits the standard formula 5−1 as in Guidolin and Timmermann (2008b) and the number of Monte Carlo

simulations is 30,000.

VAR model

Again the optimization problem is solved by backward iteration for each point  so that  (Z+1 + 1).

A Monte Carlo approximation of the expectation



h
{ωR+1}1− 

¡
Z+1 + 1

¢i
now requires drawing  random samples of the state variables {Z+1}=1 from the  + 1 one-step joint

density conditional on the period- parameter estimates θ̂ =
³
μ̂ Â Ω̂

´
. The algorithm is similar but

much simpler than for the Markov Switching model. The  returns
©
R+1(Z


)
ª
=1

need to be simulated

from the VAR model. In this case  = 20 delivers quite accurate results (because of the linearity of the

prediction framework) and we set again  = 30 000
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Table 1 

Summary Statistics for Portfolio Returns and Predictors 

 
 

Mean Median Std. Dev.
Uncond. 

Sharpe Ratio
Minimum Maximum Skewness Kurtosis J‐B test

Real Stock Returns 0.586** 0.967** 4.341 0.112 ‐22.797 15.570 ‐0.567* 5.015* 149.7**
Long‐term Govt. Bonds Real Returns 0.234** 0.108* 2.226 0.061 ‐7.478 10.453 0.465* 4.952** 130.9**
1‐month T‐bill Real Returns 0.099** 0.108** 0.317 __ ‐1.120 1.938 0.201 5.303* 153.0**
CPI Inflation rate 0.308** 0.297** 0.358 __ ‐1.915 1.806 0.039 6.129* 274.3**
Dividend Yield (annual MA,) 3.276** 3.185** 1.179 __ 1.100 6.260 0.202* 2.556** 10.11**
Short‐Term Nominal Rate (annualized) 4.889** 4.618** 2.841 __ 0.035 18.190 1.173** 5.165** 285.3**
Riskless Term Spread (annualized) 1.509** 1.470** 1.321 __ ‐4.300 6.920 ‐0.114 4.249* 45.11**
Default Spread (Baa‐Aaa, annualized) 0.956** 0.830** 0.432 __ 0.320 3.380 1.659** 6.780** 708.5**
Industrial production growth (annualized) 2.822* 5.193** 2.393 __ ‐10.022 9.013 ‐0.571** 4.084* 69.47**
Unemployment Rate (percentage) 5.714** 5.500** 1.506 __ 2.400 11.400 0.652** 3.641 59.20**  

* significance at 5%, ** significance at 1%. 
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Table 2 

Model Specification Search 

 
Regimes 

(k)
VAR(p) 
order

Max Log‐
Likelihood

Linearity 
test

AIC BIC H‐Q
No. 

Param.
Saturation 

ratio

Div. Yield Short Rate Term Default Inflation IP Growth Unempl.

1 0 N N N N N N N 5710.446 − ‐16.9686 ‐16.9082 ‐16.9452 9 223.67
1 1 Y N N N N N N 5791.261 − ‐17.1990 ‐17.0579 ‐17.1443 26 103.23
1 1 N Y N N N N N 5799.371 − ‐17.2232 ‐17.0821 ‐17.1685 26 103.23
1 1 N N Y N N N N 5799.366 − ‐17.2231 ‐17.0820 ‐17.1685 26 103.23
1 1 N N N Y N N N 5794.918 − ‐17.2099 ‐17.0688 ‐17.1552 26 103.23
1 1 N N N N Y N N 5793.887 − ‐17.2068 ‐17.0657 ‐17.1522 26 103.23
1 1 N N N N N Y N 5792.311 − ‐17.2021 ‐17.0610 ‐17.1475 26 103.23
1 1 N N N N N N Y 5791.850 − ‐17.2007 ‐17.0596 ‐17.1461 26 103.23
1 1 Y Y Y Y Y Y Y 5832.249 − ‐17.2675 ‐17.0054 ‐17.1660 165 40.67
1 2 N Y N N N N N 5799.590 − ‐17.1868 ‐16.9648 ‐17.1008 42 63.90

2 0 N N N N N N N 5760.781 93.588*** ‐17.1035 ‐17.0096 ‐17.0671 14 143.79

2 1 N N N N N N N 5814.817 71.124*** ‐17.2364 ‐17.0214 ‐17.1531 32 62.91
2 Restr. Y Y Y Y Y Y Y 5857.283 50.067*** ‐17.3272 ‐17.0316 ‐17.2127 177 37.91

2 1 Y Y Y Y Y Y Y 5917.327 170.155*** ‐17.4168 ‐16.9195 ‐17.2242 277 24.22

3 0 N N N N N N N 5806.042 184.109*** ‐17.2174 ‐17.1464 ‐17.2528 21 95.86

3 1 N N N N N N N 5835.473 87.215*** ‐17.3950 ‐17.0434 ‐17.2369 30 67.10
3 Restr. Y Y Y Y Y Y Y 5874.515 84.531*** ‐17.3577 ‐17.0150 ‐17.2250 191 35.13
3 1 Y Y Y Y Y Y Y 5992.346 320.192*** ‐17.5301 ‐16.7842 ‐17.2412 391 17.16

3 1 5916.483 246.035*** ‐17.4649 ‐17.0819 ‐17.3166 76 35.32

3 1 5918.162 234.000*** ‐17.4431 ‐16.9996 ‐17.2713 111 30.23
3 1 5924.246 240.398*** ‐17.4344 ‐16.9305 ‐17.2392 163 24.70

4 0 N N N N N N N 5821.464 232.941*** ‐17.2622 ‐17.0606 ‐17.1841 30 67.10

4 1 N N N N N N N 5899.049 239.133*** ‐17.4121 ‐16.9681 ‐17.2401 66 30.50
4 Restr. Y Y Y Y Y Y Y 5897.340 130.181*** ‐17.3989 ‐16.9958 ‐17.2428 207 9.72

Four‐State Models

First principal component
First two principal components
First three principal components

Predictors Included

(Selected) Single‐State Models

Two‐State Models

Three‐State Models

Three‐State MSVAR Models with Principal Components of Predictors

 
* significance at 10%, ** significance at 5%, *** significance at 1%. 
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Table 3 

Full-Sample Estimates of Three-State Markov Switching Multivariate Model for Real 
Stock, Bond, and 1-month T-Bill Returns 

 

Real 1‐month T‐bill 
Returns

Real Long‐Term Bond 
Returns

Real Stock Returns

1. Mean returns 0.0992** 0.2340** 0.5855**
2. Correlations/Volatilities
Real 1‐month T‐bill Returns 0.3171**
Real Long‐Term Bond Returns 0.2869* 2.2257**
Real Stock Returns 0.1228 0.1638* 4.3405**

Real 1‐month T‐bill 
Returns

Real Long‐Term Bond 
Returns

Real Stock Returns

1. Mean returns
Bear State ‐0.3379** ‐0.5443* ‐0.8662
Normal State 0.1334** 0.1955* 0.7721**
Bull State 0.7225** 2.8695** 1.5373*
2. Correlations/Volatilities
Real 1‐month T‐bill Returns 0.2291**
Real Long‐Term Bond Returns 0.1429 2.1201**
Real Stock Returns 0.0451 0.1424 4.2926**
3. Transition probabilities Bear State Normal State Bull State
Bear State 0.7098** 0.2761** 0.0141
Normal State 0.0481* 0.9392** 0.0127
Bull State 0.0201 0.1964** 0.7834**

Bear State Normal State Bull State
Ergodic Probabilities 0.1376 0.8061 0.0563
Average Duration (in months) 3.5 16.4 4.6

** = significant at 1% size or lower; * = significant at 5% size.

Panel A ‐ SINGLE STATE MODEL 

Panel B ‐ THREE‐STATE MODEL

Panel C ‐ MARKOV CHAIN PROPERTIES, THREE‐STATE MODEL
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Table 4 

Full-Sample Estimates of Three-State Markov Switching VAR(1) Model for Real Stock, 
Bond, 1-month T-Bill Returns, and First Principal Component of Predictors 

Real 1‐month T‐bill 
Returns

Real Long‐Term Bond 
Returns

Real Stock Returns
First PC of 
Predictors

1. Intercept 0.0594** 0.1335 0.4209* ‐0.0309
3. VAR matrix
Real 1‐month T‐bill Returns 0.3984** 1.3302** 0.7649 45.6291**
Real Long‐Term Bond Returns 0.0088 0.0833* 0.2138** ‐1.2088
Real Stock Returns ‐0.0030 ‐0.0832** 0.0732 ‐1.0739**
First PC of Predictors ‐0.0030 0.0007 0.0010 0.9653**
2. Correlations/Volatilities of shocks
Real 1‐month T‐bill Returns 0.2858**
Real Long‐Term Bond Returns 0.2201** 2.1471**
Real Stock Returns 0.0855* 0.1554** 4.2767**
First PC of Predictors ‐0.4794** ‐0.0218 ‐0.1966** 0.3730**

Real 1‐month T‐bill 
Returns

Real Long‐Term Bond 
Returns

Real Stock Returns
First PC of 
Predictors

1. Intercepts
Bear State ‐0.0959** ‐0.0470* ‐2.3129** ‐0.0151
Normal State 0.0133** 0.0894 0.2158** 0.0174**
Bull State 0.0781 0.3164 ‐1.2446 0.2160*
2. VAR matrix
Real 1‐month T‐bill Returns 0.2067 0.0172 0.0055* ‐0.0009**
Real Long‐Term Bond Returns 0.7251* ‐0.0339 ‐0.0011** ‐0.0020**
Real Stock Returns ‐2.6573 0.5819 0.2415** ‐0.0174*
First PC of Predictors 57.7428 ‐3.9443 ‐1.6758* 0.9491**

Real 1‐month T‐bill Returns 0.0625 0.0130* 0.0057* ‐0.0005**
Real Long‐Term Bond Returns 0.7765 0.2006** ‐0.0952 0.0005
Real Stock Returns 1.8391 0.1176** ‐0.0464 0.0017**
First PC of Predictors 75.1666** ‐1.0257 ‐1.5686 1.0042**

Real 1‐month T‐bill Returns 0.0817** 0.0092* 0.0061 0.0002
Real Long‐Term Bond Returns 0.8836 0.1027 0.0668* 0.0020
Real Stock Returns 1.3457 0.1545* 0.1018 0.0033
First PC of Predictors 14.1380 1.5704 1.0187* 0.0313**
3. Correlations/Volatilities
Real 1‐month T‐bill Returns 0.2635**
Real Long‐Term Bond Returns 0.1971* 1.9010**
Real Stock Returns 0.0581 0.1102 3.4716**
First PC of Predictors ‐0.5046** ‐0.0699 ‐0.1292 0.3213**
3. Transition probabilities Bear State Normal State Bull State
Bear State 0.9521** 0.0254* 0.0225
Normal State 0.0176 0.9754** 0.0070
Bond Bull State 0.0000 0.0454** 0.9546**

Panel C ‐ MARKOV CHAIN PROPERTIES, THREE‐STATE MODEL
Bear State Normal State Bond Bull State

Ergodic Probabilities 0.2162 0.5870 0.1968
Average Duration (in months) 20.9 40.7 22.0

** = significant at 1% size or lower; * = significant at 5% size.

Panel A ‐ SINGLE STATE MODEL 

Panel B ‐ THREE‐STATE MODEL
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Table 5 

Best Models and Selected Benchmarks Ranked According to Recursive 12-month Ahead Predictive Performance  
for Real Asset Returns 

Panel A – Real Stock Returns 

Model Div. Yield Short Rate Term Spread Default Spr. Inflation IP Growth Unempl. RMSFE Bias St. Dev. MAFE
1 Expanding p=0 MSI N N N N N N N 0.04110 ‐0.00069 0.04109 0.03116
2 Expanding p=2 VAR N N N N N Y Y 0.04663 ‐0.00206 0.04659 0.03538
3 Expanding p=4 VAR N N N N N N N 0.04663 ‐0.00095 0.04662 0.03534
4 Expanding p=2 VAR N N N N N N Y 0.04665 ‐0.00155 0.04662 0.03551
5 Expanding p=2 VAR N N Y N N N N 0.04661 ‐0.00107 0.04660 0.03539
6 Expanding p=2 VAR N N Y N N Y N 0.04661 ‐0.00087 0.04660 0.03539
7 Expanding p=2 VAR N N Y N N N Y 0.04668 ‐0.00163 0.04666 0.03564
8 Expanding p=1 VAR N N Y N N N N 0.04659 ‐0.00079 0.04658 0.03537
9 Expanding p=1 VAR N N Y N N Y N 0.04659 ‐0.00064 0.04658 0.03538
10 Expanding p=2 VAR N N N N N N N 0.04661 ‐0.00069 0.04661 0.03534
23 Rolling p=4 VAR N N N N N N N 0.04677 ‐0.00031 0.04677 0.03542
41 Expanding p=12 VAR N N N N N N N 0.04719 ‐0.00111 0.04717 0.03582
125 Expanding p=1 MSVAR(1) ‐1PC 0.02484 0.00691 0.02386 0.01814

B Expanding p=0 IID 0.04752 0.00062 0.04752 0.03671
Total 0 0 5 0 0 3 3

No Predictability

Real Stock Returns
Rank

Window 
length

Number 
of lags

Predictors included

First PC of all predictors

 
 

Panel B – Real Bond and 1-month T-Bill Returns 

Model Div. Yield Short Rate Term Default Inflation IP  Unempl. RMSFE Bias St. Dev. MAFE RMSFE Bias St. Dev. MAFE
1 Expanding p=0 MSI N N N N N N N 0.02163 0.00184 0.02155 0.01630 0.00311 0.00018 0.00311 0.00236
2 Expanding p=2 VAR N N N N N Y Y 0.02450 0.00196 0.02443 0.01837 0.00354 0.00024 0.00353 0.00267
3 Expanding p=4 VAR N N N N N N N 0.02453 0.00229 0.02442 0.01842 0.00354 0.00030 0.00353 0.00268
4 Expanding p=2 VAR N N N N N N Y 0.02456 0.00231 0.02445 0.01842 0.00354 0.00033 0.00353 0.00268
5 Expanding p=2 VAR N N Y N N N N 0.02449 0.00221 0.02439 0.01839 0.00357 0.00032 0.00356 0.00271
6 Expanding p=2 VAR N N Y N N Y N 0.02448 0.00204 0.02440 0.01837 0.00357 0.00033 0.00356 0.00271
7 Expanding p=2 VAR N N Y N N N Y 0.02455 0.00220 0.02445 0.01841 0.00355 0.00030 0.00354 0.00269
8 Expanding p=1 VAR N N Y N N N N 0.02453 0.00243 0.02441 0.01841 0.00358 0.00036 0.00356 0.00271
9 Expanding p=1 VAR N N Y N N Y N 0.02454 0.00249 0.02441 0.01842 0.00358 0.00036 0.00356 0.00271
10 Expanding p=2 VAR N N N N N N N 0.02454 0.00247 0.02441 0.01842 0.00358 0.00038 0.00356 0.00271
23 Rolling p=4 VAR N N N N N N N 0.02455 0.00106 0.02453 0.01842 0.00357 ‐0.00006 0.00357 0.00267
41 Expanding p=12 VAR N N N N N N N 0.02448 0.00182 0.02441 0.01854 0.00349 0.00012 0.00349 0.00256
125 Expanding p=1 MSVAR(1) ‐1PC 0.01931 0.001963 0.01921 0.01989 0.00422 0.00029 0.00421 0.00316

B Expanding p=0 IID 0.02557 0.00237 0.02546 0.01892 0.00381 0.00058 0.00377 0.00284
Total 0 0 5 0 0 3 3

No Predictability

Real Bond Returns Real T bill Returns
Rank

Window 
length

Number 
of lags

Predictors included

First PC of all predictors
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Table 6 

Best Models and Selected Benchmarks Ranked According to Recursive 12-month Ahead Predictive Performance  
for Cumulative Real Asset Returns (Between t+1 and t+12) 

 
Panel A – Real Stock Returns 

Model Div. Yield Short Rate Term Spread Default Spr. Inflation IP Growth Unempl. RMSFE Bias St. Dev. MAFE
1 Expanding p=0 MSI N N N N N N N 0.15991 0.00334 0.15987 0.12393
2 Rolling p=4 VAR Y Y Y N N N N 0.17958 0.02535 0.17778 0.14521
3 Rolling p=4 VAR Y Y Y N N Y N 0.17916 0.02265 0.17773 0.14564
4 Rolling p=4 VAR Y N Y N Y N N 0.17970 0.02573 0.17785 0.14537
5 Rolling p=4 VAR Y N Y N Y Y N 0.17926 0.02292 0.17779 0.14576
6 Expanding p=4 VAR N N Y N N N N 0.18118 ‐0.02611 0.17929 0.14514
7 Rolling p=4 VAR N N Y N N N N 0.18192 ‐0.01029 0.18163 0.14365
8 Expanding p=4 VAR N N Y N N Y N 0.18033 ‐0.02454 0.17866 0.14435
9 Rolling p=4 VAR N N Y N N Y N 0.18141 ‐0.00664 0.18129 0.14354
37 Expanding p=12 VAR N N N N N N N 0.19437 ‐0.01701 0.19362 0.15045
70 Expanding p=12 VAR N N Y N N N N 0.20224 ‐0.02780 0.20032 0.16256
106 Expanding p=1 MSVAR(1) ‐1PC N N N N N N N 0.15198 0.05183 0.14287 0.11689

B Expanding p=0 IID 0.17971 0.00089 0.17971 0.13774
Total 4 2 9 0 2 4 0

No Predictability

Rank
Window 
length

Number 
of lags

Predictors included Real Stock Returns

 
 

Panel B – Real Bond and 1-month T-Bill Returns 

Model Div. Yield Short Rate Term Default Inflation IP Unempl. RMSFE Bias St. Dev. MAFE RMSFE Bias St. Dev. MAFE
1 Expanding p=0 MSI N N N N N N N 0.09223 0.02065 0.08989 0.07128 0.02153 0.00221 0.02142 0.01728
2 Rolling p=4 VAR Y Y Y N N N N 0.09823 0.01478 0.09711 0.07577 0.02020 0.00325 0.01994 0.01309
3 Rolling p=4 VAR Y Y Y N N Y N 0.09859 0.01334 0.09769 0.07644 0.02058 0.00344 0.02029 0.01329
4 Rolling p=4 VAR Y N Y N Y N N 0.09824 0.01486 0.09711 0.07578 0.02020 0.00320 0.01995 0.01308
5 Rolling p=4 VAR Y N Y N Y Y N 0.09861 0.01339 0.09769 0.07646 0.02058 0.00342 0.02029 0.01329
6 Expanding p=4 VAR N N Y N N N N 0.09327 0.01398 0.09221 0.07200 0.02165 0.00003 0.02165 0.01750
7 Rolling p=4 VAR N N Y N N N N 0.09381 0.00559 0.09364 0.07225 0.02169 ‐0.00385 0.02135 0.01755
8 Expanding p=4 VAR N N Y N N Y N 0.09311 0.01414 0.09203 0.07210 0.02191 0.00062 0.02190 0.01771
9 Rolling p=4 VAR N N Y N N Y N 0.09390 0.00632 0.09369 0.07217 0.02171 ‐0.00332 0.02146 0.01743
37 Expanding p=12 VAR N N N N N N N 0.09296 0.01122 0.09228 0.07394 0.01786 0.00037 0.01785 0.01336
70 Expanding p=12 VAR N N Y N N N N 0.08382 0.00647 0.08357 0.06679 0.01848 0.00044 0.01848 0.01404
106 Expanding p=1 SVAR(1) ‐1P N N N N N N N 0.09263 0.02380 0.08952 0.07132 0.02263 0.00116 0.02260 0.01700

B Expanding p=0 IID 0.10457 0.02798 0.10076 0.07945 0.02694 0.00421 0.02661 0.02173
Total 4 2 9 0 2 4 0

Real Bond Returns Real T bill Returns

No Predictability

Rank
Window 
length

Number 
of lags

Predictors included
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Table 7 

Summary Statistics for Realized, Recursive Optimal Portfolio Weights (over the 1973:01 – 2008:12 Sample) Computed  
under Power Utility Preferences (γ = 5) 

T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

Model Lags DY Short Term Def. Infl. IP grw. Unempl.
MSI 0 N N N N N Y N 0.088 0.147 0.059 0.400 0.314 ‐0.086 0.512 0.539 0.027

Gaussian IID 0 0.173 __ __ 0.156 __ __ 0.671 __ __
Exp. VAR 1 Y N N N N N N ‐0.143 ‐1.064 ‐0.921 0.422 0.290 ‐0.132 0.721 1.774 1.053
Exp. VAR 1 N N N Y N N Y ‐0.179 ‐1.097 ‐0.918 0.436 0.302 ‐0.134 0.743 1.795 1.052
Exp. VAR 1 N N N Y N Y Y ‐0.873 ‐0.254 0.619 0.880 0.206 ‐0.674 0.993 1.048 0.055
Exp. VAR 1 N N N Y N N N ‐0.884 ‐0.262 0.623 0.884 0.204 ‐0.681 1.000 1.058 0.058
Exp. VAR 1 N N N Y N Y N ‐0.848 ‐0.278 0.570 0.934 0.298 ‐0.636 0.915 0.980 0.065
Exp. VAR 2 Y Y N N N N Y ‐0.865 ‐0.294 0.570 0.944 0.306 ‐0.638 0.921 0.989 0.068
Rolling VAR 1 ‐0.665 ‐0.468 0.197 1.154 0.855 ‐0.299 0.511 0.613 0.101

MSVAR(1)‐1PC 1 0.177 0.171 ‐0.006 0.292 0.291 ‐0.001 0.531 0.538 0.007

DY Short Term Def. Infl. IP grw. Unempl.
MSI 0 N N N N N Y N 1.375 1.368 0.111 1.053 1.048 0.167 0.653 0.584 0.151

Gaussian IID 0 0.197 __ __ 0.201 __ __ 0.063 __ __
Exp. VAR 1 Y N N N N N N 2.634 2.671 0.357 2.247 2.169 0.226 1.242 1.520 0.524
Exp. VAR 1 N N N Y N N Y 2.650 2.684 0.358 2.243 2.162 0.226 1.246 1.519 0.524
Exp. VAR 1 N N N Y N Y Y 2.834 2.614 0.387 2.480 2.280 0.422 1.171 1.183 0.107
Exp. VAR 1 N N N Y N N N 2.846 2.628 0.384 2.466 2.263 0.421 1.179 1.193 0.108
Exp. VAR 1 N N N Y N Y N 2.830 2.614 0.333 2.460 2.250 0.402 1.159 1.187 0.099
Exp. VAR 2 Y Y N N N N Y 2.846 2.632 0.330 2.450 2.237 0.400 1.170 1.199 0.101
Rolling VAR 1 4.436 4.314 0.203 4.063 3.837 0.327 1.117 1.176 0.168

MSVAR(1)‐1PC 1 1.589 1.581 0.103 1.109 1.120 0.149 1.773 1.772 0.125

DY Short Term Def. Infl. IP grw. Unempl.
MSI 0 N N N N N Y N 5.186 5.118 0.175 3.746 3.763 0.378 2.013 1.641 0.286

Gaussian IID 0 0.629 __ __ 0.648 __ __ 0.200 __ __
Exp. VAR 1 Y N N N N N N 8.294 8.473 1.185 6.639 6.451 0.743 3.915 4.494 1.667
Exp. VAR 1 N N N Y N N Y 8.505 8.488 1.185 6.677 6.375 0.737 3.878 4.560 1.665
Exp. VAR 1 N N N Y N Y Y 8.729 8.164 1.080 7.062 6.417 1.191 3.648 3.777 0.251
Exp. VAR 1 N N N Y N N N 8.799 8.347 1.061 7.024 6.229 1.172 3.687 3.858 0.255
Exp. VAR 1 N N N Y N Y N 8.523 8.026 1.017 6.997 6.227 1.138 3.578 3.689 0.202
Exp. VAR 2 Y Y N N N N Y 8.680 8.201 1.012 6.946 6.248 1.141 3.686 3.750 0.208
Rolling VAR 1 13.69 13.54 0.659 11.77 10.65 1.052 3.488 3.863 0.509

MSVAR(1)‐1PC 1 4.710 4.705 0.215 3.552 3.537 0.330 5.875 5.900 0.329

No Predictability

Lagged real asset returns only

1‐month T‐bills Long‐term Bonds Stocks
Predictors Included

Sample Mean of Portfolio Weights

First PC of all predictors

Sample Standard Deviation of Portfolio Weights

First PC of all predictors

Empirical 90% Range

First PC of all predictors

No Predictability

Lagged real asset returns only

No Predictability

Lagged real asset returns only
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Table 8 

Best Models and Selected Benchmarks Ranked According to Average Recursive Certainty Equivalent Return Obtained  
from Optimal Strategic Asset Allocation Choices Under Power Utility Preferences (γ = 5) 

 

CER 
Rank

Model Lags DY Short Term Default Infl. IP grw. Unempl. Horizon
Mean returns 

(yearly)
95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Volatility 
(yearly)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Sharpe 
ratio

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

CER (% 
Ann.)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Skew Kurtosis

1 MSI 0 N N N N N Y N 60 11.056 7.704 15.749 21.208 13.387 29.028 0.460 0.336 0.576 7.955 4.869 8.730 1.236 6.324 0.510
2 Gaussian IID 0 60 8.523 7.210 11.250 12.773 11.016 14.530 0.565 0.391 0.745 5.512 4.867 6.219 0.574 3.171 0.054
3 Exp. VAR 1 Y N N N N N N 60 22.231 12.368 33.855 53.683 27.239 80.128 0.390 0.298 0.482 3.713 ‐3.925 11.571 2.151 12.643 1.581
4 Exp. VAR 1 Y N N N N Y N 60 13.544 7.174 20.852 34.828 13.065 56.591 0.352 0.213 0.496 3.271 ‐4.065 9.544 2.726 18.289 1.583
5 Exp. VAR 1 N N N Y N N Y 60 14.000 7.406 21.604 35.770 13.759 57.781 0.355 0.214 0.486 3.245 ‐3.636 10.307 2.326 17.917 1.590
6 Exp. VAR 1 N N N Y N Y Y 60 12.561 6.414 19.467 33.793 12.164 55.421 0.333 0.197 0.457 3.140 ‐3.014 9.075 2.308 15.180 1.586
7 Exp. VAR 1 N N N Y N N N 60 12.810 6.502 19.901 34.572 12.811 56.333 0.333 0.205 0.455 3.139 ‐3.212 9.691 3.028 25.382 1.592
33 MSVAR(1)‐1PC 1 60 10.836 6.131 16.241 28.846 19.456 38.236 0.331 0.211 0.468 2.379 1.463 5.068 1.133 4.954 1.238
77 Exp. VAR 2 N N N Y N Y N 60 14.771 8.083 19.595 58.898 32.969 84.827 0.134 0.144 0.319 0.846 ‐4.670 6.055 1.950 6.164 1.652
121 Rolling VAR 1 60 5.424 2.316 7.612 27.465 11.763 43.167 0.132 0.020 0.282 ‐0.189 ‐0.993 0.553 1.666 7.439 2.364

60 11.670 5.655 15.863 52.161 28.071 76.251 0.109 0.099 0.310 ‐0.288 ‐0.956 0.402 1.737 6.080 2.345
60 8.220 2.558 11.834 53.950 30.059 77.841 0.100 0.018 0.228 ‐0.537 ‐0.949 ‐0.117 1.610 5.195 3.507

1 Gaussian IID 0 1 6.425 2.775 10.087 11.282 10.369 12.195 0.454 0.277 0.623 6.253 2.431 10.286 0.172 3.143 0.065
2 MSI 0 N N N N N N N 1 7.596 0.203 12.098 13.078 7.947 18.209 0.481 0.337 0.623 5.935 0.820 11.495 1.170 4.797 0.376
3 Exp. VAR 1 1 13.769 0.521 20.315 36.924 26.275 47.718 0.338 0.208 0.475 5.240 ‐5.430 15.904 2.313 14.483 1.611
4 Exp. VAR 1 N N N N N Y N 1 13.744 0.206 20.451 37.454 26.770 48.356 0.332 0.200 0.475 3.602 ‐7.388 15.954 0.484 3.230 1.627
5 Exp. VAR 1 Y N N N N N N 1 13.715 0.094 20.477 38.479 27.414 49.286 0.323 0.186 0.445 3.287 ‐9.046 15.783 1.520 8.569 1.628
6 Exp. VAR 1 N N N N N N Y 1 14.334 0.194 21.358 39.507 28.987 50.292 0.330 0.205 0.448 2.791 ‐8.477 14.876 2.168 11.441 1.598
7 Exp. VAR 1 Y N N N N Y N 1 13.634 ‐0.326 20.559 38.817 27.787 49.679 0.318 0.197 0.454 2.105 ‐9.721 13.730 1.860 7.921 1.633
51 MSVAR(1)‐1PC 1 1 5.601 ‐5.333 11.565 13.289 9.199 17.380 0.324 0.137 0.506 1.934 ‐29.831 30.440 0.033 6.779 1.197
57 Rolling VAR 1 1 13.459 ‐3.586 21.944 40.608 17.966 63.250 0.299 0.170 0.439 ‐0.981 ‐18.782 18.374 2.628 20.567 2.410
106 Exp. VAR 2 Y N Y N N Y N 1 22.670 ‐0.039 33.985 53.214 27.401 79.028 0.402 0.267 0.533 ‐7.446 ‐39.132 27.068 1.947 11.349 2.525

1 18.087 ‐4.173 28.986 48.669 26.668 70.671 0.106 0.206 0.470 0.214 ‐6.656 7.716 1.423 7.976 2.562
1 16.208 ‐10.378 29.064 65.151 26.766 103.536 0.109 0.088 0.386 ‐2.619 ‐10.687 4.887 1.448 7.662 4.143

Predictors Total 5 0 1 4 0 7 3

First PC of all predictors

Avg. monthly 
turnover (adj.)

Median Expanding VAR performance
Median Rolling VAR performance

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio CER

First PC of all predictors

No Predictability

Lagged real asset returns only

Lagged real asset returns only

Median Expanding VAR performance
Median Rolling VAR performance

No Predictability

Lagged real asset returns only

 
Note: in the table performance statistics are boldfaced when these are the best (maximum for mean, volatility, Sharpe ratio, CER, and skewness; minimum for 
kurtosis) among all the econometric models considered (including those not covered by the table). Because models are ranked in the table on the basis of their 
CERs, it is possible that the best model under other metrics may fail to appear in the table. 



 51

Table 9 

Best Models and Selected Benchmarks Ranked According to Average Recursive Certainty Equivalent Return Obtained  
from Optimal Strategic Asset Allocation Choices Under Power Utility Preferences (γ = 2 and 10) 

γ = 2 

CER 
Rank

Model Lags DY Short Term Default Infl. IP grw. Unempl. Horizon
Mean returns 

(yearly)
95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Volatility 
(yearly)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Sharpe 
ratio

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

CER (% 
Ann.)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Skew Kurtosis

1 MSI 0 N N N N N N N 60 27.226 ‐51.895 75.274 29.962 ‐6.409 66.333 0.865 0.678 1.053 10.234 4.852 15.161 0.602 3.203 0.294
2 Gaussian IID 0 60 22.101 5.293 32.912 25.634 9.155 42.113 0.811 0.548 1.062 9.512 6.248 13.069 1.010 3.810 0.279
3 MSVAR(1)‐1PC 1 60 25.386 14.223 38.382 33.954 23.219 44.689 0.709 0.592 0.807 6.420 3.055 9.999 1.252 4.826 1.898
4 Exp. VAR 4 Y N Y N N Y Y 60 29.613 ‐5.830 58.645 101.024 49.546 152.503 0.280 0.076 0.502 4.784 ‐2.509 12.435 0.562 3.015 6.834
5 Exp. VAR 4 N N Y N Y Y Y 60 36.174 ‐2.796 69.525 108.011 57.720 158.303 0.323 0.090 0.543 3.954 ‐4.741 13.572 0.497 3.495 3.503
6 Exp. VAR 1 N N N N N Y N 60 29.639 ‐0.388 56.090 80.687 31.248 130.127 0.351 0.174 0.535 3.754 3.245 4.227 0.667 4.562 1.454
7 Exp. VAR 1 60 29.232 0.486 54.943 78.380 30.688 126.072 0.356 0.191 0.537 3.674 3.153 4.191 0.719 4.899 1.435

60 27.344 ‐4.457 53.918 89.468 39.123 139.814 0.291 0.084 0.496 ‐0.487 ‐0.590 ‐0.391 0.617 3.804 2.856
60 23.778 ‐7.079 48.083 91.513 35.608 147.418 0.246 0.051 0.454 ‐0.680 ‐0.741 ‐0.613 0.671 4.162 6.046

1 Gaussian IID 0 1 10.217 ‐12.869 24.163 11.209 7.421 14.998 0.796 0.488 1.130 9.945 8.105 11.695 ‐0.047 4.351 0.262
2 MSI 0 N N N N N N N 1 14.183 ‐18.787 35.407 26.232 ‐16.758 69.223 0.123 ‐0.039 0.302 7.427 4.502 10.586 ‐0.116 5.866 1.302
3 Exp. VAR 1 1 13.467 ‐19.712 30.135 45.053 ‐6.725 96.832 0.270 0.143 0.405 6.355 ‐0.713 14.033 0.927 5.549 1.498
4 MSVAR(1)‐1PC 1 1 11.494 ‐6.702 21.482 16.202 12.240 20.163 0.629 0.462 0.789 4.343 ‐0.156 9.104 ‐0.696 6.045 1.789
5 Exp. VAR 1 N N N N N Y N 1 13.441 ‐21.295 30.701 45.709 ‐7.042 98.461 0.266 0.139 0.395 4.268 ‐3.455 12.385 0.729 3.553 1.491
6 Exp. VAR 1 N N N N N N Y 1 14.034 ‐22.298 32.055 48.243 ‐3.027 99.514 0.264 0.139 0.399 3.946 ‐4.810 11.922 1.087 3.334 1.806
7 Exp. VAR 1 N N N N N Y Y 1 14.025 ‐22.167 31.905 48.975 ‐2.220 100.169 0.260 0.129 0.391 0.545 ‐8.333 9.600 0.850 4.179 1.736

1 18.567 ‐23.173 58.833 78.469 4.408 152.531 0.220 0.078 0.352 ‐1.393 ‐4.936 2.300 1.724 8.455 8.230
1 17.607 ‐29.458 60.324 128.295 48.761 207.828 0.127 ‐0.002 0.270 ‐10.433 ‐14.635 ‐6.189 2.004 9.903 19.610

Predictors Total 1 0 2 0 1 5 4

First PC of all predictors

Avg. monthly 
turnover (adj.)

Median Expanding VAR performance
Median Rolling VAR performance

Median Expanding VAR performance
Median Rolling VAR performance

No Predictability

Predictors Included Annualized Mean Annualized Volatility Sharpe Ratio CER

No Predictability

Lagged real asset returns only

Lagged real asset returns only

First PC of all predictors

 
γ = 10 

CER 
Rank

Model Lags DY Short Term Default Infl. IP grw. Unempl. Horizon
Mean returns 

(yearly)
95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Volatility 
(yearly)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Sharpe 
ratio

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

CER (% 
Ann.)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Skew Kurtosis

1 MSI 0 N N N N N N N 60 5.377 4.973 5.784 9.007 8.406 9.593 0.453 0.239 0.653 6.191 5.480 6.919 0.419 3.120 0.025
2 Gaussian IID 0 60 6.011 5.361 6.670 14.291 13.149 15.400 0.330 0.189 0.467 4.734 4.132 5.375 0.881 3.101 0.192
3 Exp. VAR 1 Y N N Y N Y Y 60 8.072 2.457 11.591 34.190 ‐11.890 80.270 0.198 0.017 0.387 2.233 1.601 2.893 2.451 15.131 0.810
4 Exp. VAR 1 Y N N Y N Y N 60 7.123 2.387 10.181 28.314 ‐6.471 63.100 0.206 0.033 0.398 2.215 1.648 2.849 2.229 13.883 0.805
5 Exp. VAR 1 Y N N Y N N Y 60 8.011 2.330 11.596 34.299 ‐12.973 81.572 0.196 ‐0.009 0.404 2.207 1.609 2.883 2.828 20.507 0.810
6 Exp. VAR 1 Y N N Y N N N 60 7.103 2.366 10.170 28.515 ‐8.260 65.291 0.204 ‐0.017 0.421 2.191 1.543 2.738 1.940 9.564 0.808
55 MSVAR(1)‐1PC 1 60 4.566 3.570 5.576 22.048 20.301 23.698 0.148 ‐0.021 0.322 1.239 ‐1.444 4.301 0.453 3.077 0.634

60 7.938 1.626 11.667 38.149 ‐10.753 87.051 0.174 0.041 0.298 ‐4.590 ‐4.739 ‐4.397 2.355 15.841 1.144
60 3.771 ‐0.275 5.976 25.999 0.874 51.124 0.095 ‐0.026 0.206 ‐4.709 ‐4.822 ‐4.606 1.664 9.149 1.675

1 Gaussian IID 0 1 3.694 1.860 5.558 5.571 5.137 6.011 0.430 0.270 0.607 5.981 2.655 9.209 0.299 4.356 0.025
2 Exp. VAR 1 1 9.578 1.161 15.300 18.599 13.102 24.130 0.445 0.330 0.579 4.873 ‐3.935 14.444 2.229 16.704 0.800
3 MSI 0 N N N N N N N 1 4.552 2.086 7.006 7.413 6.669 8.195 0.439 0.267 0.603 4.784 3.803 5.828 ‐0.253 5.931 0.239
4 Exp. VAR 1 N N N N N Y N 1 9.562 0.859 15.485 18.859 13.468 24.422 0.438 0.310 0.569 2.619 0.326 4.829 0.541 4.726 0.809
5 Exp. VAR 1 Y N N N N N N 1 9.542 0.835 15.372 19.353 13.753 24.946 0.426 0.290 0.545 2.601 0.276 4.789 2.534 19.959 0.809
6 Exp. VAR 1 N N N N N N Y 1 9.955 0.831 16.158 19.871 14.554 25.420 0.436 0.298 0.566 2.459 0.417 4.868 0.509 3.790 0.794
27 MSVAR(1)‐1PC 1 1 5.891 ‐0.783 10.059 14.749 12.789 16.663 0.311 0.135 0.462 0.713 ‐1.937 3.224 0.354 4.038 0.504

1 12.399 ‐1.729 21.572 28.729 22.439 35.456 0.386 0.240 0.532 ‐0.175 ‐11.059 10.536 1.400 12.197 1.162
1 10.663 ‐6.213 21.374 38.776 27.842 51.003 0.241 0.101 0.389 ‐4.967 ‐51.081 41.182 1.382 12.674 1.730

Predictors Total 5 0 0 4 0 3 3

Avg. monthly 
turnover (adj.)

Median Expanding VAR performance
Median Rolling VAR performance

Sharpe Ratio CER

No Predictability

Median Expanding VAR performance
Median Rolling VAR performance

Predictors Included Annualized Mean Annualized Volatility

First PC of all predictors

No Predictability
Lagged real asset returns only

First PC of all predictors

 
Note: in the table performance statistics are boldfaced when these are the best (maximum for mean, volatility, Sharpe ratio, CER, and skewness; minimum for 
kurtosis) among all the econometric models considered (including those not covered by the table). 
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Table 10 

Recursive Out-of-Sample Portfolio Performance from Alternative Classes of Models Ranked According to  
Average Certainty Equivalent Return (γ = 5) 

 

CER 
Rank

Model Horizon
Annualized 

mean 
returns

95% 
Conf. Int. 

‐‐ LB

95% 
Conf. Int. 
‐‐ UB

Annualized 
volatility

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Sharpe 
ratio

95% 
Conf. Int. 

‐‐ LB

95% 
Conf. Int. 
‐‐ UB

CER (% 
Annualized)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Skew Kurtosis

1 MS‐BIC 60 10.647 6.151 14.372 20.613 13.837 28.944 0.453 0.310 0.584 8.132 4.745 9.641 1.201 5.719 0.597
2 Gaussian IID 60 8.523 7.210 11.250 12.773 11.016 14.530 0.565 0.391 0.745 5.512 4.867 6.219 0.574 3.171 0.054
3 MS‐AIC 60 9.736 5.607 16.008 28.086 17.803 43.354 0.300 0.253 0.543 2.572 1.883 5.528 1.062 4.644 1.100
4 Expanding VAR‐BIC 60 11.448 0.334 16.238 50.570 7.794 93.347 0.201 ‐0.071 0.469 0.280 ‐6.213 7.513 0.726 6.147 1.572
5 Expanding VAR‐AIC 60 10.549 ‐0.249 15.114 49.258 7.659 90.856 0.188 ‐0.129 0.464 ‐0.820 ‐3.739 2.463 0.927 9.150 2.058
6 Rolling VAR‐BIC 60 20.607 0.067 29.398 44.956 20.596 69.315 0.429 0.159 0.692 ‐2.326 ‐3.763 ‐1.017 ‐0.662 4.051 3.428
7 Rolling VAR‐AIC 60 20.404 ‐0.139 29.181 44.968 20.841 69.095 0.425 0.135 0.690 ‐2.326 ‐3.670 ‐0.867 ‐0.608 3.375 3.477

1 Gaussian IID 1 6.425 2.775 10.087 11.282 10.369 12.195 0.454 0.277 0.623 6.253 2.431 10.286 0.172 3.143 0.065
2 MS‐BIC 1 7.567 0.916 12.023 14.778 6.539 18.312 0.424 0.351 0.636 5.956 1.579 12.237 1.344 4.004 0.405
3 MS‐AIC 1 5.709 ‐7.772 12.012 15.238 9.344 17.894 0.289 0.130 0.555 2.161 ‐27.966 32.862 0.070 4.641 0.928
4 Expanding VAR‐BIC 1 12.710 ‐13.031 25.751 15.677 5.132 26.221 0.728 0.813 1.378 0.057 ‐6.498 7.034 0.402 6.093 2.005
5 Expanding VAR‐AIC 1 9.651 ‐21.260 26.109 14.832 4.551 25.112 0.563 0.421 1.007 ‐0.729 ‐3.690 2.544 0.336 6.316 1.884
6 Rolling VAR‐BIC 1 15.271 ‐31.411 40.679 22.057 ‐0.923 45.037 0.633 0.554 1.075 ‐1.804 ‐3.151 ‐0.340 0.668 14.910 1.189
7 Rolling VAR‐AIC 1 15.459 ‐31.567 40.927 22.225 ‐0.616 45.067 0.637 0.548 1.097 ‐1.804 ‐3.186 ‐0.556 1.018 14.513 1.213

Annualized Mean Annualized Volatility Sharpe Ratio CER Average 
monthly 

turnover (adj.)

 
Note: in the table performance statistics are boldfaced when these are the best (maximum for mean, volatility, Sharpe ratio, CER, and skewness; minimum for 
kurtosis) among all the econometric models considered (including those not covered by the table). Because models are ranked in the table on the basis of their 
CERs, it is possible that the best model under other metrics may fail to appear in the table. 
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Table 11 

Recursive Out-of-Sample Portfolio Performance from Alternative Classes of Models Ranked According to  
Average Certainty Equivalent Return (γ = 2 and 10) 

γ = 2 

CER 
Rank

Model Horizon
Annualized 

mean 
returns

95% 
Conf. Int. 

‐‐ LB

95% 
Conf. Int. 
‐‐ UB

Annualized 
volatility

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Sharpe 
ratio

95% 
Conf. Int. 

‐‐ LB

95% 
Conf. Int. 
‐‐ UB

CER (% 
Annualized)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Skew Kurtosis

1 MS‐BIC 60 26.445 ‐7.161 43.056 29.941 9.618 60.205 0.462 0.378 0.547 10.844 7.920 13.967 0.730 2.904 0.883
2 Gaussian IID 60 22.101 5.293 32.912 25.634 9.155 42.113 0.811 0.548 1.062 9.512 5.248 14.069 1.010 3.810 0.279
3 MS‐AIC 60 25.241 14.229 38.148 33.888 20.196 47.580 0.706 0.516 0.903 9.108 8.717 9.506 1.252 4.826 1.582
4 Expanding VAR‐BIC 60 15.710 7.103 20.962 50.518 6.159 94.878 0.285 0.097 0.459 4.968 4.251 5.684 1.807 11.690 2.698
5 Expanding VAR‐AIC 60 10.977 1.814 16.506 53.133 3.505 115.973 0.182 0.020 0.337 4.911 4.265 5.574 2.468 18.837 2.037
6 Rolling VAR‐BIC 60 17.691 0.703 27.555 47.479 18.696 76.262 0.345 0.094 0.570 4.156 4.050 4.264 1.701 9.054 3.548
7 Rolling VAR‐AIC 60 17.321 0.250 27.183 47.387 18.253 76.521 0.338 0.094 0.592 4.154 4.044 4.267 1.694 8.813 3.947

1 Gaussian IID 1 10.217 ‐12.869 24.163 11.209 7.421 14.998 0.796 0.488 1.130 9.945 8.105 11.695 ‐0.047 4.351 0.262
2 MS‐BIC 1 13.232 ‐18.501 35.275 25.068 4.465 48.416 0.476 0.168 0.781 7.945 4.111 11.823 ‐0.075 5.670 1.234
3 MS‐AIC 1 11.824 ‐7.223 20.484 16.596 12.196 19.916 0.634 0.292 0.968 4.954 ‐0.075 10.724 ‐0.206 6.951 1.439
4 Expanding VAR‐BIC 1 35.867 ‐8.982 62.119 46.319 16.191 76.447 0.746 0.624 0.867 3.316 1.349 5.302 2.651 16.638 2.512
5 Expanding VAR‐AIC 1 47.641 ‐16.465 95.395 62.537 30.043 95.031 0.741 0.621 0.872 ‐5.093 ‐7.318 ‐3.011 2.034 9.040 2.510
6 Rolling VAR‐BIC 1 83.918 ‐11.056 112.716 80.972 33.552 128.393 1.020 0.898 1.150 ‐25.359 ‐27.105 ‐23.434 2.755 17.632 4.653
7 Rolling VAR‐AIC 1 84.931 ‐10.644 113.299 81.649 34.790 128.509 1.024 0.913 1.149 ‐25.453 ‐27.234 ‐23.648 1.824 7.981 4.712

Annualized Mean Annualized Volatility Sharpe Ratio CER Average 
monthly 

turnover (adj.)

 
γ = 10 

CER 
Rank

Model Horizon
Annualized 

mean 
returns

95% 
Conf. Int. 

‐‐ LB

95% 
Conf. Int. 
‐‐ UB

Annualized 
volatility

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Sharpe 
ratio

95% 
Conf. Int. 

‐‐ LB

95% 
Conf. Int. 
‐‐ UB

CER (% 
Annualized)

95% Conf. 
Int. ‐‐ LB

95% Conf. 
Int. ‐‐ UB

Skew Kurtosis

1 MS‐BIC 60 4.961 3.749 6.086 9.748 9.221 11.123 0.376 0.215 0.602 6.452 5.518 7.262 0.563 3.310 0.309
2 Gaussian IID 60 6.011 5.361 6.670 14.291 13.149 15.400 0.330 0.189 0.467 4.734 4.132 5.375 0.881 3.101 0.192
3 MS‐AIC 60 4.246 2.532 6.237 22.615 19.757 24.935 0.130 ‐0.001 0.334 2.515 1.960 3.151 0.583 3.666 0.486
4 Expanding VAR‐BIC 60 9.125 2.990 12.892 38.479 9.724 67.234 0.203 0.101 0.316 0.645 0.459 0.825 2.606 11.911 0.921
5 Expanding VAR‐AIC 60 12.774 4.028 18.030 53.824 24.436 83.212 0.213 0.124 0.299 0.625 0.490 0.749 2.493 11.013 1.034
6 Rolling VAR‐BIC 60 23.939 10.911 31.844 67.879 45.116 90.641 0.334 0.233 0.441 0.582 0.517 0.652 1.551 6.598 1.521
7 Rolling VAR‐AIC 60 24.519 11.213 32.741 69.663 46.728 92.599 0.333 0.232 0.424 0.581 0.518 0.653 1.523 6.514 1.564

1 Gaussian IID 1 3.694 1.860 5.558 5.571 5.137 6.011 0.430 0.270 0.607 5.981 2.655 9.209 0.299 4.356 0.025
2 MS‐BIC 1 4.081 1.685 6.926 6.392 4.732 8.053 0.435 0.248 0.610 5.050 3.925 6.007 0.113 3.936 0.310
3 MS‐AIC 1 5.946 ‐0.248 11.087 13.828 11.268 17.388 0.336 0.112 0.458 1.038 0.017 2.097 0.219 4.703 0.404
4 Expanding VAR‐BIC 1 9.173 ‐9.925 19.576 19.457 12.311 26.603 0.405 0.238 0.561 0.063 ‐12.494 12.616 0.017 7.737 1.636
5 Expanding VAR‐AIC 1 9.465 ‐5.022 19.619 14.150 8.381 19.919 0.577 0.416 0.749 ‐1.843 ‐16.323 11.420 ‐0.156 5.040 1.246
6 Rolling VAR‐BIC 1 8.758 ‐12.898 16.638 18.400 9.292 27.508 0.405 0.232 0.557 ‐4.301 ‐9.222 0.541 0.773 8.994 2.119
7 Rolling VAR‐AIC 1 8.992 ‐12.686 16.836 18.521 9.428 27.614 0.415 0.252 0.571 ‐6.616 ‐11.392 ‐1.962 0.786 7.510 2.179

Annualized Mean Annualized Volatility Sharpe Ratio CER Average 
monthly 

turnover (adj.)

 
Note: in the table performance statistics are boldfaced when these are the best (maximum for mean, volatility, Sharpe ratio, CER, and skewness; minimum for 
kurtosis) among all the econometric models considered (including those not covered by the table). 
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Table 12 

Model Specification Search Extended to Heteroskedastic Markov Switching Models 

 

Regimes 
(k)

VAR(p) 
order

Hetero‐
skedastic

Negative 
Log‐

Likelihood

Linearity 
test

AIC BIC H‐Q
No. 

Param.
Saturati
on ratio

Div. Yield Short Rate Term Default Inflation IP Growth Unempl.

2 0 N N N N N N N No 5760.781 93.588*** ‐17.1035 ‐17.0096 ‐17.0671 14 143.79
2 1 N N N N N N N No 5814.817 71.124*** ‐17.2364 ‐17.0214 ‐17.1531 32 62.91
2 Restr. Y Y Y Y Y Y Y No 5857.283 50.067*** ‐17.3272 ‐17.0316 ‐17.2127 177 37.91
2 1 Y Y Y Y Y Y Y No 5917.327 170.155*** ‐17.4168 ‐16.9195 ‐17.2242 277 24.22
2 0 N N N N N N N Yes 5831.461 237.145*** ‐17.2960 ‐17.1618 ‐17.2440 20 100.65
2 1 N N N N N N N Yes 5900.596 223.462*** ‐17.4742 ‐17.2189 ‐17.3753 38 52.97
2 Restr. Y Y Y Y Y Y Y Yes 5929.339 194.180*** ‐17.5241 ‐17.1881 ‐17.3940 232 28.92
2 1 Y Y Y Y Y Y Y Yes 5926.268 188.038*** ‐17.4255 ‐16.8880 ‐17.2173 332 20.21

3 0 N N N N N N N No 5806.042 184.109*** ‐17.2174 ‐17.0764 ‐17.1628 21 95.86
3 1 N N N N N N N No 5832.473 87.215*** ‐17.2950 ‐17.0934 ‐17.2169 30 67.10
3 Restr. Y Y Y Y Y Y Y No 5874.515 84.531*** ‐17.3577 ‐17.0150 ‐17.2250 191 35.13
3 1 Y Y Y Y Y Y Y No 5992.346 320.192*** ‐17.5301 ‐16.7842 ‐17.2412 391 17.16
3 0 N N N N N N N Yes 5886.030 356.074*** ‐17.5368 ‐17.2650 ‐17.4209 33 61.00
3 1 N N N N N N N Yes 5939.016 319.066*** ‐17.5493 ‐17.1457 ‐17.3930 60 33.55
3 Restr. Y Y Y Y Y Y Y Yes 5964.330 264.162*** ‐17.5897 ‐17.1663 ‐17.4257 301 22.29
3 1 Y Y Y Y Y Y Y Yes 6043.570 422.640*** ‐17.6470 ‐16.8205 ‐17.3269 501 13.39

3 1 No 5916.483 246.035*** ‐17.4649 ‐17.0819 ‐17.3166 76 35.32
3 1 No 5918.162 234.000*** ‐17.4431 ‐16.9996 ‐17.2713 111 30.23
3 1 No 5924.246 240.398*** ‐17.4344 ‐16.9305 ‐17.2392 163 24.70
3 1 Yes 5954.353 321.775*** ‐17.5420 ‐17.0784 ‐17.3625 96 27.96
3 1 Yes 5974.655 346.986*** ‐17.5757 ‐17.0516 ‐17.3727 141 23.79
3 1 Yes 5981.964 355.834*** ‐17.5707 ‐16.9861 ‐17.3443 163 24.70

4 0 N N N N N N N No 5821.464 232.941*** ‐17.2622 ‐17.0606 ‐17.1841 30 67.10
4 1 N N N N N N N No 5899.049 239.133*** ‐17.4121 ‐16.9681 ‐17.2401 66 30.50
4 Restr. Y Y Y Y Y Y Y No 5897.340 130.181*** ‐17.3989 ‐16.9958 ‐17.2428 207 9.72
4 0 N N N N N N N Yes 5907.185 404.384*** ‐17.4640 ‐17.1415 ‐17.3391 48 41.94

First two principal components
First three principal components

First principal component
First two principal components
First three principal components

Four‐State Models

Predictors Included

Two‐State Models

Three‐State Models

Three‐State MSVAR Models with Principal Components of Predictors
First principal component

 
* significance at 10%, ** significance at 5%, *** significance at 1%. 
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Table 13 

Full-Sample Estimates of Three-State Heteroskedastic Markov Switching Multivariate Model 
for Real Stock, Bond, and 1-month T-Bill Returns 

 
 

Real 1‐month T‐bill 
Returns

Real Long‐Term Bond 
Returns

Real Stock Returns

1. Mean returns 0.0992** 0.2340** 0.5855**
2. Correlations/Volatilities
Real 1‐month T‐bill Returns 0.3171**
Real Long‐Term Bond Returns 0.2869* 2.2257**
Real Stock Returns 0.1228 0.1638* 4.3405**

Real 1‐month T‐bill 
Returns

Real Long‐Term Bond 
Returns

Real Stock Returns

1. Mean returns
Bear State ‐0.0560* ‐0.0390 ‐0.1506
Equity Bull/Low Volatility State 0.1249** 0.2066* 1.1074**
Bond Bull State 0.4702** 1.2043** 0.6018
2. Correlations/Volatilities
Bear State
Real 1‐month T‐bill Returns 0.3291**
Real Long‐Term Bond Returns 0.2042* 2.4192**
Real Stock Returns 0.0734 ‐0.0179 5.1063**
Equity Bull/Low Volatility State
Real 1‐month T‐bill Returns 0.2085*
Real Long‐Term Bond Returns 0.1873 1.5593**
Real Stock Returns 0.2153* 0.2683* 3.4589**
Bond Bull State
Real 1‐month T‐bill Returns 0.3297**
Real Long‐Term Bond Returns 0.3979** 3.4523**
Real Stock Returns ‐0.0321 0.4327** 4.8150**
3. Transition probabilities Bear State Equity Bull/Low Volatility State Bond Bull State
Bear State 0.9514** 0.0359* 0.0127
Equity Bull/Low Volatility State 0.0284* 0.9714** 0.0002
Bond Bull State 0.0265 0.0018 0.9717**

Bear State Equity Bull/Low Volatility State Bond Bull State
Ergodic Probabilities 0.3648 0.4689 0.1662
Average Duration (in months) 20.6 35.0 35.3

** = significant at 1% size or lower; * = significant at 5% size.

Panel A ‐ SINGLE STATE MODEL 

Panel B ‐ THREE‐STATE MODEL

Panel C ‐ MARKOV CHAIN PROPERTIES, THREE‐STATE MODEL
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Figure 1 

Preliminary Evidence of Serial and Cross-Serial Correlation for Real Asset Returns 
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Figure 2 

Smoothed Regime Probabilities from Three-State Homoskedastic Markov Switching Model 
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Figure 3 

Recursive Mean Estimates from Three-State Homoskedastic Markov Switching Model 
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Figure 4 

Recursive Coefficient Estimates from VAR(1) Linear Predictability Model:  Real Stock Returns 
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Figure 5 

Recursive Coefficient Estimates from VAR(1) Linear Predictability Model:  Real Bond Returns 
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Figure 6 

Recursive Coefficient Estimates from VAR(1) Linear Predictability Model:  Real Bond Returns 
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Figure 7 

Smoothed Regime Probabilities from Three-State Homoskedastic MSVAR(1) Model 
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Figure 8 

Dynamics of Portfolio Weights under Markov Switching vs. Full VAR(1), γ = 5 
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Figure 9 

Dynamics of Portfolio Weights under MS VAR(1) vs. Best Performing VAR(1), γ = 5 
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Figure 10 

Dynamics of Hedging Demands under Markov Switching vs. Full VAR(1), γ = 5 
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Figure 11 

Smoothed Regime Probabilities from Three-State Heteroskedastic Markov Switching Model 
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Figure 12 

Dynamics of Portfolio Weights under Heteroskedastic Markov Switching Model, γ = 5 
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