
Schenker, Rolf

Working Paper

Comparing quantitative and qualitative survey data

KOF Working Papers, No. 169

Provided in Cooperation with:
KOF Swiss Economic Institute, ETH Zurich

Suggested Citation: Schenker, Rolf (2007) : Comparing quantitative and qualitative survey data, KOF
Working Papers, No. 169, ETH Zurich, KOF Swiss Economic Institute, Zurich

This Version is available at:
https://hdl.handle.net/10419/50382

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/50382
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


KOF Working Papers  

No. 169
June 2007

Comparing Quantitative and Qualitative Survey Data

Rolf Schenker 



ETH Zurich
KOF Swiss Economic Institute
WEH D 4
Weinbergstrasse 35
8092 Zurich
Switzerland

Phone +41 44 632 42 39
Fax +41 44 632 12 18
www.kof.ethz.ch
kof@kof.ethz.ch



Comparing qualitative and quantitative survey data

Rolf Schenker∗

June 28, 2007

Contents

1 Introduction 2

2 The data 2

3 Procedure 4

4 Results 4

4.1 Contingency Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Distribution and Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Conclusions 9

Abstract

This paper compares quantitative and qualitative data on firm level. The data is taken

from two Swiss investment surveys. This has not yet been done in the literature.

We will see that the mean change in investment of firms planning to increase (decrease)

investments is positive (negative). In contrast, the mean change in investment of firms indi-

cating “no change” is indeed virtually zero. Carlson & Parkin (1975) assume the quantitative

observations to follow a normal distribution. Other research (e.g. Dasgupta & Lahiri 1992)

has been done assuming other distributions. In this paper we show that the micro data does

not follow a normal, logistic or exponential distribution.

Furthermore, we adopt the response functions presented by Ronning (1984) to the

investment data. They help us to determine the share of firms giving the different qualitative

statement for every instance of the quantitative data. We will show that with larger (smaller)

quantitative changes, more firms give positive (negative) qualitative statements.

Keywords: Response Functions, Investment survey, Qualitative response, Contingency

Table

JEL classification: C5, E22, C42
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1 Introduction

The basic idea of business surveys is to gather from the development of individual variables (micro

variables) to the development of economy-wide variables (macro variables, i.e. from the investment

of interviewed firms to the investment in the whole economy). When surveys pose qualitative

questions, it is assumed that firms have quantitative assessments of a variable and transform them

to qualitative statements. Most qualitative questions propose three answers (e.g. “increase”, “no

change”, “decrease”). To be included in econometric models, these qualitative answers have to

be quantified in some way. All quantification methods investigate the share of interviewees giving

each of the three answers. We will call these shares At (for “increase”), Bt (for “no change”), and

Ct (for “decrease”).

A widely used quantification method is the one presented by Carlson & Parkin (1975). Assum-

ing the quantitative (change of the) micro variables to follow a normal distribution, they calculate

the mean (µ̂t) and standard-deviation (σ̂t) of these distributions from the response shares. Other

research (e.g. Dasgupta & Lahiri 1992) has been done assuming normal, t- or logistic distributions.

Dasgupta & Lahiri (1992) showed that the assumed distribution does not have much influence on

the estimation results. Section 4.2 gives an explanation, why.

This paper presents Swiss investment data, taken from a quantitative and a qualitative survey.

We will be able to compare the data on firm level. Like that it will be possible to test the above

assumptions about the distribution of the micro data. This has not yet been done in literature.

The paper is organized as follows: section 2 describes the data, and section 3 highlights the

procedure that was adapted to the quantitative data before comparing it to the qualitative data.

Section 4 is dedicated to the presentation of the estimation results: It begins with contingency

tables (section 4.1), giving a first impression of the relation between the qualitative and the quan-

titative answers. Section 4.2 presents the distribution and density functions of the qualitative

answers. In section 4.3 the answer patterns for the qualitative questions subject to the quan-

titative changes will be analyzed by reanimating the response functions introduced by Ronning

(1984).

2 The data

KOF conducts two annual investment surveys. The quantitative survey (IVN) is made in collabo-

ration with the Swiss federal statistical office. It is conducted in spring with about 12’000 firms.

The qualitative survey (IVL) is conducted in fall. Its sample comprises 6800 firms. Both samples

cover firms from the manufacturing, the construction and the service sector. They partly overlap

one another, allowing us to compare the answers on micro (firm) level. This has not yet been done

in the literature.
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Figure 1: Time pattern

In the quantitative survey (IVN), firms are asked about their investments as monetary amounts.

The survey covers investment in the year of interview and the two preceding years. Additionally,

firms are asked to indicate the number of employees. In the qualitative survey (IVL), firms are

asked about the planned change in investment from the actual to the next year. Firms indicate

whether they plan investments to increase, stay the same, or decrease. Additionally, firms are

asked about their certainty in their own investment plans. The answers proposed are “very sure”,

“rather sure”, “quite unsure”, and “not sure”.

Figure 1 may help to clarify the workflows: Every year KOF conducts two investment surveys:

the quantitative survey in spring and the qualitative in fall. The qualitative survey 2005, shortly

IVL05, is conducted in fall 2004. Firms are asked about the planned change in their investment

sums from 2004 to 2005. The quantitative survey 2005, IVN05, is conducted in spring 2005.

There, firms indicate their investment sums in 2003, 2004, and 2005. We use the following general

notation: Data collected by IVN in year t are I
(t)
t−2, I

(t)
t−1, and Î

(t)
t (e.g. I

(05)
03 , I

(05)
04 , and Î

(05)
05 ),

while data collected by IVL of year t (conducted in fall of year t− 1) are called δ̂t (e.g. δ̂05).
1

Using data from IVL05 and IVN05, we can compare qualitative and quantitative investment

plans. In October-November 2004, when answering IVL05, firms have data about their business

in three quarters of 2004. Based on this information, they make their investment plans for 2005.

The IVN questionnaire is completed half a year later. This means that firms have business data

until the first quarter 2005. When data from IVL and IVN diverge, this does not necessarily mean

that firms themselves are inconsistent. It may also happen that new information influences the

investment plans of the firms.

In both surveys firms are asked about their investment plans in equipment and software, in

constructions and total fixed investment. Each firm that completes all relevant parts of the ques-

tionnaires thus generates three observations. For the following analyses we only look at the data

for total fixed investment and merge the observations of all years.

1Subscripts indicate the time of investment, while superscripts indicate the survey which provides the information.

Î
(t)
t

and δ̂t are plans rather than realizations.
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3 Procedure

As we have seen in section 2, the qualitative survey asks for the changes in investment, while the

quantitative survey asks for investment sums themselves. To compare qualitative and quantitative

investment statements, the quantitative data has to be transformed into a measure for the “changes

in investment”. Whether a certain change in investment is considered as a “constant investment”

presumably depends on the average investment sums of a firm. That’s why the absolute change

in investment (Î
(t)
t − I

(t)
t−1) is not usable. Furthermore, the measure should be able to distinguish

between a slight sliding and an abrupt drop-out of investment. The relative change in investment
Î
(t)
t

−I
(t)
t−1

I
(t)
t−1

is not able to distinguish these variations. If Î
(t)
t −I

(t)
t−1 is divided by the average investment

sum, even this requirement is fulfilled. In what follows, the quantitative change in investment is

defined as

ψ̂t ≡
Î
(t)
t − I

(t)
t−1

I
(t)
µ

with I
(t)
µ ≡

Î
(t)
t

+I
(t)
t−1+I

(t)
t−2

3 . With this definition, positive (negative) values of ψ̂t indicate increasing

(decreasing) investments in t compared to t − 1. The larger the absolute value of ψ̂t, the larger

is the change in investment relative to the mean investment of the respective firm. ψ̂t = 2 means

that the change in investment from t − 1 to t amounts twice the mean investment in t − 2, t − 1

and t. If for a certain firm I
(t)
t−2 = I

(t)
t−1 = 0 and Î

(t)
t 6= 0, then |ψ̂t| = 3.2

4 Results

4.1 Contingency Tables

To get a general idea of the results, one should have a look at the contingency table (table 1).

It shows the frequency of all combinations of qualitative answers δ̂t and quantitative changes ψ̂t.

The rows represent different values of δ̂t. A −1 stands for “decrease”, a 0 for “stay the same”

and a 1 for “increase”. In the columns of table 1, different values of ψ̂t are shown: a −1 stands

for negative, a 0 for invariable, and a 1 for positive values. The upper left and lower right fields

of the table represent consistent combinations of δ̂t and ψ̂t, while the upper right and lower left

fields stand for inconsistent combinations. The share of consistent answers (38%) is higher than

the share of inconsistent answers (20%). Additionally, we can see that the mean of ψ̂t is positive

(negative) for δ̂t = 1 (δ̂t = −1), i.e. the mean investment of firms with δ̂t = 1 (δ̂t = −1) is in fact

larger (smaller) than in the preceding year. The differences are not significant, though. Another

interesting result of the contingency table is that for firms with δ̂t = 0, the mean of ψ̂t is actually

virtually zero.3

2To avoid a contamination of the estimation results by extreme values, all data with |ψ̂t| > 2 are omitted. With

the guillautine at |ψ̂t| > 2, 380 of the 4830 observations drop out.

3Virtually all of the 406 observations with ψ̂t = 0 are firms with Î
(t)
t

= I
(t)
t−1 = 0.
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Mean of ψ̂t
Std. dev. of ψ̂t sign(ψ̂t)
observations −1 0 1 all

δ̂ t

−1
-0.730 0.000 0.459 -0.349
0.538 0.000 0.437 0.723

728 85 307 1120

0
-0.625 0.000 0.511 -0.070
0.557 0.000 0.462 0.717

749 204 691 1644

1
-0.648 0.000 0.679 0.216
0.557 0.000 0.504 0.790

529 117 1040 1686

all
-0.669 0.000 0.589 -0.032
0.552 0.000 0.489 0.779
2006 406 2038 4450

Table 1: Contingency table

4.2 Distribution and Density Functions

Contingency tables can only assess the sign of ψ̂t. Density and distribution functions for the

different qualitative statements however allow us to get more quantitative insights. We calculate

the empirical distribution and estimate the density functions for δ̂t = i ∀ i = −1, . . . , 1 and for the

entire sample as a whole.

Plotting the empirical distribution function (cf. fig. 2(a)), we see that the distribution functions

for δ̂t = i ∀ i = −1, . . . , 1 show a jump at ψ̂t = 0. These jumps are caused by the observations

standing in the column ψ̂t = 0 of the contingency table. When estimating the density functions,

this concentration leads to a bunch in the region of ψ̂t = 0 (cf. fig. 2(b)). One could argue that

each distribution is a combination of two distributions: a point-distribution with ψ̂t = 0 and a

(maybe parametric) distribution. Figure 3 shows the distribution and density functions of the data

when all observations with ψ̂t = 0 are excluded.

An observation that does not change when shifting from fig. 2(b) to fig. 3(b) are the large

intersections of the density functions. The areas under the density functions in the left (right) of

ψ̂t = 0 are the observations of the left (right) column in the contingency table. The area under

the density function for δ̂t = 1 on the left of ψ̂t = 0 represent the inconsistent observations in the

lower left field of the contingency table.

Figure 4 shows stylized density functions. It will help us to develop a measure for the inter-

section of the density functions. We first determine A, the area of all density functions together

(the shaded area in fig. 4(a)). In the case of 3 density functions, A will be at most 3 (when the

density functions are disjoint). Then we determine B, the area lying under more than one of the

densities (cf. fig. 4(b)). In the case of disjoint densities, B = 0. B/A is a measure of intersection.

5



0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

down equal up

(a) Distribution Functions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

down equal up

(b) Density Functions

Figure 2: Distribution of δ̂t = i ∀ i = −1 . . . 1 for total fixed investment. Nonparametric estimation
of the density functions using Epanechnikov.
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(b) Density Functions

Figure 3: Distribution of δ̂t = i ∀ i = −1 . . . 1 for total fixed investment. Nonparametric estimation
of the density functions using Epanechnikov. All observations with ψ̂t = 0 are excluded.

It is bounded to the interval [0, 1]. If B/A = 1 then the density functions are congruent. In fig.

2(b), A = 1.395 and B = 0.918, thus B/A = 65.8%. In fig. 3(b), the intersection in slightly larger:

A = 1.374 and B = 0.953, thus B/A = 69.3%.

Now, we are going to test whether the distributions functions follow some parametric distribu-

tions. First, we test the distributions of ψ̂t conditioned on δ̂t = i ∀i = −1, . . . , 1. The distributions

we test against are the normal, the logistic and the exponential. The measure to test the empirical

distributions for parametric distributions is the Watson (U2)-statistics. For details on the compu-

tation of the test statistics and the p-values see Durbin (1973) or Stephens (1986). As we can see

in the first part of table 2, the three tested empirical distributions are significantly different from

6



(a) Density functions: area A (b) Density functions: area B

Figure 4: Overlap

Sample Density normal logistic exponential

Watson p-value Watson p-value Watson p-value

total
δt = −1 0.556 0.000 0.495 <0.005 11.873 0.000
δt = 0 2.387 0.000 1.484 <0.005 21.178 0.000
δt = 1 0.880 0.000 0.380 <0.005 25.382 0.000

truncated
δt = −1 0.164 0.010 0.173 <0.005 9.885 0.000
δt = 0 0.858 0.000 0.425 <0.005 15.895 0.000
δt = 1 0.615 0.000 0.192 <0.005 22.792 0.000

Table 2: Empirical Distribution Tests

the parametric distribution functions.4 The second part of table 2 shows the test results for the

truncated sample (observations with ψ̂t = 0 are excluded). In the truncated sample, the values for

ψ̂t do not follow a normal, logistical, or exponential distribution, either.

After examining the distribution functions individually, we are now going to compare them.

Looking at the distributions for the three statements δ̂t = i ∀i = −1, . . . , 1, it seams clear that they

are different. To compare distributions, different test are known in the literature. A widely used

measure to compare the means of empirical distributions is the Anova F-statistics. To compare

the medians, we use the Kruskal-Wallis-Statistics. This is a generalization of the Mann-Whitney

test. The idea is to rank the series from smallest value to largest, and to compare the sum of the

ranks from of the different subgroups. For details, see Sheskin (2000). To compare the variances

of different distributions, we use the Brown-Forsythe test. It is based on an analysis of variance

(ANOVA) of the absolute difference from the median. For details, see Brown & Forsythe (1974).

The results of these tests show that the means, medians and variances of these distributions are

significantly different (cf. table 3).

Now, we will analyze the distribution of the ψ̂t regardless of δ̂t. Carlson & Parkin (1975)

assume it to be normal. Some research (e.g. Dasgupta & Lahiri 1992) has been done assuming the

distribution to be logistic or exponential. They showed that the assumed distribution does not

have much influence on µ̂t and σ̂t. Figure 5 shows the distributions for all ψ̂t.

As we can see in table 4, the distribution of ψ̂t for all δ̂t does not follow any of the three

4These results hold too if the observations with |ψ̂t| > 2 are not excluded.
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equality of test value of test-statistics p-value

means Anova F-statistic 195.658 0.000
medians Kruskal-Wallis (tie-adj.) 420.848 0.000
variances Brown-Forsythe 16.844 0.000

Table 3: Comparing the density functions
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Figure 5: Distribution of ψ̂t for total fixed investment. Nonparametric estimation of the density
function using Epanechnikov.

parametric functions, either. That means that when applying the Carlson-Parkin - method with

any of these distributions, one of the key assumptions is violated. This may be the cause why

the results are somewhat independent of the distribution assumed (cf. Carlson 1975, Lahiri &

Teigland 1987, Batchelor & Orr 1988, Dasgupta & Lahiri 1992).

4.3 Response Functions

The density functions give an impression of the distribution of ψ̂t for a specific qualitative statement

δ̂t = i. But they can not be used to identify the importance of the qualitative statements δ̂t for

different values of ψ̂t.

Ronning (1984) presented response functions indicating the probability of the qualitative state-

ments (δ̂t = i ∀i = −1, . . . , 1) when a firm is confronted with a specific quantitative value (ψ̂t).

Response functions can be considered as advancements of the response shares: They indicate the

share of firms giving different qualitative statements for different values of ψ̂t.

Sample normal logistic exponential

Watson p-value Watson p-value Watson p-value

total 3.379 0.000 2.029 <0.005 59.191 0.000
truncated 1.116 0.000 0.548 <0.005 48.040 0.000

Table 4: Empirical Distribution Tests
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Ronning expects that the probability of a “completely wrong qualitative statement” (δ̂t = −1

when ψ̂t > 0 or δ̂t = 1 when ψ̂t < 0) decreases with larger values of |ψ̂t|. Furthermore he assumes

an indifference interval in which the probability of δ̂t = 0 is larger than 0. He assumes this interval

to include ψ̂t = 0.

We adopt this concept on the investment data and calculate response functions:

γ
(i)

ψ̂t

=
N

(i)

ψ̂t∑1
k=−1N

(k)

ψ̂t

=
β

(i)

ψ̂t

·N
(i)
·

∑1
k=−1N

(k)

ψ̂t

with γ
(i)

ψ̂t

: value of the response function for δ̂t = i and ψ̂t, β
(i)

ψ̂t

: Value of the density function for

δ̂t = i at ψ̂t, N
(i)

ψ̂t

: Quantity of firms with ψ̂t and δ̂t = i, N
(i)
·

: quantity of firms with δ̂t = i.
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Figure 6: Response functions for total fixed investment

Figure 6 shows the response functions. In the negative interval of ψ̂t, the share of firms with

δ̂t = −1 amounts 40% and decreases with augmenting ψ̂t. Contrariwise, the share of firms with

δ̂t = 1 increases with augmenting ψ̂t. The probability for δ̂t = 0 is larger than zero and quite

the same on the whole range |ψ̂t| ≤ 2. This means that the indifference interval, as defined by

Ronning, is very large. All these observations do not change much if the answers are weighted by the

corresponding subjective certainty indicated in IVL. This is because the share of firms indicating to

be “not sure” and “quite unsure” is only 7% and these answers are distributed virtually uniformly

on |ψ̂t| ≤ 2.

5 Conclusions

In this article we compared quantitative and qualitative investment data on firm level. It showed

that firm’s answers in these two surveys are in most cases congruent. The density functions show

large intersections, though. Further research should try to investigate the determinants of these

intersections. Possible factors of influence could be the firm size and the sector of the firm.
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Another interesting issue would be to develop a quantification method that is based on the

response functions rather than the response shares (At, Bt, and Ct) only. As the response functions

investigate the response shares for different values of ψ̂t, a quantification method based on the

response functions should show better performance than the methods based on the response shares.
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