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number of linear and non-linear models for UK stock and bond returns. We estimate Markov switching,
threshold autoregressive (TAR), and smooth transition autoregressive (STR) regime switching models,
and a range of linear specifications in addition to univariate models in which conditional heteroskedasticity
is captured by GARCH type specifications and in which predicted volatilities appear in the conditional
mean. The results demonstrate that U.K. asset returns require non-linear dynamics be modeled. In
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employed to test the null hypothesis of equal predictive accuracy across competing models.
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1. Introduction

Empirical research over the past two decades has seen a huge increase in interest in non-linear dynamics in
macroeconomic and financial time-series. Although the belief in the non-linear (asymmetric, across up- and
down-moves) behaviour of the business cycle has been long-held (e.g., Keynes, 1936), it is only over this
recent time frame that a consistent body of work has been established examining and testing such dynamics.
Arguably, this was initiated by business cycle researchers (see, for example, DeLong and Summers, 1986;
Falk, 1986; Sichel, 1989, 1993; Terésvirta and Anderson, 1992; Beudry and Koop, 1993) and was then
extended to the search for non-linear dynamics within financial variables, including stock returns (see, for
example, Martens, Kofman and Vorst, 1998; Perez-Quiros and Timmermann, 2000; Leung et al, 2000;

Maasoumi and Racine, 2002; Shively, 2003 and Bredin and Hyde, 2005) and interest rate dynamics (e.g.,
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Balke and Fomby, 1997; Enders and Granger, 1998; van Dijk and Franses, 2000; Enders and Siklos, 2001;
McMillan, 2004).

Concurrently, empirical research has also been devoted to the examination of the links between macroe-
conomic and financial variables and in particular to tests of whether the former can forecast the latter.
Although, this line of research has an established history (see, for example, Keim and Stambaugh, 1986;
French, Schwert and Stambaugh, 1987; Fama and French, 1989; Balvers, Cosimano and McDonald, 1990;
Cochrane, 1991; Campbell and Hamao, 1992), interest has been renewed following the work of Pesaran
and Timmermann (1995), who forcefully argued in favour of predictability. Interestingly, a portion of this
research has examined in depth the forecastibility of UK stock and bond returns (or interest rates), see
e.g., Artis, Banerjee, and Marcellino (2005), Pesaran, Schuermann, and Smith (2009), and Pesaran and
Timmermann (2000). The main implications of this literature when applied to UK data have been similar
to the typical findings of the ever expanding research concerning linear predictability from macroeconomic
variables to asset returns (see e.g., Ang and Bekaert, 2007 or Timmermann, 2008): linear predictability
tends to be “elusive”, i.e., subject to frequent structural changes and very hard to exploit in practice
because—due to the presence of breaks and instability—it tends to be hard to forecast the appearance and
structure of the very predictability patterns one would like to exploit.

Inevitably, these two lines of research merged, with the search for financial asset return, and particularly
stock return, predictability from macroeconomic variables within a non-linear framework. This work largely
began in earnest with the papers by Perez-Quiros and Timmermann (2000), McMillan (2001) and Maasoumi
and Racine (2002) who used prominent non-linear models, such as the Markov-switching, smooth-transition
and threshold regression approaches. However, it remains an open question whether the non-linear approach
to predictability modelling provides any substantial benefit over the linear alternative. That is, within the
many forecasting exercises that have appeared in the literature, the evidence is not definitive as to whether
improvements in forecasting power are always evident with the non-linear approach. An equivalent way to
approach this question is by asking whether there can be any value in trying to estimate more complicated
models that capture the existence of regimes and instability in the linear predictability relationships that
connect macroeconomic variables to financial returns. Thus, the aim of this paper is to reconsider the
evidence regarding the usefulness of non-linear forecasts for UK stock and bond returns. In particular, we
wish to seek answer to the question of whether non-linear modelling of prediction regressions linking financial
asset returns to macroeconomic variables may provide for significantly improved forecasting performance
over a linear alternative. Previous evidence for the UK has suggested that such an approach may prove
fruitful, although the approach adopted here is intended to be more systematic and complete than the
previous research, both in terms of the models considered and the forecast evaluation metrics.

With regard to previous research on UK data, there is now a long list of papers that have investigated
whether nonlinear econometric models may provide any payoffs in the forecasting space when applied to
financial returns. Needless to say, by using different data, sample periods, research designs (to perform their

recursive out-of-sample assessments), and especially heterogeneous modelling approaches, these papers have



reached wildly different conclusions as to the usefulness of nonlinear models. For instance, Sarantis (2007)
has predicted UK stock returns using smooth transition autoregressive (STR) models. McMillan (2001)
demonstrates that a smooth-transition model for dividend yield predictability of stock returns provides
an improved in-sample fit over a linear predictive regression. McMillan (2003) similarly demonstrates the
usefulness of the smooth-transition model in predicting UK stock returns with a variety of macroeconomic
variables, thus using a similar context to this paper. However, the forecasting exercise in McMillan (2003)
is limited in terms of breadth of models entertained and of metrics employed (considering only the root
mean squared error) in comparison to the extensive exercise here. Bredin and Hyde (2005) show that the
improvement in forecasting performance of the non-linear smooth transition model for UK stock returns
(as well as seven other markets) is largely limited to direction (sign) forecasting, but overall, there is
little improvement over the linear model. Further evidence on the need to model non-linear dynamics is
provided by Guidolin and Timmermann (2003, 2005) and Guidolin and Hyde (2008, 2009) who employ a
Markov-switching approach. Guidolin and Timmermann (2003) demonstrate that accounting for regimes
in U.K. stock returns leads to improved forecasting performance, while Guidolin and Timmermann (2005)
establishes the need for nonlinear dynamics in both stock and bond returns and that the predictability from
such models yields considerable effects on optimal asset allocationE

Needless to say, even though each of the papers listed above did pursue a valuable goal in exploring
in depth the forecasting performance (or the economic value, for instance in dynamic asset allocation
applications) of specific nonlinear families of models, there are inherent limits in a literature that has so far
refrained from performing a systematic assessment of the predictive, out-of-sample potential of simple linear
models, relatively complex nonlinear frameworks, and a few standard benchmarks typical of the forecasting
literature. This paper seeks to improve upon the existing literature on the predictability of UK financial
series in two ways. First, we consider a wider set of non-linear models than the above cited papers, including
both the smooth-transition and Markov-switching models, but also including threshold and ARCH models.
As we have seen, most of these models has been considered in isolation by specific papers, but a genuine,
wide-ranging horse race involving these alternative non-linear frameworks is novel. In fact, we also introduce
a new family of logistic smooth-transition models in which the transition variable is not simply selected
to correspond to one of the predictors, but it is instead assumed to be either a linear prediction for the
asset return series to be forecast or a GARCH-style variance prediction to be jointly obtained (estimated)
with the smooth-transition conditional mean model itself. Second, we entertain a wider range of forecast
evaluation metrics than considered in the above papers, including standard measures of the forecast error,
measures of forecast equality and measures of the forecast sign. In particular, we do not limit ourselves to

rank models based on their recursive out of sample predictive accuracy, but also deploy an array of formal

'There is also a growing literature that has shown the existence of nonlinear dynamics in higher-order moments in UK
financial returns, especially in stock return volatility. See e.g., Alexander and Lazer (2009). However, in our paper we are
mostly interested in forecasting the level (mean) of asset returns, although it is clear that economic applications will often

equally benefit from precise and timely forecasts of the entire density of returns, as in Guidolin and Timmermann (2005).



testing procedures to test whether our UK financial data contain any evidence allowing us to reject the null
of no differential predictive accuracy between linear and non-linear models.

To highlight our key findings we find strong evidence that non-linear models not only provide better
predictive performance than linear specifications for both stocks and bonds do, but also that that perfor-
mance is significantly better in a statistical sense. In particular, we find convincing evidence in support
of Markov switching-type non-linear models. Other nonlinear frameworks (e.g., a Logistic STR model in
which switches are governed by one lag of a short-term interest rate) offer appreciably accurate forecasting
performances, but these other models that have been widely studied in the literature rarely represent a
threat to the accuracy of relatively simple, Markov switching predictive regressions. In particular, Diebold-
Mariano tests show that Markov switching models consistently outperform all other models, both linear
and non-linear. The exceptions are few and essentially simply that under a square loss function it may
hard to tell apart the Markov switching models from a few Logistic STR models. While this finding holds
irrespective of the assumed loss function (square and the linex) in the case of bond return forecasts, this
is not the case for stock return forecasts, where the finding of diffuse rejections of the null hypotheses of
equal predictive accuracy involving the Markov switching models applies only under a square loss function.
In a sense, this can be taken to imply that bond returns are “easier” to predict (better than simple linear
models do) than stock returns are. Additional (Giacomini and White, 2006) tests that avoid some of the
statistical limitations affecting the classical Diebold-Mariano tests, lead to another interesting qualification,
that also applies to bond return forecasts: the data may not contain sufficient evidence of heterogeneous
recursive predictive performance at a 12-month horizon, when models seem instead to become very hard
to tell apart. However, our baseline finding that for short prediction horizons, bond returns (and to some
extent, stock returns) can be predicted more accurately using nonlinear frameworks (and especially Markov
switching models) appears robust to all these tests and further robustness checks, detailed in the main body
of the paper.

The remainder of the paper is set out as follows: Section two presents the various forecasting models
considered while section three provides details of the evaluation metrics. Section four describes the data.
The main empirical results and several robustness checks are presented and analysed in section five. Section

six concludes.

2. The Forecasting Models

Our objective is to investigate a comprehensive set of alternative linear and non-linear specifications. The
selected models cover standard benchmarks, linear models, GARCH and non-linear regime switching and

threshold models. Since many of these models are common in the literature we only review them briefly.



2.1. Linear, GARCH-type and benchmark models

In the class of linear models, we first consider a simple linear regression that projects asset returns at time

t+h (h > 1) on the macroeconomic variables that belong to the time ¢ information set (Z;)
Tien = 0+ (B X + € (1)

where j equals either s (stocks) or b (bonds), X; = [rf dyy Aiy TERM,; As; Aoily mp Aipy Augl’, and e{+h
is a martingale difference sequence The unknown parameters a{b and 5{; are indexed by both the forecast
horizon, h, and by the asset market under analysis, j, whether stock or bond. Potential autoregressive
effects in Equation are accounted for by the inclusion of the current, time t value of the asset return
7‘{ , in the vector of predictors X;. Linear models such as Equation are the bedrock of the predictability
literature, see Guidolin and Ono (2006), Rapach, Wohar, and Rangvid (2005) and references therein.

The choice of prediction variables is driven by prior empirical literature on macro factors and pre-
dictability. While much initial evidence derives from the U.S., e.g., Chen, Roll and Ross (1986) and Fama
and French (1988, 1989), in the U.K., Poon and Taylor (1991), Clare and Thomas (1994), Black and Fraser
(1995) and Pesaran and Timmermann (2000) establish the importance of several macroeconomic factors
for explaining and predicting stock returns including inflation, industrial production, oil price changes, the
term spread, interest rates, and the dividend yield. Moreover, these variables relate to our intuitive financial
understanding as these are the variables that would impact upon the cash flows or discount rates of the
financial assets and therefore we would expect there to be a potential relationship. For example, variables
such as output or unemployment would have a direct impact on a firm’s earnings and therefore its dividend
payments and hence an effect on its share price. Similarly, variables such as inflation and interest rates
would have a direct impact on the discount rate at which cash flows are discounted to establish the price
of both stocks and bonds, and of course, each variable may have an indirect impact upon cash flows and
discount rates.

We also consider augmenting the linear specification by allowing time-varying predictions of asset return

volatility to affect conditional mean forecasts. Specifically we estimate GARCH-in-Mean models
Ti+h = oy, + (87)' X + 76g+h + 6§+h> (2)

where &g 45, 1s a prediction at time ¢ of the volatility of the return of asset j at time ¢+ h. We consider three
alternative specifications for the conditional variance, a GARCH(1,1), an EGARCH(1,1) and a Threshold
GARCH(1,1). Further we also estimate each of these specifications assuming the residuals are distributed
(i) normally and (ii) student-t. In the latter case, the parameter capturing the number of degrees of freedom

is also estimated by MLE.

2The predictor variables contained with the vector X, are precisely defined in Section 4. Running quickly through the list,
they are the lagged asset return, the dividend yield, the change in short-term nominal rate, the riskless term spreads, the

change in log-effective exchage rate, the change log-price of oil, the inflation rate, and the change in unemployment rate.



Finally, we supplement these linear frameworks, with a number of standard benchmarks prevalent in
the literature. These are a simple a random walk with drift model and a basic autoregressive model, both

with and without the addition of GARCH-in-Mean effects.

2.2. Markov Switching Models

The financial press often refers to the existence of financial market states as “bull” and “bear” markets, see
Guidolin and Timmermann (2005). Consequently we allow the predictive relationship between stock and
bond returns and a set of macroeconomic variables to depend on a set of unobservable states that follow a

first-order Markov process:

Tien = s, T ( iL,St)/Xt +en €anlZe ~ N0, by q,), (3)

J

where the constant 5,5 the regression coefficients in ﬁh’ s,» and the variance Ry,

s, all depend on an
unobservable state variable 5’{ , an indicator variable taking values 1,2,...k, where k is the number of
states. We consider both the homoskedastic case i.e., the variance is independent of the state (MS model,

W g =h

RS, ++n) and also the presence of heteroskedasticity in the form of regime-specific variances (MSH

model). We assume that Sg follows a first-order Markov chain with moves between states governed by a

constant transition probability matrix, P/, with generic element pgl defined as
Pr(S/,, =1|S{ =i)=p), i,l=1,.,F, (4)

i.e., the probability of switching to state [ between ¢ and t 4+ 1 given that at time ¢ the market is in state
1. We impose and estimate simple two-state predictive regressions in which £ = 2. From an economic
viewpoint, this restriction implies that financial markets may switch between two alternative predictive
environments, so that, for instance, while some predictors may affect subsequent asset returns in one of the
two regimes, this does not have to be the case in the remaining regime. Moreover, while a given predictor
may affect future asset returns with a sign in one regime, the model is flexible enough to accommodate an

impact with opposite sign in the other regimeﬁ

2.3. Threshold and Smooth Transition Regime Switching Models

An alternative approach to Markov switching models where the switching variable remains unobservable
is the family of non-linear regime-switching models where the transition variable is observed. First, we

consider the Heaviside threshold (TAR) model of Tong (1983) that allows for abrupt switching depending

3We also impose two further restrictions. First, we estimate the properties of the Markov state separately for stock and
bond markets in each country (hence the notation S{ ). Second, when the variance is allowed to depend on the state, we restrict

both the conditional mean framework and the conditional variance to be governed by a single state variable, Sg .



on whether the transition variable is above or below the threshold:

rngh = [Itjo‘i,l +(1- Itj)o‘?z,z] + Ugﬂ{m +(1-1) iL,Q]/Xt + €§+h Engh ~ IIN(0, hy,),

{ 1 it g(Xy) > ¢y

I, =
0 if g(X¢) <¢

(5)

i.e. each of the two regimes applies dependent on whether g(X;), a function of the predictors in X;, exceeds
or not an estimated threshold cjﬁ For instance, the logic of a TAR model may be as follows: high IP
growth has a negative effect on future bond returns as long as monetary policy is tight, as revealed by the
fact that short-term rates exceed some (endogenously determined) threshold ¢;; otherwise high IP growth
rates forecast positive future bond returns.

In addition to TAR models we also consider smooth transition regression models. Whilst the TAR model
imparts an abrupt non-linear behavior dependent on the threshold variable(s), the smooth-transition model
allows for possible gradual movement between regimes. These models capture two types of adjustment.
First, the parameters of the model change depending upon whether the transition variables is above or
below the threshold value. Second, the parameters of the model change depending upon the distance

between the transition variable and the threshold value. The general STR model is given by
rngh = a;z,l + ( %,1)/Xt + [04?1,2 - 05%71 + ( ﬁg)lxt —( iJ)lXt]F(e;Xt) + €g+h 6i+h ~ IIN(0, h%)» (6)

where 0 < F(e/X;) < 1 is the transition function and the i-th variable in X; (selected by the product
e/ X;) acts as the transition variableﬁ The smooth transition is perhaps theoretically more appealing than
threshold models that impose an abrupt switch in parameter values since traders are likely to switch their
trading patterns at slightly different times (thus leading to smooth transitions in asset return dynamics)
rather than all simultaneously (abrupt transition).

The STR model allows different types of market behavior depending on the nature of the transition
function. Among the possible transition functions, the logistic has received considerable attention in the
literature because it allows differing behavior depending on whether the transition variable is above or
below the threshold value and is given by the following, where the full model is referred to as the Logistic
STR (or LSTR) model ,

FleXe) = L+ oexp(—pi(eX; — ;) =0 (7)

p; is an estimated smoothing parameter and ¢; is the estimated threshold. This function allows the param-

eters to change monotonically with €/X;. In the limit, as p; — oo, F(e/X;) becomes a Heaviside function

and Equation @ reduces to the TAR model; as p; — 0, Equation @ becomes linear.

“In the simplest case the function g(-) simply extracts one (threshold) variable from X;. Our baseline TAR model is
homoskedastic, i.e., governed by independently and identically normally distributed random shocks. We have also experimented

with heteroskedastic versions, finding qualitatively similar out-of-sample prediction performance.
®As with the TAR model, F(e;X;) can be generalized to F(g(X;)).



Still within the STR class, the exponential function allows differing behavior depending on the distance

from the threshold value, with the resulting model referred to as the Exponential STR (or ESTR) model,
F(e}X;) =1 —exp(—p;(€}X; —¢;)?) p; >0, ()

where the parameters in Equation change symmetrically about ¢; as €/X; changes. If p; — oo or p; — 0
the ESTR model becomes linear, while capturing non-linear dynamics requires finite values for p;. This
model implies that the dynamics obtained for values of the transition variable close to ¢; differ from those
obtained for values that largely differ from c;.

Given the difficulty in estimating the smoothing parameter, p;, we follow Teradsvirta and Anderson
(1992) and scale the smoothing parameter by the standard deviation of the transition variable in the case
of LSTR, and by the variance of the transition variable in the ESTR case. Further, a key decision is
the choice of the transition variable. Over the in-sample period we estimate each of the TAR, LSTR and
ESTR models in turn with a different transition variable corresponding to each predictor in X; = [ri dys
Aiy TERM; As; Aoily m Aipy Aug]’ and select the variable that produces the smallest sum of squared
residuals. In order to select the threshold value for TAR models, we follow the general procedure in Chan
(1993) where possible threshold values (from the middle 70% of the ordered series) are selected with the
models in Equations and @ estimated and the threshold chosen as the one that minimizes the sum
of squared residuals. In addition to the above procedures we also consider a further transition variable:
a prediction of the dependent variable rather than just using one (or a combination of) the predictors.
Specifically, we estimate a linear version of the predictive regression model (i.e., Equation ) and obtain
the fitted values for the dependent variable, which are in turn used as the transition variable in the TAR
and STR models. These models are often abbreviated as TAR-SRF and STR-SRF in Section 5. Finally, we
also estimate a LSTR-GARCH model and allow the fitted GARCH(1,1) variance to act as the transition

variable

Tn = g+ (8 X+ log , —ag 4+ (8h )Xo — (8], ) X F(€iXy) + €)1,

. -1
h]_c.
1 ex —jt .J s 9
+ p(/)o_(hg))] (9)

in which e{ is assumed to be conditionally normal, and eg |Z; ~ N(0, h{ ), so that ng is standard normal. In

W = o+ +00h  FeX,) =

Equation @ the regimes switches are defined according to the fact that the volatility is currently predicted
to be high or low. Such a model is only estimable with the STR conditional mean model, where joint
estimation is required in order to obtain the transition value c;. Equation @ becomes comparable to
Markov switching heteroskedastic models in Equation because the second moment contributes to the
definition of the regime, along with the conditional mean. This models are abbreviated as STR-GARCH(1,1)
in Section 5[

In all models the delay parameter in the transition function is set to be equal to one rather than estimated since it is

recommended that the delay lag is no greater than the lag length of the explanatory variables, which is chosen to be one for
the case h = 1.



3. Evaluation Methodologies: Testing for Superior Predictive Accuracy

To evaluate the forecasting outcomes from the various linear and non linear models, we employ a wide array
of alternative performance measures and procedures for testing the null of equal predictive accuracy across
pairs of models. Here, we briefly describe these measures and testing methodologies.

Define the time t forecast error from model p, at horizon h, and for asset j (i.e., stocks or bonds) as

j,,u — .] Ajnu‘
Cotrh = Terh ~ Titrhs (10)

T

t 4, COMES from any of the 25 alternative models — linear and non-linear — defined in Section 2. For

where 7
each combination defined by market, model, and horizon, we proceed to compute six different measures of

prediction accuracy (“performance”):

1. Root Mean Squared Forecast Error (RMSFE). The RMSFE is computed as

T—h
4 1 .
Job — o
RMSFE" = || = > (elt)?, (11)
t=1
where T is the total sample size available for the recursive out-of-sample prediction exercise.

2. Forecast Error Bias. The bias is just the signed sample mean of all forecast errors:

Bzas = Z it” (12)

Clearly, a large, signed value of the bias indicates a systematic tendency of a forecast function to

either over- or under-predict asset returns.

3. Forecast Error Variance (FEV). While the definition is obvious,
2

= Z ei:f+h Bzasfl“]Q, (13)

T h Zett-I—h

one useful fact is that FEV}{’“ + [Biasi’”]2 = MSFE{;’“, i.e. large MSFEs (poor performance) may

. 1 T=h
BV = S (e ) -
t=1

derive from either high forecast error variance or from large average bias.

4. Mean Absolute Forecast Error (MAFE). The formula is similar to the RMSFE, with the differ-

ence that signs are neutralized using absolute values and not by squaring:

T—h

: 1 :
MAFEJ" = = 3" |elf,, | (14)

As it is well known, this statistics is more robust to the presence of outliers than RMSFE.



5. Mean Percent Forecast Error (MPFE). MPFE measures the sample mean of errors expressed

as a percentage of the realized values:

T—h ejvu
t,t+h

MPFE}* = (15)
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Similarly to the bias statistic, also MPFE is a signed measure of prediction accuracy — the only

difference being that MPFE is a scaled measure.

6. Success Ratio (SR). The success ratio is the proportion of times that the sign of r{ and of a forecast

from a given model p are the same:

T—h
: 1
Il ) )
SEE =1 Zt_l Lios it 5000 (16)

is an indicator variables that take unit value when 7/ . and 77t have the same

where I, ;  .ju t+h

Ten i ben >0}
sign. As often argued in empirical finance, for many trading strategies it is more important that a
forecast function may deliver predictions with a correct sign than predictions which are quantitatively
very accurate (i.e., it may be better to miss the forecast by much getting the sign of the future
return right than missing the sign and proposing a relatively accurate forecast with an incorrect sign

indication).

However a basic ranking of forecasting models based on any of these six measures is unlikely to prove
decisive: the fact that model M; proves more accurate than model Ms does not imply that the null hypoth-
esis that the difference between M7 and My is zero may be rejected in statistical terms. Consequently, we
employ four different methodologies to test whether any differences may be supported in statistical terms.

First, we consider the Mincer and Zarnowitz (1969) regression:

j — .] ] Ajn“‘ j,,lL
Tivh = Pho T Phalteen T Stitn (17)

where ff,’f 45, 1s a martingale difference sequence with constant variance O'g. A “good” (sometimes said to
be unbiased) forecast model implies that 90%,0 =0 and 4,0%71 = 1; and also the regression R? should be high,
ideally close to one (i.e., a good forecast function ought to explain most of the variation in the predicted
variable). Hence we report: (i) the R? from regression (L7); (i) the p-values of standard t-tests of the
separate null hypotheses that @io = 0 and 50{1,1 = 1; (iii) the p-value from an F-test of the composite
hypothesis that simultaneously cpi’o =0 and gp{m =1.

Second, Pesaran and Timmermann (1992) propose a non-parametric market-timing (PT) test to inves-
tigate whether a model has economic value in forecasting the “direction” of asset price movements. In fact,
one of the problems with the Mincer and Zarnowitz’s test is that its small-sample properties heavily rely on
parametric assumptions concerning gf 4, and has only a weak connection to the practical uses of forecasts

of stock and bond returns in financial markets. In particular, as discussed earlier, market traders may use
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forecasts not really to place bets based on the level of the forecast, but on their signs. The PT statistic
overcomes these limitations and is based on computing Pj’“ an estimate of the probability that r{ 4, and

its forecast rt i +h have the same sign “conditional” on independence of rt , from its forecast,
SN SV VI L D DIk
Py =P, P+ (1_Pr,h> (1_Pf,h>7
where
T 1 I
— DIsth — ,
= Z {r], >0} and Py = T_h ;I{f§:f+h>0}'
The PT statistic is then computed as

PTIH = h h ~ N(0,1), (18)

\/m (SR} - Var (P*)

where SR{L’” is the success ratio for model p at horizon h Using its asymptotic distribution, the PT

statistic is used to the null hypothesis that r{ 45, and fit ., are independently distributed. The connection
to our goals in this paper comes from noting that when rg 4, and fgf’ -, are independently distributed, clearly
model p has no predictive power for the sign of rf e

Third, we adopt Diebold and Mariano’s (1995) equal predictive accuracy test. This allows the testing of
whether two alternative forecasts My and My are statistically different. To derive the Diebold and Mariano
(DM) statistic, we first compute the difference between the loss functions of two competing models (initially

we consider a square loss function)ﬂ
2 2
Mi, Mo M M M M
dif i7" = L (eg t+li> L (ei t+f2L> = (eg t+f1L> - (eg t+f2z) ) (19)

with the DM statistic defined as

T

%h 2 foMl,Mg
i)

The standard error of the loss differential is calculated using the standard Newey-West estimator.

L N(0,1). (20)

My Mo
DMj,h =

van Dijk and Franses (2003, vDF) propose a weighted test of equal prediction accuracy. This modifi-
cation of the DM test assigns more weight to extreme observations, therefore testing if a model is able to
forecast outliers correctly. This may be of particular relevance in our case, predicting financial returns, given
large returns are not only important for risk averse investors (who assign a higher marginal utility weight
to losses than to gains) but also for regulatory purposes (e.g. value-at-risk and capital requirement issues).

vDF propose the following three types of weighting functions, W, which effectively penalize forecasts errors

“In order to calculate the PT test statistic, all the observations for th and its forecasts rt t+h cannot have the same sign
otherwise Var (SR{L”) =Var (P}JL ”) and the PT statistic is not defined.

8We also report results for an asymmetric (linex) loss function.
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for extreme observations in both tails, left tail onlyE] and right tail only,

(i) Wie = 1—o(r})/max{g(r])},
(i) Wor = 1—&(r)),
(iii) Wa; = ®(r)),

where ¢(-) is the probability density function of the forecast target variable, 7/, and ®(-) is the cumulative
distribution function of the forecast target variable. In practise, the probability density function in the first
weight is computed by applying a kernel smoothing method based on the normal kernel function while the
empirical cumulative distribution function is used for the other weights. vDF suggest employing a standard
Nadaraya-Watson kernel estimator to compute the ¢(-). Asin vDF (2003), we employ all observations of the
target variable in the whole sample period (1979:02-2007:01) to estimate ¢(-) and ®(-). Once a selection of
a weighting function Wj; is made, the DF statistics (sometimes also referred to as a modified, weighted-DM
statistic, W-DM), is given by a simple weighted average loss differential of two competing models, M; and

My, divided by its standard deviation,

1 2007:017hW . Mi,Ms
—F 100~ exdiffiy
D};J/\Iflll,Mz = 145—h ¢=1995:01 2Js ) (21)

5 (Wt x dif ft’}]/.f}l’MQ)

Here, the DF statistic is computed with a square loss function and the three different weighting functions
as in van Dijk and Franses (2003). Similar to the DM statistic, the DF statistic has an asymptotic standard
normal distribution under the usual assumption of forecasting errors. In particular, the following one-side
tests are performed

Ho: E W, x diff;};f}L’MQ] <0, E [Wt X diffﬁ;’MQ} >0,
which in words means that model M; outperforms (under-performs) model Ma.

Finally, Giacomini and White (2006, henceforth GW) argue that standard out-sample predictive ability
tests are not necessarily appropriate for real-time forecast methods. Given forecast errors are usually
generated from parametric models that have to be recursively estimated over time, any differential loss
function will be probably polluted by errors caused by estimation uncertainty concerning the parameters of
the underlying modelsF_U] GW shift the focus from the unconditional mean of differences in loss functions
(as in Equation ([20)) across prediction models to the conditional expectation of such differences across
forecast methods, i.e. from the null

H,: E [dz‘ffﬁ;’Mﬂ —0,

under true parameter values (i.e. probability limits of parameter estimates), to

H B, [difft{‘;;;m] —0,

°In financial applications, overweighting the ability of a model to predict outliers in the left tail (large negative returns)
may be particularly appealing.

19The Diebold and Mariano (1995) test was developed for the baseline case of no parameter uncertainty. Further, benchmarks
such as the random walk model do not require estimation of any parameters. Another advantage of GW tests is that they may

not suffer from biases when competing models are nested, see Corradi and Swanson (2007) and Golinelli and Parigi (2008).
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under the estimated parameters of models M; and Msy. GW’s approach delivers a few interesting payoffs,
for instance conditional tests directly account for the effects of parameter uncertainty by expressing the
null H) directly in terms of estimated parameters and fixed estimation WinOWSH

In the case h = 1 Giacomini and White (2006) exploit the fact that the null is equivalent to stating
that {dif f Ml’MQ} is a martingale difference sequence, implying that for all measurable functions g; in the

information set at time ¢ it should be [gt di f thMz

= 0 They show that given a set of ¢ measurable
functions g;, the null of equal conditional predictive ability (CPA) for a pair of models Mj, My can be
tested using the statistic

/

GWéMl’MQ(j, h) = (T — h) [Q(Z;MLMZ(].? h))} o

T
1 MiMs
e 22
t=1

T
1 Mi Mz
DL Q(y,h)],
t=1
(22)

where

M, M M, M A My, Mo . _ ~ M, M My, M
2N G =g dif Y Q(ZR ) = Y Cou 2R R), 2V G
Under regularity conditions, qwimm (j,h) ~ X?q)' The power properties of the tests obviously depend on
the choice of test functions in g;, although it is also clear that rejections of H, with respect to some set of
functions g; may give indications as to ways in which the forecasting performance could be improved. As
in Giacomini and White (2006), we set g; = [1 AdszMl’MQ] (g=2)and g =1 Adift(m’n’h) Adz’ft(ﬁ’n’h)

m,h m,h n,h
e e ™ MY, (¢ = 7).

3.1. The Pseudo Out-of-Sample Experiment

We consider a recursive pseudo out-of-sample experiment. We recursively estimate the 25 models defined in
Section 2 on an expanding window of data, starting from 1979:02-1995:01 and then proceeding to 1979:02-
1995:02, 1979:02-1995:03, etc. up to the last possible available sample, 1979:02-2007:01. An initial sample
of approximately 16 years of monthly observations guarantees the availability of a sufficient number of
observations even in the presence of a large number of parameters to be estimated (up to 24 in the case of
the MSH model). At each date we produce asset return forecasts for three alternative horizons, h = 1, 3 and
12 months. For instance, at the end of 1995:01 we compute forecasts for stock and bond returns for 1995:02,
1995:04, and 1996:01. This implies that for each combination of model, horizon, country, and asset-type
one will produce 145 — h forecasts to be recorded and used for evaluation purposes (i.e., 144 for 1-month,
142 for 3-month and 133 for 12-month horizon forecasts). In the interests of brevity we report results for

h =1 and 12 months only, although complete results are available from the Authors upon request.

HEormally, GW test is not inconsistent with an expanding estimation window provided that a rule is set for to stop the

process of window expansion before T' — oo.
2Tn the case h > 2, {dif ft5n?} is not a martingale difference sequence but Vg in the information set, {g: - dif f{';’}*}

should be “finitely correlated”, i.e. uncorrelated after a certain number of lags.
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4. Data

We use monthly data on asset returns and a standard set of predictive variables sampled over the period
1979:02 - 2007:01. The data are obtained from Datastream and Global Financial Database. The series
we collect are stock (r5'°°*) and bond (r?"?) returns, the log-dividend yield on equities (dy;), changes in
the short-term interest rate (3-month Treasury bill yields, Ai;), the term spread (T'erm;) defined as the
difference between long- (10 year) and the short-term (3-month bill) government bond yields, the change in
the effective log-exchange rate (As;), the CPI inflation rate (m;), changes in log-oil prices (Aoil;), industrial
production growth (AIP;), and the change in the unemployment rate (Au;). Inflation, industrial production
growth and the unemployment rates are seasonally adjusted using the X-11 adjustment procedure of Stock
and Watson (2003). An Appendix provides details of the data sources, series construction and the series
mnemonics.

Summary statistics for all the variables are presented in Table 1. In common with our understanding
of financial asset returns, both stock and bond returns are characterised by a large standard deviation
compared to their mean and significant non-normality (in particular excess kurtosis). Table 1 provides
summary statistics for the data. Data on nominal stock and bond returns display typical features well-
known in the literature. In annualized terms, mean stock returns are 14.3% with a volatility of 16.3%; mean
bond returns are 9.9% with an annualized volatility of 5.2%. While the bond return series does exhibit
significant autocorrelation in both levels and squares, the stock returns do not, which is not atypical when
equity returns are sampled at a monthly frequency. With regard to the predictor variables, each exhibits
varying degrees of non-normality. Again, with respect to the financial-based predictors (the change in the
short-term rate and the term spread) these have a standard deviation larger than their mean. Noticeably,
there is also large variability in our (monthly) measure of output. Finally, most of the predictor variables
exhibit significant autocorrelation in both levels and squares. Moreover, this may lend some support to the
view of Ferson and Harvey (1991) that asset returns predictability arises from predictability in the variables
that form the information set, i.e. variables such as output and interest rates, which in part determine stock

returns are themselves predictable.

5. Out-of-Sample Results

Table 2 presents an overview of the forecast results for one- and twelve-step ahead forecasting exercises. In
particular, separately for stocks and bonds, it presents the “top three” models on the basis of the different
forecast evaluation metrics of Section 3. This means that in correspondence to each metric and asset type
we have ranked the 25 models introduced in Section 2 and in the table we now report the three best models
in the ranking. With respect to stock returns, the Markov-switching models feature highly in the top two
or three best models across nearly all forecast metrics and for both one-step ahead and twelve-step ahead
forecasts. In particular, looking at the one-step ahead forecasts, the MS or MSH models rank in the top

two at the one-step ahead forecast ten out of a possible twelve times. In contrast, the smooth-transition
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models only rank as high as third or fourth, while ARCH-based models rank also quite well, especially
when combined within simple random walk benchmarks. Purely linear models only appear well down the
rankings. In the case of stocks, out of 36 available “top three” spots in the ranking (3 x 6 forecast criteria
x 2 horizons), MS or MSH appear 20 times. This is even more impressive than a 20/36 ratio, since it is
clear that MS and MSH may at most occupy 2 x 6 x 2 = 24 spots. To further stress how impressive this
ranking performance is, notice that the next best model is a Logistic STR model with switching variable
represented by the lagged T-bill rate, which appears 4 times out of a possible 12.

The qualitative findings in the case of prediction of bond returns are similar. The MS and MSH
models again perform well, being ranked in the “top three” models another 20 times out of a possible
24. Differently from before, smooth-transition models only achieve a “top three” status 3 times (if one
clusters together logistic and exponential STR models) and especially, ARCH models rank consistently in
the middle and lower orders. The purely linear homoskedastic model and a homoskedastic random walk
with drift perform quite well, ranking in the top three 4 times, while this count achieves 7 when the random
walk is augmented to include ARCH terms. Interestingly, these ranking exercises fail to find any systematic
differences across the rankings for predictive performances obtained for h = 1 and h = 12. Overall, these
results overwhelmingly support the superiority of the non-linear models and the Markov-switching model
in particular for forecasting UK stock and bond returns.

Table 3 presents the full set of results from which the summaries in Table 2 are distilled. Furthermore,
this table also presents some additional forecast evaluations. Panel A reports the evaluations of the stock
return forecasts for both ~ = 1 and 12. Panel B reports the same for bond returns. In particular, we present
forecast accuracy assessments using the PT and MZ techniques. The PT test, as with the success ratio,
focuses on forecasting the correct sign, and can be defined as a market-timing test. The MZ test is similar
in spirit to mean squared error based metrics and measures whether the models provide unbiased forecasts
and the extent to which they explain variation in actual returns. These results are again supportive of
non-linear models, and of Markov switching models in particular. Looking at stock returns the MS and
smooth-transition models notably perform well on the PT test for the one-step ahead forecasts, while these
models also produce the highest R-squared values in the MZ test. Even though the linear models do
perform reasonably well with regard to the individual coefficient results in the MZ test, suggesting that
these models do provide unbiased forecasts even if they are not the most accurate. The results for bond
returns are similar, with the Markov-switching models performing well on the basis of the PT test and the
R-squared in the MZ test while the linear based models perform better in terms of the coefficient results of
the MZ test though the joint hypothesis test strongly rejects the null in all cases. In fact, the MZ test leads
to a rather negative assessment of the performance of all regime switching models, including TAR, STR, and
Markov switching ones. These are all “rejected” in the sense that the null hypotheses of 9031,0 = 90{1,1 =0 are
all rejected, both in individual and joint tests, and with p-values which are essentially nil. On the contrary,
for bond returns it is especially the simplest models (such as AR(1), the random walk, and linear predictive

regressions) that most easily “pass” the MZ tests, especially at the h = 12 horizon.
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5.1. Tests of Equal Predictive Accuracy

Tables 2 and 3 report results under each of the 6 metrics described in Section 3 and additionally give results
for the application of the Pesaran-Timmermann and Mincer-Zarnowitz tests to each of the 25 predictive
models entertained in this paper (and in the earlier literature). However, as can be seen from these tables,
according to a number of forecast metrics the differences in performance between the best models and the
closest followers tends to be relatively small. For instance, it is doubtful whether the difference between
the MAFE of the second best performing model under h = 1 for stock returns (MSH, with a mean of
2.58%) may be substantially superior to the third best model (a predictive regression with t-GARCH(1,1)-
in mean effects, with a mean of 2.85%), especially in the light of the rather high monthly variance of UK
stock returns, 4.71%. However, the information in Tables 2 and 3 affords no opportunity to statistically
discriminate between these values. Therefore, Tables 4-6 present the various tests of equal predictive
accuracy outlined in Section 3. Specifically, Table 4 reports Diebold-Mariano test statistics using both a
squared (quadratic) loss function (above the diagonal) and an asymmetric linear exponential (linex) loss
function (below the diagonal). Table 5 presents the GW test results for ¢ = 2 above the diagonal and
q = 7 below the diagonal. Finally, Table 6 reports the van Dijk-Franses (henceforth vDF) tests when the
weighting functions are of types (ii) and (iii), i.e., Wy = 1 — CID(T‘{) and W3, = @(rg), weighting either the
left or the right tails of loss functions differences[™]

Starting with Table 4, the entries above the main diagonal have to be read in the following way: when
a model listed in a column significantly outperforms a model listed in the rows, the corresponding p-value
will be small, ideally smaller than a 0.05 threshold. Such a small p-value indicates that the null of equal
predictive accuracy under a given loss function, for a given asset return series, and at a given horizon can be
rejected. The entries below the main diagonal have to be read as: when a model listed in a row significantly
outperforms a model listed in a column (i.e., the null of equal predictive accuracy can be rejected), the
corresponding p-value will be smaller than a 0.05 threshold. In the table, we have in fact boldfaced all
p-values below or equal to 0.05. For instance, the boldfaced value of 0.004 on the top right corner of panel
A (h =1, stock return predictions) means that when the null of equal predictive accuracy for MSH and a
simple, homoskedastic linear predictive regression is tested under a square loss function, the DM statistic
yields a p-value of approximately 0.4%, which is highly statistically significant under all standard thresholds
common to applied work.

Table 4 overwhelmingly shows that the Markov switching models consistently outperform all other
models, both linear and non-linear. The exceptions are few and essentially simply that under a square
loss function it may hard to tell apart the Markov switching models (for which however, the null of equal
predictive accuracy cannot be rejected, when MS and MSH are compared) from the third model in the

rankings of Table 2, the Logistic STR in which the T-bill rate is the transition variable. Table 4 also

3In these tables, to save space and favour readability, we have reported results for only 20 models excluding a few variations

of the simple AR and random walk benchmarks that produced performances similar to their baseline versions.
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stresses a key difference between the test results for forecasts of stock vs. bond returns. In the latter
case, MS and MSH end up producing a statistically significant more accurate prediction performance than
most other models for both the square and the linex loss functions, this is not the case for stock return
forecasts, where the finding of diffuse rejections of the null hypotheses of equal predictive accuracy when the
benchmark is either MS and MSH applies only under a square loss function but not under an asymmetric,
linex loss. This may relate to the fact that stock returns have an asymmetric unconditional distribution
and—even though Markov switching models are superior in point forecasts—the large forecast errors in the
left tail that the left-skewness in stock returns may induce, ends up leading to a predictive performance that
is not statistically different under a linex loss function. Finally, while there is abundant evidence that the
Markov switching model provides a statistically significant forecast improvement over the alternate models,
there is very limited evidence that the other non-linear models significantly outperform the linear models.
This holds for both stock and bond returns, for both forecast horizons and under both the loss functions
covered by Table 4.

Table 5 reports results of GW tests. In this case we have used only a square loss function, although
results were qualitatively similar under a linex IOSS.IE The table shows test results in the form of p-values,
and for clarity we have once more boldfaced all p-values equal to or below 5%. Results above the main

f;\;;t’MQ]’ is set to include only two

diagonal concern the case in which the set of instruments g; = [1 Adif
lags of past changes in differences of loss functions (¢ = 2); results below the main diagonal concern the
case of ¢ = 7. The general tone of the implications of GW tests are similar to those from DM tests in Table
4: if there is any sign of sufficient evidence to reject the null of equal predictive accuracy, this evidence goes
in favor of Markov switching models. However, we notice two major differences comparing Tables 4 and 5.
First, and especially in the case of stock return predictions, when ¢ = 2 and h = 1, there seems to be now
some differences between MS and MSH, in the sense that while in most pair-wise comparisons most other
models gave a recursive predictive performance that was inferior to the simpler MS model, this was not the
case with respect to MSHE Second, GW test (for both ¢ = 2 and 7) signal the existence of substantial
heterogeneity between short- and medium-term forecasting performances. For h = 1, it remains possible
to tell apart a number of pairs of models, and the existence of sufficient evidence to reject the null of equal
predictive accuracy seems to spread beyond the comparisons involving MS and MSH. This is especially
obvious when the test is applied using long lags of past changes in loss function differentials, ¢ = 7. On
the contrary, for h = 12 there are very few pairs of models (cells) for which the null of equal predictive
accuracy may be rejected. The GW evidence therefore weakens to some extent the DM evidence that the
data contain sufficient evidence of heterogeneous recursive predictive performance at a 12-month horizon,

when models seem instead to become very hard to tell apart.

MDetailed results are available from the Authors upon request. The number of cells containing p-values below a 0.05 threshold

slightly diminishes when asymmetric loss functions are employed.
SHowever, even under ¢ = 2 and a 1-month horizon, the null of equal predictive accuracy between MS and MSH could not

be rejected with p-values of 0.53 and 0.64 for stocks and bonds, respectively.
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Table 6 reports results of the vDF tests. As before, results are shown as p-values and values below or
equal to 0.05 are boldfaced. Results above (below) the main diagonal concern the case in which the loss
differentials are weighted to apply penalties only to losses in the left (right) tail of the empirical distribution
of loss differences. Once more, we have used only a square loss function, although results were qualitatively
similar under a linex IOSSE Although the general qualitative tone of the results in the table are comparable
to table 4, where standard DM tests were applied, two differences stand out. First, in the case of stock
returns forecasts, when a weighting function that only considers loss differences in the left tail, it is clear
that there is considerable more power to tell the models apart in terms of their predictive accuracy. Even
without entering into much detail, it is clear that approximately half of the cells above the main diagonal
of panels A and B of Table 6 are boldfaced, indicating that the null of equal predictive accuracy could
not be rejected. However, in any case it remains the case that in all pair-wise tests, Markov switching
models turn out to be superior to the remaining models, including nonlinear models of the STR and TAR
typesm Yet it is interesting to see that under this weighting scheme, also nonlinear models such as Logistic
STR models with GARCH(1,1) errors and TGARCH(1,1)-in mean augmented predictive regressions may
often out-perform simple linear (often, homoskedastic) benchmarks when it comes to forecast stock returns
at both h = 1 and 12. Second, under a weighting function that instead attaches weights only to loss
differentials in the right tail, we notice an opposite effect, especially obvious at the short-end of the forecast
horizons: for both stock and bond return short-term predictions, it becomes hard to reject the null of
equal predictive accuracy for most pairs of models, including the Markov switching ones. All in all, Table
6 conveys the feeling that even when we weight standard DM tests to assign additional weight to either
one of the tails of the loss differentials, the basic finding that regime switching models outperform simpler

linear predictive regressions holds.

5.2. Robustness Checks

One simple criticism of our findings is that they may be highly sample specific, due to evaluating performance
across the entire out-of-sample period. To counter this and by means of a robustness test on the preceding
results we conduct a sub-sample exercise, where our sample is divided into three equal sub-samples — 1995:02-
1999:01, 1999:02-2003:01 and 2003:02-2007:01 — and the above forecast exercise is separately repeated on
each of these intervals@ Table 7 reports the predictive accuracy measures for stock and bond returns for
horizons h = 1 and 12. These results largely confirm our full sample results, in that the Markov switching
models outperform both the alternate non-linear and linear models over each of the samples and forecast
metrics. However, Table 7 allows us to notice that the weak instability of predictive performance that the

Markov switching models express, manifests itself in the following way: the third period (2003:02-2007:01)

6Detailed results are available from the Authors upon request. The number of cells containing p-values below a 0.05 threshold
slightly diminishes when asymmetric loss functions are employed.

17This remark can also be extended to bond return forecasts, but only as far as k = 1 is concerned.

8For h = 12 the sub-samples are 1996:01-1999:09, 1999:10-2003:05 and 2003:06-2007:01.
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is the one in which the distance between Markov switching models and the next best (nonlinear) models is
maximum. For instance, during the third period, for h = 1 MSH lowers the RMSFE vs. the best of the non-
Markov switching model (in this case, a t-GARCH(1,1)-in mean predictive regression) by 14%, the MAFE
by 8.4%, and increases the success ratio by 6.3%. On the contrary, the first sub-period (1995:02-1999:01) is
characterized by a good performance by the Markov switching models, that however fail to be classified as
“best” models according to the majority of the criteria. During the second sub-period (1999:02-2003:01) the
MS and MSH are systematically the more accurate models, but the distance from other strong nonlinear
competitors (such as a Logistic STR model with switching variable driven by one lag of the 1-month T-bill)
tends to be modest, for instance 4.2% according to RMSFE, 4.3% by MAFE, and an increase of 8.3% in the
success ratio@ We also repeat the DM, GW and DF tests over sub-periods, at least for the case of h = 1.
Again the findings are consistent across the sub-periods and supportive of our full sample analysism

A further criticism of the methods adopted here is that the distribution of the Diebold-Mariano may
be unknown in the presence of nested models. McCracken (2007) introduces a test statistic to compare
two nested models for one-step ahead predictive horizons, comparable to the DM statistic that applies
to non-linear models. We find our results are robust to accounting for nesting effects on the asymptotic
distribution of the DM statistic. The MS and MSH models remain significantly more accurate than all the
models they nest (i.e., linear models, random walk and AR(1)).

Finally to alleviate any concern that the van Dijk and Franses (2003) test statistics reported in Table
6 have employed strongly asymmetric weighting functions over either the left or right tail forecasts (loss
functions differences), we provide robust evidence that are findings are not unduly influenced by this as-
sumption. Table 8 reports the vDF tests under an additional weighting scheme which places extra weight
on both the left and right tails, i.e., when the weighting function Wy, = 1 — gb(rf)/ max{gb(r{)} is applied. In
this case, to save space, we report results for h = 1 above the main diagonal and results for h = 12 below the
diagonal. The results are largely consistent with those reported in Table 6: the Markov switching models
are superior to virtually all other models. However, differently from Table 6 (panels A and B), in Table 8
(panel A) we notice that when stock returns are the target of prediction, applying a weighting function that
over-weights loss differentials in the tails tends to greatly increase our ability to distinguish the predictive
accuracy of alternative models, in the sense that the null of equal accuracy may be rejected for more than
half of all possible pairs (and more, if one focusses on the lower, h = 12 panel). In particular, MS and MSH
turn out to be superior to most of the alternative nonlinear models when loss differences that correspond
to returns in the tails are adequately over-weighted. This may be one additional lesson: Markov switching
models are most useful—in the sense that they are easier to tell apart from both simple benchmarks and

other regime switching frameworks—when performance in both tails is of primary concern@

Ynterestingly, the superior predictive performance of MS and MSH tends to be more uniform at a h = 12 horizon.
20Results available from the authors on request.
'However, this interesting finding hardly applies to bond return predictions. Given the obvious differences between typical

dynamics and time series properties of stock and bond returns, it remains to be seen whether this apparent correspondence

between tail thickness and performance potential of Markov switching models extends beyond the UK data we have employed
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6. Conclusions

In this paper we provide a comprehensive examination of the comparative predictive performance of linear
and non-linear models for U.K. asset returns. In addition to basic linear models and standard autoregres-
sive benchmarks we consider GARCH and EGARCH models and allow for ARCH-in-mean effects in the
conditional mean. With respect to non-linear models we examine threshold, smooth transition and Markov
switching models. The evidence in the prior literature is somewhat piecemeal, only considering subsets of
these models, only stocks or bonds but rarely both, and a much smaller range of evaluation metrics and
accuracy tests. Consequently it fails to provide a consistent message as to which models produce the most
accurate forecasts of U.K. asset returns.

Our results provide a clear picture: that capturing non-linear effects in U.K. asset returns is important.
Moreover, the best predictive performance comes from Markov switching models. Not only is the predictive
performance of this class of models relatively better, it is also statistically significantly better. This finding
is particularly strong (i.e., uniformly obtained across different sample periods, different metrics, and alter-
native statistical tests of equal predictive accuracy) for short-term forecasts, especially of bond returns. Our
results show that independent of the chosen evaluation metric, predictive accuracy test, choice of sample

period or loss function Markov switching models consistently out-perform all other models.
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Data Appendix

Variable Source Mnemonic
Stock Return Total Market Index, Datastream TOTMKUK(RI)
100*[In( Py)-In(Py-y)]
Bond Return Total Bond Return Index, Global TRGBRGVM
100%[In( p,)-In( P, ;)] Financial Database
Dividend Yield Total Market Index, Datastream TOTMKUK(DY)
DY,
In
100
Change in Short-term 3 Month Treasury Bill (tb), ITGBR3D
interest rate Global Financial Database
th, -th, ,
Term Spread 10 Year Government Bond (gb), UKIo1...
gb, -tb, Datastream
Inflation Consumer Price Index, UKI64..F
100*[In( P, )-In( P,_,)] Datastream
t o Seasonally adjusted using Stock and
Watson (2003) procedure.
Industrial Production Industrial Production, Datastream UKI66..1G
100%[In( p,)-In( P, ;)] Seasonally adjusted using Stock and
Watson (2003) procedure.
Exchange Rate Nominal Effective Trade Weighted UKI.NEUE
100*[In( P, )-In( P,_,)] Exchange Rate, Datastream
Change in Unemployment rate (seasonally UNGBRM
Unemployment Rate adjusted), Global Financial Database
un,-un, ,
Change in Oil Prices World Crude Petroleum Price, WDI76AADF

100*[In( P,)-In( P;_4)]

Datastream
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Table 1
Summary Statistics for Stock and Bond Returns vs. Prediction Variables

The table reports a few summary statistics for monthly stock and long-term government bond return series, and the
macroeconomic variables employed as predictors of asset returns. The sample period is 1979:02 — 2007:01. All
returns are expressed in percentage terms. LB(j) denotes the j-th order Ljung-Box statistic. * denotes 5%
significance, ** significance at 1%.

Series Mean Median St.Dev. Skewness Kurtosis Jarque- LB4) LB(4)-
Bera squares
Asset Returns
Stock return 1.1885 1.8163 4.7071 -1.3903 10.0568 805.42+* 3.0887 2.2550
Bond return 0.8219 0.7790 1.4906 0.3709 5.1326 71.379%* 23.056%*  12.326*
Prediction Variables

Log dividend yield -3.2265  -3.2176 0.2583 -0.1225 2.2477 8.7639% 1225.5%%  1227.7**
A 3month T-bill yield -0.0208  -0.0106 0.5767 1.1832 9.9019 745.30%* 1.1626 45.915%*
Term spread 0.0534 -0.0500 1.6873 -0.3806 2.9551 8.1409* 1079.5%*%  939.66**
CPI inflation rate 0.3809 0.2963 0.3208 1.0395 3.9821 74.016%* 465.94**  587.23**
Industrial prod. growth 0.9869 1.4647 12.0630 -0.3860 4.1650 27.348** 16.913%F  19.932%*
Alog eff. exchange rate 0.0134 0.0370 1.6592 -0.3874 5.4494 92.396** 31.939%F  23.009**
A unemployment rate 0.0033 0.0000 0.1196 0.6786 4.5150 57.918** 428.92**  176.67**
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Table 2

Overview of Forecasting Performance: Best Three Predictive Models According to

Alternative Criteria

Stocks Bonds
MS MS
0 MSH MSH
(U;) . Logistic STAR - T-bill . Random walk with drift
5 . MS MS
MSH MSH

. Logistic STAR - T-bill

. RW w/drift & GARCH(1,1)-in mean

. RW w/drift & TARCH(1,1)-in mean
. RW w/drift & t TARCH(1,1)-in mean
. RW w/drift & GARCH(1,1)-in mean

MS
MSH
. RW w/drift & GARCH(1,1)-in mean

Bias

. Linear homoskedastic
. RW w/drift & GARCH(1,1)-in mean

. TAR-SRF
. Logistic STAR -T-bill

MS MS
MSH MS
- MS MSH
S g . Logistic STAR - T-bill . Random walk with drift
85 MSH MSH
o= MS MS
. Logistic STAR ~T-bill . AR(1)
MS MS
MSH MSH
3 . RW w/drift &  GARCH(1,1)-in mean 3. AR(1)
§ MS MS
MSH MSH
. Random walk with drift . Linear homoskedastic
MSH . AR(1) w/GARCH(1,1)-in mean
MS MS

. RW w/drift & EGARCH(1,1)-in mean

. RW w/drift & - GARCH(1,1)-in mean

MPFE

. RW w/drift & ¢ TARCH(1,1)-in mean
MS

. Exponential STAR - T-bill
. TAR-SRF

. Linear Homoskedastic . Logistic STAR - T-bill
R MSH . MSH
g MS MS
P . Random walk with drift . Random walk with drift
g MS . Random walk with drift
m% h=12 2. MSH MSH

N FE R N e I Sl T N FO e R FE R R [ e I R [ S [ I [N S [ S

. Random walk with drift MS
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Table 3

Predictive Accuracy Measures for Stock and Bond Returns
Panel A: Stock Returns

Measure MZ regression (R-  MZ (p-value for MZ (p-value for MZ (p-value for intercept

RMSFE Bias Forecast Variance MAFE MPFE Success Ratio PT square) intercept = 0) coefficient = 1) =0 and coefficient =1)
Model h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12
Linear 4001 4263 0846 0.066 15294 18170 3105 3.18 1.162 0.733 0514 0549 0565 -0988 0.035 0.017 0.011 0.011 0.697  0.000 0.036 0.001
Random walk (with drift) 4015 4140 -0515 -0.626 15857 16.749 2936 3.020 1186 1232 0653 0647 NA. NA. 0000 0002 0756 0465 0632  0.353 0.275 0.142
AR(1) 4024 4191 -0503 -0.661 15937 17.130 2948 3043 1185 1221 0653 0647 NA. NA 0002 0021 0368 0037 0262 0.012 0.174 0.008
Random walk (with drift and GARCH(1,1)) 4012 4141 -0460 -0586 15881 16800 2.936 3.028 1156 1.225 0.653 0647 NA. NA. 0000 0004 0625 0321 0494 0.218 0.310 0.124
AR(1) with GARCH(1,1) 4024 4156 -0451 -0581 15993 16934 2941 3035 1188 1219 0653 0647 NA. NA 0004 0004 0232 0237 0150  0.109 0.145 0.076
GARCH(1,1) in mean and exogenous predictors 4271 4268 1078 0.108  17.077 18.206 3246 3207 1743 0793 0514 0564 0565 -0.278 0.005 0.011 0.011 0.018 0.001  0.000 0.000 0.001
GARCH(1,1)-in mean and exogenous predictors - t dist. ~ 3.889 ~ 4.273  -0.208  -0272 15083 18188 2847 3171 1332 0.844 0653 0602 1547 -0560 0.047 0012 0740 0.022 0906  0.000 0.810 0.001
EGARCH(L,1)-in mean and exogenous predictors 4076 4822  0.266 0317 16545 23154 3107 3475 1071 0964 0535 0541 0075 -0.449 0.009 0.004 0.069 0.031 0.006  0.000 0.018 0.000
EGARCH(1,1)-in mean and exogenous predictors- t dist.  3.959 ~ 4.881  -0.341 0331 15556 23.710 2922 3499 1430 1135 0.611 0564 -0.132 0312 0.025 0.000 0900 0.043 0311  0.000 0.353 0.000
TGARCH(1,1)-in mean and exogenous predictors 4102 4361 -0016 0172  16.824 18986 3.034 3309 1475 0.753 0542 0511 -1.310 -1.377 0003 0031 0096 0.005 0003  0.000 0.011 0.000
TGARCH(1,1)-in mean and exogenous predictors- t dist.  3.940  4.294  0.017 -0.141 15523 18415 2934 3185 1482 0670 0583 0579 0320 -0.707 0030 0010 0441 0.023 0219  0.000 0.468 0.001
Exponential STAR - T-bill 3928 4102 0845 1018 14713 15787 3055 3212 1209 1.339 0569 0526 1751 1.152 0.071 0.054 0.010 0.007 0919  0.688 0.034 0.014
Exponential STAR-SRF 4023 4262 0.768 0933 15591 17.297 3083 3314 1448 1291 0569 0534 1751 0737 0.037 0.028 0.017 0.022 0074  0.004 0.014 0.001
Logistic STAR - T-bill 3811 3970 0317 0791 14425 15135 2.859 3.058 1237 1596 0.632 0549 2303 0995 0103 0116 0.171 0.022 0.138  0.061 0.203 0.012
Logistic STAR-SRF 4.004 4247  0.888 1164 15241 16686 3.089 3300 1106 1.264 0542 0504 1488 1.000 0.040 0028 0009 0011 0534  0.050 0.023 0.001
TAR-SR 4094 4234 0749 0.854 16202 17201 3171 3302 1482 1.625 0535 0519 0.822 0.803 0.009 0.009 0018 0.031 0.034  0.022 0.009 0.005
TAR-SRF 4143 4250  0.614 0671 16791 17612 3251 3356 1150 1.163 0528 0534 0916 1.279 0.014 0.023 0.025 0.044 0.001  0.001 0.001 0.001
Logistic STAR-GARCH(1,1) 4081 4608  0.752 1975  16.090 17.331 3.133 3679 1210 1.005 0542 0466 1158 1.781 0007 0016 0018 0013 0068  0.008 0.016 0.000
MS Two-state homoskedastic 3376 3371 0424  -0110 11.217 11351 2506 2512 1035 0.704 0757 0759 5430 5164 0364 0451 0708 0.001 0.000  0.000 0.000 0.000
MS Two-state heteroskedastic 3543 3380 0437 -0.484 12360 11191 2576 2541 0.856 0790 0.771 0.744 5855 4721 0225 0.404 0226 0.000 0.329  0.000 0.209 0.000
Panel B: Bond Returns

Measure MZ regression (R- MZ (p-value for MZ (p-value for ~ MZ (p-value for intercept

RMSFE Bias Forecast Variance MAFE MPFE Success Ratio PT square) intercept = 0) coefficient = 1) =0 and coefficient =1)
Model h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12 h=1 h=12
Linear 1265 1275  0.122 -0.197 1.584 1586 0969 0973 0384 -0.962 0674 0707 0697 NA. 0000 0006 0000 0013 0000 0.001 0.000 0.001
Random walk (with drift) 1.230 1.271 -0.340 -0.392 1.397 1.462 0949 0989 -1.038 -1.507 0.715 0.707 N.A. N.A. 0.021 0.014 0.158 0.283 0.221 0.379 0.002 0.001
AR(1) 1.235 1.270 -0.250 -0.405 1.462 1.450 0943 098 0215 -1.552 0.708 0.707 -0.633 N.A. 0.006 0.030 0.187 0.109 0.016 0.183 0.003 0.000
Random walk (with drift and GARCH(1,1)) 1.232 1.248 -0.271 -0.284 1.445 1.478 0951 0979 -1.017 -1.308 0.715 0.707 N.A. N.A. 0.031 0.003 0.010 0.728 0.006 0.395 0.001 0.021
AR(1) with GARCH(1,1) 1.238 1.253 -0.201 -0.296 1.493 1.483 0941 0986 0.013 -1.403 0.715 0.707 N.A. N.A. 0.000 0.003 0.054 0.629 0.005 0.280 0.003 0.013
GARCH(1,1) in mean and exogenous predictors 1258 1300  0.037 -0.154 1580 1667 0955 0995 0169 -0.871 0667 0699 -0.164 0.154 0000 0008 0001 0002 0000  0.000 0.000 0.000
GARCH(1,1)-in mean and exogenous predictors - tdist. ~ 1.253 ~ 1.294  0.078  -0.158 1.565 1649 0955 0993 0102 -0.907 0674 0684 0009 -1.129 0000 0006 0000 0003 0000 0.000 0.001 0.000
EGARCH(1,1)-in mean and exogenous predictors 1254 1291  0.054  -0.108 1570 1656 0951 0993 0121 -0.758 0674 0669 0261 -0.898 0001 0002 0001 0003 0000  0.000 0.000 0.000
EGARCH(1,1)-in mean and exogenous predictors- t dist. 1.253 ~ 1.282  0.094  -0.107 1562 1631 0956 0983 0403 -0.661 0667 0669 0091 -0.898 0.000 0001 0000 0006 0000  0.000 0.001 0.001
TGARCH(1,1)-in mean and exogenous predictors 1257 1299 0044  -0.141 1578 1667 0956 0990 0150 -0.855 0.681 0707 0192 0.647 0000 0009 0001 0001 0000  0.000 0.000 0.000
TGARCH(1,1)-in mean and exogenous predictors- t dist. 1.251  1.304  0.093  -0.156 1.556 1675 0955 0998 0179 -0.881 0674 0707 0261 0.647 0001 0011 0001 0001 0000 0.000 0.001 0.000
Exponential STAR - T-bill 1393 1472 0235 0.251 1.886 2103  1.030 1086 0140 -0.073 0667 0624 0534 -0.375 0014 0004 0000 0000 0.000  0.000 0.000 0.000
Exponential STAR-SRF 1274 1314 0142 0.132 1.602 1708 0978 1.013 0521 0389 0632 0624 -0413 -0375 0.000 0000 0.000 0.000 0.000  0.000 0.000 0.000
Logistic STAR - T-hill 1.276 1.299 0.085 0.049 1.620 1.685 0980 1.001 0.657 0.355 0.646 0.647 0.287 0.281 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Logistic STAR-SRF 1.274 1.314 0.142 0.132 1.602 1.708 0978 1.013 0521 0.389 0.632 0.624 -0413 -0.375 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TAR-SR 1287 1341  0.104 0.094 1.646 1790 0992 1.040 099 0761 0604 0564 -1.676 -2.112 0001 0011 0000 0.000 0000  0.000 0.000 0.000
TAR-SRF 1276 1306  0.039 0.006 1.626 1705  1.009 1.040 0345 0.196 0646 0632 -0628 -0.712 0003 0001 0000 0001 0000  0.000 0.000 0.000
Logistic STAR-GARCH(1,1) 1264 1302 0113 0.094 1.585 1687 0968 0999 0587 0453 0639 0639 -0277 0129 0001 0000 0000 0.000 0.000 0.000 0.000 0.000
MS Two-state homoskedastic 1014 1032 -0013 -0.090 1028 1058 0776 0779 -0.095 -0.394 0771 0722 4614 2057 0348 0430 0001 0000 0000  0.000 0.000 0.000
MS Two-state heteroskedastic 1019 1033 0020 -0.124 1038 1052 0787 0779 -0.175 -0.501 0.757 0714 3.808 1437 0323 0468 0.007 0.000 0.001  0.000 0.003 0.000

Note: In the RMSFE, Bias, FV, MAFE, SR, and MZ R? columns, we boldface the best three statistics returned across all models. In the PT column and in the
columns concerning statistical tests on coefficients of the Mincer-Zarnowitz regression, we boldfaced p-values which are equal or above a threshold of 5%,

indicating that the null of a=0 and p=1 cannot be rejected with a high level of confidence.
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Table 4

Diebold-Mariano Equal Predictive Accuracy Tests: Stock Return Forecasts, Square vs. Linex Loss Functions

Panel A: 1-month Horizon

GARCH (1,1) GARCH (1,1) in EGARCH (1,1) EGARCH (1,1) in TGARCH (1,1) TGARCH (1,1) in
Random inmeanand mean & exog. inmeanand mean&exog. inmeanand mean&exog. Exponenti Exponenti Logistic MS Two- MS Two-
walk Random AR(1) with exogenous predictors-t exogenous predictors - t exogenous predictors-t  al STAR- alSTAR- Logistic  Logistic STAR- state state
Linear with drift  AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. Thill SRF STAR-Thill STAR-SRF_TAR T-bill TAR-SRF_GARCH(1,1) Homosk. Heterosk.
Linear 0.543 0.569  0.532 0.568 0.975 0.122 0.754 0.354 0.810 0.243 0.124 0.577 0.192 0.545 0.948 0.926 0.953 0.000 0.004
Random walk (with drift) 0.019 0.286 0.723 0.871 0.043 0.744 0.210 0.823 0.197 0.310 0.517 0.178 0.468 0.796 0.748 0.709 0.000 0.011
AR(1) 0.009 0.514 0.863 0.037 0.711 0.182 0.794 0.176 0.290 0.497 0.167 0.444 0.772 0.736 0.687 0.000 0.008
Random walk (with drift and GARCH(1,1)) 0.009 0.865 0.815 0.876 0.046 0.758 0.232 0.836 0.207 0.315 0.525 0.184 0.478 0.817 0.756 0.722 0.000 0.011
AR(1) with GARCH(1,1) 0.015 0.885 0.164 0.156 0.863 0.037 0.708 0.188 0.800 0.178 0.297 0.496 0.174 0.444 0.767 0.730 0.676 0.000 0.011
GARCH (1,1) in mean and exogenous predictors 0.919 0.928 0.932  0.929 0.928 0.024 0.062 0.171 0.027 0.009 0.072 0.052 0.023 0.128 0.202 0.104 0.000 0.002
GARCH (1,1) in mean and exogenous predictors - t dist.  0.092  0.171 0.166  0.166 0.167 0.083 0.911 0.999 0.789 0.607 0.811 0.368 0.853 1.000 0.947 0.976 0.001 0.059
EGARCH (1,1) in mean and exogenous predictors 0.127 0.251 0.219  0.234 0.240 0.089 § 0.026 0.014 0.159 0.358 0.115 0.275 0.571 0.657 0.517 0.000 0.010
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.087  0.173 0.167  0.168 0.169 0.082 0.842 0.149 0.421 0.657 0.241 0.637 0.923 0.859 0.878 0.000 0.030
TGARCH (1,1) in mean and exogenous predictors 0.084 0.970 0.425 0.800 0.919 0.080 0.896 0.843 0.303 0.128 0.216 0.466 0.595 0.430 0.000 0.007
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.109  0.224 0.200 0.210 0.215 0.085 0.984 0.417 0.963 . 0.730 0.272 0.735 0.971 0.912 0.949 0.000 0.031
Exponential STAR - TBILL 0.899  0.946 0.971  0.953 0.949 0.079 0.905 0.882 0.908 0.909 § 0.735 0.889 0.936 0.993 0.978 0.000 0.016
Exponential STAR - SRF 0.227 0.432 0.343  0.391 0.409 0.102 0.993 0.932 0.954 0.319 0.929 0.178 0.719 0.780 0.669 0.000 0.013
Logistic STAR - TBILL 0.106  0.210 0.192  0.199 0.203 0.085 0.940 0.280 0.719 0.125 0.282 0.104 0.883
Logistic STAR - SRF 0.967 0.981 0.994  0.989 0.985 0.082 0.915 0.883 0.920 0.931 0.900 0.122 0.794
TAR - Thill 0.843  0.900 0.913  0.902 0.901 0.064 0.879 0.858 0.880 0.866 0.868 0.771 0.810
TAR - SRF 0.901 0.943 0.965  0.948 0.945 0.078 0.906 0.885 0.909 0.911 0.896 0.891 0.831
Logistic STAR - GARCH 0.842 0.919 0.941  0.924 0.920 0.071 0.886 0.862 0.888 0.875 0.873 0.514 0.801
MS Two-state Homoskedastic 0.499 0.851 0.682  0.797 0.825 0.106 0.936 0.902 0.936 0.737 0.915 0.281 0.796
MS Two-state Heteroskedastic 0.842  0.844 0.844  0.844 0.844 0.835 0.844 0.843 0.844 0.843 0.843 0.842 0.841
Panel B: 12-month Horizon
GARCH (1,1) GARCH (1,1) in EGARCH (1,1) EGARCH (1,1) in TGARCH (1,1) TGARCH (1,1) in
Random inmeanand mean & exog. inmeanand mean&exog. inmeanand mean & exog. Exponenti Exponenti Logistic MS Two- MS Two-
walk Random AR(1) with exogenous predictors-t exogenous predictors -t  exogenous predictors-t  al STAR- alSTAR- Logistic  Logistic STAR- state state
Linear with drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. Thill SRF STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.
Linear 0.011 0.180  0.008 0.052 0.584 0.578 0.962 0.955 1.000 0.726 0.220 0.498 0.107 0.472 0.413 0.477 0.856 0.001 0.000
Random walk (with drift) 0.115 0.926  0.527 0.861 1.000 1.000 0.985 0.972 1.000 1.000 0.439 0.735 0.259 0.653 0.747 0.669 0.904 0.009 0.004
AR(1) 0.117 0.132 0.098 0.098 0.872 0.996 0.980 0.956 0.991 0.969 0.374 0.622 0.211 0.576 0.605 0.583 0.865 0.011 0.005
Random walk (with drift and GARCH(1,1)) 0.116  0.957 0.872 0.783 1.000 1.000 0.986 0.973 1.000 1.000 0.438 0.736 0.257 0.654 0.747 0.670 0.905 0.008 0.004
AR(1) with GARCH(1,1) 0.116  0.125 0.000 0.122 1.000 0.982 0.965 1.000 1.000 0.416 0.695 0.234 0.631 0.710 0.642 0.894 0.009 0.004
GARCH (1,1) in mean and exogenous predictors 0.842 0.882 0.881  0.882 E 0.963 0.957 1.000 0.723 0.204 0.486 0.081 0.463 0.384 0.467 0.850 0.000 0.000
GARCH (1,1) in mean and exogenous predictors - t dist. ~ 0.099  0.881 0.880  0.881 0.880 A 0.948 0.988 0.753 0.242 0.478 0.119 0.461 0.393 0.464 0.833 0.002 0.001
EGARCH (1,1) in mean and exogenous predictors 0.896 0.900 0.901 0.900 0.901 0.896 A 0.562 0.036 0.041 0.068 0.016 0.077 0.040 0.081 0.304 0.002 0.001
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.891  0.894 0.894  0.894 0.894 0.891 0.892 0.662 0.019 0.038 0.012 0.061 0.046 0.037 0.268 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors 0.882 0.884 0.883  0.884 0.883 0.894 0.890 0.105 0.296 0.048 0.316 0.180 0.318 0.770 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.877  0.882 0.881  0.882 0.882 0.883 0.884 0.106 0.110 . 0.088 0.423 0.335 0.430 0.836 0.001 0.000
Exponential STAR - TBILL 0.154  0.967 0.951  0.967 0.952 0.154 0.171 0.101 0.107 0.144 X 0.994 0.804 0.988 0.992 0.000 0.000
Exponential STAR - SRF 0.119 0.944 0.916  0.944 0.917 0.124 0.125 0.101 0.107 0.120 0.122 . 0.404 0.334 0.947 0.000 0.000
Logistic STAR - TBILL 0.168  0.805 0.978  0.794 0.979 0.167 0.184 0.100 0.107 0.156 0.152 0.223 0.956 0.973 0.000 0.001
Logistic STAR - SRF 0.360 0.890 0.888  0.890 0.888 0.280 0.793 0.103 0.109 0.166 0.136 0.865 0.865 0.507 0.999 0.000 0.000
TAR - Thill 0.141 0.975 0.950 0.974 0.951 0.142 0.152 0.100 0.107 0.135 0.134 0.055 0.085 0.639 A 0.542
TAR - SRF 0.137  0.932 0.918  0.932 0.919 0.139 0.151 0.101 0.107 0.132 0.131 0.704 1.000 0.753 0.138 0.844
Logistic STAR - GARCH 0.900 0.896 0.895  0.896 0.895 0.902 0.901 0.108 0.111 0.901 0.909 0.884 0.891 0.878 0.914 0.887
MS Two-state Homoskedastic 0.118 0.131 0.131  0.129 0.139 0.120 0.121 0.099 0.106 0.118 0.119 0.059 0.092 0.014 0.113 0.063
MS Two-state Heteroskedastic 0.115 0.108 0.050 0.107 0.060 0.117 0.118 0.099 0.106 0.115 0.117 0.048 0.080 0.014 0.109 0.048

Note: The table presents p-values for Diebold and Mariano’s (1995, DM) test of no differential in predictive accuracy. Boldfaced p-values are below the 5%
threshold. In each panel, in cells above the main diagonal we report DM p-values under a symmetric, square loss function; below the main diagonal, in each

cell we show DM p-values obtained under an asymmetric linex loss function.
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Table 4 [continued]

Diebold-Mariano Equal Predictive Accuracy Tests: Bond Return Forecasts, Square vs. Linex Loss Functions
Panel C: 1-month Horizon

GARCH (1,1) GARCH (1,1) in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean & exog. inmeanand mean&exog. inmeanand mean & exog. Exponenti Exponenti Logistic MS Two- MS Two-
walk Random AR(1) with exogenous predictors-t exogenous predictors-t  exogenous predictors-t  al STAR- alSTAR- Logistic  Logistic STAR- state state
Linear with drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. Thill SRF STAR-Tbill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.
Linear 0.212 0.153  0.212 0.165 0.276 0.092 0.215 0.188 0.264 0.084 0.946 0.856 0.674 0.856 0.824 0.649 0.472 0.000 0.000
Random walk (with drift)
AR(1)

Random walk (with drift and GARCH(1,1))

AR(1) with GARCH(1,1)

GARCH (1,1) in mean and exogenous predictors

GARCH (1,1) in mean and exogenous predictors - t dist.
EGARCH (1,1) in mean and exogenous predictors
EGARCH (1,1) in mean and exogenous predictors- t dist.
TGARCH (1,1) in mean and exogenous predictors
TGARCH (1,1) in mean and exogenous predictors- t dist.
Exponential STAR - TBILL

Exponential STAR - SRF

Logistic STAR - TBILL

Logistic STAR - SRF

TAR - Thill

TAR - SRF

Logistic STAR - GARCH

MS Two-state Homoskedastic

MS Two-state Heteroskedastic

Panel D: 12-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean & exog. inmeanand mean&exog. inmeanand mean &exog. Exponenti Exponenti Logistic MS Two- MS Two-
walk Random AR(1) with exogenous predictors-t exogenous predictors - t exogenous predictors-t  al STAR- al STAR- Logistic  Logistic STAR- state state
Linear with drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. Thill SRF STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.451 0.443  0.127 0.163 0.997 0.938 0.836 0.631 0.999 1.000 0.996 0.904 0.781 0.904 0.900 0.759 0.827 0.000 0.000
Random walk (with drift) 0.026 0.343  0.076 0.156 0.801 0.756 0.757 0.629 0.818 0.839 0.996 0.814 0.742 0.814 0.840 0.736 0.761 0.000 0.000
AR(1) 0.029 0.079 0.178 0.798 0.753 0.756 0.633 0.815 0.836 0.996 0.818 0.743 0.818 0.841 0.739 0.765 0.000 0.000
Random walk (with drift and GARCH(1,1)) 0.070  0.963 0.966 0.959 0.973 0.910 0.980 0.980 0.998 0.942 0.917 0.942 0.915 0.864 0.928 0.000 0.000
AR(1) with GARCH(1,1) 0.079  0.958 0.973 0.964 0.883 0.969 0.969 0.996 0.943 0.910 0.943 0.918 0.859 0.931 0.000 0.000
GARCH (1,1) in mean and exogenous predictors 0.928 0.963 0.961  0.934 0.195 0.430 0.667 0.992 0.675 0.483 0.675 0.795 0.545 0.528 0.000 0.000
GARCH (1,1) in mean and exogenous predictors - t dist.  0.910 0.961 0.959 0.929 0.922 . 0.256 0.702 0.796 0.992 0.737 0.569 0.737 0.820 0.594 0.613 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors 0.919 0.957 0.956  0.932 0.925 0.892 0.061 0.738 0.978 0.822 0.615 0.822 0.844 0.630 0.706 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.875  0.948 0.946  0.913 0.907 0.669 0.749 0.004 0.978 0.904 0.756 0.904 0.889 0.713 0.861 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors 0.975 0.975 0.973 0.951 0.943 0.272 0.383 0.154 0.705

TGARCH (1,1) in mean and exogenous predictors- t dist. 0.936  0.981 0.979 0.958 0.949 0.162 0.192 0.127 0.204

Exponential STAR - TBILL 0.952  0.966 0.967  0.962 0.963 0.945 0.946 0.940 0.942

Exponential STAR - SRF 0.994  0.996 0.996  0.986 0.985 0.949 0.953 0.848 0.911

Logistic STAR - TBILL 0.961 0.976 0.975  0.954 0.948 0.921 0.931 0.781 0.887

Logistic STAR - SRF 0.994  0.996 0.996  0.986 0.985 0.949 0.953 0.848 0.911

TAR - Thill 0.962 0.972 0.971  0.956 0.955 0.952 0.954 0.937 0.956

TAR - SRF 0.965 0.998 0.997  0.988 0.988 0.644 0.676 0.495 0.587

Logistic STAR - GARCH 0.997 0.996 0.996  0.986 0.984 0.904 0.917 0.717 0.823

MS Two-state Homoskedastic 0.002 0.017 0.045 0.012 0.019 0.006 0.007 0.010 0.012

MS Two-state Heteroskedastic 0.002  0.003 0.016  0.005 0.009 0.006 0.007 0.011 0.013

Note: The table presents p-values for Diebold and Mariano’s (1995, DM) test of no differential in predictive accuracy. Boldfaced p-values are below the 5%
threshold. In each panel, in cells above the main diagonal we report DM p-values under a symmetric, square loss function; below the main diagonal, in each
cell we show DM p-values obtained under an asymmetric linex loss function.
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Table 5
Giacomini-White Equal Conditional Predictive Accuracy Tests, Stock Returns

Panel A: 1-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean&exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two- MS Two-
walk with Random AR(1)with exogenous predictors-t exogenous predictors - t exogenous predictors-t  Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill STAR-SRF __ STAR-Tbill STAR-SRF_TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.941 0.940 0.921 0.985 0.130 0.387 0.835 0.910 0.692 0.746 0.493 0.939 0.085 0.207 0.236 0.085 0.178 0.000 0.047
Random walk (with drift) 0.005 0.071  0.194 0.389 0.445 0.228 0.071 0.301 0.107 0.509 0.882 0.665 0.328 1.000 0.097 0.168 0.730 0.001 0.076
AR(1) 0.006 0.527 0.067 0.636 0.454 0.207 0.100 0.328 0.133 0.488 0.848 0.699 0.309 0.996 0.097 0.174 0.739 0.001 0.068
Random walk (with drift and GARCH(1,1)) 0.006 0.049 0.629 0.608 0.439 0.207 0.058 0.281 0.086 0.494 0.891 0.624 0.321 0.998 0.069 0.155 0.731 0.001 0.080
AR(1) with GARCH(1,1) 0.005 0.349 0.000 0.902 0.408 0.207 0.075 0.302 0.137 0.517 0.822 0.592 0.315 0.980 0.122 0.139 0.865 0.001 0.074
GARCH (1,1) in mean and exogenous predictors 0.182 0.001 0.002  0.003 0.000 0.142 0.306 0.562 0.144 0.062 0.280 0.090 0.130 0.243 0.321 0.453 0.000 0.021
GARCH (1,1) in mean and exogenous predictors - t dist. ~ 1.000 0.372 0.378 0.387 0.346 1.000 0.423 0.002 0.739 0.439 0.393 0.153 0.316 0.004 0.028 0.066 0.003 0.286
EGARCH (1,1) in mean and exogenous predictors 0.054 0.018 0.031 0.123 1.000 0.098 0.027 0.070 0.647 0.957 0.203 0.870 0.883 0.443 0.988 0.000 0.091
EGARCH (1,1) in mean and exogenous predictors- t dist. ~ 0.000 1.000 0.226  0.028 0.913 1.000 0.469 0.008 0.214 0.871 0.762 0.233 0.815 0.326 0.120 0.490 0.001 0.173
TGARCH (1,1) in mean and exogenous predictors 0.023 0.000 0.043  0.005 0.001 0.000 0.055 0.862 0.012 0.556 0.820 0.185 0.749 0.392 0.399 0.930 0.001 0.067
TGARCH (1,1) in mean and exogenous predictors- t dist. ~ 0.096 0.028 0.022  0.040 0.051 0.506 0.082 0.291 0.053 0.146 0.926 0.746 0.132 0.647 0.113 0.068 0.224 0.001 0.188
Exponential STAR - TBILL 0.813 0.006 0.015  0.006 0.006 0.439 0.001 0.086 0.000 0.002 0.482 0.741 0.265 0.394 0.297 0.064 0.153 0.000 0.104
Exponential STAR - SRF 0.813 0.007 0.009  0.008 0.009 0.778 0.005 0.381 0.045 0.076 0.164 0.900 0.198 0.798 0.095 0.387 0.000 0.085
Logistic STAR - TBILL 0.073 0.355 0.373 0.375 0.444 0.100 0.561 0.328 0.496 0.497 0.330 0.084 0.110 0.164 0.073 0.163 0.117 0.517
Logistic STAR - SRF 0.003 0.004 0.005  0.005 0.004 0.526 0.015 0.110 0.000 0.053 0.081 0.249 0.786 0.347 0.414 0.000 0.047
TAR - Thill 0.001 0.009 0.010 0.012 0.008 0.018 0.012 0.269 0.000 0.031 1.000 0.009 0.044 0.085 0.004 0.000 0.027
TAR - SRF 0.319 0.000 0.001  0.001 0.000 0.305 0.001 0.092 0.000 0.005 0.004 0.482 0.994 0.047 0.393 0.000 0.019
Logistic STAR - GARCH 0.000 0.006 0.007  0.009 0.007 0.605 0.000 0.119 0.000 0.085 0.009 0.179 0.641 0.075 0.114 0.257 0.000 0.012
MS Two-state Homoskedastic 0.001 0.018 0.018 0.016 0.013 0.000 0.048 0.005 0.026 0.034 0.026 0.004 0.056 0.366 0.001 0.000 0.000 0.006 0.530
MS Two-state Heteroskedastic 0.018 0.094 0.079  0.088 0.052 0.255 0.148 0.007 0.048 0.031 0.080 0.000 0.398 0.485 0.015 0.060 0.009 0.004 0.384

Panel B: 12-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean&exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two- MS Two-
walk with Random AR(1)with exogenous predictors-t exogenous predictors - t exogenous predictors-t  Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill STAR-SRF __ STAR-Tbill STAR-SRF_TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.155 0.147 0.151 0.161 0.380 0.497 0.359 0.333 0.034 0.844 0.637 0.580 0.331 0.203 0.738 0.234 0.587 0.146 0.154
Random walk (with drift) 0.000 0.403  0.570 0.327 0.111 0.084 0.277 0.271 0.087 0.142 0.902 0.742 0.161 0.286 0.534 0.329 0.511 0.046 0.154
AR(1) 0.056 0.938 0.455 0.230 0.154 0.165 0.298 0.292 0.149 0.243 0.935 0.847 0.467 0.389 0.428 0.279 0.594 0.150 0.175
Random walk (with drift and GARCH(1,1)) 0.959 1.000 0.910 0.416 0.096 0.071 0.274 0.268 0.083 0.122 0.877 0.722 0.033 0.280 0.568 0.315 0.506 0.054 0.152
AR(1) with GARCH(1,1) 0.439 1.000 1.000 0.975 0.161 0.133 0.291 0.281 0.124 0.180 0.964 0.826 0.227 0.348 0.388 0.298 0.537 0.109 0.167
GARCH (1,1) in mean and exogenous predictors 0.726 0.951 0.840 0.860 0.087 0.784 0.356 0.351 0.023 0.757 0.456 0.363 0.317 0.202 0.841 0.211 0.575 0.114 0.129
GARCH (1,1) in mean and exogenous predictors - t dist. ~ 0.000 0.054 0.000 1.000 0.513 0.488 0.335 0.320 0.065 0.813 0.567 0.502 0.265 0.240 0.883 0.271 0.567 0.126 0.141
EGARCH (1,1) in mean and exogenous predictors 0.823 0.652 0.651  0.663 0.571 0.838 0.777 0.455 0.442 0.354 0.303 0.411 0.185 0.367 0.336 0.447 0.365 0.202 0.181
EGARCH (1,1) in mean and exogenous predictors- t dist. ~ 0.871 0.616 0.611 0.625 0.652 0.852 0.818 0.999 0.387 0.370 0.307 0.385 0.255 0.391 0.403 0.371 0.175 0.145 0.143
TGARCH (1,1) in mean and exogenous predictors 0.498 1.000 0.694  0.922 0.691 0.075 0.559 0.922 0.883 0.249 0.481 0.337 0.273 0.166 0.634 0.229 0.629 0.109 0.119
TGARCH (1,1) in mean and exogenous predictors- t dist. ~ 0.984 0.480 0.001 0.528 0.524 0.001 0.760 0.775 0.861 0.021 0.434 0.386 0.201 0.201 0.916 0.229 0.541 0.118 0.134
Exponential STAR - TBILL 0.849 1.000 0.782  1.000 0.731 0.930 0.922 0.000 0.000 0.718 0.886 0.066 0.619 0.271 0.619 0.252 0.108 0.123 0.117
Exponential STAR - SRF 0.367 0.875 0.873  0.903 0.831 0.737 0.803 0.917 0.982 0.684 0.636 0.819 0.236 0.733 0.198 0.422 0.123 0.112
Logistic STAR - TBILL 0.833 0.808 0.827  0.807 0.820 0.854 0.804 0.436 0.945 0.858 0.833 0.563 0.935 0.359 0.075 0.249 0.129 0.150
Logistic STAR - SRF 0.865 0.822 0.804 0.828 0.812 0.869 0.905 0.508 0.969 0.996 0.874 0.935 0.893 0.451 0.370 1.000 0.139 0.124
TAR - Thill 0.783 0.870 0.684  0.895 0.913 0.846 0.803 0.198 1.000 0.893 0.803 0.652 0.898 0.874 0.619 0.407 0.137 0.125
TAR - SRF 1.000 0.603 0.661  0.582 0.616 0.809 1.000 0.888 0.720 0.790 0.935 1.000 0.993 0.000 0.779 0.774 0.427 0.065 0.081
Logistic STAR - GARCH 1.000 0.652 0.939 0.631 0.453 0.503 0.544 1.000 0.821 0.079 0.427 0.593 0.853 0.790 0.094 0.597 0.862 0.105
MS Two-state Homoskedastic 0.580 0.007 0.664  0.963 0.860 0.661 0.538 0.755 0.913 0.870 0.524 0.542 0.000 0.022 0.713 0.719 0.828 0.725
MS Two-state Heteroskedastic 0.742 0.797 0.784  0.797 0.760 0.722 0.737 0.697 0.649 0.689 0.744 1.000 0.616 0.620 0.827 0.706 0.866 0.663 0.653

Note: The table presents p-values for Giacomini-White’s (2006, GW) tests of no differential in predictive accuracy. Boldfaced p-values are below the 5% threshold.
In each panel, in cells above the main diagonal we report GW p-values with q=2; below the main diagonal, in each cell we show GW p-values with g=7.
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Table 5 [continued]
Giacomini-White Equal Conditional Predictive Accuracy Tests, Bond Returns

Panel C: 1-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean&exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two- MS Two-
walk with Random AR(1)with exogenous predictors-t exogenous predictors - t exogenous predictors-t  Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill STAR-SRF _ STAR-Tbill STAR-SRF_TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.768 0.317 0.764 0.474 0.815 0.341 0.383 0.621 0.800 0.387 0.194 0.674 0.780 0.674 0.448 0.678 0.942 0.000 0.000
Random walk (with drift) 0.008 0.444  1.000 0.634 0.794 0.802 0.670 0.778 0.822 0.871 0.124 0.646 0.685 0.646 0.463 0.603 0.676 0.000 0.001
AR(1) 0.016 0.122 0.231 0.040 0.563 0.452 0.700 0.735 0.684 0.655 0.154 0.351 0.555 0.351 0.092 0.645 0.418 0.000 0.000
Random walk (with drift and GARCH(1,1)) 0.013 0.064 0.158 0.304 0.776 0.772 0.607 0.736 0.814 0.859 0.118 0.634 0.689 0.634 0.429 0.594 0.656 0.000 0.000
AR(1) with GARCH(1,1) 0.018 0.000 0.081 0.295 0.693 0.745 0.826 0.789 0.794 0.132 0.438 0.584 0.438 0.104 0.663 0.504 0.000 0.000
GARCH (1,1) in mean and exogenous predictors 0.098 0.015 0.021 0.025 0.073 0.442 0.822 0.504 0.552 0.173 0.288 0.474 0.288 0.183 0.840 0.243 0.000 0.000
GARCH (1,1) in mean and exogenous predictors - t dist. 0.153 0.005 0.006  0.008 0.013 0.121 0.992 0.310 0.922 0.141 0.203 0.364 0.203 0.277 0.750 0.416 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors 0.157 0.010 0.033 0.021 0.128 0.780 0.297 0.440 0.147 0.112 0.579 0.112 0.240 0.646 0.154 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors- t dist. ~ 0.867 0.003 0.002  0.006 0.008 0.177 0.732 0.853 0.166 0.266 0.459 0.266 0.320 0.774 0.581 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors 0.120 0.017 0.030 0.028 0.092 0.095 1.000 0.499 . 0.464 0.169 0.182 0.673 0.182 0.186 0.845 0.145 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors- t dist. ~ 1.000 0.005 0.003 0.008 0.005 0.008 0.737 0.077 0.843 0.182 0.133 0.088 0.550 0.088 0.228 0.660 0.203 0.000 0.000
Exponential STAR - TBILL 0.540 0.000 0.012  1.000 0.021 0.524 0.549 0.182 0.505 0.987 0.530 0.266 0.366 0.266 0.396 0.405 0.232 0.001 0.003
Exponential STAR - SRF 0.385 0.011 0.038 0.018 0.069 0.050 0.149 0.483 0.846 1.000 0.640 0.347 0.785 NaN 0.583 0.706 0.341 0.000 0.000
Logistic STAR - TBILL 0.211 0.045 0.138  0.071 0.226 0.368 0.534 0.456 0.458 0.290 0.608 0.027 0.268 0.785 0.515 0.873 0.701 0.001 0.001
Logistic STAR - SRF 0.385 0.011 0.038 0.018 0.069 0.050 0.149 0.483 0.846 1.000 0.640 0.347 NaN 0.268 0.583 0.341 0.000 0.000
TAR - Thill 0.072  0.067  0.048 0.093 0.046 0.125 0.110 0.188 0.267 0.154 0.104 0.252 0.137 0.454 0.137 0.370 0.000 0.001
TAR - SRF 0.488 0.010 0.047  0.024 0.075 0.439 0.361 0.551 0.508 0.674 0.193 0.057 0.448 0.877 0.448 0.890 0.001 0.001
Logistic STAR - GARCH 0.862  0.011  0.032 0.019 0.081 0.017 0.113 0.968 0.819 0.007 0.148 0.489 0.108 0.554 0.108 0.139 0.422 0.000

MS Two-state Homoskedastic 0.000  0.010  0.000 0.005 0.000 0.000 0.001 0.006 0.005 0.003 0.001 0.009 0.001 0.770 0.001 0.001 0.018 0.001

MS Two-state Heteroskedastic 0.000 0.015 0.005 0.012 0.005 0.003 0.000 0.004 0.005 0.009 0.002 0.008 0.002 0.829 0.002 0.000 0.015 0.000

Panel D: 12-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean&exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two- MS Two-
walk with Random AR(1)with exogenous predictors-t exogenous predictors - t exogenous predictors-t  Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill STAR-SRF__ STAR-Tbill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.700 0.765 0.188 0.261 0.213 0.422 0.484 0.364 0.005 0.081 0.000 0.300 0.682 0.300 0.338 0.486 0.421 0.129 0.104
Random walk (with drift) 1.000 1.000 0.000 0.015 1.000 0.564 0.797 0.273 0.570 0.610 0.024 0.393 0.708 0.393 0.637 0.691 0.444 0.091 0.076
AR(1) 0.204 0.481 0.000 1.000 1.000 0.501 0.685 0.013 0.467 0.528 0.008 0.434 0.709 0.434 0.637 0.681 0.495 0.099 0.094
Random walk (with drift and GARCH(1,1)) 0.058 0.342 0.927 0.591 0.325 0.391 0.199 0.525 0.288 0.282 0.074 0.141 0.334 0.141 0.485 0.321 0.186 0.144 0.072
AR(1) with GARCH(1,1) 0.860 0.385 0.778  0.940 0.405 0.447 0.342 0.575 0.353 0.335 0.065 0.143 0.346 0.143 0.486 0.355 0.172 0.135 0.043
GARCH (1,1) in mean and exogenous predictors 0.869 0.999 0.913 0.736 0.836 0.398 0.756 0.518 0.844 0.352 0.000 0.571 0.891 0.571 0.585 0.712 0.662 0.133 0.103
GARCH (1,1) in mean and exogenous predictors - t dist. ~ 0.939 1.000 0.973 0.772 0.851 0.009 0.932 0.748 0.803 0.424 0.000 0.711 0.935 0.711 0.697 0.811 0.821 0.136 0.140
EGARCH (1,1) in mean and exogenous predictors 0.992 0.193 0.219  0.000 0.807 0.840 0.489 0.405 0.821 0.759 0.000 1.000 0.564 1.000 0.453 0.244 0.000 0.138 0.097
EGARCH (1,1) in mean and exogenous predictors- t dist. ~ 1.000 0.000 0.805  1.000 0.878 0.369 0.667 0.475 0.654 0.597 0.000 0.000 0.469 0.000 0.500 0.266 0.023 0.147 0.133
TGARCH (1,1) in mean and exogenous predictors 0.734 0.630 0.947  0.810 0.890 1.000 1.000 0.347 0.682 0.215 0.000 0.410 0.886 0.410 0.723 0.629 0.626 0.130 0.134
TGARCH (1,1) in mean and exogenous predictors- t dist. ~ 0.603 0.000 0.076  0.844 0.707 0.631 1.000 0.508 0.000 0.810 0.000 0.779 0.903 0.779 0.797 0.754 0.770 0.121 0.143
Exponential STAR - TBILL 0.000 0.142 0.416  1.000 1.000 0.000 0.075 0.000 1.000 0.000 0.001 1.000 1.000 1.000 0.020 1.000 1.000 0.000 0.000
Exponential STAR - SRF 1.000 0.527 0.560 0.814 0.520 1.000 0.972 0.004 0.320 0.000 0.302 0.941 0.957 0.368 0.615 0.831 0.010 0.112 0.129
Logistic STAR - TBILL 0.551 0.323 0.368 0.611 0.576 0.764 0.679 0.002 0.459 0.598 0.658 0.574 0.907 0.957 0.247 0.367 0.493 0.141 0.158
Logistic STAR - SRF 1.000 0.527 0.560 0.814 0.520 1.000 0.972 0.004 0.320 0.000 0.302 0.941 0.426 0.907 0.615 0.831 0.010 0.112 0.129
TAR - Thill 0.000 1.000 1.000 0.510 1.000 0.943 0.930 0.865 0.966 0.912 0.886 0.909 0.452 0.690 0.452 0.547 0.466 0.146 0.164
TAR - SRF 0.819 0.458 0.657 0.764 0.781 0.762 0.866 0.946 1.000 0.820 0.808 1.000 0.798 0.892 0.798 0.913 0.523 0.118 0.133
Logistic STAR - GARCH 1.000 0.547 0.682 0.774 0.239 0.023 1.000 1.000 0.091 0.040 0.464 0.934 0.984 1.000 0.984 0.373 0.949 0.105 0.139
MS Two-state Homoskedastic 0.649 0.654 0.808  1.000 0.227 0.563 0.489 0.419 0.000 0.422 0.609 0.000 1.000 0.570 1.000 0.044 0.912 0.860 1.000
MS Two-state Heteroskedastic 0.533 0.335 1.000 0.607 0.324 0.495 1.000 0.207 0.000 0.842 0.338 0.000 0.556 0.538 0.556 0.009 0.060 0.497 0.000

Note: The table presents p-values for Giacomini-White’s (2006, GW) tests of no differential in predictive accuracy. Boldfaced p-values are below the 5% threshold.
In each panel, in cells above the main diagonal we report GW p-values with q=2; below the main diagonal, in each cell we show GW p-values with g=7.
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Table 6
Van Dijk-Franses Equal Predictive Accuracy Tests: Stock Return Forecasts, Asymmetric Weighting Functions

Panel A: 1-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean &exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two-  MS Two-
walk with Random AR(1) with exogenous predictors-t exogenous predictors - t exogenous predictors -t Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill STAR-SRF  STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.999 1.000 0.999 0.999 0.946 0.992 0.974 0.994 0.989 0.958 0.089 0.548 0.573 0.212 0.977 0.800 0.959 0.000 0.016
Random walk (with drift) 0.000 0.318 0.378 0.012 0.005 0.010 0.041 0.060 0.001 0.002 0.003 0.056 0.001 0.001 0.026 0.001 0.000 0.001
AR(1) 0.000 0.982 0.499 0.011 0.007 0.012 0.052 0.075 0.001 0.002 0.003 0.056 0.001 0.001 0.024 0.001 0.000 0.001
Random walk (with drift and GARCH(1,1)) 0.000 0.986 0.014 0.009 0.018 0.076 0.084 0.001 0.003 0.003 0.066 0.001 0.001 0.032 0.002 0.000 0.001
AR(1) with GARCH(1,1) 0.000 0.992 0.536 0.014 0.006 0.013 0.057 0.059 0.001 0.004 0.003 0.066 0.002 0.001 0.032 0.003 0.000 0.001
GARCH (1,1) in mean and exogenous predictors 0.966 0.999 0.999  0.999 0.999 0.833 0.939 0.934 0.737 0.030 0.204 0.423 0.028 0.633 0.439 0.441 0.000 0.013
GARCH (1,1) in mean and exogenous predictors - t dist. 0.000 0.638 0.550 0.573 0.547 0.414 0.785 0.125 0.016 0.053 0.221 0.012 0.040 0.153 0.044 0.001 0.007
EGARCH (1,1) in mean and exogenous predictors 0.071 0.998 0.997  0.998 0.997 0.025 1.000 0.170 0.026 0.066 0.218 0.033 0.168 0.189 0.079 0.001 0.006
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.000 0.771 0.687 0.711 0.688 0.001 0.845 0.002 0.009 0.025 0.125 0.009 0.043 0.094 0.013 0.001 0.004
TGARCH (1,1) in mean and exogenous predictors 0.017 0.991 0.986 0.988 0.987 0.006 0.999 0.241 0.033 0.023 0.192 0.012 0.034 0.127 0.048 0.001 0.006
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.000 0.967 0.948  0.956 0.952 0.002 1.000 0.006 0.999 0.022 0.296 0.052 0.306 0.286 0.152 0.002 0.010
Exponential STAR - TBILL 0.608 1.000 1.000 1.000 1.000 0.028 1.000 0.919 1.000 0.982 0.876 0.960 0.990 0.978 0.000 0.046
Exponential STAR - SRF 0.589 1.000 0.999  1.000 1.000 0.064 1.000 0.912 1.000 0.948 0.997 0.382 0.861 0.670 0.732 0.003 0.031
Logistic STAR - TBILL 0.001 0.925 0.890  0.902 0.893 0.005 0.934 0.044 0.859 0.102 0.300 0.003 § 0.403 0.611 0.559 0.574 0.032 0.063
Logistic STAR - SRF 0.945 1.000 1.000 1.000 1.000 0.039 1.000 0.947 1.000 0.988 1.000 0.689 0.516 0.999 0.984
TAR - Thill 0.577 1.000 1.000 1.000 1.000 0.047 1.000 0.928 1.000 0.979 1.000 0.494 0.455 0.999 0.363
TAR - SRF 0.975 1.000 1.000 1.000 1.000 0.132 1.000 0.987 1.000 0.999 1.000 0.971 0.855 1.000 0.944
Logistic STAR - GARCH 0.830 1.000 1.000 1.000 1.000 0.057 1.000 0.956 1.000 0.993 1.000 0.749 0.537 1.000 0.569
MS Two-state Homoskedastic 0.003 0.681 0.624 0.633 0.615 0.005 0.571 0.025 0.481 0.066 0.168 0.005 0.004 0.241 0.002
MS Two-state Heteroskedastic 0.069 0.897 0.885  0.881 0.873 0.020 0.814 0.265 0.777 0.325 0.511 0.065 0.098 0.609 0.058

Panel B: 12-month Horizon

GARCH (1,1) GARCH (1,1) in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean &exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two-  MS Two-
walk with Random AR(1) with exogenous predictors-t  exogenous predictors - t exogenous predictors -t Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill  STAR-SRF _ STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.956 0.976  0.936 0.941 0.276 0.967 0.605 0.723 0.938 0.878 0.006 0.011 0.019 0.009 0.010 0.060 0.070 0.013 0.015
Random walk (with drift) 0.000 0.024 0.767 0.037 0.468 0.401 0.579 0.194 0.224 0.007 0.009 0.023 0.013 0.011 0.043 0.043 0.009 0.011
AR(1) 0.000 0.000 0.063 0.054 0.021 0.096 0.303 0.486 0.059 0.080 0.010 0.019 0.021 0.014 0.010 0.043 0.048 0.012 0.014
Random walk (with drift and GARCH(1,1)) 0.000 0.999 1.000 0.836 0.053 0.563 0.422 0.596 0.264 0.287 0.008 0.009 0.025 0.014 0.014 0.046 0.045 0.009 0.011
AR(1) with GARCH(1,1) 0.000 1.000 1.000 0.000 0.044 0.341 0.380 0.551 0.155 0.169 0.011 0.018 0.024 0.016 0.014 0.048 0.050 0.011 0.013
GARCH (1,1) in mean and exogenous predictors 0.824 1.000 1.000 1.000 1.000 0.990 0.627 0.738 1.000 0.979 0.004 0.004 0.012 0.007 0.003 0.056 0.074 0.011 0.012
GARCH (1,1) in mean and exogenous predictors - t dist. 0.001 1.000 1.000 1.000 1.000 0.000 0.412 0.584 0.043 0.134 0.006 0.011 0.013 0.009 0.002 0.040 0.053 0.010 0.011
EGARCH (1,1) in mean and exogenous predictors 0.971 0.997 0.997 0.996 0.997 0.969 0.987 0.774 0.505 0.515 0.000 0.000 0.004 0.000 0.030 0.022 0.001 0.003 0.003
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.992 1.000 1.000 1.000 1.000 0.993 0.998 0.479 0.353 0.357 0.000 0.002 0.000 0.000 0.031 0.003 0.000 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.046 0.006 0.014 0.013 0.008 0.003 0.043 0.062 0.010 0.011
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.295 1.000 1.000 1.000 1.000 0.064 1.000 0.020 0.008 0.010 0.006 0.004 0.041 0.049 0.007 0.008
Exponential STAR - TBILL 0.946 0.993 0.994  0.991 0.993 0.918 0.972 0.136 0.534 0.936 0.910 1.000 0.689 0.088 0.069
Exponential STAR - SRF 0.978 0.998 0.998  0.997 0.998 0.953 0.990 0.116 0.089 0.003 0.374 0.110 0.071 0.013 0.011
Logistic STAR - TBILL 0.757 0.990 0.994  0.986 0.992 0.689 0.896 0.044 0.698 0.873 0.844 0.586 0.132 0.180
Logistic STAR - SRF 0.966 0.992 0.993  0.991 0.992 0.951 0.979 0.216 0.983 0.919 0.503 0.061 0.063
TAR - Thill 0.952 0.996 0.998  0.995 0.997 0.922 0.980 0.095 0.830 0.951 0.253 0.484 0.985 0.047 0.297 0.070 0.064
TAR - SRF 0.995 1.000 1.000 1.000 1.000 0.987 0.998 0.159 0.960 0.992 0.753 1.000 0.996 0.319 0.863 0.011 0.002
Logistic STAR - GARCH 0.997 0.999 0.999  0.999 0.999 0.995 0.998 0.624 0.992 0.997 0.999 0.992 0.999 1.000 0.997 0.985 0.000
MS Two-state Homoskedastic 0.000 0.039 0.053  0.026 0.032 0.000 0.001 0.003 0.000 0.000 0.006 0.001 0.006 0.007 0.004 0.000 0.002
MS Two-state Heteroskedastic 0.000 0.006 0.008  0.002 0.005 0.000 0.001 0.001

proposed by van Dijk and Franses (2003). Boldfaced p-values are below the 5% threshold. In each panel, in cells above the main diagonal we report vDF p-
values under a symmetric, square loss function where weights is attached only to loss differences below the median; below the main diagonal, we report vDF
p-values where weights is attached only to loss differences above the median.
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Table 6 [continued]
Van Dijk-Franses Equal Predictive Accuracy Tests: Bond Return Forecasts, Asymmetric Weighting Functions

Panel C: 1-month Horizon

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean &exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two-  MS Two-
walk with Random AR(1) with exogenous predictors-t exogenous predictors - t exogenous predictors -t Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill STAR-SRF  STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.997 1.000 0.994 0.999 0.970 0.647 0.882 0.524 0.962 0.470 0.958 0.747 0.779 0.747 0.963 0.885 0.720 0.000 0.000
Random walk (with drift) 0.000 0.100  0.004 0.049 0.017 0.003 0.012 0.004 0.018 0.003 0.365 0.009 0.036 0.009 0.026 0.039 0.008 0.000 0.000
AR(1) 0.000 1.000 0.793 0.022 0.000 0.013 0.001 0.022 0.001 0.624 0.006 0.040 0.006 0.069 0.090 0.005 0.000 0.000
Random walk (with drift and GARCH(1,1)) 0.000 0.999 0.026 0.005 0.022 0.007 0.030 0.006 0.460 0.015 0.056 0.015 0.042 0.068 0.015 0.000 0.000
AR(1) with GARCH(1,1) 0.000 1.000 0.959 0.023 0.003 0.034 0.002 0.682 0.011 0.066 0.011 0.096 0.131 0.009 0.000 0.000
GARCH (1,1) in mean and exogenous predictors 0.001 1.000 1.000 1.000 0.155 0.030 0.293 0.004 0.897 0.036 0.359 0.036 0.720 0.591 0.010 0.000 0.000
GARCH (1,1) in mean and exogenous predictors - t dist. 0.030 1.000 1.000 1.000 1.000 . 0.910 0.416 0.983 0.305 0.955 0.636 0.718 0.636 0.944 0.862 0.640 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors 0.020 1.000 1.000 1.000 1.000 0.664 0.097 0.044 0.025 0.922 0.164 0.507 0.164 0.812 0.718 0.155 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.112 1.000 1.000 1.000 1.000 0.988 0.593 0.987 0.955 0.665 0.746 0.665 0.931 0.887 0.671 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors 0.002 1.000 0.999 1.000 0.999 0.588 0.003 0.392 0.038 0.382 0.038 0.752 0.616 0.010 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.041 1.000 1.000 1.000 1.000 0.999 0.450 0.916 0.377 0.771 0.751 0.956 0.910 0.766 0.000 0.000
Exponential STAR - TBILL 0.931 0.999 0.997  0.999 0.996 0.974 0.959 0.971 0.958 0.974 0.105 0.064 0.156 0.176 0.065 0.000 0.000
Exponential STAR - SRF 0.864 1.000 1.000 1.000 1.000 1.000 0.996 0.998 0.975 1.000 0.994 0.721
Logistic STAR - TBILL 0.500 1.000 0.999  1.000 0.999 0.908 0.763 0.888 0.744 0.897 0.767 0.079 0.381
Logistic STAR - SRF 0.864 1.000 1.000 1.000 1.000 1.000 0.996 0.998 0.975 1.000 0.994 0.081 0.312
TAR - Thill 0.500 1.000 0.997  0.999 0.996 0.861 0.727 0.828 0.700 0.851 0.728 0.084 0.391
TAR - SRF 0.332 1.000 0.998  1.000 0.995 0.776 0.577 0.741 0.552 0.754 0.580 0.070 0.235
Logistic STAR - GARCH 0.208 1.000 1.000 1.000 1.000 1.000 0.939 0.995 0.852 1.000 0.937 0.055 0.011
MS Two-state Homoskedastic 0.000 0.143 0.006 0.038 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MS Two-state Heterosk ic 0.000 0.285 0.017  0.093 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel D: 12-month Horizon

GARCH (1,1) GARCH (1,1) in  EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean &exog. inmeanand mean&exog. inmeanand mean & exog. Logistic MS Two-  MS Two-
walk with Random AR(1) with exogenous predictors-t  exogenous predictors - t exogenous predictors -t Exponential Exponential Logistic  Logistic STAR- state state
Linear drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill  STAR-SRF _ STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.975 0.975  0.603 0.685 0.765 0.661 0.314 0.203 0.752 0.927 0.894 0.189 0.243 0.189 0.394 0.307 0.202 0.000 0.001
Random walk (with drift) 0.003 0.004 0.013 0.109 0.072 0.027 0.012 0.077 0.175 0.004 0.007 0.019 0.007 0.036 0.029 0.008 0.000 0.000
AR(1) 0.003 0.001 0.011 0.104 0.069 0.024 0.010 0.071 0.165 0.011 0.005 0.014 0.005 0.028 0.023 0.005 0.000 0.000
Random walk (with drift and GARCH(1,1)) 0.051 0.956 0.968 0.799 0.555 0.493 0.322 0.231 0.550 0.698 0.865 0.111 0.170 0.111 0.322 0.226 0.120 0.000 0.000
AR(1) with GARCH(1,1) 0.041 0.974 0.981  0.430 0.469 0.406 0.261 0.172 0.459 0.607 0.726 0.056 0.103 0.056 0.223 0.155 0.062 0.000 0.001
GARCH (1,1) in mean and exogenous predictors 0.957 0.995 0.995  0.966 0.967 0.234 0.167 0.136 0.470 1.000 0.730 0.181 0.221 0.181 0.343 0.287 0.192 0.000 0.002
GARCH (1,1) in mean and exogenous predictors - t dist. 0.900 0.992 0.992  0.955 0.955 0.081 0.202 0.142 0.688 0.987 0.784 0.189 0.234 0.189 0.370 0.306 0.202 0.000 0.002
EGARCH (1,1) in mean and exogenous predictors 0.917 0.989 0.989 0.957 0.956 0.742 0.878 0.287 0.932 0.972 0.856 0.232 0.293 0.232 0.471 0.376 0.250 0.001 0.004
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.848 0.985 0.985 0.939 0.937 0.424 0.580 0.008 0.934 0.971 0.877 0.235 0.307 0.235 0.510 0.399 0.254 0.001 0.004
TGARCH (1,1) in mean and exogenous predictors 0.984 0.997 0.997 0.973 0.974 0.405 0.654 0.265 0.752 0.162 0.205 0.162 0.338 0.282 0.175 0.001 0.002
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.971 0.997 0.997 0.971 0.974 0.153 0.328 0.160 0.580 0.131 0.162 0.131 0.265 0.228 0.141 0.000 0.001
Exponential STAR - TBILL 0.991 1.000 1.000 0.997 0.997 0.980 0.981 0.965 0.099 0.126 0.099 0.217 0.152 0.104 0.000 0.000
Exponential STAR - SRF 0.996 1.000 1.000 0.996 0.998 0.957 0.957 0.907 . § 0.834 0.599 0.977 0.803 0.662 0.019 0.039
Logistic STAR - TBILL 0.992 1.000 1.000 0.994 0.994 0.930 0.942 0.832 0.918 0.944 0.010 0.166 0.166 0.940 0.620 0.185 0.019 0.037
Logistic STAR - SRF 0.996 1.000 1.000 0.996 0.998 0.957 0.957 0.907 0.965 0.976 0.053 0.948 0.834 0.977 0.803 0.662 0.019 0.039
TAR - Thill 0.977 0.995 0.995 0.977 0.981 0.933 0.935 0.899 0.934 0.945 0.095 0.541 0.785 0.541 0.316 0.010 0.007 0.017
TAR - SRF 0.996 1.000 1.000 0.994 0.996 0.894 0.900 0.821 0.922 0.957 0.031 0.049 0.496 0.049 0.228 0.002 0.006
Logistic STAR - GARCH 0.999 1.000 1.000 0.998 0.999 0.952 0.952 0.880 0.963 0.978 0.036 0.052 0.694 0.052 0.301 0.826 0.021 0.040
MS Two-state Homoskedastic 0.000 0.021 0.052  0.019 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
MS Two-state Heteroskedastic 0.000 0.000 0.000  0.001 0.001 0.000 0.000 0.000

proposed by van Dijk and Franses (2003). Boldfaced p-values are below the 5% threshold. In each panel, in cells above the main diagonal we report vDF p-
values under a symmetric, square loss function where weights is attached only to loss differences below the median; below the main diagonal, we report vDF
p-values where weights is attached only to loss differences above the median.
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Table 7
Sub-Sample Predictive Accuracy Measures for Stock and Bond Returns

Panel A: 1-month Horizon

1995:01-1999:01 1999:02-2003:01
MZ regression MZ (p-value for MZ regression MZ (p-value for
Measure RMSFE Bias Forecast Variance MAFE MPFE Success Ratio  (R-square) ¢o and ¢,=1) RMSFE Bias Forecast Variance MAFE MPFE Success Ratio  (R-square) o and ¢,=1)
Model Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds
Linear 3.915 1.022 1.533 0.473 12.974 0.822 2985 0.791 1.296 1.115 0.521 0.771 0.067 0.003 0.021 0.000 4.956 1.317 -0.241 0.157 24.500 1.710 3.879 0.995 0.913 -0.231 0.500 0.604 0.000 0.010 0.499 0.112
Random walk (with drift) 3.737 0.814 0.087 -0.007 13.954 0.662 2.680 0.645 0.690 0.956 0.729 0.854 0.097 0.062 0.085 0.204 5.207 1.337 -1.853 -0.415 23.684 1.614 3.952 1.092 1.132 -2.300 0.521 0.646 0.024 0.150 0.030 0.002
AR(1) 3.742 0.867 0.090 0.003 13.992 0.752 2.680 0.684 0.645 0.915 0.729 0.854 0.013 0.006 0.621 0.042 5.222 1.339 -1.818 -0.293 23.963 1.707 3.984 1.059 1.140 -0.836 0.521 0.646 0.002 0.000 0.043 0.065
Random walk (with drift and GARCH(1,1)) 3.720 0.840 0.136 0.157 13.818 0.681 2.660 0.662 0.705 1.017 0.729 0.854 0.009 0.018 0.896 0.133 5.203 1.327 -1.815 -0.379 23.781 1.619 3.947 1.078 1.114 -2.235 0.521 0.646 0.003 0.024 0.049 0.056
AR(1) with GARCH(1,1) 3.757 0.891 0.174 0.147 14.081 0.772 2.690 0.702 0.738 0.907 0.729 0.854 0.029 0.005 0.354 0.012 5.213 1.334 -1.852 -0.267 23.745 1.707 3.951 1.034 1.126 -0.941 0.521 0.646 0.004 0.000 0.044 0.079
GARCH (1,1) in mean and exogenous predictors 4.475 0.970 2.256 0.387 14.935 0.791 3.322 0.752 2.658 1.082 0.458 0.771 0.022 0.000 0.000 0.000 5.190 1.338 -0.083 0.080 26.927 1.783 4.039 0.995 0.961 -0.564 0.458 0.625 0.004 0.003 0.054 0.064
GARCH (1,1) in mean and exogenous predictors - tdist. 3.608 0.982 0.369 0.422 12.879 0.785 2.615 0.756 0.719 1.052 0.729 0.792 0.078 0.000 0.689 0.000 5.085 1.324 -1.121 0.126 24.604 1.738 3.875 0.993 1.023 -0.645 0.500 0.625 0.000 0.005 0.151 0.097
EGARCH (1,1) in mean and exogenous predictors 3.772 0.958 -0.302 0.353 14.137 0.792 2,675 0.750 0.678 1.025 0.708 0.792 0.008 0.000 0.483 0.000 5.222 1.336 -0.166 0.150 27.242 1.763 4.212 0.990 1.027 -0.273 0.354 0.583 0.086 0.007 0.006 0.062
EGARCH (1,1) in mean and exogenous predictors- t dist. 3.708 0.964 0.027 0.354 13.750 0.803 2.660 0.745 0.869 1.010 0.688 0.792 0.016 0.001 0.871 0.000 5.114 1.333 -0.908 0.136 25.329 1.758 3.998 1.010 1.024 -0.359 0.438 0.604 0.011 0.002 0.091 0.076
TGARCH (1,1) in mean and exogenous predictors 3.778 0.974 0.188 0.397 14.235 0.791 2.693 0.757 1.020 1.047 0.625 0.771 0.004 0.000 0.489 0.000 5.375 1.339 -0.442 0.084 28.697 1.785 4.296 0.996 1.344 -0.507 0.313 0.646 0.052 0.005 0.004 0.059
TGARCH (1,1) in mean and exogenous predictors- t dist. 3.728 0.981 0.229 0.424  13.849 0.782 2.706 0.759 1.201 1.065 0.646 0.813 0.013 0.000 0.728 0.000 5.049 1.331 -0.347 0.153 25.375 1.748 4.012 0.995 1.068 -0.421 0.375 0.583 0.008 0.006 0.176 0.076
Recursive AR(1) 3.742 0.867 0.090 0.003 13.992 0.752 2.680 0.684 0.645 0.915 0.729 0.854 0.013 0.006 0.621 0.042 5.222 1.339 -1.818 -0.293 23.963 1.707 3.984 1.059 1.140 -0.836 0.521 0.646 0.002 0.000 0.043 0.065
Recursive AR(1) with GARCH(1,1) 3.757 0.891 0.174 0.147 14.081 0.772 2,690 0.702 0.738 0.907 0.729 0.854 0.029 0.005 0.354 0.012 5.213 1.334 -1.852 -0.267 23.745 1.707 3.951 1.034 1.126 -0.941 0.521 0.646 0.004 0.000 0.044 0.079
Linear with other asset 4.029 1.013 1.148 0.433 14.919 0.839 2.887 0.781 1.325 1.114 0.542 0.792 0.000 0.004 0.027 0.000 5.157 1.313 -0.398 0.090 26.435 1.717 4.020 0.986 0.825 -0.747 0.458 0.563 0.007 0.016 0.068 0.108
Linear with other asset and GARCH (1,1) 5.237 0.974 2.158 0.365 22.775 0.816 3.665 0.754 3.635 1.062 0.479 0.771 0.001 0.000 0.000 0.000 5.684 1.326 0.066 0.001 32.305 1.758 4.479 0.981 0.846 -1.219 0.479 0.646 0.001 0.012 0.001 0.078
Exponential STAR - Thill 3.909 0.988 1.553 0.458 12.872 0.766 2.987 0.758 1.359 1.168 0.563 0.771 0.076 0.000 0.018 0.000 4.795 1.474 -0.213 0.265 22.945 2.104 3.749 1.122 0.885 -0.660 0.563 0.563 0.042 0.000 0.845 0.001
Exponential STAR - 1-month forecast 3.967 1.030 1.262 0.481 14.140 0.829 3.038 0.807 1.712 1.114 0.625 0.750 0.047 0.000 0.019 0.000 4.942 1.335 -0.320 0.182 24.322 1.749 3.743 0.994 0.955 -0.077 0.542 0.563 0.006 0.010 0.490 0.059
Logistic STAR - Thill 3.955 1.001 0.253 0.267 15.579 0.931 2.850 0.783 0.575 0.918 0.646 0.792 0.001 0.020 0.063 0.000 4521 1.366 0.056 0.186 20.435 1.832 3.497 1.027 0.500 0.036 0.667 0.604 0.143 0.001 0.989 0.026
Logistic STAR - 1-month forecast 3.885 1.030 1.657 0.481 12.349 0.829 2,925 0.807 1.247 1.114 0.563 0.750 0.117 0.000 0.009 0.000 4959 1.335 -0.231 0.182 24.539 1.749 3.876 0.994 0.901 -0.077 0.521 0.563 0.000 0.010 0.481 0.059
TAR - Thill 3.939 0.977 1.519 0.453 13.209 0.749 3.007 0.755 2.111 1.220 0.500 0.729 0.058 0.025 0.020 0.000 5.204 1.388 -0.399 0.054 26.918 1.923 4.147 1.079 1.202 -0.109 0.458 0.500 0.040 0.005 0.021 0.011
TAR - 1-month forecast 4.111 1.080 1.294 0.311 15.226 1.070 3.180 0.877 0.825 0.743 0.542 0.750 0.021 0.007 0.007 0.000 5.033 1.333 -0.834 0.108 24.633 1.766 3.997 1.021 1.075 0.650 0.583 0.542 0.015 0.009 0.175 0.065
Logistic STAR GARCH(1,1) transition 4.035 0.991 1.423 0.425 14.255 0.803 2,990 0.777 0.950 1.101 0.583 0.750 0.001 0.000 0.025 0.000 5.015 1.346 -0.346 0.172 25.028 1.782 3.918 1.002 1.076 0.043 0.500 0.563 0.000 0.006 0.289 0.045
TAR with other asset 3.926 0.904 1.065 0.361 14.278 0.686 2.802 0.694 2.046 1.115 0.583 0.771 0.025 0.056 0.051 0.002 5.402 1.393 -0.593 -0.025 28.829 1.939 4.331 1.095 1.230 -2.851 0.396 0.583 0.062 0.002 0.002 0.010
MS Two-state Homoskedastic 3.098 0.763 0.848 0.256 8.876 0.516 2.212 0.599 0.807 1.077 0.771 0.854 0.531 0.260 0.000 0.017 4.438 1.060 -0.384 -0.033 19.549 1.122 3.387 0.792 0.829 -1.525 0.750 0.750 0.192 0.332 0.596 0.287
MS Two-state Heteroskedastic 3.753 0.792 0.867 0.353 13.331 0.503 2.504 0.648 0.592 0.960 0.771 0.833 0.103 0.270 0.061 0.002 4.331 1.063 -0.373 -0.029 18.619 1.129 3.347 0.778 0.691 -1.416 0.750 0.750 0.282 0.315 0.122 0.440

2003:02-2007:01

Measure RMSFE Bias Forecast Variance MAFE MPFE Success Ratio MZ regression MZ (p-value for

Model Stocks Bonds Stocks Bonds Stocks  Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds

Linear 2.854 1.421 1.245 -0.264 6.595 1.948 2451 1.122 1.278 0.268 0.521 0.646 0.087 0.015 0.008 0.020

Random walk (with drift) 2.700 1.446 0.221 -0.597 7.240 1.733 2176 1.112 1.734 -1.771 0.708 0.646 0.056 0.006 0.212 0.011

AR(1) 2.702 1.425 0.219 -0.460 7.255 1.818 2.179 1.087 1.772 0.565 0.708 0.625 0.004 0.001 0.688 0.024

Random walk (with drift and GARCH(1,1)) 2.714 1.444 0.301 -0.592 7.277 1.736 2.200 1.112 1.650 -1.834 0.708 0.646 0.142 0.009 0.018 0.011

AR(1) with GARCH(1,1) 2.702 1.424 0.326 -0.484 7.195 1.793 2.182 1.087 1.701 0.073 0.708 0.646 0.004 0.000 0.704 0.025

GARCH (1,1) in mean and exogenous predictors 2.786 1.419 1.062 -0.356 6.634 1.888 2.378 1.117 1.608 -0.012 0.625 0.604 0.081 0.005 0.027 0.026

GARCH (1,1) in mean and exogenous predictors - tdist. 2.550 1.413 0.128 -0.313 6.486 1.899 2.049 1.116 2.255 -0.102 0.729 0.604 0.101 0.008 0.943 0.030

EGARCH (1,1) in mean and exogenous predictors 2.890 1.420 1.266 -0.341 6.748 1.900 2.435 1.113 1.507 -0.389 0.542 0.646 0.067 0.003 0.007 0.027

EGARCH (1,1) in mean and exogenous predictors- t dist. 2.667 1.417 -0.142 -0.209 7.091 1.964 2.107 1.114 2.397 0.558 0.708 0.604 0.034 0.014 0.634 0.023

TGARCH (1,1) in mean and exogenous predictors 2.704 1.414 0.207 -0.347 7.268 1.880 2.115 1.116 2.061 -0.089 0.688 0.625 0.024 0.003 0.427 0.032

TGARCH (1,1) in mean and exogenous predictors- tdist. 2.678 1.400 0.170 -0.299 7.145 1.871 2.084 1.111 2.177 -0.106 0.729 0.625 0.035 0.004 0.507 0.050

Recursive AR(1) 2.702 1.425 0.219 -0.460 7.255 1.818 2.179 1.087 1.772 0.565 0.708 0.625 0.004 0.001 0.688 0.024

Recursive AR(1) with GARCH(1,1) 2.702 1.424 0.326 -0.484 7.195 1.793 2.182 1.087 1.701 0.073 0.708 0.646 0.004 0.000 0.704 0.025

Linear with other asset 3.025 1.417 1.367 -0.268 7.280 1.936 2.507 1.118 1.292 0.116 0.583 0.646 0.035 0.007 0.002 0.027

Linear with other asset and GARCH (1,1) 3.024 1.411 1.325 -0.360 7.388 1.860 2.477 1.110 1.352 -0.184 0.542 0.625 0.031 0.000 0.002 0.039

Exponential STAR - Tbill 2.830 1.636 1.195 -0.017 6.580 2.675 2.428 1.209 1.382 -0.089 0.583 0.667 0.090 0.028 0.011 0.000

Exponential STAR - 1-month forecast 2.896 1.423 1.363 -0.237 6.528 1.969 2.469 1.134 1.676 0.526 0.542 0.583 0.097 0.009 0.003 0.021

Logistic STAR - Thill 2.738 1.419 0.640 -0.200 7.084 1.972 2229 1.130 2.637 1.017 0.583 0.542 0.065 0.001 0.090 0.030

Logistic STAR - 1-month forecast 2.898 1.423 1.238 -0.237 6.868 1.969 2465 1.134 1.170 0.526 0.542 0.583 0.065 0.009 0.007 0.021

TAR - Thill 2.774 1.446 1.128 -0.195 6.424 2.054 2.360 1.143 1.133 1.878 0.646 0.583 0.110 0.020 0.016 0.008

TAR - 1-month forecast 3.045 1.392 1.381 -0.302 7.368 1.846 2.576 1.128 1.550 -0.357 0.458 0.646 0.034 0.002 0.001 0.069

Logistic STAR GARCH(1,1) transition 2.922 1.413 1.178 -0.257 7.148 1.932 2489 1.123 1.602 0.616 0.542 0.604 0.041 0.004 0.008 0.033

TAR with other asset 2.759 1.440 1.171 -0.211 6.242 2.030 2.277 1.151 1.338 1.416 0.625 0.542 0.145 0.007 0.008 0.013

MS Two-state Homoskedastic 2.213 1.175 0.807 -0.262 4.248 1.311 1.918 0.936 1.469 0.163 0.750 0.708 0.549 0.378 0.000 0.003

MS Two-state Heteroskedastic 2.194 1.165 0.817 -0.265 4.147 1.287 1.877 0.934 1.285 -0.068 0.792 0.688 0.603 0.390 0.000 0.003

Note: In all the columns, we have boldface the best three statistics (or the three highest p-values) returned across all models. In the column concerning the F-
test on coefficients of the Mincer-Zarnowitz regression, a p-value equal or above a threshold of 5% indicates that the null of o=0 and =1 cannot be rejected
with a high level of confidence.
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Table 7 [continued]

Sub-Sample Predictive Accuracy Measures for Stock and Bond Returns

Panel B: 12-month Horizon

1996:01-1999:09

1999:10-2003:05

MZ regression MZ (p-value for MZ regression MZ (p-value for
Measure RMSFE Bias Forecast Variance MAFE MPFE Success Ratio  (R-square) o and ¢,=1) RMSFE Bias Forecast Variance MAFE MPFE Success Ratio  (R-square) o and ¢,=1)
Model Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds
Linear 4.076 1.089 0.680 -0.181 16.151 1.153 2.880 0.850 0.604 0.492 0.644 0.756 0.009 0.053 0.134 0.005 5.485 1.346 -1.526 0.102 27.760 1.801 4.243 1.022 1.314 -2.233 0.386 0.727 0.033 0.004 0.013 0.277
Random walk (with drift) 3.908 1.030 -0.022 -0.288 15.271 0.978 2.820 0.813 0.572 0.455 0.733 0.756 0.001 0.011 0.972 0.130 5.489 1.331 -2.207 -0.231 25.253 1.719 4.205 1.075 1.482 -3.260 0.477 0.727 0.013 0.011 0.020 0.384
AR(1) 3.905 1.027 -0.028 -0.290 15.245 0.971 2.824 0.807 0.487 0.453 0.733 0.756 0.002 0.011 0.982 0.149 5.607 1.326 -2.278 -0.253 26.248 1.693 4.267 1.066 1.551 -3.566 0.477 0.727 0.055 0.020 0.003 0.378
Random walk (with drift and GARCH(1,1)) 3.908 1.015 0.003 -0.265 15.269 0.960 2.817 0.800 0.576 0.446 0.733 0.756 0.000 0.037 0.994 0.141 5.483 1.338 -2.177 -0.132 25.326 1.774 4219 1.073 1.459 -2.948 0.477 0.727 0.000 0.022 0.027 0.238
AR(1) with GARCH(1,1) 3.883 1.020 0.053 -0.261 15.076 0.972 2.820 0.806 0.509 0.438 0.733 0.756 0.015 0.005 0.949 0.232 5.537 1.343 -2.246 -0.166 25.608 1.776  4.221 1.075 1.524 -3.332 0.477 0.727 0.004 0.009 0.017 0.276
GARCH (1,1) in mean and exogenous predictors 4.025 1.113 0.757 -0.187 15.626 1.204 2.864 0.866 0.840 0.527 0.644 0.756 0.002 0.058 0.266 0.002 5.513 1.380 -1.602 0.216 27.822 1.858 4.280 1.040 1.341 -2.475 0.455 0.705 0.024 0.001 0.013 0.104
GARCH (1,1) in mean and exogenous predictors - tdist. 3.993 1.086 0.383 -0.199 15.799 1.140 2.773 0.853 0.578 0.516 0.711 0.756 0.000 0.039 0.390 0.007 5.618 1.390 -1.933 0.212 27.826 1.887 4.430 1.059 1.502 -2.328 0.409 0.659 0.021 0.004 0.006 0.073
EGARCH (1,1) in mean and exogenous predictors 4.561 1.055 0.332 -0.059 20.697 1.111 3.165 0.837 0.743 0.468 0.600 0.711 0.025 0.000 0.001 0.058 6.368 1.392 -0.215 0.267 40.505 1.866 4.811 1.060 1.406 -2.011 0.455 0.659 0.031 0.000 0.000 0.074
EGARCH (1,1) in mean and exogenous predictors- t dist. 4.827 1.043 0.629 -0.052 22.904 1.084 3.207 0.811 1.115 0.530 0.667 0.733 0.005 0.001 0.000 0.098 5572 1.388 -1.280 0.247 29.405 1.865 4.257 1.057 1.346 -1.863 0.500 0.636 0.014 0.000 0.010 0.083
TGARCH (1,1) in mean and exogenous predictors 4.095 1.100 0.720 -0.128 16.253  1.193 2.893 0.851 0.784 0.562 0.644 0.756 0.008 0.059 0.112 0.003 5583 1.373 -1.633 0.218 28.508 1.838 4.385 1.039 1.515 -2.413 0.364 0.727 0.042 0.000 0.005 0.129
TGARCH (1,1) in mean and exogenous predictors- t dist. 4.011 1.124 0.534 -0.174 15.800 1.234 2764 0.877 0.367 0.578 0.711 0.756 0.000 0.092 0.323 0.000 5.614 1.363 -1.867 0.196 28.038 1.819 4.392 1.028 1.362 -2.429 0.409 0.727 0.014 0.000 0.008 0.180
Recursive AR(1) 3.908 1.029 0.007 -0.282 15.271 0.979 2821 0.812 0.579 0.458 0.733 0.756 0.001 0.019 0.972 0.117 5.481 1.331 -2.186 -0.227 25.257 1.720 4.198 1.075 1.476 -3.240 0.477 0.727 0.013 0.014 0.021 0.363
Recursive AR(1) with GARCH(1,1) 3.909 1.008 0.103 -0.055 15.267 1.012 2.822 0.777 0.633 0.614 0.733 0.756 0.000 0.083 0.981 0.066 5.469 1.322 -2.121 -0.171 25.413 1.719 4.204 1.051 1.479 -3.180 0.477 0.727 0.003 0.001 0.029 0.625
Linear with other asset 4.389 1.211 1.769 0.562 16.134 1.151 3.351 0.959 1.777 1.115 0.511 0.533 0.005 0.001 0.006 0.000 5.436 1.384 -0.873 0.282 28.784 1.836 4.218 1.108 0.830 -2.186 0.409 0.614 0.003 0.007 0.037 0.081
Linear with other asset and GARCH (1,1) 7.695 1.091 4.838 0.135 35.797 1.173 5.473 0.833 4.412 0.511 0.467 0.756 0.013 0.006 0.000 0.012 6.611 1.498 0.604 0.261 43.334 2.177 5.171 1.197 1.784 -1.284 0.432 0.591 0.039 0.011 0.000 0.003
Exponential STAR - Thill 4.317 1.166 2.166 0.382 13.947 1.214 3.374 0.894 1.835 0.973 0.467 0.600 0.086 0.000 0.002 0.001 4964 1.680 -0.613 0.437 24.268 2.631 3916 1.223 1.289 -0.940 0.545 0.591 0.044 0.002 0.703 0.000
Exponential STAR - 1-month forecast 4.622 1.115 2.360 0.366 15.792 1.109 3.638 0.855 1.892 0.799 0.578 0.689 0.088 0.004 0.000 0.005 5.058 1.416 -1.114 0.299 24.348 1.916 3.937 1.081 1.263 -0.232 0.500 0.591 0.039 0.004 0.352 0.033
Logistic STAR - Thill 3.624 1.049 1.694 0.102 10.262 1.091 2.734 0.831 1.463 0.493 0.556 0.756 0.377 0.009 0.001 0.061 5.138 1.412 -0.458 0.266 26.191 1.924 4.043 1.054 0.975 -0.392 0.591 0.659 0.059 0.003 0.117 0.038
Logistic STAR - 1-month forecast 4.237 1.115 2.301 0.366 12.659 1.109 3.368 0.855 1.686 0.799 0.444 0.689 0.177 0.004 0.000 0.005 5.283 1.416 -0.509 0.299 27.651 1.916 4.087 1.081 1.558 -0.232 0.545 0.591 0.001 0.004 0.128 0.033
TAR - Thill 4.194 1.173 2.009 0.294 13.553 1.289 3.302 0.934 2.636 0.994 0.489 0.533 0.112 0.013 0.004 0.000 5.409 1.433 -0.956 0.220 28.346 2.007 4.308 1.078 1.574 -0.221 0.455 0.591 0.006 0.001 0.043 0.021
TAR - 1-month forecast 4.425 1.146 1.556 0.121 17.163 1.299 3.495 0.949 0.620 0.529 0.511 0.644 0.030 0.001 0.002 0.002 5.052 1.411 -1.241 0.248 23.984 1.930 4.012 1.084 1.964 0.383 0.614 0.614 0.063 0.003 0.220 0.039
Logistic STAR GARCH(1,1) transition 5.096 1.082 2.600 0.311 19.206 1.075 3.968 0.835 2.072 0.737 0.311 0.689 0.017 0.008 0.000 0.017 5.185 1.417 1.072 0.254 25.735 1.943 4.368 1.068 0.407 -0.190 0.545 0.636 0.018 0.002 0.195 0.034
TAR with other asset 4.178 1.087 1.604 0.220 14.879  1.134 3.160 0.850 2.608 0.857 0.467 0.667 0.053 0.002 0.018 0.016 5.620 1.430 -1.183 0.120 30.190 2.031 4.463 1.097 1.056 -3.314 0.432 0.659 0.028 0.001 0.005 0.023
MS Two-state Homoskedastic 3.186 0.852 0.562 -0.042 9.837 0.724 2.245 0.650 0.203 0.580 0.822 0.756 0.625 0.396 0.000 0.011 4.289 1.128 -1.799 0.174 15.162 1.242 3.359 0.835 1.132 -0.876 0.659 0.750 0.678 0.356 0.000 0.048
MS Two-state Heteroskedastic 3.178 0.863 -0.141 -0.099 10.081  0.735 2.308 0.655 0.318 0.554 0.800 0.756 0.454 0.483 0.016 0.000  4.427 1.117 -1.249 0.144 18041 1.226 3.602 0.823 1445 -1.047 0.636 0.727 0.386 0.393 0.008 0.022
2003:06-2007:01

Measure  RMSFE Bias Forecast Variance MAFE MPFE___ Success Ratio MZ regression M2 (p-value for

Model Stocks Bonds Stocks Bonds Stocks  Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds Stocks Bonds

Linear 2.803 1.374 1.030 -0.511 6.795 1.626 2.443 1.049 0.283 -1.177 0.614 0.636 0.001 0.000 0.003 0.026

Random walk (with drift) 2.463 1.424 0.336 -0.660 5.955 1.592 2.039 1.084 1.658 -1.759 0.727 0.636 0.052 0.008 0.244 0.005

AR(1) 2.464 1.429 0.309 -0.675 5.973 1.587 2.042 1.087 1.641 -1.589 0.727 0.636 0.002 0.001 0.711 0.005

Random walk (with drift and GARCH(1,1)) 2.478 1.366 0.402 -0.456 5.980 1.659 2.054 1.066 1.654 -1.460 0.727 0.636 0.001 0.046 0.571 0.012

AR(1) with GARCH(1,1) 2.477 1.371 0.435 -0.462 5.944 1.667 2.068 1.082 1.639 -1.357 0.727 0.636 0.006 0.020 0.518 0.019

GARCH (1,1) in mean and exogenous predictors 2.848 1.392 1.156 -0.491 6.774 1.698 2.484 1.081 0.197 -0.697 0.591 0.636 0.002 0.003 0.002 0.014

GARCH (1,1) in mean and exogenous predictors - tdist. 2.707 1.386 0.718 -0.485 6.815 1.685 2.318 1.070 0.459 -0.941 0.682 0.636 0.002 0.002 0.013 0.018

EGARCH (1,1) in mean and exogenous predictors 2.909 1.401 0.833 -0.534 7.766 1.679 2.455 1.084 0.749 -0.759 0.568 0.636 0.001 0.001 0.001 0.011

EGARCH (1,1) in mean and exogenous predictors- t dist. 4.139 1.388 1.637 -0.519 14.448 1.658 3.039 1.084 0.944 -0.677 0.523 0.636 0.004 0.000 0.000 0.017

TGARCH (1,1) in mean and exogenous predictors 3.025 1.406 1.416 -0.514 7.148 1.712 2.657 1.084 -0.040 -0.745 0.523 0.636 0.003 0.002 0.000 0.009

TGARCH (1,1) in mean and exogenous predictors- t dist. 2.784 1.409 0.894 -0.489 6.952 1.748 2.408 1.092 0.289 -0.824 0.614 0.636 0.001 0.009 0.004 0.007

Recursive AR(1) 2.465 1.423 0.345 -0.659 5.956 1.592 2.041 1.083 1.654 -1.760 0.727 0.636 0.051 0.008 0.243 0.005

Recursive AR(1) with GARCH(1,1) 2.476 1.433 0.439 -0.676 5.937 1.597 2.057 1.090 1.611 -1.978 0.727 0.636 0.013 0.003 0.458 0.004

Linear with other asset 2,929 1.380 1.779 -0.354 5.414 1.780 2.469 1.109 0.933 -1.703 0.568 0.614 0.108 0.065 0.000 0.005

Linear with other asset and GARCH (1,1) 2.855 1.479 1.072 -0.525 7.003 1.910 2.380 1.127 1.210 -3.452 0.545 0.636 0.008 0.028 0.001 0.001

Exponential STAR - Thill 2.673 1.528 1.474 -0.068 4.973 2.329 2.342 1.145 0.881 -0.275 0.568 0.682 0.215 0.030 0.000 0.000

Exponential STAR - 1-month forecast 2.735 1.393 1.521 -0.274 5.167 1.865 2.360 1.107 0.704 0.590 0.523 0.591 0.140 0.021 0.000 0.010

Logistic STAR - Thill 2.795 1.407 1.116 -0.222 6.565 1.929 2406 1.121 2.355 0.960 0.500 0.523 0.046 0.022 0.001 0.006

Logistic STAR - 1-month forecast 2.874 1.393 1.674 -0.274 5.459 1.865 2.443 1.107 0.539 0.590 0.523 0.591 0.092 0.021 0.000 0.010

TAR - Thill 2.637 1.405 1.483 -0.237 4.753 1.919 2297 1.111 0.644 1.504 0.614 0.568 0.277 0.043 0.000 0.004

TAR - 1-month forecast 3.008 1.349 1.678 -0.354 6.231 1.694 2.558 1.089 0.917 -0.330 0.477 0.636 0.028 0.003 0.000 0.054

Logistic STAR GARCH(1,1) transition 3.276 1.386 2.238 -0.287 5.725 1.839 2.693 1.099 0.511 0.807 0.545 0.591 0.061 0.011 0.000 0.014

TAR with other asset 2.644 1.396 1.491 -0.255 4.769 1.884 2.248 1.120 1.419 1.119 0.614 0.545 0.205 0.015 0.000 0.010

MS Two-state Homoskedastic 2.359 1.099 0.891 -0.404 4.773 1.044 1.937 0.855 0.790 -0.908 0.795 0.659 0.202 0.806 0.039 0.000

MS Two-state Heteroskedastic 2.146 1.103 -0.068 -0.418 4.599 1.042 1.719 0.863 0.617 -1.034 0.795 0.659 0.232 0.818 0.963 0.000

Note: In all the columns, we have boldface the best three statistics (or the three highest p-values) returned across all models. In the column concerning the F-
test on coefficients of the Mincer-Zarnowitz regression, a p-value equal or above a threshold of 5% indicates that the null of a=0 and =1 cannot be rejected
with a high level of confidence.
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Table 8

Van Dijk-Franses Equal Predictive Accuracy Tests: Symmetric Weighting Functions
Panel A: Stock Returns

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1)in

Random inmeanand mean &exog. inmeanand mean&exog. inmeanand mean & exog. MS Two-  MS Two-
walk Random AR(1)with exogenous predictors-t exogenous predictors - t exogenous predictors-t Exponential Exponential Logistic  Logistic Logistic STAR-  state state
Linear with drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Thill  STAR-SRF STAR-Thill STAR-SRF TART-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.999 0.999 0.999 0.998 0.989 0.968 0.939 0.982 0.990 0.935 0.199 0.333 0.291 0.211 0.986 0.633 0.957 0.001 0.069
Random walk (with drift) 0.633 0.523  0.159 0.510 0.042 0.002 0.012 0.028 0.111 0.002 0.008 0.001 0.013 0.002 0.003 0.018 0.002 0.000 0.005
AR(1) 0.795  0.864 0.292 0.497 0.039 0.003 0.013 0.030 0.118 0.002 0.006 0.001 0.012 0.001 0.002 0.015 0.001 0.000 0.004
Random walk (with drift and GARCH(1,1)) 0.546 0.036 0.120 0.707 0.046 0.003 0.016 0.040 0.122 0.003 0.009 0.001 0.016 0.002 0.003 0.021 0.003 0.000 0.006
AR(1) with GARCH(1,1) 0590 0.525 0.043 0.650 0.044 0.003 0.013 0.034 0.100 0.003 0.010 0.001 0.017 0.002 0.003 0.021 0.004 0.000 0.006
GARCH (1,1) in mean and exogenous predictors 0.122  0.000 0.091 0.000 0.191 0.641 0.586 0.778 0.865 0.482 0.027 0.062 0.145 0.006 0.364 0.145 0.194 0.000 0.019
GARCH (1,1) in mean and exogenous predictors - tdist.  0.975  1.000  0.413  1.000 0.868 0.998 0.427 0.885 0.924 0.219 0.063 0.036 0.107 0.037 0.156 0.161 0.131 0.002 0.041
EGARCH (1,1) in mean and exogenous predictors 0.834 0791 0.709 0.807 0.774 0.845 0.759 0.899 0.911 0.282 0.078 0.051 0.104 0.069 0.303 0.195 0.184 0.003 0.050
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.719  0.687  0.619  0.700 0.675 0.733 0.648 0.426 0.014 0.037 0.016 0.045 0.025 0.108 0.097 0.049 0.001 0.026
TGARCH (1,1) in mean and exogenous predictors 0.860 0.680 0.243 0.898 0.570 0.964 0.000 0.205 0.316 0.034 0.007 0.076 0.012 0.033 0.087 0.046 0.002 0.021
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.916 ~ 1.000 0.361  1.000 0.766 0.998 0.344 0.229 0.336 0.099 0.039 0.121 0.074 0.407 0.236 0.239 0.003 0.048
Exponential STAR - TBILL 0.005 0.006 0.011 0.006 0.010 0.003 0.003 0.011 0.016 0.401 0.751 0.931 0.900 0.937 0.000 0.099
Exponential STAR - SRF 0.000 0.000 0.003 0.000 0.001 0.000 0.000 0.014 0.045 0.611 0.931 0.684 0.837 0.015 0.170
Logistic STAR - TBILL 0.010 0.007 0.009 0.007 0.009 0.008 0.006 0.010 0.019 0.827 0.770 0.836 0.086 0.294
Logistic STAR - SRF 0.005 0.003 0.007 0.004 0.006 0.003 0.003 0.014 0.034 0.988 0.702 0.937 0.001 0.076
TAR - Thill 0.004 0.000 0.000 0.000 0.000 0.001 0.000 0.030 0.082 0.231 0.275 0.001 0.036
TAR - SRF 0.011  0.009 0.016 0.010 0.014 0.007 0.007 0.014 0.032 0.690 0.000 0.034
Logistic STAR - GARCH 0.036 0.048 0.057 0.049 0.061 0.038 0.031 0.011 0.005 0.027
MS Two-state Homoskedastic 0.010 0.009 0.012 0.009 0.012 0.008 0.008 0.009 0.010
MS Two-state Heteroskedastic 0.010 0.010 0.014 0.010 0.013 0.008 0.008 0.008 0.009

Panel B: Bond Returns

GARCH (1,1) GARCH (1,1)in EGARCH (1,1) EGARCH (1,1)in TGARCH (1,1) TGARCH (1,1) in

Random inmeanand mean & exog. inmeanand mean&exog. inmeanand mean & exog. MS Two- MS Two-
walk Random AR(1)with exogenous predictors-t exogenous predictors - t exogenous predictors-t Exponential Exponential Logistic Logistic Logistic STAR-  state state
Linear with drift AR(1) walk  GARCH(1,1) predictors dist. predictors dist. predictors dist. STAR-Tbill  STAR-SRF STAR-Thill STAR-SRF TAR T-bill TAR-SRF GARCH(1,1) Homosk. Heterosk.

Linear 0.579  0.550 0.620 0.703 0.687 0.386 0.382 0.213 0.570 0.193 0.853 0.363 0.546 0.363 0.884 0.216 0.392 0.000 0.000
Random walk (with drift) 0.317 0.419 0.780 0.579 0.476 0.384 0.367 0.308 0.435 0.314 0.586 0.400 0.456 0.400 0.633 0.227 0.398 0.000 0.000
AR(1) 0.333 0.611 0.644 0.906 0.541 0.402 0.379 0.287 0.479 0.303 0.667 0.420 0.491 0.420 0.704 0.220 0.417 0.000 0.000
Random walk (with drift and GARCH(1,1)) 0.020 0.110 0.098 0.522 0.431 0.336 0.321 0.262 0.390 0.267 0.557 0.360 0.426 0.360 0.612 0.189 0.357 0.000 0.000
AR(1) with GARCH(1,1) 0.028 0.180 0.167 0.885 0.371 0.231 0.218 0.145 0.314 0.156 0.563 0.283 0.389 0.283 0.632 0.126 0.268 0.000 0.000
GARCH (1,1) in mean and exogenous predictors 1.000 0.839 0.825 0.996 0.991 0.133 0.088 0.061 0.121 0.032 0.701 0.199 0.441 0.199 0.805 0.135 0.148 0.000 0.000
GARCH (1,1) in mean and exogenous predictors - t dist.  0.980  0.806 0.792  0.993 0.986 0.070 0.434 0.138 0.712 0.119 0.848 0.495 0.583 0.495 0.875 0.222 0.501 0.000 0.000
EGARCH (1,1) in mean and exogenous predictors 0.843 0.782 0.768 0.989 0.982 0.263 0.361 0.240 0.811 0.268 0.818 0.554 0.631 0.554 0.882 0.229 0.571 0.001 0.000
EGARCH (1,1) in mean and exogenous predictors- t dist. 0.595  0.681  0.666 0.952 0.928 0.103 0.154 0.140 0.878 0.534 0.880 0.732 0.709 0.732 0.910 0.320 0.762 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors 0.996 0.875 0.868 0.999 0.997 0.614 0.808 0.798 0.877 0.080 0.765 0.297 0.509 0.297 0.860 0.180 0.250 0.000 0.000
TGARCH (1,1) in mean and exogenous predictors- t dist. 0.981  0.885 0.878 0.998 0.996 0.773 0.897 0.840 0.884 0.895 0.884 0.751 0.700 0.751 0.925 0.315 0.784 0.000 0.000
Exponential STAR - TBILL 0.437 0.611 0.601 0.908 0.880 0.000 0.023 0.309 0.417 0.041 0.000 0.151 0.300 0.151 0.615 0.148 0.162 0.000 0.000
Exponential STAR - SRF 0.253  0.416 0.409 0.587 0.567 0.104 0.131 0.143 0.173 0.091 0.094 0.265 0.616 0.251 0.937 0.238 0.514 0.001 0.001
Logistic STAR - TBILL 0.260 0.400 0.395 0.548 0.528 0.129 0.150 0.165 0.196 0.126 0.122 0.224 0.412 0.384 0.828 0.223 0.388 0.002 0.002
Logistic STAR - SRF 0.253  0.416 0.409 0.587 0.567 0.104 0.131 0.143 0.173 0.091 0.094 0.265 0.949 0.588 0.937 0.238 0.514 0.001 0.001
TAR - Thill 0.655 0.671 0.667 0.795 0.794 0.517 0.550 0.586 0.663 0.496 0.455 0.676 0.923 0.959 0.923 0.082 0.063 0.001 0.001
TAR - SRF 0.113  0.217 0.219 0.352 0.328 0.076 0.092 0.088 0.098 0.083 0.083 0.095 0.104 0.253 0.104 0.032 0.771

Logistic STAR - GARCH 0.233 0.395 0.388 0.564 0.543 0.096 0.119 0.121 0.146 0.084 0.088 0.242 0.345 0.532 0.345 0.079 0.897

MS Two-state Homoskedastic 0.002 0.002 0.003 0.007 0.008 0.002 0.003 0.004 0.004 0.004 0.003 0.001 0.010 0.020 0.010 0.011 0.009

MS Two-state Heteroskedastic 0.003  0.003 0.003 0.008 0.009 0.003 0.004 0.005 0.005 0.004 0.004 0.001 0.015 0.025 0.015 0.015 0.013

Note: The table presents p-values for Diebold and Mariano’s test of no differential in predictive accuracy when loss function differences are weighted as
proposed by van Dijk and Franses (2003). Boldfaced p-values are below the 5% threshold. In each panel, in cells above the main diagonal we report vDF p-
values under a symmetric, square loss function for a 1-month forecast horizon; below the main diagonal, we report vDF p-values for a 12-month horizon.
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