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ABSTRACT:

A method for treating Contingent Valuation data obtained from a poly-
chotomous response format designed to accommodate respondent uncertainty
is developed. The parameters that determine the probability of inde�nite re-
sponses are estimated and used to truncate utility distributions within a
structural model. The likelihood function for this model is derived, along
with the posterior distributions that can be used for estimation within a
Bayesian Monte Carlo Markov Chain framework. We use this model to ex-
amine two data sets and test a number of model related hypotheses. Our
results are consistent with those from the psychology literature relating to
uncertain response: a �probable no�is more likely to suggest a de�nite no,
than a �probable yes� is likely to suggest a de�nite yes. We also �nd that
�don�t know�responses are context dependent. Comparing the performance
of the methods developed in this paper with the ordered Probit which has
been previously used in the literature with this type of data we �nd our
methods outperform the ordered Probit for one of the data sets used.
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Estimating WTP with Uncertainty Choice Contingent Valuation

1 Introduction

There is an increasingly large literature developing to deal with the issue of
uncertainty associated with responses in Contingent Valuation (CV) stud-
ies. The reason for the development of this literature can be traced back to
the recommendation of the NOAA Panel [6] and the inclusion of the "No-
Answer" option [11]. How to include and interpret these responses has lead
to research on uncertainty in CV responses more generally. To date it has
been found that if o¤ered a choice of expressing uncertainty, respondents fre-
quently indicate a degree of uncertainty. The justi�cation for using uncertain
responses is that people may be better able to respond to probabilistic inten-
tions rather than absolutes, since they may be inherently uncertain about the
nature of their own preferences, or the circumstances surrounding the choices
that they are being asked to make. Evans et al. [10] notes that literature
since Juster [12] recommend probabilistic responses over de�nite responses
for this reason. They also cite evidence that respondents prefer to reply in
terms of �verbal probabilities�rather than giving numerical probabilities be-
cause they are generally poor at either responding to or stating probabilities
in numerical terms. Ariely et al. [4] have also argued that economic agents
are frequently uncertain about the value they place on goods. They refer
to this form of uncertainty as coherent arbitrariness.1 Thus, there is good
reason to assume that we need to taken account of respondent uncertainty
in CV design, implementation and analysis.
There are number of ways in which CV studies have been implemented

to try and deal with respondent uncertainty (broadly de�ned). Akter et al.
[1] provide a useful overview of this literature. Of speci�c interest to the
present paper is the literature that Akter et al. refer to as the polychoto-
mous choice method (e.g., [9]). This literature can be divided into two
parts. First, there are a large number of papers that employ the three option
approach. Balcombe and Fraser [7] and many papers cited therein have ex-
amined uncertainty and misreporting for the Dichotomous Choice CV three

1Understanding the meaning of value is being extensively researched at the interface
between economics (eg, [5]), psychology (eg, [15]) and neurobiology (eg, [14]). What these
related literatures reveal is that individuals are susceptible to manupluations with respect
to value of goods.
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option approach. With the three option design, CV data are generated that
have allowed respondents to answer yes, no and don�t know, where the last
category of response captures uncertainty.
The second part of this literature, the part we are interested in, employs a

polychotomous response format, termed the Uncertainty Choice (UC) format
by Evans et al. [10]. This CV design typically allows respondents to frame
their response as yes (Y), probably yes (PY), don�t know (DK), probably
no (PN), and no (N). This polychotomous response format was initially
introduced by Ready et al. [13] who employed six categories. There have
since been a number of papers employing the UC approach (e.g., [19], [20],
[3], [10], [16], [17], [8]).
A number of statistical methods have been employed in the literature to

analyse this type of CV data. Initial e¤orts involved data recoding (e.g.,
[13]). An alternative is where some uncertain responses are treated as if they
arise within a given threshold (e.g. [18] , [2], [3]). There are also examples of
where the uncertain responses are assigned a probability of revealing whether
the respondent would derive positive or negative utility from the choice they
are o¤ered (e.g. [10]). A useful summary of the range of probabilities for
the range of uncertain responses is provided by Boman [8]. In this paper
we develop a new way to treat the uncertain responses, di¤ering from those
previously employed in this literature.
First, the methods developed in this paper di¤er from the �threshold�

approaches such as the ordered Probit, that assume that if a bid is su¢ ciently
high or low in order to elicit an inde�nite response it is within a threshold.
Like Evans et al. [10] we attach a probability to an event that a PY and PN
constitutes a bound above or below the stated bid. However, unlike Evans et
al. we do not assign a �xed probability that a PY or PN constitutes a bound.
Instead we demonstrate that such a probability is estimable (along with the
other parameters of the model). Arguably, our approach of attaching a
probability to a bound holding is a more direct way of dealing with the
uncertain responses. If somebody states that a bound holds with certainty,
then it is reasonable to assume that their WTP lies2 within that bound with
probability one. By extension, if they indicate that they are likely, but not
certain to respond a certain way, then it seems sensible to attach a probability

2This argument is more reasonable where respondents are given the chance to indicate
that they are uncertain. In cases that do not allow for uncertain responses then there is
less justi�cation for a yes or no constituting a de�nite bound.
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that their indicated response will, in reality hold.
Second, our approach enables us to test whether DK responses can be

used informatively, or whether they are better treated as non-informative
responses by a group of people that have failed to engage with the questions
posed to them. This lack of engagement may perhaps be because they �nd
the survey questions confusing or do not have the time or energy to properly
consider them.
Thus, our approach gives us the opportunity to estimate the probabilities

and in turn compare themwith previous values in the literature. For example,
Boman [8] reports that a PY or PN have 0.65% to 0.80% chance of holding.
Alternatively, based on a study of the psychology literature, Evans et al.
[10] suggest that a PY is around 75% certain to be associated with positive
utility whereas a PN is likely to be around 85% certain to be associated with
negative utility. We would argue that the value of these probabilities are
likely to be context dependent, and should be estimated in each data set
rather than set a priori.
The parameters that determine the probabilities of truncating the utility

distribution (positively or negatively) are not directly �behavioural�in that
they do not describe the behaviour of the respondent, but rather how we
interpret and use their responses. Behavioural parameters are those that
determine respondents answers, given their preferences, along with the para-
meters that describe their preferences. Our approach introduces parameters
that have a behavioural interpretation. This allows us to estimate the prob-
abilities that a respondent with a positive utility will reply DK or PY etc.
As we show in this paper, these structural parameters are needed to identify
the non-structural parameters (those that determine the truncation of utility
into positive or negative regions). To implement our approach we derive the
likelihood for this model which is estimated employing Bayesian methods.
Accordingly, we derive the posterior distributions for the parameters within
our model and estimate the models using a Bayesian Monte Carlo Markov
Chain (MCMC) approach. An appendix is included that contains the deriva-
tion of the posterior distributions for the parameters estimated in the models
developed.
The paper proceeds by �rst developing the model in Section 2. Section

3 introduces the prior distributions for the parameters that are used in esti-
mation. In order to illustrate the methods, in Section 4 we employ two data
sets. One has previously been employed by Welsh et al. [19] and Evans et
al. [10]. The other is an original data set on the WTP of Nigerian Farmers
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to participate in an irrigation scheme. Within our analysis we test a range
of hypotheses that relate to the behavioural model developed. All results
are based on the use of the marginal likelihood. Finally, in Section 5 we
conclude.

2 The Model

In the following ui denotes utility; WTPi is the willingness to pay by the
ith individual; WTP�;i is the mean willingness to pay for individuals with
characteristics xi; bi is the bid presented to the individual; and � is a vector
of parameters,

ui = WTP�;i � bi + (WTPi �WTP�;i) (1)

= �0xi � bi + ei

where

�0xi = WTP�;i

ei = (WTPi �WTP�;i)

It is assumed that ei is independently and identically normally distributed
with mean zero and variance �:

2.1 Inde�nite Responses

We now examine the case where an individual is o¤ered the bids under
the �uncertainty choice� format. In this case an individual is able to indi-
cate whether the response they make is a �de�nite yes�(Y), �probable yes�
(PY), �don�t know�(or unsure, DK), �probable no�(PN) or �de�nite no�(N).
These responses are assigned �ve numerical values Li = 1; 2 3; 4; 5. (where
1 =Y; 2 =PY; 3 =DK; 4 =PN; and 5 =N). From this we need to create a rule
whereby the WTP interval for the ith individual is a stochastic function of
their responses.
We make the following assumptions:

� 1. A �Y�implies utility must be positive at the stated bid
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2. A �N�implies utility must be negative at the stated bid

3. A �PN�implies utility is negative with a probability at least 0.5
and less than or equal to 1

4. A �PY�implies utility is positive with a probability at least 0.5
and less than or equal to 1

5. A �DK�either (leading to two distinct models): i) implies nothing
about the level of utility; ii) implies a 50% chance of utility being
positive or negative.

We recognise that our approach is restrictive in that it assumes that Y
or N responses indicate positive or negative utility with probability one. In
principle, it is possible that using an extension of the methods introduced
here, this assumption could be relaxed, but we do not attempt that within
this paper. The existing literature suggests that while Y and N may not
in reality indicate complete certainty, they are usually considered at least
around 95% certain. Our contention is that there is little to be gained by
estimating these parameters.
The probability that utility is positive conditionally on a given response,

bid and set of parameters � will be denoted as:

� k;i = P (ui > 0jLi = k;�; xi; bi) : (2)

We further de�ne the cumulative normal probability as �i:

�i = P (ui > 0j�; xi; bi) (3)

Under our assumptions above, the probabilities � k;i in (2) are de�ned as:

� 1;i = 1 (4)

� 2;i = �1 + �i (1� �1)

� 3;i = ! + (1� 2!) �i
� 4;i = �i (1� �2)

� 5;i = 0

Note that in (4) the probability that utility is positive or negative is a function
of �i rather than a �xed quantity as assumed in Evans et al. [10]. When
generating the latent utility ui; the greater the predicted utility (based on
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the bid and other variables), the higher the probability that the utility will
be positive should the respondent indicate PY. Conversely, the smaller the
predicted utility the larger the probability that the utility will be negative
given that the respondent has indicated PN.
It is possible to construct a model in which some of the probabilities were

�xed, such that � 2;i = �1 and � 4;i = 1��2: However, this is an unsatisfactory
approach since if a persons�utility is predicted to be positive on the basis
of their bid alone, this should increase the probability that the utility is
positive given there inde�nite response (PY). For example, if two respondents
reply PY, but one has done so at a much lower bid, we are more likely to
believe that utility is positive for the individual with the lower bid. Thus,
within our model �1 is the probability that utility is truncated positively
given the respondent replies PY. The remaining term �i (1� �1) re�ects the
probability that utility will be positive, even though the utility distribution
has not been truncated. Treating PNs and PYs symmetrically would require
�1 = �2:
Under the assumptions stated above the decision to truncate the variables

is made according to:
� 3;i = ! + (1� 2!) �i (5)

With the condition that ! � 1
2
and noting that for any value of ! that

! + (1� 2!) 1
2
=
1

2
(6)

we have the two extremes: ! = 1
2
) � 3;i =

1
2
and at ! = 0 ) � 3;i = �i:

The value ! = 1
2
is consistent with the view that if a respondent has

reported DK, then they have told us there is a 50% chance that their utility is
positive or negative (an informative response). The value ! = 0 is consistent
with the view that an individual�s response gives us no basis for truncating
the distribution since their response is non-informative. Accordingly, we
assume that their probability of having positive or negative utility is simply
what we would predict for the population.

2.2 Behavioral Parameters

Under �xed values of �1; �2 and ! the model is easily estimated. However,
our aim in this paper is to estimate the parameters �1 and �2 along with
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determining whether ! = 1
2
or ! = 0 is more consistent with the data. In

order to proceed we need to de�ne how these parameters enter the likelihood
function. For this purpose the following probabilities are de�ned:

P (Li = kjui > 0; bi; xi;�) = �+k;i
and (7)

P (Li = kjui < 0; bi; xi;�) = ��k;i

and the likelihood of a given response is de�ned as:

P (Li = kjbi; xi;�) = �k;i (8)

It is straight forward to show that, for non-zero values of �+k;i and �
�
k;i respec-

tively:

�k;i =
�+k;i
� k;i

�i (9)

�k;i =
��k;i

(1� � k;i)
(1� �i)

and, in general:
�k;i = �+k;i�i + ��k;i (1� �i) (10)

The conditions in (9) imply:

(1� �i)��k;i� k;i = �i (1� � k;i)�
+
k;i . (11)

The parameters must also obey the summation conditions:

5X
k=1

��k;i = 1 and
5X

k=1

�+k;i = 1 (12)

Following from our initial set of assumptions we assume that �+5;i = 0 and
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��1;i = 0, thus giving the conditions:0BB@
1� �+1;i � �+3;i
1� ��5;i � ��3;i

0
0

1CCA (13)

=

0BB@
1 1 0 0
0 0 1 1

��i (1� � 2;i) 0 (1� �i) � 2;i 0
0 ��i (1� � 4;i) 0 (1� �i) � 4;i

1CCA
0BB@

�+2;i
�+4;i
��2;i
��4;i

1CCA

In addition, by employing (11) we obtain the following condition:

(1� �i) � 3;i��3;i = �i (1� � 3;i)�
+
3;i (14)

This means that overall we have eight unknowns
�
�+k;i
	4
k=1

and
�
��k;i
	5
k=2

and �ve restrictions to place on them. Therefore, three further restrictions
are required to identify

�
�+k;i
	
and

�
��k;i
	
and consequently the likelihood in

equation (10).

2.3 Model Identi�cation

Our strategy for identifying this system is to assume two further sets of
assumptions. One relates to the sums of �+1;i+�

+
3;i and �

�
5;i+�

�
3;i. The second

set of assumptions determine �+3;i and �
�
3;i:We derive these assumptions by

employing a linear transformation of our unknown parameters. We recognise
that our choice of parameterisation is to some extent arbitrary, as we could
have chosen to parameterise the model di¤erently, but equivalently. However,
if the posterior distributions of a linear combination of parameters such as
( 2 �  1 +  3) were required, then when using Bayesian MCMC estimation
this creates no additional issues, since the posterior distributions for any
reparameterisation can be constructed. However, in what follows we only
produce the posterior distributions of f ig :

10



The �rst set of assumptions are that:

�+1;i =  1 + ( 2 �  1) �i � �+3;i (15)

��5;i =  1 + ( 2 �  1) (1� �i)� ��3;i
where

@�+3;i
@�i

� 0 and
@��3;i
@�i

� 0

0 �  1 �  2 < 1

where  1 and  2 are intercept and gradient parameters that are to be esti-
mated.
These assumptions state that as the predicted level of utility increases,

the probability of respondentswith positive utility replying Y will increase
with �i. Consequently, it also states that respondentswith positive utility
are less likely to respond in an inde�nite way (e.g. �+3;i; �

+
4;i; and �

+
2;i) as �i

rises.
Conversely, these assumptions state that as the predicted level of utility

decreases, the probability of respondents with negative utility replying N
will increase with �i. Consequently, it also states that respondents with
negative utility are less likely to respond in an inde�nite way (e.g. ��3;i;
��4;i; and �

�
2;i) as �i rises.

The interpretation of the parameters in (15) can most easily be under-
stood by evaluating the functions in (15) at extreme values such as �i = 0
and �i = 1: For example, at �i = 0, �+1;i =  1 � �+3;iand �

�
5;i =  2 � ��3;i.

At �i = 0, the basis of the bid and the characteristics of the respondent
would led us to predict negative utility with probability one. If a respon-
dent has positive utility (in spite of the prediction that �i = 0) this would
indicate that the respondent�utility is close to zero. Thus,  1 represents
our predicted proportion of respondents that, reply in Y or DK, if they have
positive utility, where we predict that utility (though positive) is very small.
Coversely, at �i = 1;  2 is the estimated probability that respondents reply
Y or DK, when utility is positive, and since �i = 1 we believe that utility is
probably very high.
These interpretations remain a little unclear without further describing

the determination of ��3;i: Furthermore, the assumptions above still require

a further condition (that is consistent with
@�+3;i
@�i

� 0 and
@��3;i
@�i

� 0) for the
system to be identi�ed. We do this by specifying a function for �+3;i and
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��3;i once again observing (14). Two solutions can therefore be described as
follows:

Model (a):��3;i = �+3;i =  3 which is consistent with � 3;i = �i; (16)

or

Model (b) �+3;i =  3 (1� �i) and ��3;i =  3�i which is consistent with � 3;i =
1

2
where 0 <  3 < 1

From Model (a) if we set ��3;i and �
+
3;i equal to a constant ( 3) this cor-

responds to a model in which a given proportion of the respondents simply
DK in a non-informative manner. Utility is simply predicted using x0�+ ei.
As we shall see, under this assumption the estimated value of  3 will be very
close to the proportion of respondents replying DK.
At the other extreme, Model (b),  3 (1� �i) assumes that the DK is

highly informative in the sense that a DK response indicates that the re-
spondent is telling us that there is an even likelihood that they have positive
or negative utility. Under this condition we know that somebody that has a
high expected utility on the basis of their bid (�i = 1) will have zero proba-
bility of replying DK (�+3;i = 0), but that somebody with negative utility has
a probability of  3 given that �i = 1: In other words,  3 is the probability
that somebody who has negative utility, but who we would otherwise be cer-
tain to expect to have positive utility (and therefore we would predict has a
very small negative utility) will reply DK.
We observe that under Model (b) simply substituting in the de�nition in

(16), into those in (15) gives:

�+1;i = ( 1 �  3) + ( 2 �  1 +  3) �i (17)

��5;i = ( 1 �  3) + ( 2 �  1 +  3) (1� �i)

Therefore, ( 1 �  3) and ( 2 �  1 +  3) describe the behaviour of the def-
inite responses, and how they vary with �i where DKs are treated as in-
dicating that there is a equal probability of indicating positive or negative
utility.
Returning to (15), in order to interpret the parameters for both models

the following conditions are required:
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Under Model (a)

�i = 1) �+1;i =  2 �  3 and �
�
5;i =  1 �  3 (18)

�i = 0) �+1;i =  1 �  3 and �
�
5;i =  2 �  3

Under Model (b)

�i = 1) �+1;i =  2 and �
�
5;i =  1 �  3

�i = 0) �+1;i =  1 �  3 and �
�
5;i =  2 (19)

Further conditions are also required to identify this model since survey
data will likely contain values of �i very close to zero and one. The prob-
abilities

�
��j;i
	
and

�
�+j;i
	
need to lie between zero and one. Therefore, in

conjunction with our assumption that  2 >  1 we require, for both models:

0 <  3 �  1 �  2 < 1 (20)

In model (b) the  2 represents the probability that respondents with positive
utility will make a de�nite response given �i = 1 and the probability that
respondents with negative utility will make a de�nite response given �i = 0:
Thus,  2 represents the propensity of respondents with very large absolute
utilities to give a de�nite response.
The interpretation remains the same for model (a) except that it is as-

sumed that there will be a proportion of respondents that always say DK
(give a non-informative response). The value of  1 �  3 gives the proba-
bility that people who have positive or negative utilities can give a de�nite
response, even though we would predict on the basis of their bids that their
utilities would be in the opposite direction with probability one (and thus
we would expect their actual level of utility to be close to zero). Therefore,
 1 �  3 represents the propensity of respondents with very small absolute
utilities to give a de�nite response.
Finally, it follows that we can write the likelihood for each of the responses
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as:

�1;i = �+1;i�i (21)

�2;i = �+2;i

�
1

� 2;i

�
�i

�3;i = �+3;i
1

� 3;i
�i

�4;i = ��4;i
(1� �i)
1� � 4;i

�5;i = ��5;i (1� �i)

Under the conditions that ! = 0 or ! = 1
2
we have two di¤ering solutions:

�3;i =  3 under � 3;i = �i (! = 0) (22)

or

�3;i = 2 3 (1� �i) �i under � 3;i =
1

2

�
! =

1

2

�

2.4 Behavioural Hypotheses

For the models developed in this section all of the parameters have behavioral
interpretations. These behavioural parameters provide us with a means to
examine a number of hypotheses that relate to how uncertain response data
has been treated in the literature previously. Our set of hypotheses are as
follows:

� DKs are either fully informative or non-informative - ! = 0 versus
! = 1

2

� We can treat symmetrically the treatment of PY and PNs - �1 = �2

� A probable response is equivalent to a de�nite response - �1 = 1 and/or
�2 = 1

� We can treat symmetrically the treatment of PY and PNs but at lower
probability (�) �1 = 0:75 and �2 = 0:75

14



These various hypotheses will be tested using data the Bayesian approach
to estimation outlined in the next section.

3 Prior Distributions for Model Parameters

Denote the full parameter set as � = (�; �;
 (!)) where 
 = f ig ; f�ig.
Within this structure we examine the case where the latent utilities have
been observed:

ui � bi = �0xi + ei

ei � N (0; �) (23)

The prior distributions for the parameters �; � are normal N (:; :) and inverse
gamma IG (:; :) respectively:

f (�) = N (0; V0)

and (24)

f (�) = IG (s; v)

For the remaining parameters we adopt a set of uniform priors that obey
inequality restrictions such that the parameters lie within the admissible
region S (where all the associated probabilities are positive and in the case
of �1and �2 between 0.5 and 1). For the unrestricted model, that is either
Model (a) or Model (b) which is not subject to any of the restrictions on �1or
�2, the prior is:

f (
 (!)) =
I (
 (!) 2 S)

C
=
I (f ig 2 S )

C 
�2I

�
�1 2 [

1

2
; 1]

�
�2I

�
�2 2 [

1

2
; 1]

�
(25)

For both models (! = 0 and ! = 1=2) the conditions that 0 <  3 �  1 �
 2 < 1 along with �1 > 0:5 and �2 > 0:5 are su¢ cient

3 for 
 (!) 2 S. The
3These conditions are su¢ cient but not necessary for the model to have probabilities

bounded between zero and one. Note that �+2 and �
+
4 and �

�
2 and �

�
4 are also required to be

bounded between one and zero. We did not establish this condition analytically. However,
by simulating from the priors adopted above, we established that these conditions were
su¢ cient (in over 100,000 trials) for �+2 , �

+
4 , �

�
2 and �

�
4 to be bounded also.
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uniform distribution over the region S = ff ig : 0 <  3 �  1 �  2 < 1g
has an integrating constant of 1

6
: Therefore, we use the value of C = 1

6
in

(25) as an integrating constant so that the distribution is proper. Although
this constant is not required for estimation it is required for the calculation of
the marginal likelihoods. Finally, we note that under the hypotheses �1=�

�
1

or �2=�
�
2 or �2=�1 = ��2, one or both of the last two terms in the prior

above will disappear. The posterior distributions for the model parameters
are derived in the appendix.

4 Empirical Section

4.1 The Data

The data employed in this paper is from two di¤erent sources. The �rst was
previously employed by Welsh et al. [19] and subsequently by Evans et al.
[10]. The data are for a study on the non-use values associated with the Glen
Canyon Dam and its impact on the rivarian environment along the Colorado
River. A full description of the data can be found in Welsh et al. so we do
not repeat this here.
The survey format used was the multiple bound uncertainty format with

�ve levels - Y, PY, DK, PN, and N. The bids o¤ered to respondents were,
$0.5,$1,$5,$10,$20,$30,$40,$50,$70,$100,$150 and $200. Therefore, in order
to extract data as if it were from the single bound format, we randomly sam-
pled from the replies to bids in a uniform way. That is, one response for each
respondent was sampled in a uniform manner by taking their response from
one bid, where any bid was equally likely to be chosen. We also experimented
with other sampling versions, but they did not have a substantive impact on
the results.
The second data set is from a study of farmers in Nigeria, who were asked

if they would be willing to participate in an irrigation scheme designed to
increase the average yields as well as reduce variability. The Nigerian govern-
ment, in 2002, implemented an irrigation scheme to increase productivity of
small scale farmers in the Northern states of Nigeria. This data set evaluates
the impact of improved low cost irrigation technology on the farm households
participating in the scheme. The study was conducted in three water scarce
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villages in Kaduna state, which is situated in the North-west region of Nige-
ria. Two groups of farmers were asked to respond to CV questions of the
uncertainty format type. First, 102 of those already in the scheme (partici-
pants) and those (102) not currently in the scheme (non-participants). The
CV scenarios di¤ered across the two groups in that there would be an addi-
tional cost for non-participants to joining the scheme (of 4,500 naira) since
those already participating the scheme had paid for and received equipment
that those joining the scheme would subsequently receive. The data was col-
lected using a double bounded methodology, and as with the Glen Canyon
Data, we sampled randomly from the two responses obtained from the double
bounded responses.

4.2 Results

The main focus of this section will be in examining the relative performance of
Models (a) and (b) plus testing the six hypotheses outlined in the preceding
section, along with interpreting some of the parameter estimates. Overall
twelve nested models were estimated for each data set, along with the ordered
Probit. The reason for estimating the ordered Probit relates to its use as a
means to estimate this type of data based on an alternative interpretation of
the probabilities.
For both data sets, and for all models, MCMC used a burn in of 100,000

draws followed by another 1,000,000 iterations where every 10th value was
sampled (leaving 100,000 to be analysed) so as to reduce the dependence of
the sequence. Convergence was monitored visually and by using a modi�ed
t-tests to check if the �rst and second halves of the values drawn from the
chain had the same mean. All models appeared to converge well.
For the Glen Canyon Dam data we included age, sex and income as ex-

planatory variables. For the Nigerian Data, we did not include descriptors for
the respondent as they only had minimal impact on the resulting WTP esti-
mates because of high standard errors for the coe¢ cients on these variables.
In both data sets we have employed dummy variables that take account of the
di¤erent treatments. In the Glen Canyon Dam data there are eight di¤erent
versions of the survey instrument. In the Nigerian irrigation data we employ
a dummy variable to di¤erentiate between participants and non-participants
in the scheme.
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The logged marginal likelihoods for each of the models, for both data sets,
are presented in Table 1. The result in the �rst row are for the ordered Probit.
The �rst column of numbers for each data set relates to the model where
the DKs are treated as informative ! = 1

2
and the second where DKs are

treated as non-informative ! = 0: The best performing model speci�cation
are highlighted by the bold text in Table 1.
For the Glen Canyon Dam data, nearly all the nested models for ! = 0

outperform their counterparts where ! = 1
2
; since the marginal likelihoods

where ! = 0 are larger. In most cases, there is a very big di¤erence in these
values. However, it is clear from these results also that the Glen Canyon data
prefers the ordered Probit characterisation. None of the models developed in
this paper have a marginal likelihood as large as the ordered Probit. Other
than the ordered Probit the preferred model is the one where both �2 and �1
are free to vary and ! = 0 . The next best performing model is where �2 = 1
but �1 is free to vary. This suggests that a PN, is more like a N than a PY is
like a Y which is consistent with the previous literature. We also note that
the lower values �2 = �1 = 0:75 are not supported by this data. In fact, the
model where �2 = �1 = 1 is preferred to this model.
Next we turn to the Nigerian Data. In this case the majority of the models

where ! = 1
2
outperform the case where ! = 0: Furthermore, for this data

all the models introduced in this paper are preferred to the ordered Probit.
Overall the best supported model is the restriction �2 = 1: Again, the results
are consistent with the previous �ndings within the literature that a PN is
more like a N than a PY is like a Y. We evaluate this claim further below.

{Approximate Position of Table 1}

We now consider the parameter estimates for both versions of the un-
restricted model. Our reason for examining the unrestricted model is that
it allows to extended our analysis of the hypotheses of interest. Our result
for the Glen Canyon data are presented in Table 2, and for the Nigerian
Irrigation data in Table 3.

{Approximate Position of Tables 2 and 3}

First, the unrestricted models for the Glen Canyon Dam data the mean
WTP for the �rst treatment group is captured by the intercept (Int) and
the coe¢ cients for the dummy variables give the deviation of these WTPs
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from the �rst treatment group. In the model speci�cation we also have also
included sex, age and income variables. The WTP estimate for the �rst
treatment group are just over $60. There is no substantial di¤erence in the
WTP estimates between models (a) and (b).4

In Table 3, the WTP �gures are in 1000 NGN. Thus, the WTP for the
participant group is around 14600 NGN (equating to a little over $100 US
dollars). The additional WTP �gure of around 4784 or 4850 NGN closely
re�ects the additional costs that a non-participant is prepared to pay over
and above those already participating in the scheme. This re�ects the fact
that participants have already paid for equipment that the non-participants
would receive to join the scheme. Thus, the scenario�s being presented to
the two groups di¤ered in terms of the options that they were being asked
to choose from, and the cost of this equipment was around 4,500 NGN.
Next we consider the parameter estimates that deal with uncertainty: As

noted in the introduction, the literature has suggested that �2 exceeds �1:
Our results are consistent with this literature. In Table 2 for the Glen Canyon
Dam data, the preferred model (! = 0) gives �̂2 =0.871 and �̂1 =0.750. For
the Nigerian Irrigation data in Table 3, the preferred model

�
! = 1

2

�
gives

�̂2 =0.793 and �̂1 =0.716. However, these point estimates understate the
degree to which the evidence suggests that �2 exceeds �1: Perhaps more
informative are the distributions presented in Figures 1 and 2.

{Approximate Position of Figures 1 and 2}

These are for the Glen Canyon Dam data only, as we do not include
similar graphs for the Nigerian data for brevity. As can be seen the posterior
distributions for �2 are heavily skewed toward unity, whereas the peak of
the distribution for �1 are around 0.75. The posterior distributions for the
Nigerian Irrigation data does not present quite such a stark contrast between
the two distributions. However, similar tendencies are displayed in terms of
the skewness of �2 towards one, with �1 having more density at lower values.
The posterior distributions of �1 and �2 are, therefore, consistent with the
marginal likelihood results that also point to �2 >�1:
With regard to the other parameters, for the Glen Canyon Dam data,

we can see from Table 2 that for the preferred model (! = 0) the value of
 3 =0.129 is almost exactly the proportion of respondents replying DK. The

4All other models estimated yielded comparable WTP estimates including the ordered
Probit.
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values  1 = 0.541, and  2 = 0.81 mean that at �i = 0 a respondent with
positive utility has a 54% chance of responding with a Y. However, at �i = 1
this rises to 81%. Around 13% of the remaining 19% are those that choose
to reply DK, with the remaining 6% choosing PY. The converse is true for
those with negative utility (e.g. there is around a 54% chance of responding
de�nite no if .�i = 1 and the person has negative utility etc.).
With regard to the Nigerian Irrigation data, in Table 3 we can see for

the preferred model
�
! = 1

2

�
; the values  1 =0.645, and  2 =0.833 and

 3 =0.264 meaning that at �i = 0 a respondent with positive utility has
a 64% chance of responding with a Y, with the remainder replying DK.
However, at �i = 1 this rises to 83%, with the remainder choosing to respond
PY, since within this model, the probability of somebody replying DK is, by
de�nition 0% at .�i = 1: The converse is true for those with negative utility
(e.g. there is a 64% chance of responding de�nite no if .�i = 1 and the person
has negative utility etc.).

5 Conclusions

This paper has introduced a new method that allowed for the estimation of
the probability that a PY or PN constituted a real bound within the context
of a WTP study. Unlike previous studies, the probabilities that an inde�nite
response would provide a bound was estimated using the data alone, rather
than drawing upon estimates from the psychology literature. A structural
model was constructed for this purpose and the posterior distributions for the
parameters were derived. The model was employed on two data sets which
provide mixed evidence about whether the models developed outperform the
ordered Probit (the threshold approach).
Overall we found that the informativeness of DKs seems to be context

speci�c; PYs are less like a Y than a PN is like a N. Therefore, we would argue
that the treatment of PNs and PYs should be asymmetric. This �nding is
in line with the psychology literature. We also found that benchmark values
of � = 0.75 and 1 are not generally supported by the data (at least for both
parameters simultaneously). The estimates of these parameters seem to be
context speci�c. We also �nd that our WTP estimates are not that sensitive
to the treatment of the uncertain responses. This is in contrast to the �ndings
reported by Evans et al. [10] and Boman [8].
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Finally, we note that the approach developed in this paper is restrictive in
that it uses a single bounded UC, although it has the potential to be extended
into a multiple bounds UC. The single bounded approach is less restrictive
than it might �rst seem, since multiple bounded survey data can be used
within a single bounded framework also, though admittedly it does not fully
use all the information available. This can be most easily achieved by drawing
a random response from the multiple bounded responses. Future work in this
area might extend the current approach to fully utilise the multiple bounded
data. This would most probably be dealt with by extending the current
approach in the context of the multivariate Probit.
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Appendix Posterior Distributions and Estimation

All quantities are as de�ned in the text. The posteriors for � and � can

then be derived using:

f (�j fLig ; fuig ; �;
; fxig ; fbig) / f (fuig j fLig ; �; �;
; fxig ; fbig) (26)
�f (fLig j�; �;
; fxig ; fbig)� f (�)

and

f (�j fLig ; fuig ; �;
; fxig ; fbig) / f (fuig j fLig ; �; �;
; fxig ; fbig) (27)
�f (fLig j�; �;
; fxig ; fbig)� f (�)

From the normality assumption:

f (uijLi = k;�; xi; bi) = f (uijui > 0; Li = k;�; xi; bi) � k;i (28)

+f (uijui < 0; Li = k;�; xi; bi) (1� � k;i)

= fN (uij�; xi; bi)
�
(� k;i)

�i
+
(1� � k;i)

1� �i

�
Therefore:

f (uijLi = k;�; xi; bi) f (Lij�; �;
; fxig ; fbig) (29)

= fN (uij�; xi; bi)� �k;i
�
(� k;i)

�i
+
(1� � k;i)

1� �i

�
Given [9] this simpli�es to

f (uijLi = k;�; xi; bi) f (Lij�; �;
; fxig ; fbig) (30)

= fN (uij�; xi; bi)�
�
�+k;i + ��k;i

�
Consequently, under the assumptions above (where �+Li ; �

�
Li
; �Li and �Li are

the values of �+k;i; �
�
k;i; �k;i and � k;i given the observed responses ):

f (�j fLig ; fuig ; �;
; fxig ; fbig) (31)

/
NY
i=1

fN (uij�; xi; bi) f (�)�
�
�+Li + ��Li

�
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and

f (�j fLig ; fuig ; �;
; fxig ; fbig) (32)

/
NY
i=1

fN (uij�; xi; bi) f (�)�
�
�+Li + ��Li

�
Therefore, in this model the fact that both the posteriors for � and � are

multiplied by
QN

i=1

�
�+Li + ��Li

�
means that this quantity must be accounted

for when estimating the parameters. In this paper we draw from the proposal
distributions:

f � (�j fuig ; fbig ; fxig ; �) = N (�̂; V ) (33)

�̂ =
�
V �1
0 + ��1

X
xix

0
i

��1 �
��1

X
xi (ui � bi)

�
V =

�
V �1
0 + ��1

X
xix

0
i

��1
and

f � (�j fuig ; �) = IG

�
s+

P
e2i

2
;
v + n

2

�
(34)

However, unlike the standard Probit model the proposed draws �� and ��

are accepted with probability5

p =Min

 QN
i=1

�
�+�Li + ���Li

�QN
i=1

�
�+Li + ��Li

� ; 1! (35)

where �+�Li and �
��
Li
are evaluated at �� and ��:For the remaining parameters


 we simply observe that since we can calculate the likelihood function at
any point, then:

f (
j�; �) /
NY
i=1

�Lif (
) (36)

Therefore, to estimate these parameters we adopted a randomwalk metropolis-
hasting step, such that the proposed parameters 
� are accepted with prob-

5The normal and gamma ordinates to do not enter this probability calculation since
they cancel
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ability

p =Min

 QN
i=1 �

�
Li
f (
�)QN

i=1 �Lif (
)
; 1

!
(37)

Finally, since the likelihood is calculated as part of the estimation process,
it is a relatively quick calculation to use the Gelfand and Dey method for
calculating the Marginal Likelihood (ML).

ML =

 
1

G

GX
g=1

T (
g; �g; �g)

f (
g) f (�g) f (�g)Lg

!�1
(38)

where Lg is the likelihood function evaluated at the posterior draws 
g; �g; �
g:
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Table 1: Logged Marginal Likelihoods
Glen Canyon Dam
Ordered
Probit -950.6

Model b) a)
! = 1

2
! = 0

Unrestricted -963.4 -959.2
�1= �2 -964.2 -959.6
�1= 1 -961.2 -960.3
�2= 1 -961.1 -959.5
�2= �1= 1 -961.3 -959.6
�2= �1= 0:75 -960.4 -960.3

Nigerian Irrigation Scheme
Ordered
Probit -302.9

Model b) a)
! = 1

2
! = 0

Unrestricted -296.8 -297.5
�1= �2 -297.8 -296.9
�1= 1 -298.9 -298.5
�2= 1 -296.3 -297.8
�2= �1= 1 -296.6 -298.5
�2= �1= 0:75 -297.5 -297.6
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Table 2: Glen Canyon Dam Results
Unrestricted Model (b)
! = 1

2

Unrestricted Model (a)
! = 0

mean stdv
int 62.509 6.52
d2 5.411 8.39
d3 3.935 8.54
d4 -23.67 7.87
d5 -15.87 7.66
d6 -0.482 8.63
d8 -6.15 8.75
d9 -15.99 8.25
sex 1.48 4.81
age -0.381 0.14
inc 0.193 0.061
�1 0.732 0.13
�2 0.810 0.13
 1 0.639 .046
 2 0.767 .028
 3 0.362 .035
� 1392.5 272

mean stdv
int 61.16 6.99
d2 9.664 9.29
d3 3.009 8.98
d4 -22.56 8.39
d5 -16.31 8.01
d6 0.055 9.07
d8 -7.56 9.17
d9 -15.88 8.19
sex 4.449 5.18
age -0.382 0.15
inc 0.201 0.067
�1 0.750 0.13
�2 0.871 0.10
 1 0.541 .054
 2 0.810 .029
 3 0.129 .013
� 1327.7 335
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Table 3: Nigerian Irrigation Model Results
Unrestricted
Model (b) ! = 1

2

Unrestricted
Model (a) ! = 0

mean stdv
int 14.60 0.571
d1 4.850 0.792
�1 0.716 0.137
�2 0.793 0.134
 1 0.645 0.074
 2 0.833 0.047
 3 0.264 0.054
� 16.73 5.32

mean stdv
int 14.60 0.596
d1 4.784 0.834
�1 0.716 0.137
�2 0.813 0.129
 1 0.603 0.084
 2 0.850 0.129
 3 0.101 0.21
� 16.57 6.015
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Figure 1: Posterior Distribution of Rho 1
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Figure 2: Posterior Distribution of Rho 2
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