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Abstract

This paper derives the limiting distributions of alternative jackknife IV (JIV ) estimators and

gives formulae for accompanying consistent standard errors in the presence of heteroskedasticity

and many instruments. The asymptotic framework includes the many instrument sequence of

Bekker (1994) and the many weak instrument sequence of Chao and Swanson (2005). We show

that JIV estimators are asymptotically normal and that standard errors are consistent provided

that
√
Kn

rn
→ 0 as n → ∞, where Kn and rn denote, respectively, the number of instruments

and the concentration parameter. This is in contrast to the asymptotic behavior of such classical

IV estimators as LIML, B2SLS, and 2SLS, all of which are inconsistent in the presence of

heteroskedasticity, unless Kn
rn
→ 0. We also show that the rate of convergence and the form of the

asymptotic covariance matrix of the JIV estimators will in general depend on the strength of the

instruments as measured by the relative orders of magnitude of rn and Kn.
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1 Introduction

It has long been known that the two-stage least squares (2SLS) estimator is biased with many in-

struments (see e.g. Sawa (1969), Phillips (1983), and the references cited therein). Due in large part

to this problem, various approaches have been proposed in the literature to reduce the bias of the

2SLS estimator. In recent years, there has been interest in developing procedures that use “delete-

one” fitted values in lieu of the usual first-stage OLS fitted values as the instruments employed in

the second stage of the estimation. A number of different versions of these estimators, referred to

as jackknife instrumental variables (JIV ) estimators, have been proposed and analyzed by Phillips

and Hale (1977), Angrist, Imbens, and Krueger (1999), Blomquist and Dahlberg (1999), Ackerberg

and Devereux (2009), Davidson and MacKinnon (2006), and Hausman, Newey, Woutersen, Chao,

and Swanson (2007).

The JIV estimators are consistent with many instruments and heteroskedasticity of unknown

form, while other estimators, including limited information maximum likelihood (LIML) and bias

corrected 2SLS (B2SLS) estimators are not (see e.g. Bekker and van der Ploeg (2005), Ackerberg

and Devereux (2009), Chao and Swanson (2006), and Hausman et al. (2007)). The main objective

of this paper is to develop asymptotic theory for the JIV estimators in a setting that includes

the many instrument sequence of Kunitomo (1980), Morimune (1983), and Bekker (1994) and the

many weak instrument sequence of Chao and Swanson (2005). To be precise, we show that JIV

estimators are consistent and asymptotically normal when
√
Kn
rn
→ 0 as n → ∞, where Kn and

rn denote the number of instruments and the so-called concentration parameter, respectively. In

contrast, consistency of LIML and B2SLS generally requires that Kn
rn
→ 0 as n→∞, meaning that

the number of instruments is small relative to the identification strength. We show that both the

rate of convergence of the JIV estimator and the form of its asymptotic covariance matrix depend

on how weak the available instruments are, as measured by the relative order of magnitude of rn

vis-à-vis Kn. We also show consistency of the standard errors under heteroskedasticity and many

instruments.

Hausman et. al. (2007) also consider a jackknife form of LIML that is slightly more diffi-

cult to compute but is asymptotically efficient relative to JIV under many weak instruments and

homoskedasticity. With heteroskedasticity, any of the estimators may outperform the others, as

shown by Monte Carlo examples in Hausman et. al. (2007). Hausman et. al. (2007) also propose
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a jackknife version of the Fuller (1977) estimator that has fewer outliers.

This paper is a substantially altered and revised version of Chao and Swanson (2004), in which

we now allow for the many instrument sequence of Kunitomo (1980), Morimune (1983) and Bekker

(1994). In the process of showing the asymptotic normality of JIV, this paper gives a central limit

theorem for quadratic (and, more generally, bilinear) forms associated with an idempotent matrix.

This theorem can be used to study estimators other than JIV. For example, it has already been

used in Hausman et al. (2007) to derive the asymptotic properties of the jackknife versions of the

LIML and Fuller (1977) estimators and in Chao et al. (2010) to derive a moment based test.

The rest of the paper is organized as follows. Section 2 sets up the model and describes the

estimators and standard errors. Section 3 lays out the framework for the asymptotic theory and

presents the main results of our paper. Section 4 comments on the implications of these results

and concludes. All proofs are gathered in an appendix.

2 The Model and Estimators

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1

,

X = Υ+ U,

where n is the number of observations, G is the number of right-hand side variables, Υ is the reduced

form matrix, and U is the disturbance matrix. For the asymptotic approximations, the elements

of Υ will implicitly be allowed to depend on n, although we suppress the dependence of Υ on n

for notational convenience. Estimation of δ0 will be based on an n×K matrix, Z, of instrumental

variable observations with rank(Z) = K. Let Z = (Υ, Z), and assume that E[ε|Z] = 0 and

E[U |Z] = 0.

This model allows for Υ to be a linear combination of Z (i.e. Υ = Zπ, for some K × G

matrix π). Furthermore, some columns of X may be exogenous, with the corresponding column

of U being zero. The model also allows for Z to approximate the reduced form. For example,

let X 0
i, Υ

0
i, and Z 0i denote the i

th row (observation) for X, Υ, and Z, respectively. We could let

Υi = f0(wi) be a vector of unknown functions of a vector wi of underlying instruments and let

Zi = (p1K(wi), ..., pKK(wi))
0 for approximating functions pkK(w), such as power series or splines.
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In this case, linear combinations of Zi may approximate the unknown reduced form (e.g. Newey

(1990)).

To describe the estimators, let P = Z(Z 0Z)−1Z 0 and Pij denote the (i, j)
th element of P .

Additionally, let Π̄−i = (Z 0Z −ZiZ
0
i)
−1(Z 0X −ZiX

0
i) be the reduced form coefficients obtained by

regressing X on Z using all observations except the ith. The JIV estimator of Phillips and Hale

(1977) is obtained as

δ̃ = (
nX
i=1

Π̄0−iZiX
0
i)
−1

nX
i=1

Π̄0−iZiyi.

Using standard results on recursive residuals, it follows that

Π̄0−iZi =
¡
X 0Z(Z 0Z)−1Zi − PiiXi

¢
/(1− Pii) =

X
j 6=i

PijXj/(1− Pii).

Then, we have that

δ̃ = H̃−1
X
i6=j

XiPij(1− Pjj)
−1yj , H̃ =

X
i6=j

XiPij(1− Pjj)
−1X 0

j ,

where Σi6=j denotes the double sum
P

i

P
j 6=i . The JIV estimator proposed by Angrist and Imbens

(1999), JIVE2, has a similar form, except that Π−i = (Z 0Z)−1(Z 0X−ZiX
0
i) is used in place of Π̄−i.

It is given by

δ̂ = Ĥ−1
X
i6=j

XiPijyj , Ĥ =
X
i6=j

XiPijX
0
j .

To explain why JIV is a consistent estimator, it is helpful to consider JIV as a minimizer of

an objective function. As usual, the limit of the minimizer will be the minimizer of the limit

under appropriate regularity conditions. We focus on δ̂ to simplify the discussion. The estimator

δ̂ satisfies δ̂ = argminδ Q̂(δ), where

Q̂(δ) =
X
i 6=j
(yi −X 0

iδ)Pij(yj −X 0
jδ).

Note that the difference between the 2SLS objective function (y − X 0δ)P (y − X 0δ) and Q̂(δ) isPn
i=1 Pii(yi−X 0

iδ)
2. This is a weighted least squares object that is a source of bias in 2SLS because

its expectation is not minimized at δ0 when Xi and εi are correlated. This object does not vanish

asymptotically relative to E[Q̂(δ)] under many (or many weak) instruments, leading to inconsis-

tency of 2SLS. When observations are mutually independent, the inconsistency is caused by this

term, so removing it to form Q̂(δ) makes δ̂ consistent.
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To explain further, consider the JIV objective function Q̂(δ). Note that for Ũi(δ) = εi−U 0i(δ−δ0)

Q̂(δ) = Q̂1(δ) + Q̂2(δ) + Q̂3(δ), Q̂1(δ) =
X
i 6=j
(δ − δ0)

0ΥiPijΥ
0
j(δ − δ0),

Q̂2(δ) = −2
X
i6=j

Ũi(δ)PijΥ
0
j(δ − δ0), Q̂3(δ) =

X
i6=j

Ũi(δ)PijŨj(δ).

Then by the assumptions E[Ũi(δ)] = 0 and independence of observations, we have E[Q̂(δ)|Z] =

Q1(δ). Under the regularity conditions below,
P

i6=j ΥiPijΥ
0
j is positive definite asymptotically, so

Q1(δ) is minimized at δ0. Thus, the expectation Q1(δ) of Q̂(δ) is minimized at the true parameter

δ0; in the terminology of Han and Phillips (2006), the many instrument “noise” term in the expected

objective function is identically zero.

For consistency of δ̂, it is also necessary that the stochastic components of Q̂(δ) do not dominate

asymptotically. The size of Q̂1(δ) (for δ 6= δ0) is proportional to the concentration parameter that

we denote by rn. It turns out that Q̂2(δ) has size smaller than Q̂1(δ) asymptotically but Q̂3(δ) is

Op(
√
Kn) (Lemma A1 shows that the variance of Q̂3(δ) is proportional toKn). Thus, to ensure that

the expectation of Q̂(δ) dominates the stochastic part of Q̂(δ), it suffices to impose the restriction
√
Kn/rn −→ 0, which we do throughout the asymptotic theory. This condition was formulated in

Chao and Swanson (2005).

The estimators δ̃ and δ̂ are consistent and asymptotically normal with heteroskedasticity under

the regularity conditions we impose, including
√
Kn/rn −→ 0. In contrast, consistency of LIML and

Fuller (1977) requires Kn/rn −→ 0 when Pii is asymptotically correlated with E[Xiεi|Z]/E[ε2i |Z],

as discussed in Chao and Swanson (2004) and Hausman et al. (2007). This condition is also

required for consistency of the bias corrected 2SLS estimator of Donald and Newey (2001) when

Pii is asymptotically correlated with E[Xiεi|Z], as discussed in Ackerberg and Devereux (2009).

Thus, JIV estimators are robust to heteroskedasticity and many instruments (when Kn grows as

fast as rn), while LIML, Fuller (1977), or bias corrected 2SLS estimators are not.

Hausman et. al. (2007) also consider a JIV form of LIML, which is obtained by minimizing

Q̂(δ)/[(y − Xδ)0(y − Xδ)]. The sum of squared residuals in the denominator makes computation

somewhat more complicated; however, like LIML, it has an explicit form in terms of the smallest

eigenvalue of a matrix. This JIV form of LIML is asymptotically efficient relative to δ̂ and δ̃ under

many weak instruments and homoskedasticity. With heteroskedasticity, δ̂ and δ̃ may perform

better than this estimator, as shown by Monte Carlo examples in Hausman et. al. (2007); they
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also propose a jackknife version of the Fuller (1977) estimator that has fewer outliers than the JIV

form of LIML.

To motivate the form of the variance estimator for δ̂ and δ̃, note that for ξi = (1 − Pii)
−1εi,

substituting yi = X 0
iδ0 + εi in the equation for δ̃ gives

δ̃ = δ0 + H̃−1
X
i6=j

XiPijξj . (1)

After appropriate normalization, the matrix H̃−1 will converge and a central limit theorem will

apply to
P

i6=j XiPijξj ,which leads to a sandwich form for the asymptotic variance. Here H̃−1 can

be used to estimate the outside terms in the sandwich. The inside term, which is the variance ofP
i6=j XiPijξj , can be estimated by dropping terms that are zero from the variance, removing the

expectation, and replacing ξi with an estimate, ξ̃i = (1− Pii)
−1
³
yi −X 0

i δ̃
´
. Using the indepen-

dence of the observations, E[εi|Z] = 0, and the exclusion of the i = j terms in the double sums, it

follows that

E[
X
i6=j

XiPijξj(
X
i6=j

XiPijξj)
0|Z] = E[

X
i,j

X
k/∈{i,j}

PikPjkXiX
0
jξ
2
k +

X
i6=j

P 2ijXiξiX
0
jξj |Z].

Removing the expectation and replacing ξi with ξ̃i gives

Σ̃ =
X
i,j

X
k/∈{i,j}

PikPjkXiX
0
j ξ̃
2
k +

X
i6=j

P 2ijXiξ̃iX
0
j ξ̃j .

The estimator of the asymptotic variance of δ̃ is then given by

Ṽ = H̃−1Σ̃H̃−10.

This estimator is robust to heteroskedasticity, as it allows V ar(ξi|Z) and E[Xiξi|Z] to vary over i.

A vectorized form of Ṽ is easier to compute. Note that for X̃i = Xi/(1 − Pii), we have

H̃ = X 0PX̃ −
P

iXiPiiX̃
0
i. Also, let X̄ = PX, Z̃ = Z(Z 0Z)−1, and Z 0i and Z̃ 0i equal the the i

th row

of Z and Z̃ respectively. Then, as shown in the proof of Theorem 4, we have

Σ̃ =
nX
i=1

(X̄iX̄
0
i −XiPiiX̄

0
i − X̄iPiiX

0
i)ξ̂

2
i +

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icXiξ̂i

!⎛⎝ nX
j=1

ZjkZjcXj ξ̂j

⎞⎠0 .
This formula can be computed quickly by software with fast vector operations, even when n is

large.

6



An asymptotic variance estimator for δ̂ can be formed in an analogous way. Note that Ĥ =

X 0PX −
P

iXiPiiX
0
i. Also for ε̂i = yi −X 0

i δ̂, we can estimate the middle matrix of the sandwich

by

Σ̂ =
nX
i=1

(X̄iX̄
0
i −XiPiiX̄

0
i − X̄iPiiX

0
i)ε̂

2
i +

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icXiε̂i

!⎛⎝ nX
j=1

ZjkZjcXj ε̂j

⎞⎠0 .
The variance estimator for δ̂ is then given by

V̂ = Ĥ−1Σ̂Ĥ−1.

Here Ĥ is symmetric because P is symmetric, so a transpose is not needed for the third matrix in

V̂ .

3 Many Instrument Asymptotics

Our asymptotic theory combines the many instrument asymptotics of Kunitomo (1980), Morimune

(1983), and Bekker (1994) with the many weak instrument asymptotics of Chao and Swanson

(2005). All of our regularity conditions are conditional on Z = (Υ, Z). To state the regularity

conditions, let Z 0i, εi, U
0
i , and Υ

0
i denote the i

th row of Z, ε, U, and Υ, respectively. Also let a.s.

denote almost surely (i.e. with probability one) and a.s.n denote a.s. for n large enough (i.e. with

probability one for all n large enough).

Assumption 1: K = Kn −→ ∞, Z includes among its columns a vector of ones, for some

C < 1, rank(Z) = K and Pii ≤ C, (i = 1, ..., n) a.s.n.

In this paper, C is a generic notation for a positive constant that may be bigger or less than 1.

Hence, although in Assumption 1 C is taken to be less than 1, in other parts of the paper it might

not be. The restriction that rank(Z) = K is a normalization that requires excluding redundant

columns from Z. It can be verified in particular cases. For instance, when wi is a continuously

distributed scalar, Zi = pK(wi), and pkK(w) = wk−1, it can be shown that Z 0Z is nonsingular

with probability one for K < n.1 The condition Pii ≤ C < 1 implies that K/n ≤ C because

K/n =
Pn

i=1 Pii/n ≤ C.

1The observations w1, ..., wn are distinct with probability one and therefore, by K < n, cannot all be roots of a

Kth degree polynomial. It follows that for any nonzero a there must be some i with a0Zi = a0pK(wi) 6= 0, implying

a0Z0Za > 0.

7



Now, let λmin(A) denote the smallest eigenvalue of a symmetric matrix A, and for any matrix

B, let kBk =
p
tr(B0B).

Assumption 2: Υi = Snzi/
√
n where Sn = S̃n diag (μ1n, ..., μGn), S̃n is G×G and bounded,

and the smallest eigenvalue of S̃nS̃
0
n is bounded away from zero. Also, for each j, either μjn =

√
n

or μjn/
√
n −→ 0, rn = ( min

1≤j≤G
μjn)

2 −→ ∞, and
√
K/rn −→ 0. Also, there is C > 0 such that

k
Pn

i=1 ziz
0
i/nk ≤ C and λmin (

Pn
i=1 ziz

0
i/n) ≥ 1/C a.s.n.

This condition is similar to Assumption 2 of Hansen, Hausman, and Newey (2008). It ac-

commodates linear models where included instruments (e.g. a constant) have fixed reduced form

coefficients and excluded instruments have coefficients that can shrink as the sample size grows. A

leading example of such a model is a linear structural equation with one endogenous variable of the

form

yi = Z 0i1δ01 + δ0GXiG + εi, (2)

where Zi1 is a G1 × 1 vector of included instruments (e.g. including a constant) and XiG is

an endogenous variable. Here the number of right-hand side variables is G1 + 1 = G. Let the

reduced form be partitioned conformably with δ, as Υi = (Z
0
i1,ΥiG)

0 and Ui = (0, UiG)
0. Here the

disturbances for the reduced form for Zi1 are zero because Zi1 is taken to be exogenous. Suppose

that the reduced form for XiG depends linearly on the included instrumental variables Zi1 and on

an excluded instrument ziG as in

XiG = ΥiG + UiG,ΥiG = π1Zi1 +
³p

rn/n
´
ziG.

Here we normalize ziG so that rn determines how strongly δG is identified, and we absorb into ziG

any other terms, such as unknown coefficients. For Assumption 2, we let zi = (Z
0
i1, ziG)

0 and require

that the second moment matrix of zi is bounded and bounded away from zero. This normalization

allows rn to determine the strength of identification of δG. For example, if rn = n, then the

coefficient on ziG does not shrink, which corresponds to strong identification of δG. If rn grows

slower than n, then δG will be more weakly identified. Indeed, 1/
√
rn will be the convergence rate

for estimators of δG. We require rn −→ ∞ to avoid the weak instrument setting of Staiger and

Stock (1997), where δG is not asymptotically identified.
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For this model, the reduced form is

Υi =

∙
Zi1

π1Zi1 +
p
rn/nziG

¸
=

∙
I 0
π1 1

¸ ∙
I 0

0
p
rn/n

¸µ
Zi1

ziG

¶
.

This reduced form is as specified in Assumption 2 with

S̃n =

∙
I 0
π1 1

¸
, μjn =

√
n, 1 ≤ j ≤ G1, μGn =

√
rn.

Note how this somewhat complicated specification is needed to accommodate fixed reduced form

coefficients for included instrumental variables and excluded instruments with identifying power

that depend on n. We have been unable to simplify Assumption 2 while maintaining the generality

needed for such important cases.

We will not require that ziG be known, only that it be approximated by a linear combination

of the instrumental variables Zi = (Z
0
i1, Z

0
i2)
0. Implicitly, Zi1 and ziG are allowed to depend on n.

One important case is where the excluded instrument ziG is an unknown linear combination of the

instrumental variables Zi = (Z 0i1, Z
0
i2)
0. For example, the many weak instrument setting of Chao

and Swanson (2005) is one where the reduced form is given by

ΥiG = π1Zi1 + (π2/
√
n)0Zi2

for a K −G1 dimensional vector Zi2 of excluded instrumental variables. This model can be folded

into our framework by specifying that

ziG = π02Zi2/
p
K −G1, rn = K −G1.

Assumption 2 will then require thatX
i

z2iG/n = (K −G1)
−1
X
i

(π02Zi2)
2/n

is bounded and bounded away from zero. Thus, the second moment
P

i(π
0
2Zi2)

2/n of the term in

the reduced form that identifies δ0G must grow linearly in K, just as in Chao and Swanson (2005),

leading to a convergence rate of 1/
√
K −G1 = 1/

√
rn.

In another important case, the excluded instrument ziG could be an unknown function that can

be approximated by a linear combination of Zi. For instance, suppose that ziG = f0(wi) for an

unknown function f0(wi) of variables wi. In this case, the instrumental variables could include a

vector pK(wi)
def
= (p1K(wi), ..., pK−G1,K(wi))

0 of approximating functions, such as polynomials or
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splines. Here the vector of instrumental variables would be Zi = (Z
0
i1, p

K(wi)
0)0. For rn = n, this

example is like Newey (1990) where Zi includes approximating functions for the reduced form, but

the number of instruments can grow as fast as the sample size. Alternatively, if rn/n −→ 0, it is a

modified version where δG is more weakly identified.

Assumption 2 also allows for multiple endogenous variables with a different strength of identi-

fication for each one, i.e. for different convergence rates. In the above example, we maintained the

scalar endogenous variable for simplicity.

The rn can be thought of as a version of the concentration parameter; it determines the con-

vergence rate of estimators of δ0G just as the concentration parameter does in other settings. For

rn = n, the convergence rate will be
√
n where Assumptions 1 and 2 permit K to grow as fast as

the sample size. This corresponds to a many instrument asymptotic approximation like Kunit-

omo (1980), Morimune (1983), and Bekker (1994). For rn growing slower than n, the convergence

rate will be slower than 1/
√
n, which leads to an asymptotic approximation like that of Chao and

Swanson (2005).

Assumption 3: There is a constant, C, such that conditional on Z = (Υ, Z), the observations

(ε1, U1), ..., (εn, Un) are independent, with E[εi|Z] = 0 for all i, E[Ui|Z] = 0 for all i, supiE[ε2i |Z] <

C, and supiE[kUik2|Z] ≤ C, a.s.

In other words, Assumption 3 requires the second conditional moments of the disturbances to

be bounded.

Assumption 4: There is a πK such that
Pn

i=1 kzi − πKZik2 /n −→ 0 a.s.

This condition allows an unknown reduced form that is approximated by a linear combination

of the instrumental variables. These four assumptions give the consistency result presented in

Theorem 1.

Theorem 1: Suppose that Assumptions 1-4 are satisfied. Then, r
−1/2
n S0n(δ̃−δ0)

p−→ 0, δ̃
p−→ δ0,

r
−1/2
n S0n(δ̂ − δ0)

p−→ 0, and δ̂
p−→ δ0.

The following additional condition is useful for establishing asymptotic normality and the con-

sistency of the asymptotic variance.
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Assumption 5: There is a constant, C > 0, such that
Pn

i=1 kzik
4 /n2 −→ 0, supiE[ε

4
i |Z] < C,

and supiE[kUik4|Z] ≤ C a.s.

To give asymptotic normality results, we need to describe the asymptotic variances. We will

outline results that do not depend on the convergence of various moment matrices, so we write

the asymptotic variances as a function of n (rather than as a limit). Let σ2i = E
£
ε2i |Z

¤
where, for

notational simplicity, we have suppressed the possible dependence of σ2i on Z. Moreover, let

H̄n =
nX
i=1

ziz
0
i/n, Ω̄n =

nX
i=1

ziz
0
iσ
2
i /n,

Ψ̄n = S−1n
X
i6=j

P 2ij
¡
E[UiU

0
i |Z]σ2j (1− Pjj)

−2 +E[Uiεi|Z](1− Pii)
−1E[εjU

0
j |Z](1− Pjj)

−1¢S−10n ,

Hn =
nX
i=1

(1− Pii)ziz
0
i/n, Ωn =

nX
i=1

(1− Pii)
2ziz

0
iσ
2
i /n,

Ψn = S−1n
X
i6=j

P 2ij
¡
E[UiU

0
i |Z]σ2j +E[Uiεi|Z]E[εjU 0j |Z]

¢
S−10n .

When K/rn is bounded, the conditional asymptotic variance given Z of S0n(δ̃ − δ0) is

V̄n = H̄−1
n (Ω̄n + Ψ̄n)H̄

−1
n ,

and the conditional asymptotic variance of S0n(δ̂ − δ0) is

Vn = H−1
n (Ωn +Ψn)H

−1
n .

To state our asymptotic normality results, let A1/2 denote a square root matrix for a positive

semi-definite matrix A, satisfying A1/2A1/20 = A. Also, for nonsingular A, let A−1/2 = (A1/2)−1.

Theorem 2: Suppose that Assumptions 1-5 are satisfied, σ2i ≥ C > 0 a.s. and K/rn is bounded.

Then V̄n and Vn are nonsingular a.s.n, and

V̄ −1/2n S0n(δ̃ − δ0)
d−→ N(0, IG), V −1/2n S0n(δ̂ − δ0)

d−→ N(0, IG).

The entire Sn matrix in Assumption 2 determines the convergence rate of the estimators, where

S0n(δ̂ − δ0) = diag (μ1n, ..., μGn) S̃
0
n(δ̂ − δ0)

11



is asymptotically normal. The convergence rate of the linear combination e0jS̃
0
n(δ̂ − δ0) will be

1/μjn, where ej is the j
th unit vector. Note that

yi = X 0
iδ0 + ui = z0i diag (μ1n, ..., μGn) S̃

0
nδ0 + U 0iδ0 + εi.

The expression following the second equality is the reduced form for yi. Thus, the linear combination

of structural parameters e0jS̃
0
nδ0 is the j

th reduced form coefficient for yi that corresponds to the

variable (μjn/
√
n) zij . This reduced form coefficient is estimated at the rate 1/μjn by the linear

combination e0jS̃
0
nδ̂ of the IV estimator δ̂. The minimum rate is 1/

√
rn, which is the inverse square

root of the rate of growth of the concentration parameter. These rates will change when K grows

faster than rn.

The rate of convergence in Theorem 2 corresponds to the rate found by Stock and Yogo (2005b)

for LIML, Fuller’s modified LIML, and B2SLS when rn grows at the same rate as K and slower

than n under homoskedasticity.

The term Ψ̄n in the asymptotic variance of δ̃ and the term Ψn in the asymptotic variance of δ̂

account for the presence of many instruments. The order of these terms is K/rn, so if K/rn −→ 0,

dropping these terms does not affect the asymptotic variance. When K/rn is bounded but does not

go to zero, these terms have the same order as the other terms, and it is important to account for

their presence in the standard errors. If K/rn −→ ∞, then these terms dominate and slow down

the convergence rate of the estimators. In this case, the conditional asymptotic variance given Z

of
p
rn/KS0n(δ̃ − δ0) is

V̄ ∗n = H̄−1
n (rn/K)Ψ̄nH̄

−1
n ,

and the conditional asymptotic variance of
p
rn/KS0n(δ̂ − δ0) is

V ∗n = H−1
n (rn/K)ΨnH

−1
n .

When K/rn −→∞, the (conditional) asymptotic variance matrices, V̄ ∗n and V ∗n , may be singu-

lar, especially when some components of Xi are exogenous or when different identification strengths

are present. In order to allow for this singularity, our asymptotic normality results are stated in

terms of a linear combination of the estimator. Let Ln be a sequence of c×G matrices.

Theorem 3: Suppose that Assumptions 1-5 are satisfied and K/rn −→ ∞. If Ln is bounded

and there is a C > 0 such that λmin
¡
LnV̄

∗
nL

0
n

¢
≥ C a.s.n then¡

LnV̄
∗
nL

0
n

¢−1/2
Ln

p
rn/KS0n(δ̃ − δ0)

d−→ N(0, I).

12



Also, if there is a C > 0 such that λmin (LnV
∗
nL

0
n) ≥ C a.s.n, then¡

LnV
∗
nL

0
n

¢−1/2
Ln

p
rn/KS0n(δ̂ − δ0)

d−→ N(0, I).

Here the convergence rate is related to the size of (
p
rn/K)Sn. In the simple case where δ is a

scalar, we can take Sn =
√
rn, which gives a convergence rate of

√
K/rn. Then the theorem states

that
³
rn/
√
K
´
(δ̃− δ0) is asymptotically normal. It is interesting that

√
K/rn −→ 0 is a condition

for consistency in this setting, as well as in the context of Theorem 1 above.

From Theorems 2 and 3, it is clear that the rates of convergence of both JIV estimators depend

in general on the strength of the available instruments relative to their number, as reflected in the

relative orders of magnitude of rn vis-à-vis K. Note also that, whenever rn grows at a slower rate

than n, the rate of convergence is slower than the conventional
√
n rate of convergence. In this

case, the available instruments are weaker than assumed in the conventional strongly identified

case, where the concentration parameter is taken to grow at the rate n.

When Pii = Z 0i(Z
0Z)−1Zi goes to zero uniformly in i, the asymptotic variances of the two JIV

estimators will get close in large samples. Since
Pn

i=1 Pii = tr(P ) = K, Pii goes to zero when K

grows more slowly than n, though precise conditions for this convergence depend on the nature of

Zi. As a practical matter, Pii will generally be very close to zero in applications where K is very

small relative to n, making the jackknife estimators very close to each other.

Under homoskedasticity, we can compare the asymptotic variances of the two JIV estimators.

In this case, the asymptotic variance of δ̃ is

V̄n = V̄ 1n + V̄ 2n , V̄ 1n = σ2H̄−1
n , V̄ 2n = S−1n σ2E[UiU

0
i ]
X
i6=j

P 2ij/(1− Pjj)
2S−1n

+S−1n E[Uiεi]E[U
0
iεi]S

−10
n

X
i6=j

P 2ij(1− Pii)
−1(1− Pjj)

−1.

Also, the asymptotic variance of δ̂ is

Vn = V 1n + V 2n , V 1n = σ2H−1
n

"
nX
i=1

(1− Pii)
2ziz

0
i/n

#
H−1
n ,

V 2n = S−1n
¡
σ2E[UiU

0
i ] +E[Uiεi]E[U

0
iεi]
¢
S−10n

X
i6=j

P 2ij .

By the fact that (1−Pii)−1 > 1, we have that V̄ 2n ≥ V 2n in the positive semi-definite sense. Also, note

that V 1n is the variance of an IV estimator with instruments zi(1− Pii) while V̄
1
n is the variance of

13



the corresponding least squares estimator, so V̄ 1n ≤ V 1n . Thus, it appears that in general we cannot

rank the asymptotic variances of the two estimators.

Next, we turn to results pertaining to the consistency of the asymptotic variance estimators and

to the use of these estimators in hypothesis testing. We impose the following additional conditions.

Assumption 6: There exists πn and C > 0 such that a.s. maxi≤n kzi − πnZik −→ 0 and

supi kzik ≤ C.

The next result shows that our estimators of the asymptotic variance are consistent after nor-

malization.

Theorem 4: Suppose that Assumptions 1-6 are satisfied. If K/rn is bounded, then S0nṼ Sn −

V̄n
p−→ 0 and S0nV̂ Sn − Vn

p−→ 0. Also, if K/rn −→ ∞, then rnS
0
nṼ Sn/K − V̄ ∗n

p−→ 0 and

rnS
0
nV̂ Sn/K − V ∗n

p−→ 0.

A primary use of asymptotic variance estimators is conducting approximate inference concerning

coefficients. To that end, we introduce Theorem 5.

Theorem 5: Suppose that Assumptions 1-6 are satisfied and that a(δ) is an c × 1 vector

of functions such that: i) a(δ) is continuously differentiable in a neighborhood of δ0; ii) there

is a square matrix, Bn, such that for A = ∂a(δ0)/∂δ
0, BnAS

−10
n is bounded; and iii) for any

δ̄k
p−→ δ0, (k = 1, ..., c) and Ā = [∂a1(δ̄)/∂δ, ..., ∂ac(δ̄)/∂δ]

0, we have Bn(Ā − A)S−10n
p−→ 0. Also

suppose that there is C > 0 such that λmin(BnAS
−10
n V̄nS

−1
n A0B0n) ≥ C if K/rn is bounded or

λmin(BnAS
−10
n V̄ ∗nS

−1
n A0B0n) ≥ C if K/rn −→∞ a.s.n. Then for Ã = ∂a(δ̃)/∂δ,

(ÃṼ Ã0)−1/2
h
a(δ̃)− a(δ0)

i
d−→ N(0, I).

If there is C ≥ 0 such that λmin(BnAS
−10
n V̄nS

−1
n A0B0n) ≥ C if K/rn is bounded or

λmin(BnAS
−10
n V̄ ∗nS

−1
n A0B0n) ≥ C if K/rn −→∞ a.s.n, then for Â = ∂a(δ̂)/∂δ,

(ÂV̂ Â0)−1/2
h
a(δ̂)− a(δ0)

i
d−→ N(0, I).

Perhaps the most important special case of this result is a single linear combination. This case

will lead to t-statistics based on the consistent variance estimator having the usual standard normal

limiting distribution. The following result considers such a case.
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Corollary 6: Suppose that Assumptions 1-6 are satisfied and c and bn are such that bnc
0S−10n is

bounded. If there is a C > 0 such that b2nc
0S−10n V̄nS

−1
n c ≥ C if K/rn is bounded or b

2
nc
0S−10n V̄ ∗nS

−1
n c ≥

C if K/rn −→∞ a.s.n, then

c0(δ̃ − δ0)p
c0Ṽ c

d−→ N(0, 1).

Also if there is a C ≥ 0 such that b2nc0S−10n VnS
−1
n c ≥ C if K/rn is bounded or b

2
nc
0S−10n V ∗nS

−1
n c ≥ C

if K/rn −→∞ a.s.n, then

c0(δ̂ − δ0)p
c0V̂ c

d−→ N(0, 1).

To show how the conditions of this result can be checked, we return to the previous example

with one right-hand side endogenous variable. The following result gives primitive conditions in

that example for the conclusion of Corollary 6, i.e. for the asymptotic normality of a t-ratio.

Corollary 7: If equation (2) holds, Assumptions 1-6 are satisfied for zi = (Z
0
i1, ziG), c 6= 0 is

a constant vector, either a) rn = n or b) K/rn is bounded and (−π1, 1)c 6= 0 or c) K/rn −→ ∞,

(−π1, 1)c 6= 0, E[U2iG|Z] is bounded away from zero, and the sign of E[εiUiG|Z] is constant a.s.,

then
c0(δ̃ − δ0)p

c0Ṽ c

d−→ N(0, 1),
c0(δ̂ − δ0)p

c0V̂ c

d−→ N(0, 1).

The proof of this result shows how the hypotheses concerning bn in Corollary 6 can be checked.

The conditions of Corollary 7 are quite primitive. We have previously described how Assumption

2 is satisfied in the model of equation (2). Assumptions 1 and 3-6 are also quite primitive.

This result can be applied to show that t-ratios are asymptotically correct when the many

instrument robust variance estimators are used. For the coefficient δG of the endogenous variable,

note that c = eG, so (−π1, 1)c = 1 6= 0. Therefore, if E[U2iG|Z] is bounded away from zero and the

sign of E[εiUiG|Z] is constant, it follows from Corollary 7 that

δ̂G − δ0Gp
V̂GG

d−→ N(0, 1).

Thus, the t-ratio for the coefficient of the endogenous variable is asymptotically correct across a

wide range of different growth rates for rn and K. The analogous result holds for each coefficient δj ,

j ≤ G1, of an included instrument as long as π1j 6= 0 is not zero. If π1j = 0, then the asymptotics
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are more complicated. For brevity, we will not discuss this unusual case here. The analogous results

also hold for δ̃G.

4 Concluding Remarks

In this paper, we derived limiting distribution results for two alternative JIV estimators. These

estimators are both consistent and asymptotically normal in the presence of many instruments under

heteroskedasticity of unknown form. In the same setup, LIML, 2SLS, and B2SLS are inconsistent.

In the process of showing the asymptotic normality of JIV, this paper gives a central limit theorem

for quadratic (and, more generally, bilinear) forms associated with an idempotent matrix. This

central limit theorem has already been used in Hausman et al. (2007) to derive the asymptotic

properties of the jackknife versions of the LIML and Fuller (1977) estimators and in Chao et al.

(2010) to derive a moment based test that allows for heteroscedasticity and many instruments.

Moreover, this new central limit theorem is potentially useful for other analyses involving many

instruments.

5 Appendix A - Proofs of Theorems

We define a number of notations and abbreviations which will be used in Appendices A and B. Let C

denote a generic positive constant and let M, CS, and T denote the Markov inequality, the Cauchy-Schwartz

inequality, and the triangle inequality, respectively. Also, for random variables Wi, Yi, and ηi and for

Z = (Υ, Z), let w̄i = E[Wi|Z], W̃i =Wi − w̄i, ȳi = E[Yi|Z], Ỹi = Yi − ȳi, η̄i = E[ηi|Z], η̃i = ηi − η̄i,

ȳ = (ȳ1, ...., ȳn)
0 , w̄ = (w̄1, ..., w̄n)

0 ,

μ̄W = max
1≤i≤n

|w̄i| , μ̄Y = max
1≤i≤n

|ȳi| , μ̄η = max
1≤i≤n

|η̄i| , σ̄2W = max
i ≤ n

V ar [Wi|Z] ,

σ̄2Y = max
i ≤ n

V ar [Yi|Z] , and σ̄2η = max
i ≤ n

V ar [ηi|Z] ,

where, in order to simplify notation, we have suppressed dependence on Z for the various quantities (w̄i,

W̃i, ȳi, Ỹi,η̄i, η̃i, μ̄W , μ̄Y , μ̄η, σ̄
2
W , σ̄

2
Y , and σ̄

2
η) defined above. Furthermore, for random variable X, define

kXkL2,Z =
p
E [X2|Z].

We first give four lemmas that are useful in the proofs of consistency, asymptotic normality, and consis-

tency of the asymptotic variance estimator. We group them together here for ease of reference because they
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are also used in Hausman et. al. (2007).

Lemma A1: If, conditional on Z = (Υ, Z), (Wi, Yi)(i = 1, ..., n) are independent a.s., Wi and Yi

are scalars, and P is a symmetric, idempotent matrix of rank K, then for w̄ = E [(W1, ...,Wn)
0|Z] ,

ȳ = E [(Y1, ..., Yn)
0|Z] , σ̄Wn = maxi≤n V ar (Wi|Z)1/2 , σ̄Yn = maxi≤n V ar (Yi|Z)1/2, and Dn =

Kσ̄2Wn
σ̄2Yn + σ̄2Wn

ȳ0ȳ + σ̄2Ynw̄
0w̄, there exists a positive constant C such that°°°°°°
X
i6=j

PijWiYj −
X
i6=j

Pijw̄iȳj

°°°°°°
2

L2,Z

≤ CDn a.s.

Proof: Let W̃i =Wi − w̄i and Ỹi = Yi − ȳi. Note thatX
i6=j

PijWiYj −
X
i6=j

Pijw̄iȳj =
X
i6=j

PijW̃iỸj +
X
i6=j

PijW̃iȳj +
X
i6=j

Pijw̄iỸj .

Let D1n = σ̄2Wn
σ̄2Yn . Note that for i 6= j and k 6= c, E

h
W̃iỸjW̃kỸc|Z

i
is zero unless i = k and j = c or

i = c and j = k. Then by CS and
P

j P
2
ij = Pii,

E

∙³X
i6=j

PijỸiW̃j

´2
|Z
¸
=

X
i6=j

X
k 6=c

PijPkcE
h
W̃iỸjW̃kỸc|Z

i
=

X
i6=j

P 2ij

³
E[W̃ 2

i |Z]E[Ỹ 2j |Z] +E[W̃iỸi|Z]E[W̃jỸj |Z]
´

≤ 2D1n
X
i6=j

P 2ij ≤ 2D1n

X
i

Pii = 2D1nK.

Also, for W̃ = (W̃1, ..., W̃n)
0, we have

P
i6=j PijW̃iȳj = W̃P ȳ −

P
i PiiȳiW̃i. By independence across i

conditional on Z, we have E
h
W̃W̃ 0|Z

i
≤ σ̄2Wn

In a.s., so

E[(ȳ0PW̃ )2|Z] = ȳ0PE[W̃W̃ 0|Z]P ȳ ≤ σ̄2Wn
ȳ0P ȳ ≤ σ̄2Wn

ȳ0ȳ,

E

∙³X
i
PiiȳiW̃i

´2
|Z
¸
=

X
i

P 2iiE[W̃
2
i |Z]ȳ2i ≤ σ̄2Wn

ȳ0ȳ.

Then by T, we have°°°X
i6=j

PijW̃iȳj

°°°2
L2,Z

≤
°°°ȳ0PW̃°°°2

L2,Z
+
°°°X

i
PiiȳiW̃i

°°°2
L2,Z

≤ Cσ̄2Wn
ȳ0ȳ a.s. PZ .

Interchanging the roles of Yi and Wi gives

°°°X
i6=j

Pijw̄iỸj

°°°2
L2,Z

≤ Cσ̄2Ynw̄
0w̄ a.s. The conclusion then

follows by T. ¥

Lemma A2: Suppose that, conditional on Z, the following conditions hold a.s.: i) P = P (Z) is a sym-

metric, idempotent matrix with rank(P ) = K and Pii ≤ C < 1; ii) (W1n, U1, ε1), ..., (Wnn, Un, εn) are
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independent and Dn =
Pn

i=1E [WinW
0
in|Z] satisfies kDnk ≤ C a.s.n; iii) E [W 0

in|Z] = 0, E[Ui|Z] =

0, E[εi|Z] = 0 and there exists a constant C such that E[kUik4 |Z] ≤ C and E[ε4i |Z] ≤ C; iv)Pn
i=1E

h
kWink4 |Z

i
a.s.−→ 0; and v) K −→∞ as n→∞. Then for

Σ̄n
def
=

X
i6=j

P 2ij
¡
E[UiU

0
i |Z]E[ε2j |Z] +E[Uiεi|Z]E[εjU 0j |Z]

¢
/K

and any sequences c1n and c2n depending on Z of conformable vectors with kc1nk ≤ C, kc2nk ≤ C, and

Ξn = c01nDnc1n + c02nΣ̄nc2n > 1/C a.s.n, it follows that

Yn = Ξ
−1/2
n (c01n

nX
i=1

Win + c02n
X
i6=j

UiPijεj/
√
K)

d−→ N (0, 1) , a.s.;

i.e. Pr(Yn ≤ y|Z) a.s.−→ Φ(y) for all y.

Proof: The proof of Lemma A2 is long and is deferred to Appendix B.

The next two results are helpful in proving consistency of the variance estimator. They use the same

notation as Lemma A1.

Lemma A3: If, conditional on Z, (Wi, Yi)(i = 1, ..., n) are independent and Wi and Yi are scalars,

then there exists a positive constant C such that°°°X
i6=j

P 2ijWiYj −E
hX

i6=j
P 2ijWiYj |Z

i°°°2
L2,Z

≤ CBn a.s.,

where Bn = K
©
σ̄2W σ̄2Y + σ̄2W μ̄2Y + μ̄2W σ̄2Y

ª
.

Proof: Using the notation of the proof of Lemma A1, we haveX
i6=j

P 2ijWiYj −
X
i6=j

P 2ijw̄iȳj =
X
i6=j

P 2ijW̃iỸj +
X
i6=j

P 2ijW̃iȳj +
X
i6=j

P 2ijw̄iỸj .

As before, for i 6= j and k 6= c, E
h
W̃iỸjW̃kỸc|Z

i
is zero unless i = k and j = c or i = c and j = k. Also,

|Pij | ≤ Pii < 1 by CS and Assumption 1, so P
4
ij ≤ P 2ij . Also,

P
j P

2
ij = Pii, so

E

∙³X
i6=j

P 2ijW̃iỸj

´2
|Z
¸
=

X
i6=j

X
k 6=c

P 2ijP
2
kcE

h
W̃iỸjW̃kỸc|Z

i
=

X
i6=j

P 4ij

³
E
h
W̃ 2

i |Z
i
E
h
Ỹ 2j |Z

i
+E

h
W̃iỸi|Z

i
E
h
W̃jỸj |Z

i´
≤ 2σ̄2W σ̄2Y

X
i6=j

P 4ij ≤ 2Kσ̄2W σ̄2Y a.s.
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Also,
P

i6=j P
2
ijW̃iȳj = W̃ 0P̃ ȳ−

P
i P

2
iiȳiW̃i where P̃ij = P 2ij . By independence across i conditional on Z,

we have E[W̃W̃ 0|Z] ≤ σ̄2WnIn, so

E[(ȳ0P̃ W̃ )2|Z] = ȳ0P̃E[W̃W̃ 0|Z]P̃ ȳ ≤ σ̄2Wn
ȳ0P̃ 2ȳ = σ̄2Wn

X
i,j,k

ȳiP
2
ikP

2
kj ȳj ≤ σ̄2W μ̄2Y

X
i,j,k

P 2ikP
2
kj

= σ̄2W μ̄2Y
X
k

ÃX
i

P 2ik

!⎛⎝X
j

P 2kj

⎞⎠ = σ̄2W μ̄2Y
X
k

P 2kk ≤ Kσ̄2W μ̄2Y a.s.

E

∙³X
i
P 2iiȳiW̃i

´2
|Z
¸
=
X
i

P 4iiE[W̃
2
i |Z]ȳ2i ≤ Kσ̄2W μ̄2Y a.s.

Then by T, we have

°°°Pi6=j P
2
ijW̃iȳj

°°°2
L2,Z

≤
°°°W̃ 0P̃ ȳ

°°°2
L2,Z

+
°°°X

i
P 2iiȳiW̃i

°°°2
L2,Z

≤ CKσ̄2W μ̄2Y a.s.

Interchanging the roles of Yi and Wi gives

°°°Pi6=j P
2
ijw̄iỸj

°°°2
L2,Z

≤ CKμ̄2W σ̄2Y a.s. The conclusion then

follows by T. ¥

As a notational convention, let
P

i 6=j 6=k denote
P

i

P
j 6=i
P

k/∈{i,j}.

Lemma A4: Suppose that there is C > 0 such that, conditional on Z , (W1, Y1, η1) , ...., (Wn, Yn, ηn)

are independent with E[Wi|Z] = ai/
√
n, E[Yi|Z] = bi/

√
n, |ai| ≤ C, |bi| ≤ C, E[η2i |Z] ≤ C,

V ar(Wi|Z) ≤ C/rn, V ar(Yi|Z) ≤ C/rn, there exists πn such that maxi≤n |ai − Z 0iπn|
a.s.−→ 0, and

√
K/rn −→ 0. Then

An = E

⎡⎣ X
i6=j 6=k

WiPikηkPkjYj |Z

⎤⎦ = Op(1),
X
i6=j 6=k

WiPikηkPkjYj −An
p−→ 0.

Proof: Given in Appendix B.

Lemma A5: If Assumptions 1-3 are satisfied, then

i.) S−1n H̃S−10n =
X
i6=j

ziPij(1− Pjj)
−1z0j/n+ op(1)

ii.) S−1n
X
i6=j

XiPij(1− Pjj)
−1εj = Op(1 +

p
K/rn)

iii.) S−1n ĤS−10n =
X
i6=j

ziPijz
0
j/n+ op(1)

iv.) S−1n
X
i6=j

XiPijεj = Op(1 +
p
K/rn).

Proof: Let ek denote the k
th unit vector and apply Lemma A1 with Yi = e0kS

−1
n Xi = zik/

√
n+ e0kS

−1
n Ui

andWi = e0cS
−1
n Xi(1−Pii)−1 for some k and c. By Assumption 2, λmin(Sn) ≥ C

√
rn implying

°°S−1n °° ≤
19



C/
√
rn. Therefore a.s.

E[Yi|Z] = zik/
√
n, V ar(Yi|Z) ≤ C/rn, E[Wi|Z] = zic/

√
n(1− Pii), V ar(Wi|Z) ≤ C/rn.

Note that a.s.

√
Kσ̄Wn σ̄Yn ≤ C

√
K/rn −→ 0, σ̄Wn

p
ȳ0ȳ ≤ Cr−1/2n

sX
i

z2ik/n −→ 0,

σ̄Yn
√
w̄0w̄ ≤ Cr−1/2n

sX
i

z2ic(1− Pii)−2/n ≤ Cr−1/2n (1−max
i

Pii)
−2
sX

i

z2ic/n −→ 0.

Since e0kS
−1
n H̃S−10n ec = e0kS

−1
n

P
i6=j XiPijX

0
jS
−10
n ec/(1− Pjj) =

P
i6=j YiPijWj and Pijw̄iȳj =

Pijzikzjc/n(1− Pjj), applying Lemma A1 and the conditional version of M, we deduce that for any υ >

0 and An = {
¯̄̄
e0kS

−1
n H̃S−10n ec −

P
i6=j e

0
kziPij(1− Pjj)

−1z0jec/n
¯̄̄
≥ υ}, P (An|Z) a.s.→ 0. By the

dominated convergence theorem, P (An) = E [P (An|Z)] → 0. The above argument establishes the first

conclusion for the (k, c)th element. Doing this for every element completes the proof of the first conclusion.

For the second conclusion, apply Lemma A1 with Yi = e0kS
−1
n Xi as before and Wi = εi/(1 − Pii).

Note that w̄i = 0 and σ̄Wn ≤ C. Then by Lemma A1,

E[{e0kS−1n
X
i6=j

XiPij(1− Pjj)
−1εj}2|Z] ≤ CK/rn + C.

The conclusion then follows from the fact that E[An|Z] ≤ C implies An = Op(1).

For the third conclusion, apply Lemma A1 with Yi = e0kS
−1
n Xi as before and Wi = e0cS

−1
n Xi, so a.s.

√
Kσ̄Wn σ̄Yn ≤ C

√
K/rn −→ 0, σ̄Wn

p
ȳ0ȳ ≤ Cr−1/2n

qX
z2ik/n −→ 0, σ̄Yn

√
w̄0w̄ −→ 0.

The fourth conclusion follows similarly to the second conclusion. ¥

Let H̄n =
P

i ziz
0
i/n and Hn =

P
i(1− Pii)ziz

0
i/n.

Lemma A6: If Assumptions 1-4 are satisfied, then

S−1n H̃S−10n = H̄n + op(1), S
−1
n ĤS−10n = Hn + op(1).

Proof: We are going to use Lemma A5 and approximate the right-hand side terms in Lemma A5 by H̄n and

Hn. Let z̄i =
Pn

j=1 Pijzj be the i
th element of Pz and note that

nX
i=1

kzi − z̄ik2 /n = k(I − P )zk2 /n = tr(z0(I − P )z/n) = tr[(z − Zπ0Kn)
0(I − P )(z − Zπ0Kn)/n]

≤ tr[(z − Zπ0Kn)
0(z − Zπ0Kn)/n] =

nX
i=1

kzi − πKnZik2 /n −→ 0 a.s. PZ .
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It follows that a.s.°°°°°X
i

(z̄i − zi)(1− Pii)
−1z0i/n

°°°°° ≤
X
i

kz̄i − zik
°°(1− Pii)

−1z0i
°° /n

≤
sX

i

kz̄i − zik2 /n
sX

i

k(1− Pii)−1zik2 /n −→ 0.

Then X
i6=j

ziPij(1− Pjj)
−1z0j/n =

X
i,j

ziPij(1− Pjj)
−1z0j/n−

X
i

ziPii(1− Pii)
−1z0i/n

=
X
i

z̄i(1− Pii)
−1z0i/n−

X
i

ziPii(1− Pii)
−1z0i/n

= H̄n +
X
i

(z̄i − zi)(1− Pii)
−1z0i/n = H̄n + oa.s(1).

The first conclusion then follows from Lemma A5 and the triangle inequality. Also, as in the last equation,

we have X
i6=j

ziPijz
0
j/n =

X
i,j

ziPijz
0
j/n−

X
i

Piiziz
0
i/n =

X
i

z̄iz
0
i/n−

X
i

Piiziz
0
i/n

= Hn +
X
i

(z̄i − zi)z
0
i/n = Hn + oa.s(1),

so the second conclusion follows similarly to the first. ¥

Proof of Theorem 1: First, note that by λmin (SnS
0
n/rn) ≥ λmin

³
S̃S̃0

´
≥ C, we have°°°S0n(δ̃ − δ0)/

√
rn

°°° ≥ λmin(SnS
0
n/rn)

1/2
°°°δ̃ − δ0

°°° ≥ C
°°°δ̃ − δ0

°°° .
Therefore, S0n(δ̃ − δ0)/

√
rn

p−→ 0 implies δ̃
p−→ δ0. Note that by Assumption 2, H̄n is bounded and

λmin(H̄n) ≥ C a.s.n. For H̃ from Section 2, it follows from Lemma A6 and Assumption 2 that with

probability approaching one λmin(S
−1
n H̃S−10n ) ≥ C as the sample size grows. Hence

³
S−1n H̃S−10n

´−1
=

Op(1). By eq. (1) and Lemma A5,

r−1/2n S0n(δ̃ − δ0) = (S
−1
n H̃S−10n )−1S−1n

X
i6=j

XiPijξj/
√
rn = Op(1)op(1)

p−→ 0.

All of the previous statements are conditional on Z = (Υ, Z) for a given sample size n, so for the

random variable Rn = r
−1/2
n S0n(δ̃ − δ0), we have shown that for any constant v > 0, a.s. Pr(kRnk ≥

v|Z) −→ 0.Then by the dominated convergence theorem, Pr(kRnk ≥ v) = E[Pr(kRnk ≥ v|Z)] −→ 0.

Therefore, since v is arbitrary, it follows that Rn = r
−1/2
n S0n(δ̃ − δ0)

p−→ 0.
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Next note that Pii ≤ C < 1, so in the positive semi-definite sense in large enough samples a.s.,

Hn =
X
(1− Pii)ziz

0
i/n ≥ (1− C) H̄n.

Thus, by Assumption 2, Hn is bounded and bounded away from singularity a.s.n. Then the rest of the

conclusion follows analogously with δ̂ replacing δ̃ and Hn replacing H̄n. ¥

We now turn to the asymptotic normality results. For the following, let ξi = εi when considering the

JIV2 estimator and let ξi = εi/(1− Pii) when considering JIV1.

Proof of Theorem 2: Define

Yn =
X
i

zi(1− Pii)ξi/
√
n+ S−1n

X
i6=j

UiPijξj .

By Assumptions 2-4,

E

∙°°°Xn

i=1
(zi − z̄i) ξi/

√
n
°°°2 |Z¸ =Xn

i=1
kzi − z̄ik2E

£
ξ2i |Z

¤
/n ≤ C

Xn

i=1
kzi − z̄ik2 /n a.s.−→ 0.

Therefore by M,

S−1n
X
i6=j

XiPijξj − Yn =
nX
i=1

(zi − z̄i) ξi/
√
n

p−→ 0.

We now apply Lemma A2 to establish asymptotic normality of Yn conditional on Z. Let Γn = V ar (Yn|Z),

so

Γn =
nX
i=1

ziz
0
i(1− Pii)

2E[ξ2i |Z]/n+ S−1n
X
i6=j

P 2ij
¡
E[UiU

0
i |Z]E[ξ2j |Z] +E[Uiξi|Z]E[U 0jξj |Z]

¢
S−10n .

Note that
√
rnS

−1
n is bounded by Assumption 2 and that

P
i6=j P

2
ij/K ≤ 1, so by boundedness of K/rn

and Assumption3, it follows that kΓnk ≤ C a.s.n. Also, E[ξ2i |Z] ≥ C > 0, so

Γn ≥
nX
i=1

ziz
0
i(1− Pii)

2E[ξ2i |Z]/n ≥ C
nX
i=1

ziz
0
i/n.

Therefore, by Assumption 2, λmin(Γn) ≥ C > 0 a.s.n (for generic C that may be different from above). It

follows that
°°Γ−1n °° ≤ C a.s.n.

Let α be a G× 1 nonzero vector. Let Ui be defined as in Lemma A2 and ξi be defined as εi in Lemma

A2. In addition, let Win = zi(1 − Pii)ξi/
√
n, c1n = Γ

−1/2
n α and c2n =

√
KS−1n Γ

−1/2
n α. Note that

condition i) of Lemma A2 is satisfied. Also, by the boundedness of
X

i
ziz

0
i/n and E[ξ

2
i |Z] a.s.n, condition

ii) of Lemma A2 is satisfied; condition iii) is satisfied by Assumptions 3 and 5. Also, by (1− Pii)
−1 ≤ C
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and Assumption 5,
Pn

i=1E
h
kWink4 |Z

i
≤ C

Pn
i=1 kzik

4 /n2
a.s.−→ 0, so condition iv) is satisfied. Finally,

condition v) is satisfied by hypothesis. Note also that c1n = Γ
−1/2
n α and c2n =

³p
K/rn

´√
rnS

−1
n Γ

−1/2
n α

satisfy kc1nk ≤ C and kc2nk ≤ C a.s.n. This follows from the boundedness of
p
K/rn,

√
rnS

−1
n , and

Γ−1n . Moreover, the Ξn of Lemma A2 is

Ξn = V ar(c01n

nX
i=1

Win + c02n
X
i6=j

UiPijξj/
√
K|Z) = V ar(α0Γ−1/20n Yn|Z) = α0α

by construction. Then applying Lemma A2, we have¡
α0α

¢−1/2
α0Γ−1/2n Yn = Ξ

−1/2
n (

nX
i=1

c01nWin + c02n
X
i6=j

UiPijξj/
√
K)

d−→ N (0, 1) a.s.

It follows that α0Γ−1/2n Yn
d−→ N (0, α0α) a.s., so by the Cramér-Wold device, Γ−1/2n Yn

d−→ N (0, IG) a.s.

Consider now the JIV1 estimator where ξi = εi/(1 − Pii). Plugging this in the expression for Γn

above, we find Γn = Ω̄n + Ψ̄n for Ω̄n and Ψ̄n defined according to Assumption 5. Let V̄n also be as

defined in Assumption 5 and note that Bn = V̄
−1/2
n H̄−1

n Γ
1/2
n is an orthogonal matrix since BnB

0
n =

V̄
−1/2
n V̄nV̄

−1/20
n = I. Also, Bn is a function of only Z,

°°°V̄ −1/2n

°°° ≤ C a.s.n because λmin(V̄n) ≥ C > 0

a.s.n, and
°°°Γ1/2n

°°° ≤ C a.s.n. By Lemma A6, (S−1n H̃S−10n )−1 = H̄−1
n + op(1). Note that if a random

variable Wn satisfies kWnk ≤ C a.s.n, then Wn = Op(1) (note that 1(kWnk > C)
a.s.−→ 0 implies that

E[1(kWnk > C)] = Pr(kWnk > C) −→ 0). Therefore, we have

V̄ −1/2n (S−1n H̃S−10n )−1Γ1/2n = V̄ −1/2n (H̄−1
n + op(1))Γ

1/2
n = Bn + op(1).

Note that because Γ
−1/2
n Yn

d−→ N (0, IG) a.s. and Bn is orthogonal to and a function only of Z, we

have BnΓ
−1/2
n Yn

d−→ N (0, IG). Then by the Slutsky lemma and δ̃ = δ0 + H̃−1P
i6=j XiPijξj , for

ξj = (1− Pjj)
−1εj , we have

V̄ −1/2n S0n(δ̃ − δ0) = V̄ −1/2n (S−1n H̃−1S−10n )−1S−1n
X
i6=j

XiPijξj = V̄ −1/2n (S−1n H̃S−10n )−1[Yn + op(1)]

= [Bn + op(1)][Γ
−1/2
n Yn + op(1)] = BnΓ

−1/2
n Yn + op(1)

d−→ N (0, IG) ,

which gives the first conclusion. The conclusion for JIV2 follows by a similar argument for ξi = εi. ¥

Proof of Theorem 3: Under the hypotheses of Theorem 3, rn/K −→ 0, so following the proof of Theorem

2, we have
p
rn/K

Pn
i=1 zi(1 − Pii)ξi/

√
n

p−→ 0. Then similar to the proof of Theorem 2, for Yn =
√
rnS

−1
n

P
i6=j UiPijξj/

√
K, we have

p
rn/KS−1n

P
i6=j XiPijξj = Yn + op(1).Here let

Γn = V ar (Yn|Z) = rnS
−1
n

X
i6=j

P 2ij
¡
E[UiU

0
i |Z]E[ξ2j |Z] +E[Uiξi|Z]E[U 0jξj |Z]

¢
S−10n /K.
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Note that by Assumptions 2 and 3, kΓnk ≤ C a.s.n. Let L̄n be any sequence of bounded matrices with

λmin(L̄nΓnL̄
0
n) ≥ C > 0 a.s.n, and let Ȳn =

¡
L̄nΓnL̄

0
n

¢−1/2
L̄nYn.Now let α be a nonzero vector and

apply Lemma A2 with Win = 0, εi = ξi, c1n = 0, and c2n = α0
¡
L̄nΓnL̄

0
n

¢−1/2
L̄n
√
rnS

−1
n . We

have V ar
³
c02n
P

i6=j UiPijξj/
√
K|Z

´
= α0α > 0 by construction, and the other hypotheses of Lemma

A2 can be verified as in the proof of Theorem 2. Then by the conclusion of Lemma A2, it follows that

α0Ȳn
d−→ N(0, α0α) a.s. By the Cramér-Wold device, a.s. Ȳn

d−→ N(0, I).

Consider now the JIV1 estimator and let Ln be specified as in the statement of the result such that

λmin
¡
LnV̄

∗
nL

0
n

¢
≥ C > 0 a.s.n. Let L̄n = LnH̄

−1
n , soLnV̄

∗
nL

0
n = L̄nΓnL̄

0
n. Note that

°°°¡L̄nΓnL̄
0
n

¢−1/2°°° ≤
C and

°°°Γ1/2n

°°° ≤ C a.s.n. By Lemma A6, (S−1n H̃S−10n )−1 = H̄−1
n + op(1). Therefore, we have¡

L̄nΓnL̄
0
n

¢−1/2
Ln(S

−1
n H̃S−10n )−1 =

¡
L̄nΓnL̄

0
n

¢−1/2
Ln(H̄

−1
n + op(1)) =

¡
L̄nΓnL̄

0
n

¢−1/2
L̄n + op(1).

Note also that
p
rn/KS−1n

P
i6=j XiPij(1− Pjj)

−1εj = Op(1). Then we have¡
LnV̄

∗
nL

0
n

¢−1/2
Ln

p
rn/KS0n(δ̃ − δ0)

=
¡
L̄nΓnL̄

0
n

¢−1/2
Ln(S

−1
n H̃S−10n )−1

p
rn/KS−1n

X
i6=j

XiPij(1− Pjj)
−1εj

=
h¡
L̄nΓnL̄

0
n

¢−1/2
L̄n + op(1)

i
[Yn + op(1)] = Ȳn + op(1)

d−→ N (0, Ic) .

The conclusion for JIV2 follows by a similar argument for ξi = εi. ¥

Next, we turn to the proof of Theorem 4. Let ξ̃i = (yi−X 0
iδ̃)/(1−Pii) and ξi = εi/(1−Pii) for JIV1

and ξ̂i = yi −X 0
iδ̂ and ξi = εi for JIV2. Also, let

Ẋi = S−1n Xi, Σ̂1 =
X
i6=j 6=k

ẊiPikξ̂
2
kPkjẊ

0
j , Σ̂2 =

X
i6=j

P 2ij

³
ẊiẊ

0
i ξ̂
2
j + Ẋiξ̂iξ̂jẊ

0
j

´
,

Σ̇1 =
X
i6=j 6=k

ẊiPikξ
2
kPkjẊ

0
j , Σ̇2 =

X
i6=j

P 2ij

³
ẊiẊ

0
iξ
2
j + ẊiξiξjẊ

0
j

´
.

Lemma A7: If Assumptions 1-6 are satisfied, then Σ̂1 − Σ̇1 = op(1) and Σ̂2 − Σ̇2 = op(K/rn).

Proof: To show the first conclusion, we use Lemma A4. Note that for δ̇ = δ̂ and XP
i = Xi/(1 − Pii)

for JIV1 and δ̇ = δ̃ and XP
i = Xi for JIV2, we have δ̇

p−→ δ0 and ξ̂2i − ξ2i = −2ξiXP 0
i (δ̇ − δ0) +h

XP 0
i (δ̇ − δ0)

i2
. Let ηi be any element of −2ξiXP 0

i or XP
i X

P 0
i . Note that Sn/

√
n is bounded, so by the

Cauchy-Schwartz inequality, kΥik = kSnzi/
√
nk ≤ C. Then

E[η2i |Z] ≤ CE[ξ2i |Z] + CE[kXik2 |Z] ≤ C + C kΥik2 + CE[kUik2 |Z] ≤ C.
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Let ∆̂n denote a sequence of random variables converging to zero in probability. By Lemma A4,

∆̂
X
i6=j 6=k

ẊiPikηkPkjẊ
0
j = op(1)Op(1)

p−→ 0.

From the above expression for ξ̂2i−ξ2i , we see that Σ̂1−Σ̇1 is a sum of terms of the form ∆̂
P

i6=j 6=k ẊiPikηkPkjẊ
0
j ,

so by the triangle inequality, Σ̂1 − Σ̇1
p−→ 0.

Let di = C + |εi|+ kUik, Â = (1 +
°°°δ̂°°°) for JIV1, Â = (1 + °°°δ̃°°°) for JIV2, B̂ =

°°°δ̂ − δ0

°°° for JIV1,
and B̂ =

°°°δ̃ − δ0

°°° for JIV2. By the conclusion of Theorem 1, we have Â = Op(1) and B̂
p−→ 0. Also,

because Pii is bounded away from 1, (1− Pii)
−1 ≤ C a.s. Hence, for both JIV1 and JIV2,

kXik ≤ C + kUik ≤ di,
°°°Ẋi

°°° ≤ Cr−1/2n di,
¯̄̄
ξ̂i − ξi

¯̄̄
≤ C

¯̄̄
X 0
i(δ̂ − δ0)

¯̄̄
≤ CdiB̂,¯̄̄

ξ̂i

¯̄̄
≤ C

¯̄̄
X 0
i(δ0 − δ̂)

¯̄̄
+ |ξi| ≤ CdiÂ,¯̄̄

ξ̂2i − ξ2i

¯̄̄
≤

³
|ξi|+

¯̄̄
ξ̂i

¯̄̄´ ¯̄̄
ξ̂i − ξi

¯̄̄
≤ Cdi(1 + Â)diB̂ ≤ Cd2i ÂB̂,°°°Ẋi

³
ξ̂i − ξi

´°°° ≤ Cμ−1n d2i B̂,
°°°Ẋiξ̂i

°°° ≤ Cr−1/2n d2i Â,
°°°Ẋiξi

°°° ≤ Cr−1/2n d2i .

Also note that because E[d2i |Z] ≤ C,

E

⎡⎣X
i6=j

P 2ijd
2
i d
2
jr
−1
n | Z

⎤⎦ ≤ Cr−1n
X
i,j

P 2ij = Cr−1n
X
i

Pii = CK/rn,

so
P

i6=j P
2
ijd

2
i d
2
jr
−1
n = Op(K/rn) by the Markov inequality. Then it follows that°°°°°°

X
i6=j

P 2ij

³
ẊiẊ

0
i

³
ξ̂2j − ξ2j

´´°°°°°° ≤
X
i6=j

P 2ij

°°°Ẋi

°°°2 ¯̄̄ξ̂2j − ξ2j

¯̄̄
≤ Cr−1n

X
i6=j

P 2ijd
2
i d
2
j ÂB̂ = op (K/rn) .

We also have°°°°°°
X
i6=j

P 2ij

³
Ẋiξ̂iξ̂jẊ

0
j − ẊiξiξjẊj

´°°°°°° ≤
X
i6=j

P 2ij

³°°°Ẋiξ̂i

°°°°°°Ẋj

³
ξ̂j − ξj

´°°°+ °°°Ẋjξj

°°°°°°X̆i

³
ξ̂i − ξi

´°°°´
≤ Cr−1n

X
i6=j

P 2ijd
2
i d
2
j ÂB̂ = op

µ
K

rn

¶
.

The second conclusion then follows from the triangle inequality. ¥

Lemma A8: If Assumptions 1-6 are satisfied, then

Σ̇1 =
X
i6=j 6=k

ziPikE[ξ
2
k|Z]Pkjz0j/n+ op(1), Σ̇2 =

X
i6=j

P 2ijziz
0
iE[ξ

2
j |Z]/n

+S−1n
X
i6=j

P 2ij
¡
E[UiU

0
i |Z]E[ξ2j |Z] +E[Uiξi|Z]E[ξjU 0j |Z]

¢
S−10n + op(K/rn).
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Proof: To prove the first conclusion, apply Lemma A4 with Wi equal to an element of Ẋi, Yj equal to an

element of Ẋj , and ηk = ξ2k.

Next, we use Lemma A3. Note that V ar(ξ2i |Z) ≤ C and rn ≤ Cn, so for uki = e0kS
−1
n Ui,

E[(ẊikẊic)
2|Z] ≤ CE[Ẋ4

ik + Ẋ4
ic|Z] ≤ C

©
z4ik/n

2 +E[u4ki|Z] + z4ic/n
2 +E[u4ci|Z]

ª
≤ C/r2n,

E[(Ẋikξi)
2|Z] ≤ CE[(z2ikξ

2
i /n+ u2kiξ

2
i )|Z] ≤ C/n+ C/rn ≤ C/rn.

Also, if Ωi = E[UiU
0
i |Z], then E[ẊiẊ

0
i|Z] = ziz

0
i/n+S−1n ΩiS

−10
n and E[Ẋiξi|Z] = S−1n E[Uiξi|Z].Next

let Wi be ẊikẊic for some k and c, so

E[Wi|Z] = e0kS
−1
n ΩiS

−10
n ec + zikzic/n, |E[Wi|Z]| ≤ C/rn

V ar(Wi|Z) ≤ E[(ẊikẊic)
2|Z] ≤ C/r2n.

Also let Yi = ξ2i and note that |E[Yi|Z]| ≤ C and V ar(Wi|Z) ≤ C. Then in the notation of Lemma A3,

√
K(σ̄Wn σ̄Yn + σ̄Wnμ̄Yn + μ̄Wn σ̄Yn) ≤

√
K(C/rn +C/rn +C/rn) ≤ C

√
K/rn.

By the conclusion of Lemma A3, for this Wi and Yi we haveX
i6=j

P 2ijẊikẊ
0
icξ

2
j = e0k

X
i6=j

P 2ij
¡
ziz

0
i/n+ S−1n ΩiS

−10
n

¢
ecE[ξ

2
j |Z] +Op(

√
K/rn).

Consider also Lemma A3 with Wi and Yi equal to Ẋikξi and Ẋicξi, respectively, so σ̄Wn σ̄Yn + σ̄Wnμ̄Yn +

μ̄Wn σ̄Yn≤ C/rn. Then applying Lemma A3, we haveX
i 6=j

P 2ijẊikξiξjẊjc = e0kS
−1
n

X
i6=j

P 2ijE[Uiξi|Z]E[ξjU 0j |Z]S−10n ec +Op(
√
K/rn).

Also, because K −→∞, we have Op(
√
K/rn) = op(K/rn). The second conclusion then follows by T. ¥
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Proof of Theorem 4: Note that X̄i =
Pn

j=1 PijXj , so

nX
i=1

(X̄iX̄
0
i −XiPiiX̄

0
i − X̄iPiiX

0
i)ξ̂

2
i

=
nX

i,j,k=1

PikPkjXiX
0
j ξ̂
2
k −

nX
i,j=1

PiiPijXiX
0
j ξ̂
2
i −

nX
i,j=1

PijPjjXiX
0
j ξ̂
2
j

=
nX

i,j,k=1

PikPkjXiX
0
j ξ̂
2
k −

X
i6=j

PiiPijXiX
0
j ξ̂
2
i −

X
i6=j

PijPjjXiX
0
j ξ̂
2
j − 2

nX
i=1

P 2iiXiX
0
i ξ̂
2
i

=
X

i,j,k/∈{i,j}
PikPkjXiX

0
j ξ̂
2
k −

nX
i=1

P 2iiXiX
0
iξ̂
2
i

=
X
i 6=j 6=k

PikPkjXiX
0
j ξ̂
2
k +

nX
i6=j

P 2ijXiX
0
i ξ̂
2
j −

nX
i=1

P 2iiXiX
0
iξ̂
2
i .

Also, for Z 0i and Z̃
0
i equal to the i

th row of Z and Z̃ = Z(Z 0Z)−1, we have

KX
k=1

KX
c=1

Ã
nX
i=1

Z̃ikZ̃icXiξ̂i

!⎛⎝ nX
j=1

ZjkZjcXj ξ̂j

⎞⎠0

=
nX

i,j=1

Ã
KX
k=1

KX
c=1

Z̃ikZjkZ̃icZjc

!
Xiξ̂iξ̂jX

0
j =

nX
i,j=1

(
KX
k=1

Z̃ikZjk)
2Xiξ̂iξ̂jX

0
j

=
nX

i,j=1

(Z̃ 0iZj)
2Xiξ̂iξ̂jX

0
j =

nX
i,j=1

P 2ijXiξ̂iξ̂jX
0
j .

Adding this equation to the previous one gives

Σ̂ =
X
i6=j 6=k

PikPkjXiX
0
j ξ̂
2
k +

X
i6=j

P 2ijXiX
0
i ξ̂
2
j −

nX
i=1

P 2iiXiX
0
i ξ̂
2
i +

nX
i,j=1

P 2ijXiξ̂iξ̂jX
0
j

=
X
i6=j 6=k

PikPkjXiX
0
j ξ̂
2
k +

X
i6=j

P 2ij(XiX
0
i ξ̂
2
j +Xiξ̂iξ̂jX

0
j),

which yields the equality in Section 2.

Let σ̇2i = E
£
ξ2i |Z

¤
and z̄i =

P
j Pijzj = e0iPz. Then following the same line of argument as at the

beginning of this proof, with zi replacing Xi and σ̇
2
k replacing ξ̂

2
k,

X
i6=j 6=k

ziPikσ̇
2
kPkjz

0
j/n =

X
i

σ̇2i
¡
z̄iz̄

0
i − Piiziz̄

0
i − Piiz̄iz

0
i + P 2iiziz

0
i

¢
/n−

X
i6=j

P 2ijziz
0
iσ̇
2
j /n.

Also, as shown above, Assumption 4 implies that
P

i kzi − z̄ik2 /n ≤ z0(I−P )z/n −→ 0 a.s. Then by σ̇2i
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and Pii bounded a.s. PZ , we have a.s.°°°°°X
i

σ̇2i (z̄iz̄
0
i − ziz

0
i)/n

°°°°° ≤
X
i

σ̇2i (2 kzik kzi − z̄ik+ kzi − z̄ik2)/n

≤ C(
X
i

kzik2 /n)1/2(
X
i

kzi − z̄ik2 /n)1/2 + C
X
i

kzi − z̄ik2 /n −→ 0,°°°°°X
i

σ̇2i Pii(ziz̄
0
i − ziz

0
i)/n

°°°°° ≤ (
X
i

σ̇4i P
2
ii kzik2 /n)1/2(

X
i

kzi − z̄ik2 /n)1/2 −→ 0.

It follows thatX
i6=j 6=k

ziPikσ̇
2
kPkjz

0
j/n =

X
i

σ̇2i (1− Pii)
2ziz

0
i/n−

X
i6=j

P 2ijziz
0
iσ̇
2
j /n+ oa.s.(1).

It then follows from Lemmas A7 and A8 and the triangle inequality that

Σ̂1 + Σ̂2 =
X
i 6=j 6=k

ziPikσ̇
2
kPkjz

0
j/n+

X
i6=j

P 2ijziz
0
iσ̇
2
j/n

+S−1n
X
i6=j

P 2ij
¡
E[UiU

0
i |Z]σ̇2j +E[Uiξi|Z]E[ξjU 0j |Z]

¢
S−10n + op(1) + op (K/rn)

=
X
i

σ̇2i (1− Pii)
2ziz

0
i/n

+S−1n
X
i6=j

P 2ij
¡
E[UiU

0
i |Z]σ̇2j +E[Uiξi|Z]E[ξjU 0j |Z]

¢
S−10n + op(1) + op (K/rn)

since �n → 0. Then for JIV1, where ξi = εi/(1− Pii) and σ̇
2
i = σ2i /(1− Pii)

2, we have

Σ̂1 + Σ̂2 = Ω̄n + Ψ̄n + op(1) + op(K/rn).

For JIV2, where ξi = εi and σ̇
2
i = σ2i , we have

Σ̂1 + Σ̂2 = Ωn +Ψn + op(1) + op(K/rn).

Consider the case where K/rn is bounded, implying op(K/rn) = op(1). Then, since H̄
−1
n , Ω̄n + Ψ̄n,

H−1
n , and Ωn +Ψn are all bounded a.s.n, Lemma A6 implies

S0nṼ Sn =
³
S−1n H̃S−10n

´−1 ³
Σ̂1 + Σ̂2

´³
S−1n H̃ 0S−10n

´−1
=

¡
H̄−1
n + op(1)

¢ ¡
Ω̄n + Ψ̄n + op(1)

¢ ¡
H̄−1
n + op(1)

¢
= V̄n + op(1).

S0nV̂ Sn = Vn + op(1),

which gives the first conclusion.
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For the second result, consider the case where K/rn −→ ∞. Then for JIV1, where ξi = εi/(1− Pii)

and σ̇2i = σ2i /(1− Pii)
2, the almost sure boundedness of Ω̄n for n sufficiently large implies that we have

(rn/K)
³
Σ̂1 + Σ̂2

´
= (rn/K)Ω̄n + (rn/K)Ψ̄n + (rn/K)op(1) + op(1) = (rn/K)Ψ̄n + op(1).

For JIV2, where ξi = εi and σ̇
2
i = σ2i , we have

(rn/K)
³
Σ̂1 + Σ̂2

´
= (rn/K)Ωn + (rn/K)Ψn + (rn/K)op(1) + op(1) = (rn/K)Ψn + op(1).

Then by the fact that H̄−1
n , (r/Kn)Ψ̄n, H

−1
n , and (r/Kn)Ψn are all bounded a.s.n and by Lemma A6,

S0nṼ Sn =
³
S−1n H̃S−10n

´−1 ³
Σ̂1 + Σ̂2

´³
S−1n H̃ 0S−10n

´−1
=

¡
H̄−1
n + op(1)

¢ ¡
rnΨ̄n/Kn + op(1)

¢ ¡
H̄−1
n + op(1)

¢
= V̄ ∗n + op(1).

Similarly, S0nV̂ Sn = V ∗n + op(1),which gives the second conclusion. ¥

Proof of Theorem 5: An expansion gives

a(δ̂)− a(δ0) = Ā(δ̂ − δ0)

for Ā = ∂a(δ̄)/∂δ where δ̄ lies on the line joining δ̂ and δ0 and actually differs element by element from

a(δ). It follows from δ̂
p−→ δ0 that δ̄

p−→ δ0, so by condition iii), BnÂS
−10
n = BnAS

−10
n + op(1). Then

multiplying by Bn and using Theorem 4, we have³
ÂV̂ Â0

´−1/2 h
a(δ̂)− a(δ0)

i
=

³
BnÂS

−10
n S0nV̂ SnS

−1
n Â0B0n

´−1/2
BnĀS

−10
n S0n

³
δ̂ − δ0

´
=

£¡
BnAS

−1
n + op(1)

¢ ¡
V̄n + op(1)

¢ ¡
S−10n AB0n + op(1)

¢¤−1/2 ¡
BnAS

−10
n + op(1)

¢
S0n

³
δ̂ − δ0

´
=

¡
BnAS

−1
n V̄nS

−10
n A0B0n

¢−1/2
BnAS

−10
n S0n

³
δ̂ − δ0

´
+ op(1)

=
¡
BnAS

−1
n V̄nS

−10
n A0B0n

¢−1/2
BnAS

−1
n V̄ 1/2n V̄ −1/2n S0n

³
δ̂ − δ0

´
+ op(1) =

¡
FnF

0
n

¢−1/2
FnȲn + op(1)

for Fn = BnAS
−1
n V̄

1/2
n and Ȳn = V̄

−1/2
n S0n (δ − δ0), where the third equality above follows from the

Slutsky Theorem given the continuity of the square root matrix. By Theorem 2, Ȳn
d→ N(0, IG). Also,

from the proof of Theorem 2, it follows that this convergence is a.s. conditional on Z. Then since Ln =

(FnF
0
n)
−1/2Fn satisfies LnL

0
n = I, it follows from the Slutsky Theorem and standard convergence in

distribution results that³
ÂV̂ Â

´−1/2 h
a(δ̂)− a(δ0)

i
= LnȲn + op(1)

d→ N(0, I),
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giving the conclusion. ¥

Proof of Corollary 6: Let a(δ) = c0δ, so Ā = A = c0. Note that condition i) of Theorem 5 is satis-

fied. Let Bn = bn. Then BnAS
−10
n = bnc

0S−10n is bounded by hypothesis so condition ii) of Theorem 5

is satisfied. Also, Bn(Ā − A)S−10n = 0 so condition iii) of Theorem 5 is satisfied. If K/rn is bounded,

then by hypothesis, λmin(BnAS
−10
n V̄nS

−1
n A0B0n) = b2nc

0S−10n V̄nS
−1
n c ≥ C; or if K/rn −→ ∞, then

λmin(BnAS
−10
n V̄ ∗nS

−1
n A0B0n) = b2nc

0S−10n V̄ ∗nS
−1
n c ≥ C, which gives the first conclusion. The second con-

clusion follows similarly. ¥

Proof of Corollary 7: We will show the result for δ̂; the result for δ̃ follows analogously. Let γ =

limn−→∞(rn/n), so γ exists and γ ∈ {0, 1} by Assumption 2. Also,
√
rnS

−10
n =

√
rnS̃

−10
n diag

¡
1/
√
n, ..., 1/

√
n, 1/

√
rn
¢
−→ R =

∙ √
γI −π01
0 1

¸
.

Consider first the case where where rn = n so that γ = 1. Take bn =
√
rn and note that bnc

0S−10n =

c0(
√
rnS

−10
n ) is bounded. Also, c0R 6= 0 because R is nonsingular and kVnk ≤ C a.s.n implying that

b2nc
0S−10n VnS

−1
n c = c0RVnR0c + oa.s.(1). Also Ψn = S−1n E[

³P
i6=j PijUiεj

´³P
i6=j PijUiεj

´0
|Z]S−10n

is positive semi-definite, so Vn ≥ H−1
n ΩnH

−1
n . Also, by Assumptions 2 and 4, there is C > 0 with

λmin(H
−1
n ΩnH

−1
n ) ≥ C a.s.n. Therefore, a.s.n,

b2nc
0S−10n VnS

−1
n c ≥ c0RH−1

n ΩnH
−1
n R0c+ o(1) ≥ C + o(1) ≥ C. (3)

The conclusion then follows from Corollary 6.

For γ = 0, let a = (−π1, 1)c and note that c0R = (0, a) 6= 0. If K/rn is bounded, let bn =
√
rn.

Then, as before, bnc
0S−10n is bounded and eq. (3) is satisfied, and the conclusion follows. If K/rn −→ ∞,

let bn = rn/
√
K. Note that bnc

0S−10n =
p
rn/Kc0(

√
rnS

−10
n ) −→ 0, so bnc

0S−10n is bounded. Also, note

that
√
rnS

−1
n eG = diag(

p
rn/n, ...,

p
rn/n, 1)

∙
I 0
−π1 1

¸
eG = eG.

Furthermore, a constant sign of E[εiUiG|Z] implies E[εiUiG|Z]E[εjUjG|Z] ≥ 0, so by Pii ≤ C < 1,X
i6=j

P 2ij
¡
E[U2iG|Z]σ2j +E[εiUiG|Z]E[εjUjG|Z]

¢
/K

≥
X
i6=j

P 2ijE[U
2
iG|Z]σ2j /K ≥ C

X
i6=j

P 2ij/K = C(
X
i,j

P 2ij −
X
i

P 2ii)/K = C(1−
X

P 2ii/K) ≥ C.

Therefore, we have, a.s.,

(rn/K)Ψn =
√
rnS

−1
n eG[

X
i6=j

P 2ij
¡
E[U2iG|Z]σ2j +E[εiUiG|Z]E[εjUjG|Z]

¢
/K]e0G

√
rnS

−10
n

≥ CeGe
0
G.

30



Also, Hn is a.s. bounded so that λmin(H
−1
n ) = 1/λmax(Hn) ≥ C + oa.s.(1). It then follows from

c0R = ae0G that

b2nc
0S−10n V̄ ∗nS

−1
n c = rnc

0S−10n H−1
n (rn/K)ΨnH

−1
n S−1n c ≥ Crnc

0S−10n H−1
n eGe

0
GH

−1
n S−1n c

= a2C(e0GH
−1
n eG)

2 + oa.s.(1) ≥ C + oa.s.(1).

The conclusion then follows from Corollary 6. ¥

6 Appendix B - Proofs of Lemmas A2 and A4

We first give a series of Lemmas that will be useful for the proofs of Lemmas A2 and A4.

Lemma B1: Under Assumption 1 and for any subset I2 of the set
n
(i, j)ni,j=1

o
and any subset I3 ofn

(i, j, k)ni,j,k=1

o
, (a)

P
I2

P 4ij ≤ K; (b)
P
I3

P 2ijP
2
jk ≤ K; and (c)

P
I3

¯̄̄
P 2ijPikPjk

¯̄̄
≤ K, a.s.n.

Proof: By Assumption 1, Z 0Z is nonsingular a.s.n. Also, because P is idempotent, rank(P ) = tr(P ) = K,

0 ≤ Pii ≤ 1, and
nP

j=1
P 2ij = Pii. Therefore, a.s.n,

X
I2

P 4ij ≤
nX

i,j=1

P 2ij =
nX
i=1

Pii = K,

X
I3

P 2ijP
2
jk ≤

nX
j=1

Ã
nX
i=1

P 2ij

!Ã
nX

k=1

P 2jk

!
=

nX
j=1

P 2jj ≤
nX

j=1

Pjj = K,

X
I3

¯̄
P 2ijPikPjk

¯̄
≤

X
i,j

P 2ij
X
k

|PikPjk| ≤
X
i,j

P 2ij

sX
k

P 2ik

sX
k

P 2jk

≤
X
i,j

P 2ij
p
PiiPjj ≤

X
i,j

P 2ij = K. ¥

For the next result, let Sn =
P

i <j<k<l

(PikPjkPilPjl + PijPjkPilPkl + PijPikPjlPkl) .

Lemma B2: If Assumption 2 is satisfied, then a.s.n a) tr
h
(P −D)4

i
≤ CK; b)

¯̄̄̄
¯ P
i<j<k<l

PikPjkPilPjl

¯̄̄̄
¯ ≤

CK, and c) |Sn| ≤ CK, where D = diag(P11, ..., Pnn).

Proof: To show part (a), note that

(P −D)4 = (P − PD −DP +D2)2 = P − PD − PDP + PD2 − PDP + PDPD + PD2P − PD3

−DP +DPD +DPDP −DPD2 +D2P −D2PD −D3P +D4.

Note that tr(A0) = tr(A) and tr(AB) = tr(BA) for any square matricesA andB. Then, tr
£
(P −D)4

¤
=

tr(P )− 4tr(PD) + 4tr(PD2) + 2tr(PDPD)− 4tr(PD3) + tr(D4). By 0 ≤ Pii ≤ 1 we have Dj ≤ I

31



for any positive integer j and tr(PDj) = tr(PDjP ) ≤ tr(P ) = K a.s.n. Also, a.s.n, tr(PDPD) =

tr(PDPDP ) ≤ tr(PD2P ) ≤ tr(P ) = K and tr(D4) =
P

i P
4
ii ≤ K. Therefore, by T we have¯̄

tr
£
(P −D)4

¤¯̄
≤ 16K, giving conclusion a).

Next, let L be the lower triangular matrix with Lij = Pij1(i > j). Then P = L+ L0 +D, so

(P −D)4 = (L+ L0)4 = (L2 + LL0 + L0L+ L02)2

= L4 + L2LL0 + L2L0L+ L2L02 + LL0L2 + LL0LL0 + LL0L0L+ LL03

+L0LL2 + L0LLL0 + L0LL0L+ L0LL02 + L02L2 + L02LL0 + L02L0L+ L04.

Note that for positive integer j, [(L0)j ]0 = Lj . Then using tr(AB) = tr(BA) and tr(A0) = tr(A),

tr((P −D)4) = 2 tr(L4) + 8 tr(L3L0) + 4 tr(L2L02) + 2 tr(L0LL0L)

Next, compute each of the terms. Note that

tr(L4) =
X
i,j,k,c

Pij1(i > j)Pjk1(j > k)Pkc1(k > c)Pci1(c > i) = 0,

tr(L3L0) =
X
i,j,k,c

Pij1(i > j)Pjk1(j > k)Pkc1(k > c)Pci1(i > c) =
X

i>j>k>c

PijPjkPkcPci

=
X

c<k<j<i

PijPjkPkcPci =
X

i<j<k<c

PckPkjPjiPic =
X

i<j<k<c

PijPjkPkcPci,

tr
¡
L2L02

¢
=

X
i,j,k,c

Pij1(i > j)Pjk1(j > k)Pkc1(c > k)Pci1(i > c) =
X

i>j>k,i>c>k

PijPjkPkcPci

=
X

i>j=c>k

PijPjkPkcPci +
X

i>j>c>k

PijPjkPkcPci +
X

i>c>j>k

PijPjkPkcPci

=
X
i>j>k

PijPjkPkjPji +
X

i<j<k<c

(PckPkiPijPjc + PcjPjiPikPkc)

=
X
i<j<k

P 2ijP
2
jk + 2

X
i<j<k<c

PikPkcPcjPji,
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and

tr(LL0LL0) =
X
i,j,k,c

Pij1(i > j)Pjk(k > j)Pkc1(k > c)Pci1(i > c)

=
X
j<i

PijPjiPijPji +
X
j<k<i

PijPjkPkjPji +
X
j<i<k

PijPjkPkjPji +
X
j<c<i

PijPjiPicPci

+
X
c<j<i

PijPjiPicPci +

⎛⎝ X
c<j<k<i

+
X

j<c<k<i

+
X

c<j<i<k

+
X

j<c<i<k

⎞⎠PijPjkPkcPci

=
X
i<j

P 4ij + 2
X
i<j<k

¡
P 2ijP

2
ik + P 2ikP

2
jk

¢
+ 4

X
i<j<k<c

PikPkjPjcPci.

Summing up gives the result tr ((P −D)4) = 2
P

i<j P
4
ij+4

P
i<j<k (P

2
ijP

2
jk+P

2
ikP

2
jk+P

2
ijP

2
ik) + 8Sn.

Then by the triangle inequality and Lemma B1, we have

|Sn| ≤ (1/4)
X
i<j

P 4ij + 1/2
X
i<j<k

(P 2ijP
2
jk + P 2ikP

2
jk + P 2ijP

2
ik) + (1/8) tr((P −D)4) ≤ CK,

a.s.n, thus, giving part c). That is, Sn= Oa.s.(K).

To show part (b), take {εi} to be a sequence of i.i.d. random variables with mean 0 and variance 1 and

where εi and Z are independent for all i and n. Define the random quantities

∆1 =
X

i < j < k

[PijPikεjεk + PijPjkεiεk + PikPjkεiεj ] ,

∆2 =
X

i < j < k

[PijPikεjεk + PijPjkεiεk] ,∆3 =
X

i < j < k

PikPjkεiεj .

Note that by Lemma A1,

E
£
∆23|Z

¤
= E

hX
i<j<k

PikPjkεiεj
X

c<m<q
PcqPmqεcεm|Z

i
=

X
i<j<{k,c}

PikPjkPicPjc =
X
i<j<k

(Pik)
2 (Pjk)

2 + 2
X

i<j<k<c

PikPjkPicPjc

= Oa.s.(K) + 2
X

i<j<k<c

PikPjkPicPjc.

Also, note that

E [∆2∆3|Z] = E
hX

i<j<k
(PijPikεjεk + PijPjkεiεk)

X
c<m<q

PcqPmqεcεm|Z
i

=
X

i< j<k<c

PijPikPjcPkc +
X

i<j<k<c

PijPjkPicPkc
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and

E
£
∆22|Z

¤
= E

h³X
i<j<k

PijPikεjεk + PijPjkεiεk

´
×
³X

c<m<q
PcmPcqεmεq + PcmPmqεcεq

´
|Z
i

=
X

{i,c}<j<k
PijPikPcjPck +

X
i<{j,m}<k

PijPjkPimPmk

+
X

i<j<m<k

PijPikPjmPmk +
X

c<i<j<k

PijPjkPciPck

=
X
i<j<k

P 2ijP
2
ik +

X
i<j<k

P 2ijP
2
jk + 2

X
i<c<j<k

PijPikPcjPck + 2
X

i<j<m<k

PijPjkPimPmk

+
X

i<j<k<c

PijPicPjkPkc +
X

i<j<k<c

PjkPkcPijPic

=
X
i<j<k

P 2ijP
2
ik +

X
i<j<k

P 2ijP
2
jk + 2Sn = Oa.s.(K).

Since ∆1 = ∆2 +∆3, it follows that E
£
∆21|Z

¤
= E

£
∆22|Z

¤
+E

£
∆23|Z

¤
+2E [∆2∆3|Z]

= Oa.s.(K) + 2Sn= Oa.s.(K).Therefore, by T, the expression for E
£
∆23|Z

¤
given above, and ∆3 = ∆1−

∆2, ¯̄̄̄
¯̄ X
i<j<k<c

PikPjkPicPjc

¯̄̄̄
¯̄ ≤ E

£
∆23|Z

¤
+Oa.s.(K) ≤ E

£
(∆1 −∆2)2|Z

¤
+Oa.s.(K)

≤ 2E
£
∆21|Z

¤
+ 2E

£
∆22|Z

¤
+Oa.s.(K) ≤ Oa.s.(K). ¥

Lemma B3: Let L be the lower triangular matrix with Lij = Pij1(i > j). Then, under Assumption 2,

kLL0k ≤ C
√
K a.s.n, where kAk = [Tr (A0A)]

1
2 .

Proof: From the proof of Lemma B2 and by Lemma B1 and Lemma B2 b), we have a.s.n°°LL0°°2 = tr(LL0LL0) =
X
i<j

P 4ij + 2
X
i<j<k

¡
P 2ijP

2
ik + P 2ikP

2
jk

¢
+ 4

X
i<j<k<c

PikPkjPjcPci

≤ C(K +

¯̄̄̄
¯̄ X
i<j<k<c

PikPkjPjcPci

¯̄̄̄
¯̄) ≤ CK.

Taking square roots gives the answer. ¥

For Lemma B4 below, let φi = φi (Z) (i = 1, ..., n) denote some sequence of measurable functions. In

applications of this lemma, we will take φi (Z) to be either conditional variances or conditional covariances

given Z. Also, to set some notation, let σ2i = σ2i (Z) = E[ε2i |Z], ω2i = ω2in (Z) = E[u2i |Z], and

γi = γin (Z) = E[uiεi|Z], where in order to simplify notation, we suppress the dependence of σ2i on Z

and of ω2i and γi on Z and n. Let
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Lemma B4: Suppose that i) P is a symmetric, idempotent matrix with rank(P ) = K and Pii ≤ C < 1;

ii) (u1, ε1) , ...., (un, εn) are independent conditional on Z; iii) there exists a constant C such that,

a.s., supiE
¡
u4i |Z

¢
≤ C, supiE

¡
ε4i |Z

¢
≤ C, and supi |φi| = supi |φi (Z)| ≤ C. Then, a.s. a)

E

∙³
1
K

X
i<k

P 2kiφk (uiεi − γi)
´2
|Z
¸
→ 0; b) E

∙³
1
K

X
i<k

P 2kiφk

³
ε2j − σ2j

´´2
|Z
¸
→ 0;

c) E

∙³
1
K

X
i<k

P 2kiφk

³
u2j − ω2j

´´2
|Z
¸
→ 0; d) E

∙³
1
K

X
i<j<k

PkiPkjφk (uiεj + ujεi)
´2
| Z
¸
→ 0;

e) E

∙³
1
K

X
i<j<k

PkiPkjφkεiεj

´2
|Z
¸
→ 0; f) E

∙³
1
K

X
i<j<k

PkiPkjφkuiuj

´2
|Z
¸
→ 0.

Proof: To show part (a), note that

E

"µ
1

K

X
i<k≤ n

P 2kiφkuiεi − γi

¶2
|Z
#

=
1

K2

X
i<k≤ n

P 4kiφ
2
k

©
E
¡
u2i ε

2
i |Z

¢
− γ2i

ª
+

2

K2

X
1≤ i < k < l ≤ n

P 2kiP
2
liφkφl

©
E
¡
u2i ε

2
i |Z

¢
− γ2i

ª
≤ 1

K2

X
1≤ i < k ≤ n

P 4kiφ
2
k

½q
E
¡
u4i |Z

¢
E
¡
ε4i |Z

¢
+E

¡
u2i |Z

¢
E
¡
ε2i |Z

¢¾
+
2

K2

X
1≤ i < k < l ≤ n

P 2kiP
2
li |φk| |φl|

½q
E
¡
u4i |Z

¢
E
¡
ε4i |Z

¢
+E

¡
u2i |Z

¢
E
¡
ε2i |Z

¢¾
≤ C

½
1

K2

X
1≤ i < k ≤ n

P 4ki +
2

K2

X
1≤ i < k < l ≤ n

P 2kiP
2
li

¾
→ 0,

where the first inequality is the result of applying T and a conditional version of CS, the second inequality

follows by hypothesis, and the convergence to zero almost surely follows from applying Lemma B1 parts (a)

and (b). Parts (b) and (c) can be proved in essentially the same way as part (a); hence, to avoid redundancy,

we do not give detailed arguments for these parts.

To show part (d), first let L be a lower triangular matrix with (i, j)th element Lij = Pij1 (i > j) as

in Lemma B3 above, and define Dγ = diag (γ1, ..., γn), Dφ = diag (φ1, ..., φn), u = (u1, ..., un)
0 , and

ε = (ε1, ..., εn)
0
. It then follows by direct multiplication that

ε0L0DφLu− tr
©
L0DφLDγ

ª
=

X
1≤ i < k ≤ n

P 2kiφk (uiεi − γi) +
X

1≤ i < j < k ≤ n

PkiPkjφk (uiεj + ujεi) ,

so that by making use of Loève’s cr inequality, we have that

1

K2
E

∙³X
1≤ i < j < k ≤ n

PkiPkjφk (uiεj+ujεi)
´2
| Z
¸

≤ 2
1

K2
E
h¡
u0L0DφLε− tr

©
L0DφLDγ

ª¢2 |Zi+ 2 1
K2

E

∙³X
1≤ i < k ≤ n

P 2kiφk (uiεi−γi)
´2
|Z
¸
(4)

It has already been shown in the proof of part (a) that
³
1/K2

´
E

∙³X
1≤ i < k ≤ n

P 2kiφk (uiεi−γi)
´2
|Z
¸
→

0 a.s. PZ , so what remains to be shown is that
¡
1/K2

¢
E
h
(u0L0DφLε− tr {L0DφLDγ})2 |Z

i
→ 0 a.s.
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PZ . To show the latter, note first that, by straightforward calculations, we have

1

K2
E
h¡
u0L0DφLε− tr

©
L0DφLDγ

ª¢2 | Zi
=

1

K2
tr
©¡
L0DφL⊗ L0DφL

¢
E
£
εu0 ⊗ εu0|Z

¤ª
− 1

K2

£
tr
©
L0DφLDγ

ª¤2
. (5)

Next, note that, by straightforward calculation, we have

E
£
εu0 ⊗ εu0|Z

¤
=

⎛⎜⎜⎜⎝
σ21ω

2
1e1e

0
1 σ21ω

2
2e1e

0
2 · · · σ21ω

2
ne1e

0
n

σ22ω
2
1e2e

0
1 σ22ω

2
2e2e

0
2 · · · σ22ω

2
ne2e

0
n

...
...

. . .
...

σ2nω
2
1ene

0
1 σ2nω

2
2ene

0
2 · · · σ2nω

2
nene

0
n

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

γ21e1e
0
1 γ1γ2e2e

0
1 · · · γ1γnene

0
1

γ2γ1e1e
0
2 γ22e2e

0
2 · · · γ2γnene

0
2

...
...

. . .
...

γnγ1e1e
0
n γnγ2e2e

0
n · · · γ2nene

0
n

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎝
ϑ1e1e

0
1 0

n×n
· · · 0

n×n
0

n×n
ϑ2e2e

0
2 · · · 0

n×n
...

...
. . .

...
0

n×n
0

n×n
· · · ϑnene

0
n

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

γ1 ⊗Dγ 0
n×n

· · · 0
n×n

0
n×n

γ2 ⊗Dγ · · · 0
n×n

...
...

. . .
...

0
n×n

0
n×n

· · · γn ⊗Dγ

⎞⎟⎟⎟⎟⎟⎠
= (Dσ ⊗ In) vec (In) vec (In)

0 (Dω ⊗ In) + (Dγ ⊗ In)Knn (Dγ ⊗ In) +E0DϑE + (Dγ ⊗Dγ) ,(6)

where Knn is an n
2×n2 commutation matrix such that for any n×n matrix A, Knnvec (A) = vec (A0).

(See Magnus and Neudecker, 1988, pages 46-48 for more on commutation matrices.) Also, here, Dγ =

diag (γ1, ...., γn), Dσ = diag
¡
σ21, ...., σ

2
n

¢
, Dω = diag

¡
ω21, ...., ω

2
n

¢
, Dϑ = diag (ϑ1, ..., ϑn) with ϑi =

E
£
ε2iu

2
i |Z

¤
− σ2i ω

2
i − 2γ2i for i = 1, ...., n, E =

µ
e1 ⊗ e1

...e2 ⊗ e2
... · · ·

...en ⊗ en

¶0
, and ei is the i

th

column of an n× n identity matrix . It follows from (5) and (6) and by straightforward calculations that

1

K2
E
h¡
u0L0DφLε− tr

©
L0DφLDγ

ª¢2 | Zi
=

1

K2
tr
©¡
L0DφL⊗ L0DφL

¢
E
£
εu0 ⊗ εu0|Z

¤ª
− 1

K2

£
tr
©
L0DφLDγ

ª¤2
=

1

K2
vec (In)

0 ¡DωL
0DφLDσ ⊗ L0DφL

¢
vec (In) +

1

K2
tr
©¡
DγL

0DφLDγ ⊗ L0DφL
¢
Knn

ª
+
1

K2
tr
©¡
L0DφL⊗ L0DφL

¢
E0DϑE

ª
+

1

K2
tr
©¡
L0DφLDγ ⊗ L0DφLDγ

¢ª
− 1

K2

£
tr
©
L0DφLDγ

ª¤2
=

1

K2
tr
©
L0DφLDωL

0DφLDσ

ª
+

1

K2
tr
©¡
DγL

0DφLDγ ⊗ L0DφL
¢
Knn

ª
+
1

K2
tr
©¡
L0DφL⊗ L0DφL

¢
E0DϑE

ª
. (7)

Focusing first on the first term of (7), and letting ω2 = max1≤i≤n ω2i , σ
2 = max1≤i≤n σ2i , and
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φ
2
= max1≤i≤n φ2i ; we get

1

K2
tr
©
L0DφLDωL

0DφLDσ

ª
≤ ω2σ2 φ

2 1

K2
tr
©
L0LL0L

ª
≤ C

1

K2
tr
©
L0LL0L

ª
=

C

K2

°°LL0°°2 a.s. PZ . (8)

where the first inequality above follows by repeated application of CS and of the simple inequality

tr
©
A0ΛA

ª
≤ max
1≤ i ≤ n

λitr
¡
A0A

¢
(9)

which holds for n× n matrices A and Λ = diag (λ1, ..., λn) such that λi≥ 0 for all i, and where the

second inequality follow in light of the assumptions of the lemma.

Turning our attention now to the second term of (7), we make use of the fact that, for n× n matrices

A and B, tr {(A⊗B)Knn}= tr {AB} (a specialization of the result given on page 304 of Abadir and

Magnus, 2005) to obtain K−2tr {(DγL
0DφLDγ ⊗ L0DφL)Knn} = K−2tr {L0DφLDγL

0DφLDγ}. As

in (8) above, by repeated of CS and the inequality (9), we obtain

1

K2
tr
©¡
DγL

0DφLDγ ⊗ L0DφL
¢
Knn

ª
≤ C

K2

°°LL0°°2 a.s. PZ . (10)

Finally, to analyze the third term of (7), we note that

1

K2

¯̄
tr
©¡
L0DφL⊗ L0DφL

¢
E0DϑE

ª¯̄
≤ 1

K2

nX
i=1

|ϑi|
¡
e0iL

0DφLei
¢2 ≤ 1

K2

nX
i=1

|ϑi|
¡
e0iL

0D2
φLei

¢ ¡
e0iL

0Lei
¢
≤ φ

2 1

K2

nX
i=1

|ϑi|
¡
e0iL

0Lei
¢2

≤ C
1

K2

nX
i=1

¡
e0iL

0Lei
¢2 ≤ C

1

K2

nX
i=1

¡
e0iP

0Pei
¢2
= C

1

K2

nX
i=1

P 2ii ≤ C
1

K2

nX
i=1

Pii =
C

K
a.s. PZ ,(11)

where the first inequality above follows from T, the second inequality follows from CS, the third inequality

makes use of (9) above, the fourth inequality uses CS and T and follows in light of the assumptions of the

lemma, and the last inequality holds since Pii < 1.

In light of (7), it follows from (8), (10), (11), and Lemma B3 that

1
K2E

h
(u0L0DφLε− tr {L0DφLDγ})2 | Z

i
≤ 2C

¡
1/K2

¢
kLL0k2+C (1/K)≤ C/K a.s. PZ , which shows

part (d).

It is easily seen that parts (e) and (f) can be proved in essentially the same way as part (d) (by taking

ui = εi); hence, to avoid redundancy, we do not give detailed arguments for these parts. ¥

Proof of Lemma A2: Let b1n = c1nΞn
−1/2 and b2n = c2nΞn

−1/2, and note that these are bounded in n

since Ξn is bounded away from zero by hypothesis. Let win = b01nWin and ui = b02nUi, where we suppress
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the n subscript on ui for notational convenience. Then, Yn= w1n+
Pn

i=2 yin, yin = win+ȳin, ȳin =P
j<i(ujPijεi+uiPijεj)/

√
K.

Also, E
h
kw1nk4 |Z

i
≤
P

iE
h
kwink4 |Z

i
≤ C

P
iE
h
kWink4 |Z

i
−→ 0 a.s., so by a conditional

version of M, we deduce that for any υ > 0, P (|w1n| ≥ υ | Z)→ 0 .Moreover, note

that supnE
h
|P (|w1n| ≥ υ | Z)|2

i
<∞. It follows that, by Theorem 25.12 of Billingsley (1986)

P (|w1n| ≥ υ ) = E [P (|w1n| ≥ υ | Z)] → 0 as n → ∞; that is, w1n
p−→ 0 unconditionally. Hence,

Yn =
Pn

i=2 yin + op(1).

Now, we will show that Yn
d→ N (0, 1) by first showing that, conditional onZ ,

Pn
i=2 yin

d→ N (0, 1) ,a.s..

To proceed, let Xi = (W 0
in, U

0
i , εi)

0 for i = 1, ..., n. Define the σ-fields Fi,n = σ (X1, ....,Xi) for

i = 1, ...., n. Note that, by construction, Fi−1,n ⊆ Fi,n. Moreover, it is straightforward to verify

that, conditional on Z, {yin,Fi,n, 1 ≤ i ≤ n, n ≥ 2} is a martingale difference array, and we can apply

the martingale central limit theorem. As before, let σ2i = E[ε2i |Z], ω2i = ω2in (Z) = E[u2i |Z], and

γi = γin (Z) = E[uiεi|Z], where in order to simplify notation, we suppress the dependence of σ2i on Z

and of ω2i and γi on Z and n. Now, note that E[winȳjn|Z] = 0 for all i and j and that

E
h
(ȳin)

2 |Z
i
=

X
j<i

X
k<i

E [(ujPijεi + uiPijεj)(ukPikεi + uiPikεk)|Z] /K

=
X
j<i

P 2ij
£
ω2jσ

2
i + ω2i σ

2
j + 2γiγj

¤
/K.

Thus,

s2n (Z) = E

∙³Xn

i=2
yin

´2
|Z
¸
=

nX
i=2

(E
£
w2in|Z

¤
+E

£
ȳ2in|Z

¤
)

= b01nDnb1n −E
£
w21n|Z

¤
+
X
i6=j

P 2ij
£
ω2jσ

2
i + ω2i σ

2
j + 2γiγj

¤
/K

= b01nDnb1n + b02nΣ̄nb2n + oa.s.(1)

= Ξ−1/2n

¡
c01nDnc1n + c02nΣ̄nc2n

¢
Ξ−1/2n + oa.s.(1)

= Ξ−1/2n ΞnΞ
−1/2
n + oa.s.(1) = 1 + oa.s.(1) −→ 1 a.s.

where Dn = Dn (Z) =
Pn

i=1E [WinW
0
in|Z] and Σ̄n = Σ̄n (Z) =P

i6=j P
2
ij

³
E[UiU

0
i |Z]E[ε2j |Z] +E[Uiεi|Z]E[εjU 0j |Z]

´
/K. Thus, s2n (Z) is bounded and bounded away

from zero a.s.. Also,
P

i=2E
£
y4in|Z

¤
≤ C

Pn
i=2E

h
kWink4 |Z

i
+ C

Pn
i=2E

£
ȳ4in|Z

¤
. By condition iv),Pn

i=2E
h
kWink4 |Z

i
−→ 0. Let ȳεin =

P
j<i ujPijεi/

√
K and ȳuin =

P
j<i uiPijεj/

√
K. By |Pij | < 1
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and
P

j P
2
ij = Pii, we have that a.s.

nX
i=2

E
h
(ȳεin)

4 |Z
i
≤ C

K2

nX
i=2

X
j,k,c,m<i

PijPikPicPimE
£
ε4i |Z

¤
E [ujukucum|Z]

≤ C

K2

nX
i=2

⎛⎝X
j<i

P 4ij +
X
j,k<i

P 2ijP
2
ik

⎞⎠ ≤ CK/K2 −→ 0.

Similarly,
Pn

i=2E
h
(ȳuin)

4 |Z
i
−→ 0 a.s., so that

Pn
i=2E

£
ȳ4in|Z

¤
≤

C
Pn

i=2

n
E
h
(ȳεin)

4 |Z
i
+E

h
(ȳuin)

4 |Z
io
−→ 0. Then by T we have

Pn
i=2E

£
y4in|Z

¤
−→ 0 a.s.

Conditional on Z, to apply the martingale central limit theorem, it suffices to show that for any � > 0

P
³¯̄̄Xn

i=2
E
£
y2in|X1, ...,Xi−1,Z

¤
− s2n (Z)

¯̄̄
≥ � | Z

´
−→ 0. (12)

Now, note that E [winȳin|Z] = 0 a.s. and, thus, we can write
nX
i=2

E
£
y2in|X1, ...,Xi−1,Z

¤
− s2n (Z) =

nX
i=2

¡
E[w2in|X1, ...,Xi−1,Z]−E[w2in|Z]

¢
+

nX
i=2

E [winȳin|X1, ...,Xi−1,Z] +
nX
i=2

¡
E[ȳ2in|X1, ...,Xi−1,Z]−E[ȳ2in|Z]

¢
. (13)

We will show that each term on the right-hand side of (13) converges to zero a.s.. To proceed, note first that

by independence of W1n, ...,Wnn conditional on Z, E[w2in|X1, ...,Xi−1,Z] = E[w2in|Z] a.s. Next, note

that E [winȳin|X1, ...,Xi−1,Z] = E[winui|Z]
P

j<i Pijεj/
√
K + E[winεi|Z]

P
j<i Pijuj/

√
K.Let δi =

δi (Z) = E[winui|Z] and consider the first term, δi
P

j<i Pijεj/
√
K. Let P̄ be the upper triangular matrix

with P̄ij = Pij for j > i and P̄ij = 0, j ≤ i, and let δ = (δ1, ..., δn). Then,
Pn
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P
j<i δiPijεj/

√
K =

δ0P̄ 0ε/
√
K. By CS, δ0δ =

Pn
i=1 (E [winui|Z])2 ≤

Pn
i=1E[w

2
in|Z]E[u2i |Z] ≤ C a.s.. By Lemma

B3,
°°P̄ 0P̄°° ≤ C

√
K a.s., which in turn implies that λmax

¡
P̄ 0P̄

¢
≤ C
√
K a.s.. It then follows given

E
h
u2j |Z

i
≤ C a.s. that E[(δ0P̄ 0ε/

√
K)2|Z] ≤ Cδ0P̄ 0P̄ δ/K ≤ C kδk2 /

√
K ≤ C/

√
K −→ 0 a.s.,

so that by M we have for any � > 0, P
³¯̄̄
δ (Z)0 P̄ 0ε/

√
K
¯̄̄
≥ �|Z

´
−→ 0 a.s.. Similarly, we havePn

i=2E [winεi|Z]
P

j<i Pijuj/
√
K −→ 0 a.s.. Therefore, it follows by T that, for any � > 0,

P
³¯̄̄Xn

i=2
E [winȳin|X1, ...,Xi−1,Z]

¯̄̄
≥ �|Z

´
→ 0 a.s.

To finish showing that eq. (12) is satisfied, it only remains to show that, for any � > 0,

P
³¯̄̄Xn

i=2

¡
E
£
ȳ2in|X1, ...,Xi−1,Z

¤
−E[ȳ2in|]Z

¢¯̄̄
≥ �|Z

´
→ 0 a.s.. (14)
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Now, write

nX
i=2

E
¡£
ȳ2in|X1, ...,Xi−1,Z

¤
−E[ȳ2in|Z]

¢
=

X
j<i

ω2i P
2
ij

¡
ε2j − σ2j

¢
/K + 2

X
j<k<i

ω2i PijPikεjεk/K

+
X
j<i

σ2i P
2
ij

¡
u2j − ω2j

¢
/K + 2

X
j<k<i

σ2i PijPikujuk/K

+2
X
j<i

γiP
2
ij (ujεj − γj) /K + 2

X
j<k<i

γiPijPik(ujεk + ukεj)/K. (15)

By applying parts (a)-(c) of Lemma B4 with φi = γi, ω
2
i and σ

2
i , respectively, we obtain, a.s.,

E

∙³P
j<i γiP

2
ij

£
ujεj−γj

¤
/K
´2

| Z
¸
−→ 0, E

∙³P
j<i ω

2
i P

2
ij

h
ε2j−σ2j

i
/K
´2

| Z
¸
−→ 0,and

E

∙³P
j<i σ

2
i P

2
ij

h
u2j−ω2j

i
/K
´2
| Z
¸
−→ 0. Moreover, applying part (d) of Lemma B4 with φi = γi, we

obtain E

∙³P
j<k<i γiPijPik [ujεk+ukεi] /K

´2
| Z
¸
−→ 0 a.s. PZ . Similarly, conditional on Z, all of

the remaining terms in eq. (15) converge in mean square to zero a.s. by parts (e) and (f) of Lemma B4.

The above argument shows that as n → ∞, P (Yn≤ y | Z)→ Φ (y) a.s. PZ , for every real num-

ber y, where Φ (y) denotes the cdf of a standard normal distribution. Moreover, it is clear that, for

some � > 0, sup
n
E
h
|P (Yn≤ y | Z)|1+�

i
<∞ (take, for example, � = 1). Hence, by a version of

the dominated convergence theorem, as given by Theorem 25.12 of Billingsley (1986), we deduce that

P (Yn≤ y)= E [P (Yn≤ y | Z)]→ E [Φ (y)]= Φ (y) , which gives the desired conclusion. ¥

Proof of Lemma A4: Let w̄i = E[Wi|Z], W̃i =Wi − w̄i, ȳi = E[Yi|Z], Ỹi = Yi − ȳi, η̄i = E[ηi|Z],

η̃i = ηi − η̄i,

μ̄2W = max
i≤n

w̄2i ≤ C/n, μ̄2Y = max
i≤n

ȳ2i ≤ C/n, μ̄2η = max
i≤n

η̄2i ≤ C,

σ̄2W = max
i ≤ n

V ar(Wi|Z) ≤ C/rn, σ̄
2
Y = max

i ≤ n
V ar(Yi|Z) ≤ C/rn, σ̄

2
η = max

i ≤ n
V ar(ηi|Z) ≤ C.

Also, let y̆i =
P

j Pij ȳj , w̆i =
P

j Pijw̄j ,be predicted values from projecting ȳ and w̄ on P, and note thatX
i

y̆2i ≤
X
i

ȳ2i ≤ C,
X
i

w̆2i ≤
X
i

w̄2i ≤ C.

By adding and subtracting term similar to the beginning of the proof of Theorem 4,

An =
X
i 6=j

X
k/∈{i,j}

w̄iPikη̄kPkj ȳj =
X
i

η̄i
¡
w̆iy̆i − Piiw̄iy̆i − Piiw̆iȳi + 2P

2
iiw̄iȳi

¢
/n−

X
i,j

w̄iȳiP
2
ij η̄j .
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By T, CS, and η̄k ≤ C,¯̄̄̄
¯X
k

w̆kη̄ky̆k

¯̄̄̄
¯ ≤ C

sX
k

w̆2k

sX
k

y̆2k ≤ C,

¯̄̄̄
¯X

i

w̄iPiiη̄iy̆i

¯̄̄̄
¯ ≤

sX
i

w̄2i P
2
iiη̄

2
i

sX
i

y̆2i ≤ C,

and it follows similarly that
P

i w̆iPiiη̄iȳi is bounded. By Lemma B1,
¯̄̄P

i,k w̄iȳiP
2
ikη̄k

¯̄̄
≤ Cn−1

¯̄̄P
i,k P

2
ik

¯̄̄
≤

CK/n ≤ C. Also,
¯̄P

i w̄iȳiP
2
iiη̄i
¯̄
≤ Cn/n = C. Thus, |An| ≤ C holds by T.

For the remainder of this proof we let E[•] denote the conditional expectation given Z. Note that

WiPikηkPkjYj = W̃iPikηkPkjYj + w̄iPikηkPkjYj

= W̃iPikη̃kPkjYj + W̃iPikη̄kPkjYj + w̄iPikη̃kPkjYj + w̄iPikη̄kPkjYj

= W̃iPikη̃kPkjỸj + W̃iPikη̃kPkj ȳj + W̃iPikη̄kPkjỸj + W̃iPikη̄kPkj ȳj

+w̄iPikη̃kPkjỸj + w̄iPikη̃kPkj ȳj + w̄iPikη̄kPkjỸj + w̄iPikη̄kPkj ȳj .

Summing and subtracting the last term gives

X
i6=j 6=k

WiPikηkPkjYj −An =
7X

r=1

ψ̂r,

where

ψ̂1 =
X
i6=j 6=k

W̃iPikη̃kPkjỸj , ψ̂2 =
X
i6=j 6=k

W̃iPikη̃kPkj ȳj , ψ̂3 =
X
i6=j 6=k

W̃iPikη̄kPkjỸj ,

ψ̂4 =
X
i6=j 6=k

W̃iPikη̄kPkj ȳj , ψ̂5 =
X
i6=j 6=k

w̄iPikη̃kPkjỸj , ψ̂6 =
X
i6=j 6=k

w̄iPikη̃kPkj ȳj ,

and ψ̂7 =
P

i6=j 6=k w̄iPikη̄kPkjỸj . By T, the second conclusion will follow from ψ̂r
p−→ 0 for r = 1, ..., 7.

Also, note that ψ̂7 is the same as ψ̂4 and ψ̂5, which is the same as ψ̂2 with the random variables W and

Y interchanged. Since the conditions on W and Y are symmetric, it suffices to show that ψ̂r
p−→ 0forr ∈

{1, 2, 3, 4, 6}.

Consider now ψ̂1. Note that for i 6= j 6= k and r 6= s 6= t, we have E[W̃iPikη̃kPkj ỸjW̃rPrsη̃sPstỸt] =

0, except for when each of the three indices i, j, k is equal to one of the three indices r, s, t. There are six

ways this can happen leading to six terms in

E[ψ̂21] =
X
i6=j 6=k

X
r 6=s 6=t

E[W̃iPikη̃kPkjỸjW̃rPrsη̃sPstỸt] =
6X

q=1

τ̂q.

41



Note that by hypothesis, σ̄2W σ̄2ησ̄
2
YK ≤ Cr−2n K −→ 0. By Lemma B1, we have

|τ̂1| =
X
i6=j 6=k

E[(W̃iPikη̃kPkjỸj)
2] =

X
i6=j 6=k

E[W̃ 2
i ]P

2
ikE[η̃

2
k]P

2
kjE[Ỹ

2
j ] ≤ σ̄2W σ̄2ησ̄

2
YK −→ 0.

Similarly, by CS,

|τ̂3| =

¯̄̄̄
¯̄ X
i6=j 6=k

E[(W̃iPikη̃kPkjỸj)(W̃jPjkη̃kPkiỸi)]

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ X
i6=j 6=k

E[W̃iỸi]E[W̃jỸj ]E[η̃
2
k]P

2
ikP

2
kj

¯̄̄̄
¯̄

≤ σ2W σ̄2ησ̄
2
YK −→ 0.

Next, by Lemma B1 and CS

|τ̂2| =

¯̄̄̄
¯̄ X
i 6=j 6=k

E[(W̃iPikη̃kPkjỸj)(W̃iPij η̃jPjkỸk)]

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ X
i6=j 6=k

E[W̃ 2
i ]E[η̃kỸk]E[η̃jỸj ]PikPijP

2
jk

¯̄̄̄
¯̄

≤ σ̄2W σ̄2ησ̄
2
YK −→ 0.

Similarly,

|τ̂4| =

¯̄̄̄
¯̄ X
i6=j 6=k

E[(W̃iPikη̃kPkjỸj)(W̃jPjiη̃iPikỸk)]

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ X
i6=j 6=k

E[W̃iη̃i]E[W̃jỸj ]E[η̃kỸk]P
2
ikPkjPji

¯̄̄̄
¯̄

≤ σ̄2W σ̄2ησ̄
2
YK −→ 0,

|τ̂5| =

¯̄̄̄
¯̄ X
i6=j 6=k

E[(W̃iPikη̃kPkjỸj)(W̃kPkiη̃iPijỸj)]

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ X
i6=j 6=k

E[W̃iη̃i]E[Ỹ
2
j ]E[W̃kη̃k]P

2
ikPkjPji

¯̄̄̄
¯̄

≤ σ̄2W σ̄2ησ̄
2
YK −→ 0,

|τ̂6| =

¯̄̄̄
¯̄ X
i6=j 6=k

E[(W̃iPikη̃kPkjỸj)(W̃kPkj η̃jPjiỸi)]

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄ X
i6=j 6=k

E[W̃iỸi]E[η̃jỸj ]E[W̃kη̃k]P
2
jkPijPik

¯̄̄̄
¯̄

≤ σ̄2W σ̄2ησ̄
2
YK −→ 0.

The triangle inequality then gives E[ψ̂21] −→ 0, so ψ̂21
p−→ 0 holds by M.

Consider now ψ̂2. Note that for i 6= j 6= k and r 6= s 6= t, we haveE[W̃iPikη̃kPkj ȳjW̃rPrsη̃sPstȳt] = 0,

except when i = r and j = s or i = s and j = r. Then by (A + B + C)2 ≤ 3(A2 + B2 + C2) and for

fixed k,
P

i6=k P
2
ik ≤ Pkk,

P
i6=k P

4
ik ≤ Pkk, it follows that

X
i 6=k

P 2ik

⎛⎝ X
j /∈{i,k}

Pkj ȳj

⎞⎠2 ≤ 3
X
i6=k

P 2ik
¡
y̆2k + P 2kiȳ

2
i + P 2kkȳ

2
k

¢
≤ 3

ÃX
k

Pkk
¡
y̆2k + 2ȳ

2
k

¢!
≤ 3

ÃX
k

y̆2k + 2
X
k

ȳ2k

!
≤ 9nμ̄2Y ≤ C.
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It follows by |AB| ≤
¡
A2 +B2

¢
/2, CS, and Pik = Pki that

E[ψ̂22] =
X
i6=k

E[W̃ 2
i ]P

2
ikE[η̃

2
k]

⎛⎝ X
j /∈{i,k}

Pkj ȳj

⎞⎠2

+
X
i6=k

E[W̃iη̃i]P
2
ikE[W̃kη̃k]

⎛⎝ X
j /∈{i,k}

Pkj ȳj

⎞⎠⎛⎝ X
j /∈{i,k}

Pij ȳj

⎞⎠
≤ 2σ̄2W σ̄2η

X
i6=k

P 2ik

⎛⎝ X
j /∈{i,k}

Pkj ȳj

⎞⎠2

≤ C/rn −→ 0.

Then ψ̂2
p−→ 0 holds by M.

Consider ψ̂3. Note that for i 6= j 6= k and r 6= s 6= t, we have E[W̃iPikη̄kPkjỸjW̃rPrsη̄sPstỸt] = 0,

except when i = r and j = t or i = t and j = r. Thus,

E[ψ̂23] =
X
i6=j

³
E[W̃ 2

i ]E[Ỹ
2
j ] +E[W̃iỸi]E[W̃jỸj ]

´⎛⎝ X
k/∈{i,j}

Pikη̄kPkj

⎞⎠2

≤ 2σ̄2W σ̄2Y
X
i6=j

⎛⎝ X
k/∈{i,j}

Pikη̄kPkj

⎞⎠2 .
Note that for i 6= j,

P
k/∈{i,j} PikPkj η̄k =

P
k PikPkj η̄k − PijPiiη̄i − PijPjj η̄j . Note also that

X
i

ÃX
k

P 2ikη̄k

!2
=

X
i,k,c

P 2ikP
2
icη̄kη̄c ≤ μ̄2η

X
i,k,c

P 2ikP
2
ic = μ̄2η

X
i

P 2ii ≤ μ̄2ηK,

X
i,j

ÃX
k

Pikη̄kPkj

!2
=

X
i,j,k,c

Pikη̄kPjkPicη̄cPjc =
X
k,c

η̄kη̄c

ÃX
i

PikPic

!⎛⎝X
j

PjkPjc

⎞⎠
=

X
k,c

η̄kη̄cP
2
kc ≤ μ̄2η

X
k,c

P 2kc = μ̄2ηK.

It therefore follows that

X
i6=j

ÃX
k

Pikη̄kPkj

!2
=
X
i,j

ÃX
k

Pikη̄kPkj

!2
−
X
i

ÃX
k

Pikη̄kPki

!2
≤ 2μ̄2ηK.

Also, by Lemma B1,
P

i6=j P
2
ijP

2
jj η̄

2
j ≤ μ̄2η

P
i6=j P

2
ij ≤ μ̄2ηK, so that

X
i6=j

⎛⎝ X
k/∈{i,j}

Pikη̄kPkj

⎞⎠2 ≤ 3X
i6=j

⎧⎨⎩
ÃX

k

Pikη̄kPkj

!2
+ P 2ijP

2
iiη̄

2
i + P 2ijP

2
jj η̄

2
j

⎫⎬⎭ ≤ 6μ̄2ηK.
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From the previous expression for E[ψ̂23], we then have E[ψ̂
2
3] ≤ Cσ̄2W σ̄2Y μ̄

2
ηK ≤ Cr−2n K −→ 0. Then

ψ̂3
p−→ 0 by M.

Next, consider ψ̂4. Note that for i 6= j 6= k and r 6= s 6= t, we have E[W̃iPikη̄kPkj ȳjW̃rPrsη̄sPstȳt] =

0, except when i = r. Thus,

E[ψ̂24] =
X
i

E[W̃ 2
i ]

⎛⎝X
j 6=i

X
k/∈{i,j}

Pikη̄kPkj ȳj

⎞⎠2 ≤ σ̄2W
X
i

⎛⎝X
j 6=i

X
k/∈{i,j}

Pikη̄kPkj ȳj

⎞⎠2 .
Note that for i 6= j, X

k/∈{i,j}
Pikη̄kPkj ȳj =

X
k

Pikη̄kPkj ȳj − Piiη̄iPij ȳj − Pij η̄jPjj ȳj .

Therefore, for fixed i,

X
j 6=i

X
k/∈{i,j}

Pikη̄kPkj ȳj =
X
j 6=i

ÃX
k

Pikη̄kPkj ȳj − Piiη̄iPij ȳj − Pij η̄jPjj ȳj

!
=

X
k

Pikη̄ky̆k −
X
k

P 2ikη̄kȳi − Piiη̄iy̆i −
X
j

Pij η̄jPjj ȳj + 2P
2
iiη̄iȳi.

Note that because P is idempotent, we have
P

j

P
k Pjkη̄j y̆j η̄ky̆k ≤

P
j η̄
2
j y̆
2
j ≤ μ̄2η

P
j y̆
2
j ≤ μ̄2η

P
j ȳ
2
j ≤

nμ̄2ημ̄
2
Y ≤ C. Then it follows thatX

i

{
X
k

Pikη̄ky̆k}2 =
X
i

X
j

X
k

Pij η̄j y̆jPikη̄ky̆k =
X
j

X
k

η̄j y̆j η̄ky̆k
X
i

PijPik

=
X
j

X
k

Pjkη̄j y̆j η̄ky̆k ≤ C.

Also, using similar reasoning,X
i

(Piiη̄iy̆i)
2 ≤

X
i

η̄2i y̆
2
i ≤ nμ̄2ημ̄

2
Y ≤ C,

X
i

⎛⎝X
j

Pij η̄jPjj ȳj

⎞⎠2

≤
X
i

η̄2i P
2
iiȳ
2
i ≤

X
i

η̄2i ȳ
2
i ≤ C,

X
i

Ã
ȳi
X
k

P 2ikη̄k

!2
≤ μ̄2Y

X
i,k,c

P 2ikP
2
icη̄kη̄c ≤ μ̄2Y μ̄

2
η

X
i,k,c

P 2ikP
2
ic ≤ Kμ̄2ημ̄

2
Y ≤ C,

X
i

P 4iiη̄
2
i ȳ
2
i ≤ nμ̄2ημ̄

2
Y ≤ C

Then using the fact that (
P5

r=1Ar)
2 ≤ 5

P5
r=1A

2
r, it follows that E[ψ̂

2
4] ≤ σ̄2WC ≤ C/rn −→ 0, so

ψ̂4
p−→ 0 by M.
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Next, consider ψ̂6. Note that for i 6= k,
P

j /∈{i,k} w̄iPikPkj ȳj = w̄iPiky̆k−w̄iP
2
ikȳi−w̄iPikPkkȳk.Then

for fixed k,X
i6=k

X
j /∈{i,k}

w̄iPikPkj ȳj =
X
i

¡
w̄iPiky̆k − w̄iP

2
ikȳi − w̄iPikPkkȳk

¢
− w̄kPkky̆k + 2w̄kP

2
kkȳk

= w̆ky̆k −
X
i

w̄iP
2
ikȳi − w̆iPkkȳk − w̄kPkky̆k + 2w̄kP

2
kkȳk.

Then using the fact that (
P5

r=1Ar)
2 ≤ 5

P5
r=1A

2
r we have

E[ψ̂26] =
X
k

E[η̃2k](
X
i6=k

X
j /∈{i,k}

w̄iPikPkj ȳj)
2

≤ 5σ̄2η
X
k

⎛⎝w̆2ky̆
2
k +

X
i,j

P 2kjP
2
kiw̄iȳiw̄j ȳj + w̆2kP

2
kkȳ

2
k + w̄2kP

2
kky̆

2
k + 4w̄

2
kP

4
kkȳ

2
k

⎞⎠
≤ 5σ̄2η

⎛⎝X
k

w̆2ky̆
2
k + μ̄2W μ̄2Y

X
i,j,k

P 2kjP
2
ki + μ̄2Y

X
k

w̆2k + μ̄2W
X
k

y̆2k + n4μ̄2W μ̄2Y

⎞⎠
≤ 5σ̄2η

ÃX
k

w̆2ky̆
2
k + 7nμ̄

2
W μ̄2Y

!
≤ C

X
k

w̆2ky̆
2
k +Cn/n2 ≤ C

X
k

w̆2ky̆
2
k + o(1).

Now let πn be such that∆n = maxi |ai−Z 0iπn| −→ 0, let αn = πn/
√
n and note that maxi≤n |w̄i − Z 0iαn| =

∆n/
√
n. Let w̄ = (w̄1, ..., w̄n)

0. Then

|w̄i − w̆i| =
¯̄
w̄i − Z 0i(Z

0Z)−1Z 0w̄
¯̄
=
¯̄
w̄i − Z 0iαn − Z 0i(Z

0Z)−1Z 0(w̄ − Zαn)
¯̄

≤ ∆n/
√
n+ (

X
j

P 2ij)
1/2(

X
j

£
w̄j − Z 0jαn

¤2
)1/2

≤ ∆n + P
1/2
ii

√
nmax

i≤n

¯̄
w̄i − Z 0iαn

¯̄
= ∆n + P

1/2
ii ∆n ≤ C∆n.

Then by the triangle inequality, maxi≤n |w̆i| ≤ maxi≤n |w̄i|+∆n −→ 0, so thatX
k

w̆2ky̆
2
k ≤

µ
max
i≤n

|w̆i|
¶2X

k

y̆2k = o(1)
X
k

ȳ2k −→ 0.

Then we have E[ψ̂26] −→ 0, so by M, ψ̂6
p−→ 0. The conclusion then follows by T. ¥
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