E E D I‘l :T U R A Service of

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

..
h for Economics

Leibniz Information Centre

Chao, John C.; Swanson, Norman R.; Hausman, Jerry A.; Newey, Whitney K.;

Woutersen, Tiemen

Working Paper

Asymptotic distribution of JIVE in a heteroskedastic IV
regression with many instruments

Working Paper, No. 567

Provided in Cooperation with:

Department of Economics, The Johns Hopkins University

Suggested Citation: Chao, John C.; Swanson, Norman R.; Hausman, Jerry A.; Newey, Whitney K.;
Woutersen, Tiemen (2010) : Asymptotic distribution of JIVE in a heteroskedastic IV regression
with many instruments, Working Paper, No. 567, The Johns Hopkins University, Department of

Economics, Baltimore, MD

This Version is available at:
https://hdl.handle.net/10419/49906

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/49906
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Asymptotic Distribution of JIVE in a Heteroskedastic IV Regres-
sion with Many Instruments*

John C. Chao, Department of Economics, University of Maryland, chao@econ.umd.edu.
Norman R. Swanson, Department of Economics, Rutgers University, nswanson@econ.rutgers.edu.
Jerry A. Hausman, Department of Economics, MIT, jhausman@mit.edu.

Whitney K. Newey, Department of Economics, MIT, wnewey@mit.edu.

Tiemen Woutersen, Department of Economics, Johns Hopkins University, woutersen@jhu.edu.

August, 2007

Revised October, 2010

JEL classification: C13, C31.
Keywords: heteroskedasticity, instrumental variables, jackknife estimation, many instruments, weak

instruments.

*Earlier versions of this paper were presented at the NSF/NBER conference on weak and/or many
instruments at MIT in 2003, and at the 2004 winter meetings of the Econometric Society in San
Diego, where conference participants provided many useful comments and suggestions. Particular
thanks are owed to D. Ackerberg, D. Andrews, J. Angrist, M. Caner, M. Carrasco, P. Guggenberger,
J. Hahn, G. Imbens, R. Klein, N. Lott, M.Moriera, G.D.A. Phillips, P.C.B. Phillips, J. Stock, J.

Wright, two anonymous referees and a co-editor for helpful comments and suggestions.



Proposed Running Head: JIVE With Heteroskedasticity

Corresponding Author:
Whitney K. Newey
Department of Economics
MIT, E52-262D
Cambridge, MA 02142-1347

Abstract

This paper derives the limiting distributions of alternative jackknife IV (JIV') estimators and
gives formulae for accompanying consistent standard errors in the presence of heteroskedasticity
and many instruments. The asymptotic framework includes the many instrument sequence of
Bekker (1994) and the many weak instrument sequence of Chao and Swanson (2005). We show
that JIV estimators are asymptotically normal and that standard errors are consistent provided
that 3@ — 0 as n — oo, where K, and r, denote, respectively, the number of instruments
and the concentration parameter. This is in contrast to the asymptotic behavior of such classical
1V estimators as LIML, B2SLS, and 25LS, all of which are inconsistent in the presence of
heteroskedasticity, unless % — 0. We also show that the rate of convergence and the form of the
asymptotic covariance matrix of the JIV estimators will in general depend on the strength of the

instruments as measured by the relative orders of magnitude of r, and K,,.



1 Introduction

It has long been known that the two-stage least squares (25LS) estimator is biased with many in-
struments (see e.g. Sawa (1969), Phillips (1983), and the references cited therein). Due in large part
to this problem, various approaches have been proposed in the literature to reduce the bias of the
2S5 LS estimator. In recent years, there has been interest in developing procedures that use “delete-
one” fitted values in lieu of the usual first-stage OLS fitted values as the instruments employed in
the second stage of the estimation. A number of different versions of these estimators, referred to
as jackknife instrumental variables (JIV') estimators, have been proposed and analyzed by Phillips
and Hale (1977), Angrist, Imbens, and Krueger (1999), Blomquist and Dahlberg (1999), Ackerberg
and Devereux (2009), Davidson and MacKinnon (2006), and Hausman, Newey, Woutersen, Chao,
and Swanson (2007).

The JIV estimators are consistent with many instruments and heteroskedasticity of unknown
form, while other estimators, including limited information maximum likelihood (LIML) and bias
corrected 2SLS (B2SLS) estimators are not (see e.g. Bekker and van der Ploeg (2005), Ackerberg
and Devereux (2009), Chao and Swanson (2006), and Hausman et al. (2007)). The main objective
of this paper is to develop asymptotic theory for the JIV estimators in a setting that includes
the many instrument sequence of Kunitomo (1980), Morimune (1983), and Bekker (1994) and the
many weak instrument sequence of Chao and Swanson (2005). To be precise, we show that JIV
estimators are consistent and asymptotically normal when 3% — 0 as n — oo, where K, and
r, denote the number of instruments and the so-called concentration parameter, respectively. In
contrast, consistency of LIML and B2SLS generally requires that If—: — 0 as n — 00, meaning that
the number of instruments is small relative to the identification strength. We show that both the
rate of convergence of the JI'V estimator and the form of its asymptotic covariance matrix depend
on how weak the available instruments are, as measured by the relative order of magnitude of 7,
vis-a-vis K,,. We also show consistency of the standard errors under heteroskedasticity and many
instruments.

Hausman et. al. (2007) also consider a jackknife form of LIML that is slightly more diffi-
cult to compute but is asymptotically efficient relative to JIV under many weak instruments and
homoskedasticity. With heteroskedasticity, any of the estimators may outperform the others, as

shown by Monte Carlo examples in Hausman et. al. (2007). Hausman et. al. (2007) also propose



a jackknife version of the Fuller (1977) estimator that has fewer outliers.

This paper is a substantially altered and revised version of Chao and Swanson (2004), in which
we now allow for the many instrument sequence of Kunitomo (1980), Morimune (1983) and Bekker
(1994). In the process of showing the asymptotic normality of JIV, this paper gives a central limit
theorem for quadratic (and, more generally, bilinear) forms associated with an idempotent matrix.
This theorem can be used to study estimators other than JIV. For example, it has already been
used in Hausman et al. (2007) to derive the asymptotic properties of the jackknife versions of the
LIML and Fuller (1977) estimators and in Chao et al. (2010) to derive a moment based test.

The rest of the paper is organized as follows. Section 2 sets up the model and describes the
estimators and standard errors. Section 3 lays out the framework for the asymptotic theory and
presents the main results of our paper. Section 4 comments on the implications of these results

and concludes. All proofs are gathered in an appendix.

2 The Model and Estimators

The model we consider is given by

= X4
DT agd TS
X = Y+,

where n is the number of observations, G is the number of right-hand side variables, T is the reduced
form matrix, and U is the disturbance matrix. For the asymptotic approximations, the elements
of T will implicitly be allowed to depend on n, although we suppress the dependence of Y on n
for notational convenience. Estimation of dg will be based on an n x K matrix, Z, of instrumental
variable observations with rank(Z) = K. Let Z = (Y,Z), and assume that E[¢|Z] = 0 and
E[U|Z]=0.

This model allows for T to be a linear combination of Z (i.e. T = Zm, for some K x G
matrix 7). Furthermore, some columns of X may be exogenous, with the corresponding column
of U being zero. The model also allows for Z to approximate the reduced form. For example,
let X!, Y%, and Z! denote the i*" row (observation) for X, T, and Z, respectively. We could let
T; = fo(w;) be a vector of unknown functions of a vector w; of underlying instruments and let

Zi = (p1r(w;), ..., pxx (w;))" for approximating functions pyx (w), such as power series or splines.



In this case, linear combinations of Z; may approximate the unknown reduced form (e.g. Newey
(1990)).

To describe the estimators, let P = Z(Z'Z)"'Z' and P;; denote the (i,5)" element of P.
Additionally, let TI_; = (Z2'Z — Z; Z!)"Y(Z' X — Z;X!) be the reduced form coefficients obtained by
regressing X on Z using all observations except the i*". The JIV estimator of Phillips and Hale
(1977) is obtained as

n n
0=0_"T,zXx) "> T Zy.
i=1 i=1
Using standard results on recursive residuals, it follows that
72 = (X'Z(2'2)"" Zi — PuXi) /(1 = Py) = Y _ Py X;/(1— Py).
J#i
Then, we have that
b=H'Y XiPi(1—Py)~ly;, H=7 XiPy(l—Pj) ' X],
i#] i#]
where 3;+; denotes the double sum ), > ji - The JIV estimator proposed by Angrist and Imbens
(1999), JIVE2, has a similar form, except that II_; = (Z2’Z)~Y(Z'X — Z;X]) is used in place of II_;.
It is given by
8 =H! ZXiPi]‘yj, H= ZXZPUXJI
i#j i#j

To explain why JIV is a consistent estimator, it is helpful to consider JIV as a minimizer of
an objective function. As usual, the limit of the minimizer will be the minimizer of the limit
under appropriate regularity conditions. We focus on 5 to simplify the discussion. The estimator

6 satisfies & = arg ming Q(8), where

Q) = (i — X{6)Pij(y; — X9).

i#j
Note that the difference between the 2SLS objective function (y — X'86)P(y — X'6) and Q(4) is
S Pi(yi— X[6)?. This is a weighted least squares object that is a source of bias in 2SLS because
its expectation is not minimized at dg when X; and ¢; are correlated. This object does not vanish
asymptotically relative to E[Q(6)] under many (or many weak) instruments, leading to inconsis-

tency of 2SLS. When observations are mutually independent, the inconsistency is caused by this

term, so removing it to form Q(é) makes 6 consistent.



To explain further, consider the JIV objective function Q(d). Note that for U(6) = &;—U!(6—do)

Q) = Qu(8) +Qa(6) +Q3(8), Qu(6) = (8 —0)LiPy (s — do),
i#j
Q2(8) = —2) Ti(8)PyY)(6 — bo), = Ui(6)P;U; (6
i#j 1#]

Then by the assumptions E[U;(5)] = 0 and independence of observations, we have E[Q(0)|Z] =
Q@1(0). Under the regularity conditions below, Z#j TiPijTj is positive definite asymptotically, so
Q1(9) is minimized at &y. Thus, the expectation Q1(d) of Q(8) is minimized at the true parameter
dp; in the terminology of Han and Phillips (2006), the many instrument “noise” term in the expected
objective function is identically zero.

For consistency of ) , it is also necessary that the stochastic components of Q(é) do not dominate
asymptotically. The size of Ql(d) (for § # dp) is proportional to the concentration parameter that
we denote by r,. It turns out that Qo(6) has size smaller than Q1(6) asymptotically but Qs() is
0,(VE,) (Lemma A1 shows that the variance of Q3(J) is proportional to K,,). Thus, to ensure that
the expectation of Q(é) dominates the stochastic part of Q(é), it suffices to impose the restriction
VK, /rn — 0, which we do throughout the asymptotic theory. This condition was formulated in
Chao and Swanson (2005).

The estimators 6 and & are consistent and asymptotically normal with heteroskedasticity under
the regularity conditions we impose, including /K, /r,, — 0. In contrast, consistency of LIML and
Fuller (1977) requires K, /r, — 0 when P;; is asymptotically correlated with E[X;e;|Z]/E[e?| 2],
as discussed in Chao and Swanson (2004) and Hausman et al. (2007). This condition is also
required for consistency of the bias corrected 2SLS estimator of Donald and Newey (2001) when
P;; is asymptotically correlated with E[X;e;|Z], as discussed in Ackerberg and Devereux (2009).
Thus, JIV estimators are robust to heteroskedasticity and many instruments (when K, grows as
fast as ry,), while LIML, Fuller (1977), or bias corrected 2SLS estimators are not.

Hausman et. al. (2007) also consider a JIV form of LIML, which is obtained by minimizing
Q(6)/[(y — X0)'(y — X6)]. The sum of squared residuals in the denominator makes computation
somewhat more complicated; however, like LIML, it has an explicit form in terms of the smallest
eigenvalue of a matrix. This JIV form of LIML is asymptotically efficient relative to § and & under
many weak instruments and homoskedasticity. With heteroskedasticity, 5 and o may perform

better than this estimator, as shown by Monte Carlo examples in Hausman et. al. (2007); they



also propose a jackknife version of the Fuller (1977) estimator that has fewer outliers than the JIV
form of LIML.
To motivate the form of the variance estimator for 6 and 5, note that for § = (1 — Pii)iléfi,

substituting y; = X/dy + €; in the equation for § gives

0=0do+H ' XiPyg;. (1)
i#]
After appropriate normalization, the matrix H! will converge and a central limit theorem will
apply to ), £ X;P;;&;,which leads to a sandwich form for the asymptotic variance. Here H-! can
be used to estimate the outside terms in the sandwich. The inside term, which is the variance of
> £ X;P;;&;, can be estimated by dropping terms that are zero from the variance, removing the
expectation, and replacing & with an estimate, & = (1 — Py) ™" <yi — XZ'S) Using the indepen-
dence of the observations, E|e;|Z] = 0, and the exclusion of the ¢ = j terms in the double sums, it
follows that
ED  XiPy&(Y  XiPy&) 12 = EY Y PaPuXiXj&h + ) PiXi&X g 2],
i#] 7] 4. k¢{i.j} i#]
Removing the expectation and replacing &; with §~Z gives
S=3" 3 PuPpXiXj&+ Y PAXiEXIE;.
63 ke¢{ig} i#]

The estimator of the asymptotic variance of § is then given by
V=H'SH

This estimator is robust to heteroskedasticity, as it allows Var(&;|2) and E[X;&;| Z] to vary over 4.

A vectorized form of V is easier to compute. Note that for X; = X;/(1 = Py), we have
H=XPX-Y,X;P;X!. Also, let X = PX, Z = Z(Z'Z)~", and Z! and Z! equal the the i** row
of Z and Z respectively. Then, as shown in the proof of Theorem 4, we have

/
n K

K n
S =3 (XiX] = XiPuX] = XiPaXDE+> > (Z ZikZiZXiéi>

n
Z ZinZje X;€;
=1 k=1 =1 \i=1 1

j:
This formula can be computed quickly by software with fast vector operations, even when n is

large.



An asymptotic variance estimator for 4 can be formed in an analogous way. Note that H =
X'PX — Y, X;P;X]. Also for §; = y; — X{g, we can estimate the middle matrix of the sandwich
by

!/

K K n
- Z (XiX] = XiPuX] — XiPuX))E7 + > Y (Z ZinZiu X, a) Z ZinZi0X jé;

k=1 (=1

The variance estimator for ¢ is then given by
V=H'SH

Here H is symmetric because P is symmetric, so a transpose is not needed for the third matrix in

A

V.

3 Many Instrument Asymptotics

Our asymptotic theory combines the many instrument asymptotics of Kunitomo (1980), Morimune
(1983), and Bekker (1994) with the many weak instrument asymptotics of Chao and Swanson
(2005). All of our regularity conditions are conditional on Z = (Y, Z). To state the regularity
conditions, let Z,&;,U!, and Y/ denote the i’" row of Z,¢,U, and Y, respectively. Also let a.s.
denote almost surely (i.e. with probability one) and a.s.n denote a.s. for n large enough (i.e. with

probability one for all n large enough).

Assumption 1: K = K,, — o0, Z includes among its columns a vector of ones, for some

C<1l,rank(Z)=K and P; <C, (i=1,...,n) a.s.n.

In this paper, C is a generic notation for a positive constant that may be bigger or less than 1.
Hence, although in Assumption 1 C'is taken to be less than 1, in other parts of the paper it might
not be. The restriction that rank(Z) = K is a normalization that requires excluding redundant
columns from Z. It can be verified in particular cases. For instance, when w; is a continuously

k=1 it can be shown that Z’Z is nonsingular

distributed scalar, Z; = p®(w;), and prr(w) = w
with probability one for K < n.! The condition P; < C < 1 implies that K/n < C because

K/n =3 Pi/n < C.

1The observations w, ..., w,, are distinct with probability one and therefore, by K < n, cannot all be roots of a
K™ degree polynomial. It follows that for any nonzero a there must be some i with a’Z; = a'p¥ (w;) # 0, implying

a'Z'Za > 0.



Now, let Apmin(A) denote the smallest eigenvalue of a symmetric matrix A, and for any matrix

B, let |B| = \/&r(B'B).

Assumption 2: Y; = S, 2;/y/n where S, = S, diag (Hiny ey WG S, is G x G and bounded,
and the smallest eigenvalue of 5’”5’% is bounded away from zero. Also, for each j, either p;n, = \/n
or fjn//m — 0, 1y = ((min_p;,)? — oo, and VK /r, — 0. Also, there is C' > 0 such that

1<5<G
130 zizh/n|| < C and Amin (301, 2i2i/n) > 1/C as.n.

This condition is similar to Assumption 2 of Hansen, Hausman, and Newey (2008). It ac-
commodates linear models where included instruments (e.g. a constant) have fixed reduced form
coefficients and excluded instruments have coefficients that can shrink as the sample size grows. A
leading example of such a model is a linear structural equation with one endogenous variable of the

form
yi = Zh001 + docXic + €, (2)

where Z;1 is a G1 x 1 vector of included instruments (e.g. including a constant) and X;g is
an endogenous variable. Here the number of right-hand side variables is G1 + 1 = G. Let the
reduced form be partitioned conformably with 0, as Y; = (Z/4, Yi¢) and U; = (0,U;)’. Here the
disturbances for the reduced form for Z;; are zero because Z;; is taken to be exogenous. Suppose
that the reduced form for X;; depends linearly on the included instrumental variables Z;; and on

an excluded instrument z;o as in
Xic =Yic + U, Tic =mZn + <\/ Tn/n) 2iG-

Here we normalize z;¢ so that r, determines how strongly d¢ is identified, and we absorb into z;q
any other terms, such as unknown coefficients. For Assumption 2, we let z; = (Z}, zj)" and require
that the second moment matrix of z; is bounded and bounded away from zero. This normalization
allows 7, to determine the strength of identification of dg. For example, if r,, = n, then the
coefficient on z;¢ does not shrink, which corresponds to strong identification of ég. If 7, grows
slower than n, then g will be more weakly identified. Indeed, 1/,/7, will be the convergence rate

for estimators of dg. We require r,, — oo to avoid the weak instrument setting of Staiger and

Stock (1997), where d¢ is not asymptotically identified.



For this model, the reduced form is

T _ Zi1 I 0 1 0 Z;
Y| mZia +\ra/nzig | | m 1 0 /mn/n zia )
This reduced form is as specified in Assumption 2 with

Sy = {7{1 H fjn =V, 1<j <G, pgn = .
Note how this somewhat complicated specification is needed to accommodate fixed reduced form
coefficients for included instrumental variables and excluded instruments with identifying power
that depend on n. We have been unable to simplify Assumption 2 while maintaining the generality
needed for such important cases.

We will not require that z;c be known, only that it be approximated by a linear combination
of the instrumental variables Z; = (Z/, Zl,)'. Implicitly, Z;; and z;c are allowed to depend on n.
One important case is where the excluded instrument z;5 is an unknown linear combination of the

1o

instrumental variables Z; = (Z/;, Z,)'. For example, the many weak instrument setting of Chao

and Swanson (2005) is one where the reduced form is given by
Tic = mZin + (m2/V/n) Zi

for a K — (G dimensional vector Z;s of excluded instrumental variables. This model can be folded

into our framework by specifying that

zic = 9 Zin/V K — G1,rn = K — Gj.

Assumption 2 will then require that
> zig/n=(K -G (75Zin)?/n
i i

is bounded and bounded away from zero. Thus, the second moment Y (75 Z;2)?/n of the term in
the reduced form that identifies dpg must grow linearly in K, just as in Chao and Swanson (2005),
leading to a convergence rate of 1/v/K — Gy = 1/,/ry.

In another important case, the excluded instrument z;¢ could be an unknown function that can
be approximated by a linear combination of Z;. For instance, suppose that z;c = fo(w;) for an
unknown function fy(w;) of variables w;. In this case, the instrumental variables could include a

vector p® (w;) def (p1r(wi), ..., pr—Gy, Kk (w;)) of approximating functions, such as polynomials or



splines. Here the vector of instrumental variables would be Z; = (Z/,, p™ (w;)"). For r,, = n, this
example is like Newey (1990) where Z; includes approximating functions for the reduced form, but
the number of instruments can grow as fast as the sample size. Alternatively, if r,,/n — 0, it is a
modified version where dg is more weakly identified.

Assumption 2 also allows for multiple endogenous variables with a different strength of identi-
fication for each one, i.e. for different convergence rates. In the above example, we maintained the
scalar endogenous variable for simplicity.

The 7, can be thought of as a version of the concentration parameter; it determines the con-
vergence rate of estimators of dpg just as the concentration parameter does in other settings. For
rn = n, the convergence rate will be \/n where Assumptions 1 and 2 permit K to grow as fast as
the sample size. This corresponds to a many instrument asymptotic approximation like Kunit-
omo (1980), Morimune (1983), and Bekker (1994). For r,, growing slower than n, the convergence
rate will be slower than 1/4/n, which leads to an asymptotic approximation like that of Chao and
Swanson (2005).

Assumption 3: There is a constant, C, such that conditional on Z = (T, Z), the observations
(e1,U1), ..., (€n, Uyp) are independent, with Ele;| Z] = 0 for all i, E[U;|Z] = 0 for all i, sup; E[e?|Z] <
C, and sup; E[|U;||?|2] < C, ass.

In other words, Assumption 3 requires the second conditional moments of the disturbances to

be bounded.
Assumption 4: There is a mx such that ;" ||z — T Zi|* /n — 0 aus.

This condition allows an unknown reduced form that is approximated by a linear combination
of the instrumental variables. These four assumptions give the consistency result presented in

Theorem 1.

THEOREM 1: Suppose that Assumptions 1-4 are satisfied. Then, rﬁlﬂS;l(S—éo) 250,06 % 6,

ra 28! (6 — 50) -2 0, and & -2 6.

The following additional condition is useful for establishing asymptotic normality and the con-

sistency of the asymptotic variance.

10



Assumption 5: There is a constant, C' > 0, such that 327" ||z]|* /n? — 0, sup; E[}|2] < C,
and sup; E[|U;]|*|2] < C as.

To give asymptotic normality results, we need to describe the asymptotic variances. We will
outline results that do not depend on the convergence of various moment matrices, so we write
the asymptotic variances as a function of n (rather than as a limit). Let 02 = E [¢?|Z] where, for

notational simplicity, we have suppressed the possible dependence of O'Z-Q on Z. Moreover, let

H, = ZZ’ 25 /n, Q"*ZZZ

v, = S,'> P} UU’|Z] 21— Py) 7% + E[Uieil 2)(1 = Pu) ' E[e;Uj| 2)(1 = Pyy) ') Sy Y,
i#£]
Hn = Z(l_Pii)Zi ;/n, Qn:Z(l—Pﬁ)%izgaiz/n,
=1
v, = S5, PL(E[UU]|Z)0? + E[Usei| 2)E[e;Uj| 2]) S,
7]

When K/r, is bounded, the conditional asymptotic variance given Z of S;L(g —dp) is

and the conditional asymptotic variance of S, (§ — dg) is
Vi = H, Y (Q, + 9, H, L

To state our asymptotic normality results, let A'/2 denote a square root matrix for a positive

semi-definite matrix A, satisfying AY/2A4/% = A. Also, for nonsingular A, let A=1/2 = (A1/2)~1

THEOREM 2: Suppose that Assumptions 1-5 are satisfied, 01»2 >C >0 a.s. and K/ry, is bounded.

Then V,, and V,, are nonsingular a.s.n, and

V28,8 = 80) < N(0, 1), Vi Y2806 = 60) = N(0, Iy).

The entire 5,, matrix in Assumption 2 determines the convergence rate of the estimators, where

S! (6 — 8o) = diag (pi1n, ..., pian) S (6 — 6o)

11



is asymptotically normal. The convergence rate of the linear combination 695’;(5 — dp) will be

1/jn, where e; is the 4% unit vector. Note that
Y; = XZI(SQ +u; = Zé diag (Hlna cey ,U,Gn) S;l(so + U;(S() + &;.

The expression following the second equality is the reduced form for y;. Thus, the linear combination
of structural parameters 695;150 is the j% reduced form coefficient for y; that corresponds to the
variable (fjn/v/n) zij. This reduced form coefficient is estimated at the rate 1/u;, by the linear
combination 6;5;18 of the IV estimator 4. The minimum rate is 1 /+/Tn, which is the inverse square
root of the rate of growth of the concentration parameter. These rates will change when K grows
faster than r,.

The rate of convergence in Theorem 2 corresponds to the rate found by Stock and Yogo (2005b)
for LIML, Fuller’s modified LIML, and B2SLS when r, grows at the same rate as K and slower
than n under homoskedasticity.

The term ¥,, in the asymptotic variance of 6 and the term ¥, in the asymptotic variance of §
account for the presence of many instruments. The order of these terms is K/ry, so if K/r, — 0,
dropping these terms does not affect the asymptotic variance. When K /7, is bounded but does not
go to zero, these terms have the same order as the other terms, and it is important to account for
their presence in the standard errors. If K/r, — oo, then these terms dominate and slow down
the convergence rate of the estimators. In this case, the conditional asymptotic variance given Z
of \/rn/KS! (5 — &) is

Vi = Hy N ro/ K)U, H, Y,

and the conditional asymptotic variance of +/r,, /K S/, (6 — do) is

Vi =H, (r,/K)V,H," .

n

When K /r, — oo, the (conditional) asymptotic variance matrices, V.* and V,*, may be singu-
lar, especially when some components of X; are exogenous or when different identification strengths
are present. In order to allow for this singularity, our asymptotic normality results are stated in

terms of a linear combination of the estimator. Let L,, be a sequence of ¢ x G matrices.

THEOREM 3: Suppose that Assumptions 1-5 are satisfied and K/r, — oo. If L, is bounded
and there is a C > 0 such that Amin (LnV;L;l) > (C a.s.n then

(L VL) ™ Lun/rnJK S (5 — 60) 2 N(0, T).
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Also, if there is a C > 0 such that Amin (L, VL)) > C a.s.n, then

(L VL) ™ Lon/rn K S (8 — 60) 2 N(0, T).

Here the convergence rate is related to the size of (W )Sr. In the simple case where J is a
scalar, we can take S,, = /7, which gives a convergence rate of VK /Tn. Then the theorem states
that (rn INK ) (6 — &o) is asymptotically normal. It is interesting that v/K /r, — 0 is a condition
for consistency in this setting, as well as in the context of Theorem 1 above.

From Theorems 2 and 3, it is clear that the rates of convergence of both JIV estimators depend
in general on the strength of the available instruments relative to their number, as reflected in the
relative orders of magnitude of r,, vis-a-vis K. Note also that, whenever r,, grows at a slower rate
than n, the rate of convergence is slower than the conventional \/n rate of convergence. In this
case, the available instruments are weaker than assumed in the conventional strongly identified
case, where the concentration parameter is taken to grow at the rate n.

When Py; = Z{(Z'Z)~1Z; goes to zero uniformly in i, the asymptotic variances of the two JIV
estimators will get close in large samples. Since Y. | P;; = tr(P) = K, P goes to zero when K
grows more slowly than n, though precise conditions for this convergence depend on the nature of
Z;. As a practical matter, P;; will generally be very close to zero in applications where K is very
small relative to n, making the jackknife estimators very close to each other.

Under homoskedasticity, we can compare the asymptotic variances of the two JIV estimators.
In this case, the asymptotic variance of 6 is

Vo = Vi V2, Vii=0’H,', V?=S,"0"EUU])Y P}/(1- Py)?’S,"
i#]
+S, EUisi] E[Ufe))S, " Y PR(1— Pu) ™ (1= Pyy) ™"
i)
Also, the asymptotic variance of 5 is

n
Vo = Viev:i vi=s2m! [Zu — Pn-)inz;/n] H 1
=1

Ve = S,' (FPE[UU]) + E[Us]E[Ujei]) S, Y P}
i#]
By the fact that (1—P;)~! > 1, we have that V,2 > V2 in the positive semi-definite sense. Also, note

that V! is the variance of an IV estimator with instruments z;(1 — P;;) while V! is the variance of

13



the corresponding least squares estimator, so an < V,L. Thus, it appears that in general we cannot
rank the asymptotic variances of the two estimators.
Next, we turn to results pertaining to the consistency of the asymptotic variance estimators and

to the use of these estimators in hypothesis testing. We impose the following additional conditions.

Assumption 6: There exists m, and C > 0 such that a.s. max;<y ||z — ™ Z;i|| — 0 and

supi ||z < C.

The next result shows that our estimators of the asymptotic variance are consistent after nor-

malization.

THEOREM 4: Suppose that Assumptions 1-6 are satisfied. If K/ry, is bounded, then S;LVSn —
Vi, 2 0 and S;LVSn —V, & 0. Also, if K/r, — oo, then rnS;Lf/Sn/K —Vr 250 and
S\ VSu/K —V* 25 0.

A primary use of asymptotic variance estimators is conducting approximate inference concerning

coefficients. To that end, we introduce Theorem 5.

THEOREM b5: Suppose that Assumptions 1-6 are satisfied and that a(d) is an € x 1 wvector
of functions such that: i) a(d) is continuously differentiable in a neighborhood of dy; ii) there
is a square matriv, B, such that for A = 0a(d)/0d', B,AS, Y is bounded; and iii) for any
o = 00, (k=1,....,0) and A = [9a1(0)/0, ..., Dar(5)/dd], we have Bn(A — A)S; Y L5 0. Also
suppose that there is C > 0 such that Amin(BnAS, YV,SYA'Bl) > C if K/ry, is bounded or
Amin(BpAS-YV*S—IA'B! ) > C if K/ry — 00 a.s.n. Then for A = da(6)/9,

n

(AV A))~1/2 [a(é) - a(ao)} 4, N(0, 1)

If there is C > 0 such that Amin(BnAS,; YV, S YA'BL) > C if K/ry, is bounded or
Amin(BrAS;VV*STA'B! ) > C if K/, — oo a.s.n, then for A = da(6)/ds,

(AV ANy~1/2 [a(S) - a(ao)} 4. N (0, 1).
Perhaps the most important special case of this result is a single linear combination. This case

will lead to t-statistics based on the consistent variance estimator having the usual standard normal

limiting distribution. The following result considers such a case.
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COROLLARY 6: Suppose that Assumptions 1-6 are satisfied and c and b, are such that b,c’S; Y is
bounded. If there is a C > 0 such that b2¢' S; V'V, S te > C if K/ry, is bounded or b2’ S;; YV S e >
Cif K/r, — o0 a.s.n, then )

Cl(—_fSO) ~4, N(0, 1).
Veve
Also if there is a C > 0 such that b2’ S, YV, S, e > C if K/ry, is bounded or b2c' S, Y'V*Ste > C

if K/rp, — o0 a.s.n, then

d(6—68) a

= —>N(07 1)
VVe

To show how the conditions of this result can be checked, we return to the previous example
with one right-hand side endogenous variable. The following result gives primitive conditions in

that example for the conclusion of Corollary 6, i.e. for the asymptotic normality of a t-ratio.

COROLLARY T7: If equation (2) holds, Assumptions 1-6 are satisfied for z; = (Z}1, zic), ¢ # 0 is
a constant vector, either a) r, = n or b) K/ry, is bounded and (—m1,1)c # 0 or ¢) K/r, — o0,
(—m1,1)c # 0, E[UZ,|Z] is bounded away from zero, and the sign of Ele;U;c|Z] is constant a.s.,

then

The proof of this result shows how the hypotheses concerning b,, in Corollary 6 can be checked.
The conditions of Corollary 7 are quite primitive. We have previously described how Assumption
2 is satisfied in the model of equation (2). Assumptions 1 and 3-6 are also quite primitive.

This result can be applied to show that t-ratios are asymptotically correct when the many
instrument robust variance estimators are used. For the coefficient dg of the endogenous variable,
note that ¢ = eg, so (=7, 1)c = 1 # 0. Therefore, if E[U2,|Z] is bounded away from zero and the
sign of E[e;Ug|Z] is constant, it follows from Corollary 7 that

dc — o d,
VVoa

Thus, the t-ratio for the coefficient of the endogenous variable is asymptotically correct across a

N(0,1).

wide range of different growth rates for r, and K. The analogous result holds for each coefficient J;,

Jj < Gu, of an included instrument as long as m1; # 0 is not zero. If m1; = 0, then the asymptotics
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are more complicated. For brevity, we will not discuss this unusual case here. The analogous results

also hold for d¢.

4 Concluding Remarks

In this paper, we derived limiting distribution results for two alternative JIV estimators. These
estimators are both consistent and asymptotically normal in the presence of many instruments under
heteroskedasticity of unknown form. In the same setup, LIML, 2SLS, and B2SLS are inconsistent.
In the process of showing the asymptotic normality of JIV, this paper gives a central limit theorem
for quadratic (and, more generally, bilinear) forms associated with an idempotent matrix. This
central limit theorem has already been used in Hausman et al. (2007) to derive the asymptotic
properties of the jackknife versions of the LIM L and Fuller (1977) estimators and in Chao et al.
(2010) to derive a moment based test that allows for heteroscedasticity and many instruments.
Moreover, this new central limit theorem is potentially useful for other analyses involving many

instruments.

5 Appendix A - Proofs of Theorems

We define a number of notations and abbreviations which will be used in Appendices A and B. Let C
denote a generic positive constant and let M, CS, and T denote the Markov inequality, the Cauchy-Schwartz
inequality, and the triangle inequality, respectively. Also, for random variables Wj, Y;, and 1; and for
Z=(Y,2), let w; = EIW;|Z], W; = W; —wy, 5 = E[Y| 2], Vi = Yi — §i, 0 = Eil 2], i = ni — 7,

Y= (ylv ----:gn),: w = (U_}l, "~7u_}n),7

o S o _ =2 :
Aw = max W], fiy = max [gi], iy = max |5, oy = maxVar [Wi| 2],
52 = maxVar[Y;|Z], and 6,% = max Var [n;| Z],

1 <n 1 <n

where, in order to simplify notation, we have suppressed dependence on Z for the various quantities (w;,

Wi, Ui, }7;-,771-7 Tis oW s [y 5 [y, 512/‘,7 5%/, and 5727) defined above. Furthermore, for random variable X, define

1X1 L,z = VE[X?Z].
We first give four lemmas that are useful in the proofs of consistency, asymptotic normality, and consis-

tency of the asymptotic variance estimator. We group them together here for ease of reference because they
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are also used in Hausman et. al. (2007).
Lemma Al: If, conditional on Z = (Y, Z2), (W;,Y;)(i = 1,...,n) are independent a.s., W; and Y;

S Wh)'|2],
j = E|(Y1,...Y)|2], 6w, = maxic, Var (Wi 2)Y?, 6y, = maxic, Var (Y;|2)Y?, and D,, =

are scalars, and P is a symmetric, idempotent matrix of rank K, then for w = E[(W7,..

K 5124,” 5)2/71 + 5124,” 7y + 512/71 w'w, there exists a positive constant C' such that
2
Z Pl]WZY3 — Z Pijlﬂiﬂj <CD, a.s.
i#] i#] Lo, Z
Proof: Let W W; — w; and Y Y: — ;. Note that
Y PyWiYy =Y Pywigy =y PyWi¥i+ ) PyWig; + ) PiywY;
i i i i i#j
Let Dy, = 0'12,[, O'Y Note that for ¢ # j and k # ¢, F [W YW, YHZ} is zero unless ¢ = k and j = £ or
i=/{and j = k. Then by CS and }_, Pij = Py,
~ o~ 2 -~~~
E [(Z Py Yiw;) 12} = SO PyPuE WiV Wi 2]
7] —
i#] k#L
= > P} (EWR?IZIEIV?I2) + EIW:Yi| 21 EW,Y; 2]
i#£]
< 2Dy, Y PE<2D1,»  Pi=2D1,K
i i
Also, for W = (Wl, - Wn)’, we have Z#j PijVNVigjj = WPy — > P;;y;W;. By independence across i
conditional on Z, we have F [WW’]Z < 5‘2,%[” a.s., so

E((yPW)*|2] = §PEWW'|2]Py <oy, 5Py < o4, 7'7,
N2 ]
E {(ZZ PiigiWi> 2] = Z EWZ|21y; < 61y, 70
Then by T, we have
—! DT 2 — 1T 2 < —2 /-
H Pz]Wzyj‘ ” Z Y PW‘ Lz + HZZ Py Wi Lz Cow, vy a.s. Pz.

Interchanging the roles of Y; and W; gives

PU_) v

< C&%/nu_/ﬁ) a.s. The conclusion then

follows by T. B
Lemma A2: Suppose that, conditional on Z, the following conditions hold a.s.: i) P = P(Z) is a sym-

metric, idempotent matrix with rank(P) = K and Pj; < C < 1;ii) (Wip, U1, 1), <., (Whn, Up, ) are
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independent and D,, = Y"1 | E[W;, W/ | Z] satisfies || Dy|| < C as.n; iil) E[W],|Z] = 0, E[U;| 2] =

0, E[;|Z] = 0 and there exists a constant C' such that E[|U;[|*|Z] < C and E[e}2] < C; iv)
S B [HVVmH4 \Z} 2% 0; and v) K — 00 as n — 00. Then for
Sn S ) Pl (EUU]|Z)E[E}|2) + E[Usei| 2] Ele;Uj| 2]) /K
i#]

and any sequences C1p, and ¢z, depending on Z of conformable vectors with [|c1p| < C, |lc2n|| < C, and

En =, Dncin + &y, Xncan > 1/C asn, it follows that
- d
Y, = 551/2(Clln Z Win + C/2n Z UiPiJEj/\/?) — N (O, 1) ,a.S.;
i=1 itj
ie. Pr(Y, <ylZ) 25 O (y) for all y.

Proof: The proof of Lemma A2 is long and is deferred to Appendix B.

The next two results are helpful in proving consistency of the variance estimator. They use the same

notation as Lemma Al.

Lemma A3: If, conditional on Z, (W;,Y;)(i = 1,...,n) are independent and W; and Y; are scalars,

then there exists a positive constant C' such that

2

< CB, a.s.,
L2.2

2 2
sz‘yﬁj PiWiY; — B [Zi;ﬁj P"fWin’Z] ’
where By, = K {63,6% + 63, 1% + 13,03 } .
Proof: Using the notation of the proof of Lemma A1, we have
> R - X R, = ST + S s + Y R
i#] i#] i#] i#] i#]
As before, for i # jand k # ¢, K [WZ};}Wk%\Z} iszerounless ¢ = k and j = for¢ = £ and j = k. Also,
|P;j| < P < 1 by CS and Assumption 1, so P;ﬁ < PZ% Also, Zj PZZJ = P;;, so

~ ~\2 -~~~
E[(Z#‘ijjWiY» |Z} = Y > P PYE [WinWkYAZ}
itj kel
= S i (B[Waz| B[V212] + B [WitiiZ] B [W,712])
i
< 26406y Y P <2Koy6y a.s.

i#]
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Also, ZZ £ P%VT/} y Z “yZ ; where PZJ = PZ By independence across ¢ conditional on Z,
we have E[WW’\Z] < 512,[,”]”, S0

E((y' PW)*| 2]

§ PEIWW'|Z]Py < 6%,y Py = Zyz Pty < atvity ZP P
B,g:k i.7:k

- Y (X0 X | <ot S Hh < Ko o
k

)

B [(ZZ Pz%’ﬂiwi) ] Z EW?|Z]5} < Koty iy a.s.
Lo,Z HZ Gl

Z#j Pijwz-YjHLz - < C’KﬂW&Y a.s. The conclusion then

< CK&%,V/Z% a.s.

Then by T, we have
L27

< w2

S PAWig (

Interchanging the roles of Y; and W; gives

L2,Z

follows by T. B

As a notational convention, let Zi;ﬁj;ﬁk denote Zj# Zk¢{i,j}'
Lemma A4: Suppose that there is C' > 0 such that, conditional on Z, (W1,Y1,m1), ..., (Wh, Yy, 1)
are independent with E[W;|Z] = a;/v/n, ElY;|Z] = bi/yn, |ai| < C, |b)| < C, E?|2] < C,
Var(W;|2) < C/ry, Var(Yi|Z) < C/ry, there exists m, such that max;<y, |a; — Zim,| = 0, and
\/?/rn —— 0. Then

An=E | Y WiPymPyYj|Z| = 0y(1), Y WiPymPi;Yj — Ay = 0.
i#j#k i#j#k

Proof: Given in Appendix B.

Lemma A5: If Assumptions 1-3 are satisfied, then

i) S tHSY ZZZ (1= Pij) 25 /n+ 0p(1)
i#]
St Y XiPy(1 = Pjj) ey = Op(1 + /K /ry)
i#j
i) S, HS, V= 2Pz /n+ op(1)
i#j
SglinPijEj :Op(1+ K/’I”n)

i#]
Proof: Let e}, denote the k™ unit vector and apply Lemma Al with Y; = e;Sngi = zik/V/n+ eQESglUi

and W; = eZSngi(l — P;;)~ ! for some k and £. By Assumption 2, Amin(S,) > C/7, implying HS,?I H <
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C/\/r_n Therefore a.s.
EYi|Z] = zi /v, Var(Y;|Z2) < C/rp, EIW,| Z] = zi/v/n(1 — Py),Var(W;|2) < C/ry,.

Note that a.s.

VKow,ov, < CVK/rq, — 0,6w,\/§5<Crp'? [> 22 /n—0,
7
sy, Ve <

Cryt 2\/ > (1= Pa)?/n < Cr (1 — max Py)~ \/ﬂ 0

Since €},5;, 1]’175' Ve, = €LSn Zwﬁj X; PZ]X/S_I/Gg/(l — Pj;) = Z#j Y;P;;W; and Pj;w;y; =
P;jzipzje/n(1 — Pj;), applying Lemma Al and the conditional version of M, we deduce that for any v >
0 and A, = {|e},S; ' HS, Ve, — > iz ezl (1 — ij)_lz;eg/n > v}, P(A,|2) 3 0. By the
dominated convergence theorem, P (Ay,) = E [P (Ap|Z)] — 0. The above argument establishes the first
conclusion for the (k, K)th element. Doing this for every element completes the proof of the first conclusion.

For the second conclusion, apply Lemma Al with Y; = e;CSg LX; as before and W; = ¢; /(1 = Py).
Note that w; = 0 and &, < C. Then by Lemma Al,

E[{e}S, 'Y XiPyj(1 = Pyy)~'e;}? 2] < CK/ry + C.
i#j

The conclusion then follows from the fact that E[A,|Z] < C implies A,, = Op(1).

For the third conclusion, apply Lemma Al with Y; = e;CSJIXi as before and W; = e%S,:lXi, SO a.s.

VEow,oy, < CVE 1 — 0,6w,\/75 < Cr, '\ 22 /n — 0,6y, V' — 0.

The fourth conclusion follows similarly to the second conclusion. B
Let H,, = Yo zizi/noand Hy =Y, (1 — Py)zizl /n.

Lemma A6: If Assumptions 1-4 are satisfied, then
S;YHS Y = H, + 0,(1), S, P HS, Y = Hy, 4 0,(1).

Proof: We are going to use Lemma A5 and approximate the right-hand side terms in Lemma A5 by H,, and

H,. Let z; = Z?:l P;jz; be the ith element of Pz and note that
Yolzi—zl?/n = I(I=P)z|?/n=tr(Z'(I = P)z/n) = tr[(z = Zni,) (I — P)(z — Z7,) /1

< trl(z — Zrlk,) (z — Z7l,) /0] = ZHZz TnZill> /n — 0 a.s. Pz.
=1
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It follows that a.s.

IA

>z —z)(1 = Pa)'2i/n

i

Zsz zll (1= Pi)~ 2| /n
VZ 5l ”\/ S0 - Pa) 2l o — 0.

IN

Then
> wiPi(L= P75 n = Y ziPy(1- P J/"_ZZZ i zi/n
i#j bJ
= Zzz( zz -t ,/n_zzz 7 /n
— +Z i — 2)(1 — Py) Y2l /n = Hy, + 04.5(1).

The first conclusion then follows from Lemma A5 and the triangle inequality. Also, as in the last equation,

we have

ZziPijz;/n = ZziPijzé-/n—ZBizizz’-/n:Zzzz{/n—zpﬁzizg/n

i#£]
= H, +Z Nz /n = Hp + 04.5(1),

so the second conclusion follows similarly to the first. B

Proof of Theorem 1: First, note that by Amin (SnS),/7n) > Amin (5’5’) > C, we have

|

Therefore, S,/l(g —00)/\/Tn 2,0 implies PN dp. Note that by Assumption 2, H,, is bounded and

S (6 —60)/\/Tm

> Aumin (S S /) 2 3 = 60| = € |5 = 5o

)\mm(ﬁn) > (C a.s.n. For H from Section 2, it follows from Lemma A6 and Assumption 2 that with
probability approaching one Amin(.S,, g S 1) > C as the sample size grows. Hence (S; g Sv >_
Op(1). By eq. (1) and Lemma A5,
ra 2900 = 00) = (S, PHS M) TR Y D XiPyéy /e = Op(1)0p(1) == 0.
i#]

All of the previous statements are conditional on Z = (T, Z) for a given sample size n, so for the
random variable R, = 7’;1/25’ (6 — o), we have shown that for any constant v > 0, a.s. Pr(||R,| >
v|Z) — 0.Then by the dominated convergence theorem, Pr(| R, || > v) = E[Pr(|R,| > v|Z)] — 0.

Therefore, since v is arbitrary, it follows that R,, = r, 1 25@ (5 —do) L£,0.
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Next note that Py; < C' < 1, so in the positive semi-definite sense in large enough samples a.s.,
H, =) (1—-Pi)zz/n>(1-C)H,.

Thus, by Assumption 2, H, is bounded and bounded away from singularity a.s.n. Then the rest of the

conclusion follows analogously with B replacing & and H,, replacing H,,. &

We now turn to the asymptotic normality results. For the following, let & = €; when considering the
JIV2 estimator and let §; = ¢;/(1 — P;;) when considering JIV1.
Proof of Theorem 2: Define

Yo = zi(l—Pa)&/Vn+ 5,1 Y UiPyg;.
i i£]
By Assumptions 2-4,

EU\ZL1<Z¢—@>&/¢E)\2|Z} =3 s EEIZ] n<CY Ja—E] fn 20,

Therefore by M,

St D XiPitj — Yo = Z — %) &/vn = 0.
i#j
We now apply Lemma A2 to establish asymptotic normality of ¥;, conditional on Z. Let Iy, = Var (Y,|2),

=)
Iy = Zzz — Pa)’E[6]|2)/n+ 5,1 Y PL (EUU| Z)E[€| 2] + ElU&I|ZIE[U| 2]) S, V.
i#]
Note that /7, S; ! is bounded by Assumption 2 and that Z#j Pfj/K < 1, so by boundedness of K/r,
and Assumption3, it follows that |Ty|| < C a.s.n. Also, E[€2|Z] > C > 0, so

r, >Zzz Py 2E[gZ\Z/n>cZz1 Zh/n.
i=1

Therefore, by Assumption 2, Apin(I'y) > C > 0 a.s.n (for generic C' that may be different from above). It
follows that Hl—‘glu < Casn.

Let a be a G x 1 nonzero vector. Let U; be defined as in Lemma A2 and &; be defined as &; in Lemma
A2. In addition, let Wy, = 2z;(1 — Py)&//n, cin = l—‘;lﬂa and cop, = \/KSgnglﬂa. Note that
condition i) of Lemma A2 is satisfied. Also, by the boundedness of ZZ 22} /n and E[£2|Z] a.s.n, condition
ii) of Lemma A2 is satisfied; condition iii) is satisfied by Assumptions 3 and 5. Also, by (1 — P;;)~! < C
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and Assumption 5, > " | F [HWmH4 |Z} <CYn, [ 25]|* /n2 225 0, so condition iv) is satisfied. Finally,
condition v) is satisfied by hypothesis. Note also that c1, = 'y, 1/2 o and cop, = (x/K / rn> NS I, 1 20
satisfy ||c1n]| < C and ||con|| < C as.n. This follows from the boundedness of /K /7y, \/TnS;t, and

r, 1 Moreover, the =, of Lemma A2 is

En=Var( canWm + CznZUPzgfj/\/_’Z) Var(o'T;Y?Y,|2) = oo
]

by construction. Then applying Lemma A2, we have

(/a) ? /T Y, = ”—1/22% m+02nZUPU§J/\/_)—>N(O 1) as.
i#]

It follows that O/Fﬁl/zyn 4,

N (0,d/@) a.s., so by the Cramér-Wold device, F;l/QYn AN (0,1g) a.s.

Consider now the JIV1 estimator where § = &;/(1 — P;;). Plugging this in the expression for I,
above, we find I';, = Q,, + ¥,, for Q,, and ¥,, defined according to Assumption 5. Let V,, also be as
defined in Assumption 5 and note that B, = Vj, 1/ ’A 1F1/ is an orthogonal matrix since B, B], =
Vi 1/2V Vi “Ur_ Also, B, is a function of only Z, ‘ Vi UZH < C asn because Apin(V) > C > 0

ry/? ‘ < C asn. By Lemma A6, (S, HS,;Y)~" = H, ' + 0,(1). Note that if a random

variable W, satisfies ||| < C a.s.n, then W, = O,(1) (note that 1(||W,]| > C) <% 0 implies that
E[1(||Wy] > C)] = Pr(||Wy]| > C) — 0). Therefore, we have

Vo5 STy ITY2 — V2ot op(l))Rlﬂ = B, +0p(1).

Note that because Fﬁlen AN (0,1g) a.s. and B, is orthogonal to and a function only of Z, we
have BHF;LI/Q
¢ = (1 — Pj;)"tej, we have

Y, N N (0,1g). Then by the Slutsky lemma and § = &g + H ! Zi;ﬁj X, P;;&;, for

V2S00 —60) = Vi VASTTHTIS, TS D XaPygy =V VRS, T HS ) T Y + 0p(1)]
i#j
= [Bu+ 0p(D][T5 2V, + 0,(1)] = BT /%Y, + 0,(1) 5 N (0, 1I5)

which gives the first conclusion. The conclusion for JIV2 follows by a similar argument for & = ;. B

Proof of Theorem 3: Under the hypotheses of Theorem 3, 1, / K — 0, so following the proof of Theorem
2, we have WZ?:l zi(1 — Py)&//n - 0. Then similar to the proof of Theorem 2, for V;, =
VSt Dz UiPij€j/VK, we have \/r,/KS; ! > iz XiFij& = Yn + 0p(1). Here let

T = Var (Ya|2) = 1,8, 0 Y P2 (E[UU/ Z)E[€2| 2] + E[U&| Z)E[UE;12]) S,V /K.
i#]
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Note that by Assumptions 2 and 3, |I'y|| < C a.s.n. Let L, be any sequence of bounded matrices with
Amin(EaTnLl) > C > 0 asn, and let Y, = (L, T,L,) "
apply Lemma A2 with Wy, = 0, ¢; = &, c1n, = 0, and co, = o (LnFnL')

L,Y,,.Now let a be a nonzero vector and
V2 L /TSl We
have Var (C’2n Z#j UiPijﬁj/\/E]Z) = o’a > 0 by construction, and the other hypotheses of Lemma
A2 can be verified as in the proof of Theorem 2. Then by the conclusion of Lemma A2, it follows that
'Y, <, N(0,c'a) a.s. By the Cramér-Wold device, a.s. Yy, <, N(0,1).

Consider now the JIV1 estimator and let L, be specified as in the statement of the result such that
Amin (LaVLL) > C > Oasn. Let Ly = LyHy s0 L,V L, = LT, L/, Note that ||(L,[\L,)
C and }/2" < C as.n. By Lemma A6, (S, 'HS; V)1 = H ' + 0p(1). Therefore, we have

<

—1/2 -1/2 —1/2

(LaTnLl) 2 Lo(S7 S Y)Y = (LT Ll) 2 Lo(H;  + 0p(1)) = (LaTWLl) Y2 Ly + 0p(1).

Note also that /7, /KS;, ! Doz Xibii(1— Pjj)7le; = Op(1). Then we have

(L VL) ™ Lun/rn K SL(3 — 60)
%)71/2L( HS) TN /K S, 1ZXP1J (1= Pyy)~"

7]
= [(Lalall) ™ L+ 0p(1)] Vo + 0p(1)] = Yo+ 0p(1) = N (0,10)

The conclusion for JIV2 follows by a similar argument for & = ;. B

Next, we turn to the proof of Theorem 4. Let & = (y; — X16)/(1 — P;;) and & = &;/(1 — Py) for JIV1
and él =y — XZ’S and & = g; for JIV2. Also, let
X, = S,'X;, % = Z XiPi&fPrj X}, 5o = ZP% (XZX;é? + XZ§Z$JX§> )
ik i
D= Y KPPy X) S = Y PR (XiXigl + X6t X))
ik i3
Lemma AT7: If Assumptions 1-6 are satisfied, then 31 — 31 = 0,(1) and 3y — X3 = 0,(K /7).
Proof: To show the first conclusion, we use Lemma A4. Note that for § = § and X; P = X;/(1 - Py)
for JIV1 and § = ¢ and XZ-P = X, for JIV2, we have 5 25 8§ and 53 — fZQ = —2&Xf'(5 — o) +
[Xipl(é - 50)} ’ . Let 1; be any element of —2&; X" or X' X', Note that S,,/v/n is bounded, so by the
Cauchy-Schwartz inequality, || ;|| = ||Snzi/v/n|| < C. Then

E[1}|2] < CEIE}| 2] + CE[|X:))* |2] < C + C||il* + CE[|U;]* | 2] < C.
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Let An denote a sequence of random variables converging to zero in probability. By Lemma A4,
A Z Xz‘PiknkPk:ng/‘ = 0p(1)O0p(1) 0.
i#jFk

From the above expression for 5?—512, we see that 21—21 is a sum of terms of the form A Zi##k Xz‘PikUkijXJ/-,
so by the triangle inequality, il — 21 L50.

Let d; = C + |ei| + ||Ui]l, A = (1 +
and B = ||5 6|
because P;; is bounded away from 1, (1 — Pm)f < C a.s. Hence, for both JIV1 and JIV2,

for JIV1,

H ) for JIV1, A= 1+H

) for JIV2, B = H5 (50’

for JIV2. By the conclusion of Theorem 1, we have A=0 b(1) and B -2 0. Also,

X < C+ Ui <d|X “12g, & — ¢ <C(X’5 50))<0dB
& = c|xie-9) +|si|s0cziA,
g-g < (lal+é))|é -« <0d‘(1+A>diBscd?AB,
1% (6-6)| < cum'@B|%é| <o aa, < Cry 2,

Also note that because E[d?|Z] < C,

D Pididir,t | 2] <Cr ) Ph=0Cry' ) Pi=CK/ru,

i#]
S0 ), £ Pfj dzzd? - = Op(K/ry) by the Markov inequality. Then it follows that
L ~ 2.
S (XXi(&-€)) | € - €| < crt Yo PR AB = o, (K /ra)
i#j 7]

We also have

27y (Kb - Xee)| < 3or ([R5 (6 o)+ [ [%: (6 -)])
i#j i#j
< Cr,'Y Pidd5AB =o, <f(> :

i#]
The second conclusion then follows from the triangle inequality.

Lemma AS: If Assumptions 1-6 are satisfied, then

Y o= Z ZiPz’kE[fIaZ]ijZ}/n—FOp Z 2 27, E@’Z]/
i#£jF#k it
+ST?1 Z Pl% (E[UZU”Z]EK]Q’Z] + E[Uz§z|Z]E[fJUJ’|Z]) 5’;1’ + 0p<K/7“n).
i#]
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Proof: To prove the first conclusion, apply Lemma A4 with W, equal to an element of Xi, Y; equal to an
element of Xj, and N, = fg
Next, we use Lemma A3. Note that Var(ﬁ%]Z) < C and r, < Chn, so for up; = e%SﬁlUi,
E[(XuXu)?|Z] < CE[Xj, + Xji|Z] < C{zj/n® + Elui;| Z) + z/n” + Elug| Z]} < C/ry,
E[(Xa&)’|Z] < CE[(z3&/n + upg)|2] < C/n+ Cfry < Cfry.

Also, if Q; = E[U;U!| 2], then E[X;X!|Z] = zizl/n+ S; '8, and E[X:&]| 2] = S, E[U;&i| 2] Next
let W; be X;xX;¢ for some k and £, so

EW;|2] = €8, %S, Yer + zinzio/n, |EWi| 2]| < C/ry,
Var(W;|2) < E[(XuXun)?|Z) < C/rl.
Also let Y; = €2 and note that |E[Y;|Z]| < C and Var(W;|Z) < C. Then in the notation of Lemma A3,
VE(aw,oy, + 0w, fiy, + iw,0v,) < VK(C/rn + C/ry + C/ry) < CVEK /1y
By the conclusion of Lemma A3, for this W; and Y; we have

> PiXa Xyl = ey Pl (zizi/n+ 5,105, ") e BlE] | 2] + Op(VE [rn).
i#£] i£]
Consider also Lemma A3 with W; and Y; equal to Xlkfz and Xig&-, respectively, so ow,, 0y, + ow, Iy, +

aw, oy, < C/ r,. Then applying Lemma A3, we have

Z P2 Xi&i&i Xjo = €5, Z PLE[U&|Z1E[E US| 2]5, e + Op(VE /7).
i#£]j i#£]

Also, because K — 00, we have O, (VK /ry,) = 0,(K /ry). The second conclusion then follows by T. B
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Proof of Theorem 4: Note that X; = Z?:l P X;, so

Z(Xi)_({ — X; Py X] — X P X))&
=1
A, n A, n A,
= ) PuPyXiXih— ) PuPyXiXi& — > PP XX
ij,k=1 i,j=1 ij=1
= > PuPyXiXj& - PaPXiX[E = PP XX} - 22 S X X6
i,5,k=1 i#] i#]
= ) PuPyXiXj - Z S X X6
i,J,k¢{i.j}
= > PupPyXiXjG + Z PIX;X(E =Y PRXiX[E.
i£j#k i#j i=1

Also, for Z! and Zl' equal to the it row of Z and Z = Z(Z'Z)~1, we have

!

(Z ZinZuXi @) Z ZinZj0X ¢
K

n K
kzjkzzezﬂ> Xili&; X) = O ZinZi)? Xilig; X

IS
<

Il

AN
N
B

Il

MA

~

Il

MA

Nz

i,j=1 k=1
= > (Zi7;)* X6 Z 2 Xi€i€; X
i,5=1 1,j=1

Adding this equation to the previous one gives

n n
£ o= Y PaPyXiXi@+ ) PRXiXIE - Y PIXiXIEG + Y PRXi&iX]
i#j#k i#j i=1 i,j=1
= Y PuPyXiXjG 4 PUXX|E + Xi&id; X)),
i#jFEk i#]

which yields the equality in Section 2.
Let 62 = F [fﬂZ] and z; = Zj P,jzj = e;Pz. Then following the same line of argument as at the

beginning of this proof, with z; replacing X; and (7,% replacing é,%,

Z 2i PG Py Zi/n = ZU %% — PyziZ, — Pyuziz) + Phziz]) [n — ZP2
ik 7

Also, as shown above, Assumption 4 implies that ), ||z; — Zl? /n < /(I — P)z/n — 0 a.s. Then by 62
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and P;; bounded a.s. Pz, we have a.s.

Y i@z —zz)/n|| < Y 6Pzl Nz — Fll + 2 - zlP) /0
< CQ M=l /m) 2 Mz = 2017 /)2 4+ C Y llzi = 2P /n — 0,
ZU PZZ zz Ri% )/n < ZU4P2 ’ZZH /TL UQZHZ z” /n 1/2%0

It follows that

Z 2P0t Prj Zj/n = Za — Py)*zizl/n — ZP2ZZZZUJ /n+ 0q.5.(1).
i#jF#k i#]

It then follows from Lemmas A7 and A8 and the triangle inequality that

S+ 3y = Z ziPikd,%ijz;-/n + Z P2 2.2 62
ik i
+8, 1> " P2 (E[UU}| 2167 + E[U&I Z1E[EU}1 2]) 8,7 + 0p(1) + 0p (K /740)
i#]
= Za — Py) 22z 2 /n
+8, 1> " P2 (E[UU}|2]67 + E[U&I Z1EIEUS2]) S, + 0p(1) + 0p (K /70)
i#]

since €, — 0. Then for JIV1, where & = ¢;/(1 — Pj;) and O’ = 02/( ]37;7;)2, we have
143 = Q4 U, + 0p(1) + 0p(K /).

For JIV2, where §; = &; and (722 = 022, we have
143 = Q4+ U, +0p(1) + 0p(K /).

Consider the case where K /1, is bounded, implying 0,(K/ry,) = 0,(1). Then, since H,*, Q,, + ¥,,,
Hgl, and €2, + V,, are all bounded a.s.n, Lemma A6 implies

S\VS, = (S;lﬁfS;l’)*l (21 + 22) <5;1ﬁ’5;1’>71
= (Hy' +0p(1) (Q + T+ 0p(1)) (Hyt + 0p(1)) = Vi + 0p(1).
SIVS, = Vi+oy(l),

which gives the first conclusion.
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For the second result, consider the case where K/r,, — 00. Then for JIV1, where & = &;/(1 — Py;)

and diz = Ui2 /(1 — Pii)Q, the almost sure boundedness of ,, for n sufficiently large implies that we have

(ra/K) (14 52) = () K)Dn + () K) T+ (10 K)0p (1) + 0p(1) = (1) K) T + 0p(1).
For JIV2, where §; = &; and &ZZ = O'ZZ, we have

(ra/K) (514 52) = (ra/ K + (ra/ K) B + (ra/K)op(1) + 0p(1) = (ra/ K) Wy, + 05(1).
Then by the fact that H, 1, (r/K,)¥,, H,!, and (r/K,)¥, are all bounded a.s.n and by Lemma AG6,

¥ a1\ "1 [ ; 17 1\ !
SIS, = (s,; As: ’) (21 n 22> (5; a's: ’)

= (Hy'+0p(1)) (rn¥n /Ky + 0p(1)) (Hy ' +0p(1)) = Vi + 0p(1).

Similarly, S\ V'S,, = V;* + 0,(1),which gives the second conclusion. B

Proof of Theorem 5: An expansion gives

a(d) — a(dy) = A(5 — &)
for A = 9a(5)/93 where § lies on the line joining § and &g and actually differs element by element from

a(8). Tt follows from § -2~ & that & —— &o, so by condition iii), B,AS;Y = B,AS Y + 0p(1). Then

multiplying by B,, and using Theorem 4, we have

(AVA')*I/ " [a(®) — a(5)
_ (BHAS;1’5;VSnS;1A’B;) g Asvs! (5 - 50)
[(BuAS;™ + 0,(1)) (Vi + 0p(1)) (S ABL + 0,(1))] % (BLAS;Y + 0,(1)) Sl (5 - 50)
= (BaAS WS,V ABL) T B AS VS, (8- 6) + 0,(1)
(

—-1/2

B, AS; 'V, S A'B.)~? B, AS; WM2T 2 (3 - 50) +op(1) = (FuFL) 7 F)Y, + 0p(1)

for F,, = B,W‘lS',;lf/nl/2 and Y, = VH_I/QS,Q (6 — do), where the third equality above follows from the
Slutsky Theorem given the continuity of the square root matrix. By Theorem 2, Y, 4, N(0, Ig). Also,
from the proof of Theorem 2, it follows that this convergence is a.s. conditional on Z. Then since L,, =
(FnFT'L)*l/ 2F, satisfies L,L!, = I, it follows from the Slutsky Theorem and standard convergence in

distribution results that
oN-1/2 7 _ d
(AVA) [a(a) - a(50)} = LY, + 0,(1) % N(0, 1),
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giving the conclusion. W

Proof of Corollary 6: Let a(§) = ¢/, so A = A = ¢/. Note that condition i) of Theorem 5 is satis-

fied. Let B), = b,. Then B, AS, V= p,d S is bounded by hypothesis so condition ii) of Theorem 5
is satisfied. Also, By (A — A)S,:l’ = 0 so condition iii) of Theorem 5 is satisfied. If K /7, is bounded,
then by hypothesis, Amin(BnAS; YV,S;A'B!) = b2 S; YV, S-1c > C; or if K/r, — 00, then
Amin(Br AS;YVISTYA'B!Y = b2 S YV S e > O, which gives the first conclusion. The second con-
clusion follows similarly. l

Proof of Corollary 7: We will show the result for 8; the result for & follows analogously. Let v =

lim,,—oo(n/n), so v exists and v € {0, 1} by Assumption 2. Also,

SISV = SV diag (1), s 1/3/T, 1)) — R = [ \/OW —;ri ] .
Consider first the case where where r, = n so that v = 1. Take b, = ,/r, and note that bnc'S,, b=
d(rnSy ) is bounded. Also, R # 0 because R is nonsingular and ||V,|| < C a.s.n implying that
B2SVV,8 e = CRVLR'c + 045.(1). Also T, = S,le[<ZZ. 2 Pile-aj) (zl » P”UEJ) 12]5 1
is positive semi-definite, so V,, > Hglﬁanl. Also, by Assumptions 2 and 4, there is C' > 0 with
Amin (H,, 1, H Y > C asn. Therefore, a.s.n,
b2 S VS e > RE M H YR e + 0(1) > C + o(1) > C. (3)
The conclusion then follows from Corollary 6.
For v = 0, let a = (—my,1)c and note that R = (0,a) # 0. If K/r,, is bounded, let b, = /7.
Then, as before, b,c’S;, I is bounded and eq. (3) is satisfied, and the conclusion follows. If K /r, — oo,
let b, = Tn/\/E Note that bnc'S,:l’ = WC’(%SQU) — 0, so bnc'S,:l’ is bounded. Also, note

that

VS teq = diag(\/rn /1, ..., \/Tn /1, 1) [ fr (1) } eq = eq.
—m

Furthermore, a constant sign of Ele;U;q|Z] implies E[e;U;q|Z]E[ejUjg|Z] > 0,0 by Py < C < 1,

> P} (E[U%|Z]0% + Eleilic| 2 Ele;Ujel 2]) /K

i#]
> Y PIE[U%IZ)0}/K >CY Pi/K=C(>_ P} Z N/K=C(1-) P}/K)>C.
1#£] i#£] .3
Therefore, we have, a.s.,
(ra/K)Wy = IS, eal) | P} (EUR|2]0} + Eleilic| 21 ElejUjc| 2]) [ Kleg /S, Y
i#]
> Cegeg.
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Also, H,, is a.s. bounded so that )\min(H,jl) = 1/Amax(Hn) > C + 045.(1). It then follows from
R = aeg, that
VIS YviS e = rdSTVH  (r, JK)Y,H S e > Crd SV H  Yegel, H LS e

= a2C(e’C,Hgleg)2 + 04.5.(1) > C + 045.(1).

The conclusion then follows from Corollary 6. B

6 Appendix B - Proofs of Lemmas A2 and A4

We first give a series of Lemmas that will be useful for the proofs of Lemmas A2 and A4.

Lemma B1l: Under Assumption 1 and for any subset I of the set {(l,j)szl} and any subset Ig of

{(z’,j, k) k:1}7 (a) ¥ P4 < K; (b) Y PEPY < K and (o) Y Pgﬂkpjk) <K, as.n.
b Ty T3 T3
Proof: By Assumption 1, Z'Z is nonsingular a.s.n. Also, because P is idempotent, rank(P) = tr(P) = K,

n
0<P; <1l and ) Pin = P;;. Therefore, a.s.n,
j=1

n n
SIS ED SR
I i=1

ij=1
n n n n n
2 2 2 2 | _ 2 o
semo< 3 () (Sa)-srsrn-x
T3 j=1 \i=1 k=1 j=1 j=1
D_|PhPuP| < D PEY |Pabul <) PY > Pi [> P
I3 1,7 k 1,7 k k
< D PVRF <) Pi=Km
2% 2
For the next result, let S, = Z (P’L]CP_]k'PllP_]l + Piijk:PilPkl + PijPik:lePk:l) .
1 <j<k<l
Lemma B2: If Assumption 2 is satisfied, then a.s.n a) tr [(P — D)ﬂ <CK;b)| Y. PuPjpPyPj| <
1<j<k<l
CK, and ¢) |Sy,| < CK, where D = diag(P11, .., Pan)-
Proof: To show part (a), note that
(P-D)* = (P-—PD-DP+D*»?=P—PD—-PDP+ PD?>—-PDP+ PDPD + PD?*P — PD?

—-DP+ DPD+ DPDP — DPD?+ D?P — D?>PD — D3P + D*.

Note that tr(A’) = tr(A) and tr(AB) = tr(BA) for any square matrices A and B. Then, tr [(P — D)4] =
tr(P) — 4tr(PD) + 4tr(PD?) + 2tr(PDPD) — 4tr(PD?) 4 tr(D*). By 0 < P;; < 1 we have DJ < [
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for any positive integer j and tr(PD7) = tr(PD/P) < tr(P) = K a.s.n. Also, a.s.n, tr(PDPD) =
tr(PDPDP) < tr(PD?P) < tr(P) = K and tr(D*) = Y. P4 < K. Therefore, by T we have
|tr [(P — D)*]| < 16K, giving conclusion a).

Next, let L be the lower triangular matrix with L;; = P;;1(¢ > j). Then P = L+ L' + D, so

(P-D) = (L+L)'=(L*>+LL +LL+L?)?
= L*4+L°LL +L*L'L+L*L?+ L'+ LL'LL + LL'L'L + LL"

+L'LI? + L'LLL + U'LL'L + L'LL” + L”L* + L”LL' + L”?L'L + L'*.
Note that for positive integer j, [(L')]" = L7. Then using tr(AB) = tr(BA) and tr(4’) = tr(A),
tr((P — D)%) = 2tr(L*) + 8tr(L3L') + 4 tr(L2L?) + 2 tr(L'LL'L)
Next, compute each of the terms. Note that

L*) = > Pyl(i > §)Pil(j > k) Prel(k > O)Pul(¢ > i) =0,

1,5,k,¢
tr(LPL) = Y Pyl(i > j)Pil(j > k)Pedl(k > OPul(i > £) = > PyPjxPrelPu

i,7,k,¢ i>j>k>0

= > PyPyPuPu= Y PwPyPuPy= Y PiPiPuPu,
I<k<j<i 1<j<k<l 1<j<k<l

tr (LL?) = ) Pyl(i > )Ppl(j > k)Pul({ > k)Pul(i > £) = Y PyPyPuPu

i,5,k,¢ i>i>ki>0>k

= Y PyPyPuPu+ Y PyPyPuPu+ Y PyPyPul
i>j=0>k i>5>0>k i>0>5>k

= Y PyPpPyPi+ Y (PwPuPijPio+ PyPjiPiPr)
i>5>k 1<j<k<t

= ) PIPL+2 > PyPuPyPy
1<j<k 1<j<k<t
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and

tr(LLLLY) = ) Pyl(i > §)P(k > 5)Perl(k > €) Pyl(i > 0)

i7j7k7£

= Y PyPiPyPi+ Y PyPpPyPi+ Y PyPiPiPii+ Y PijPjiPuPu
j<i j<k<i j<i<k j<t<i
+ > PyPuPyPi+ | >+ Y. 4+ >+ Y. | PyPiPuPu

0<j<i I<j<k<i gj<b<k<i A<j<i<k j<t<i<k

= ZHA;_FQZ P2sz+P)7,2k +4 Z PZk‘ij ]ZPKZ

i<j 1<j<k 1<j<k</l

Summing up gives the result tr (P — D)*) = 2 dici Pé—i—ll dici<k (P%Pfk—i—P Pf,ﬁ-P%Pfk) +8S,,.

Then by the triangle inequality and Lemma B1, we have

Sul < (1/4) Y Py +1/2 Y (PGPh + PLPj + PiPL) + (1/8) tr((P — D)') < CK,
1<J 1<j<k
a.s.n, thus, giving part c). That is, Sp,= Og.s.(K).
To show part (b), take {€;} to be a sequence of i.i.d. random variables with mean 0 and variance 1 and

where €; and Z are independent for all ¢ and n. Define the random quantities

A = Z [Py Pirejer + PijPjreicr + P Pjreigj]
i<j<k

Ay = Y [PyPugjer + PyPireick] Az = Y PuPieic;.
i<j<k i<j<k

Note that by Lemma A1,

2 —
E[A2Z] = E[ZKKkaijgingkmq PyyPrqteemlZ |
= Y PuPuPuPu= > (Pe)*(P)’+2 > PuxPiPuPj
i<j<{k€} i<j<k i<j<k<l
= Ous(K)+2 Y PyPjPyP;
1<j<k<l

Also, note that

E[AsAs]2] = E[Z s PisPucion + PyPiseici) Y, PoqPrgeicm|Z

= Z Pz‘jPikPjZPM + Z HijkRZPM
i< j<k<t 1<j<k<t
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and

E [A%’Z] = F [(Zi<j<k: PijPikEjEk + PZ‘]‘iji—,‘iEk> X (Z t<m<q Pnggq{:‘mEq + Pngmq€g€q> |Z}
= Y. PyPwPyPu+ Y., PyPjPinPuk
{i,0}<j<k i<{gm}<k

+ > PyPyPmPuc+ Y PyPpPuPu
i<j<m<k 1<i<j<k

= Z P2Pj + Z PIP3 +2 Z Pij P Pyj Poy, + 2 Z Pij Pjj Pipn P

i<j<k i<j<k i<l<j<k i<j<m<k

+ Z Py Py Pji, Py + Z PjiPrePij Py
i<j<k<t i<j<k<t

= Y. PiPi+ Y. PIPh+28,=0,.(K).

i<j<k i<j<k
Since Ay = Ag + Asg, it follows that E [A3|Z] = E [A3|Z] +F [A3|Z] +2E [A2A3|Z]

= Og.5.(K) + 25, = Oq.5.(K).Therefore, by T, the expression for F [A3|Z} given above, and Az = Aj —
A27

> PuPpPuPy| < E[A3Z] + 04 (K) < E[(A1 — 82)°|Z] + Os.(K)
1<j<k<l

< 2B [A}|Z] +2E [A32] 4 O4.s.(K) < Ogs.(K). B

Lemma B3: Let L be the lower triangular matrix with L;; = P;;1(4 > j). Then, under Assumption 2,
1
|LL|| < CVK a.s.n, where ||Al| = [Tr (A’A)]?
Proof: From the proof of Lemma B2 and by Lemma B1 and Lemma B2 b), we have a.s.n

ILL|* = w(LL/LL) =Y Pi+2 Y (PAPL+PiP%)+4 Y PuPyPiPu
1<j 1<j<k 1<j<k<l

< C(K+| > PyPyPiPu) < CK.
<j<k<l

Taking square roots gives the answer.

For Lemma B4 below, let ¢; = ¢; (£) (i = 1,...,n) denote some sequence of measurable functions. In
applications of this lemma, we will take ¢; (£) to be either conditional variances or conditional covariances
given Z. Also, to set some notation, let 02 = 02 (Z) = El[e?|Z], w? = w?,(2) = E[u?|Z], and

Yi = Yin (£) = E|u;g;| Z], where in order to simplify notation, we suppress the dependence of 01»2 on Z

and of wz-2 and y; on Z and n. Let
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Lemma B4: Suppose that 7) P is a symmetric, idempotent matrix with rank(P) = K and P;; < C < 1;
1) (u1,€1), ..., (Un,€pn) are independent conditional on Z; i) there exists a constant C' such that,

as., sup; E (uf|Z) < C, sup; E (e}|2) < C, and sup; [¢;| = sup; |¢; (Z)] < C. Then, as. a)
2
b [(%ZK,C Priok (wigi —%')> !Z] —0;b) E [(%Z P2y (a —0? )) \Z] —0;
¢ E[ %Z i<k P (“ Wi )) |Z] —0;d) E [(K Z¢<j<k Py Pjor (uig; +Uj5i)>2| Z] — 0;
2.

2
[(% i<k Pkiij¢k5i5j> |3} —0;f) E [(% Zi<j<k Pkiij¢kUin) |Z] — 0.
Proof: To show part (a), note that

1 2

(f chg . Plioruic; — %‘) 1Z
1 2

= K2 Qi o TROAE (E1Z) 00} 4 gm Do o BB (u]12) — o)
1
1 e ve o Tk {VE G E12) + £ 0212) B (12

2
T e s ko1 < o PEER 04 101 {%E (ul2) E (42) + B (u22) B (s§|z)}

! 4 2 2 2
= C{ﬁzl<i<k<npki+le<i<k<l<npkif)li}_)07

where the first inequality is the result of applying T and a conditional version of CS, the second inequality

)
e) b

E

IN

follows by hypothesis, and the convergence to zero almost surely follows from applying Lemma B1 parts (a)
and (b). Parts (b) and (c) can be proved in essentially the same way as part (a); hence, to avoid redundancy,
we do not give detailed arguments for these parts.

To show part (d), first let L be a lower triangular matrix with (i,j)th element L;; = Pj;1(i > j) as
in Lemma B3 above, and define D., = diag (71, ..., ¥n), Dy = diag (¢1, ..., on), u = (u1,...,u,)" , and
e=(e1,..., 8n)/. It then follows by direct multiplication that

€'L'DyLu—tr {L'DyLD,} = > Phow (wei — ) + > Ppi Pejor, (uicj + ujei) ,

I<i<k<n I<i<j<k<n
so that by making use of Loeve’s ¢, inequality, we have that

1 2
—E [(ZK oo o PP (uiaj+ujai) | 2

1 2
< 2ﬁE[(u’L’D¢L5—tr{L’D¢LD7}) \Z +2 E[ 1<Z<k<nP,?i¢k(um—%)) \1})

2
It has already been shown in the proof of part (a) that 1/K2 [ <i<h<n P2 oy, (uiei—’yi)> |Z} —

0 a.s. Pz, so what remains to be shown is that (1/K2) [(U’L’Dd,Ls —tr {L’D¢LD7}) ]Z} — 0 a.s.
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Pz. To show the latter, note first that, by straightforward calculations, we have

%E (/L'DyLe — tr {I'D4LD,})* | 2|
= %tr {(L'DyL @ L' D4L) E [ev’ @ eu/|Z]} — % [tr {L'DyLD,}]*. (5)

Next, note that, by straightforward calculation, we have

E[ev @ eu|Z]

2 2 / 2,2 / 2,2 / 2 / ! !
o1Wwi€1ey O Wwr€icy -t T1WRCiCy 7i€1er  M72€261 o Y1Tnén€
2 2 / 2,2 / 2,2 / / 2 / !
U2W1€2€1 0‘2(&)26262 ce U2wn€2€n + ’}/2'716162 "}/26262 s ’}/Q'Ynene2
2,2 / 2,2 / 2,2 / / ! 2 /
O WiEn€l OpWwien€y -+ 0,W;,Ene, YnY1€1€, YnY2€2€, - °* YrnEn€n
191616’1 0 0 "}/1®ny 0 0
nxn nxn nxn nxn
/
ngn 1926262 o ’I’LQ’I’L ngn ’}/2 ® -D’y o ’I’LQ’I’L
+ +
/
0 0 <o Unepen 0 0 o Mm®Dy
nxn nxn nxn nxn

= (Do ® In) vec (In) vee (In)' (Du @ In) + (Dy ® I) Koy, (Dy ® In) + E'DyE + (Dy @ D-)(6)

2 2

where K,,,, is an n® X n* commutation matrix such that for any n x n matrix A, K, ,vec (A) = vec (A’).
(See Magnus and Neudecker, 1988, pages 46-48 for more on commutation matrices.) Also, here, D, =
diag (Y1, .-y Yn), Do = diag (0’%, ....,afl), D, = diag (w%, ....,w%), Dy = diag (V1, ..., 0p) with ¢; =
E [512%2]2] —o?w? =292 fori = 1,...,n, E= (el ®erieg @egi- - ien ® en>/, and e; is the it

column of an n X n identity matrix . It follows from (5) and (6) and by straightforward calculations that
1 ad / 2
B |(WL'DyLe — tr {I'DyLD,})* | 2]

= %tr {(L'DyL @ L' D4L) E [ev ® eu/| Z] tr {L’D¢LD7H2

1

1
"l

1
= Javec (In)! (DwL'Dy LD, @ L' Dy L) vec (I,) + el {(DyL'DyLD, ® L' D¢L) K, }

+%tr {(L'DyL @ L' D4L) E'DyE} + %tr {(L'DyLD, ® L'DyLD,)}

1
—=e [tr {L'D4LD,}]?
= %tr {L/D¢LDwL/D¢LDU} + %t?“ { (D,YL/D¢LD,Y & L/D¢L) Knn}

tytr {(L'DyL ® I/ DyL) E'DyE}. (7)

2

Focusing first on the first term of (7), and letting @W? = maxi<;<n wz-z, 0° = maxi<i<n 01-2, and
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2
¢ = maxji<;<n (ﬁzz, we get

itr {L'DyLD,L'DgLD,}

IN

—2—2¢> t {r'Lr L}

IN

/ !/ !/
C’ﬁtr{L LL'L} = HLL I a.s. Ps. (8)
where the first inequality above follows by repeated application of CS and of the simple inequality
tr {A'/AA} < Aitr (A'A 9
P{ANA) < max Atr (44) o)

which holds for n X n matrices A and A = diag (A1, ..., A,,) such that A;> 0 for all ¢, and where the
second inequality follow in light of the assumptions of the lemma.

Turning our attention now to the second term of (7), we make use of the fact that, for n X n matrices

A and B, tr{(A® B) K,,,,} = tr {AB} (a specialization of the result given on page 304 of Abadir and

Magnus, 2005) to obtain K 2tr {(DyL'DyLD~ ® L'DyL) K.} = K 2tr {L'DgLD,L' DyLD~}. As

n (8) above, by repeated of CS and the inequality (9), we obtain

%tr{(DyL’D(ﬁLDV@L'D(ﬁL) Ko} < 7 HLL’H a.s. Pz. (10)

Finally, to analyze the third term of (7), we note that

— }tr {(L'DyL @ L'DyL) E’Dgﬁ}‘

< %Zhﬂ (e;L’D¢Lei)2 < Zw] eLD¢Lel) (eiLLe;) Z|19| eLLeZ
=1 =1
n
< C% (L' Lei)” <CK2Z (¢;P'Pei)” = K2ZP2<CK2ZP”__ a.s. PE1)
i=1 i=1

where the first inequality above follows from T, the second inequality follows from CS, the third inequality
makes use of (9) above, the fourth inequality uses CS and T and follows in light of the assumptions of the
lemma, and the last inequality holds since P;; < 1.

In light of (7), it follows from (8), (10), (11), and Lemma B3 that
LE [(u’L’Dd,Lf: —tr {L'DyLD,})? | Z} <2C (1/K?) ||ILL|* +C (1/K) < C/K a.s. Pz, which shows
part (d).

It is easily seen that parts (e) and (f) can be proved in essentially the same way as part (d) (by taking

€4); hence, to avoid redundancy, we do not give detailed arguments for these parts. B

1/2

Proof of Lemma A2: Let by,, = clnEn*l/2 and by, = 2,2, "/#, and note that these are bounded in n

since Z,, is bounded away from zero by hypothesis. Let w;y, = b}, Wi, and u; = b, U;, where we suppress
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the n subscript on u; for notational convenience. Then, Y,= win+ Y i o Yin, Yin = Win+Tin, Yin =
> j<i(uj PcituiPye;) VK.

Also, E [meu‘*\z} <. E [meu‘*\z} <CY,E [HmnH412] — 5 0 as., so0 by a conditional
version of M, we deduce that for any v > 0, P (Jwi,| > v | Z) — 0 .Moreover, note
that sup,, £ [\P (Jwin] > v | Z)ﬂ < 0. Tt follows that, by Theorem 25.12 of Billingsley (1986)
P(|lwip| >v) = E[P(Jwin] > v | Z)] — 0 as n — oo; that is, w1, —— 0 unconditionally. Hence,
Y =2 o Yin + 0p(1).

Now, we will show that Y}, LY (0,1) by first showing that, conditional on Z, > 7" 5 yin 4N (0,1) ,a.s
To proceed, let X; = (W/

12 UlLe) for i = 1,..,n. Define the o-fields F;,, = o (Xi,....,&;) for
¢t = 1,...,n. Note that, by construction, F;_1, C Fj,. Moreover, it is straightforward to verify
that, conditional on Z, {ym,}}m, 1 <i<m,n>2}is a martingale difference array, and we can apply
the martingale central limit theorem. As before, let 02 = FE[e?|Z], w? = w2, (Z) = E[u?|Z], and

Yi = Yin (£) = Elu;ei| Z], where in order to simplify notation, we suppress the dependence of 01»2 on Z

and of Wz‘2 and 7; on Z and n. Now, note that Ewi,Fjn|Z] = 0 for all ¢ and j and that

E [(@m)2 \Z} = Z Z E[(ujPje; + uiPijej)(ur Pirei + ui Per)| 2] /| K
j<i k<i
= ZP2 w 2 4 uw? o; +2%’YJ] /K.
7<t
Thus,
2 n 2 - 2 2
i=2
= b}, Dpbip — wln\Z —i—ZP2 w o? +w? o; +2%ny] /K
i#j

= /lnDnbln + béninb%m + Oa.s.(l)
= E;lﬂ (c'lnDncln + cénin@n) E;l/Q + 04.5.(1)

= V25,512 4 045 (1) = 1+ 04 (1) — 1 a.s.

where Dy, = Dy (2) = S0 E [Win W, | 2] and 5, = S, (2) =

i P2 (E[UiU;\Z]E[aﬂZ] + E[U»ai\Z]E[aquZ]) /K. Thus, s2 (Z) is bounded and bounded away
from ze10 as. Ako, Xy B [y 2] < C 0y B [[Wanll* 2] + € S, B[4, 2]. By condition iv),
7L E [||Wm||4 ‘g} — 0. Let g, = Xy uiPyei/VE and 52, = ¥, uiPye;/VEK. By [Pyl < 1
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and Zj P% = Pj;, we have that a.s.

- C
> E |:<gi€n)4 |Z} < F > PyPyPuPinE [e}|Z] E [ujurugtipn| Z)
1=2 1=2 j,kl,m<i
c 2 p2 2
< ? d P+ > PP <CK/K*—0.
i=2 \ j<i J<i

Similarly, 7, B | (7)1 12] — 0 as., 50 that S0, B [54,|2] <
Oy {B (@) 12] + B [(52)"12] ) — 0. Then by T we have 327, B [y 2] — 0 as

Conditional on Z, to apply the martingale central limit theorem, it suffices to show that for any € > 0

P ()Z”ZQE V2| X1,y X1, 2] — 52 (Z)) > ¢ | z) 0. (12)

Now, note that E [winZin|Z] = 0 a.s. and, thus, we can write

n

ZE Wi X, o, Xi1, 2] = 50 (2) = ) (Blwh,| X, ., Xis1, 2] — Elw,| 2))
i=2
n
+ZE[wmgzn‘Xla z 1> +Z yzn‘xla'-'aXiflaz] _E[g?nlz]) : (13)
=2 1=2

We will show that each term on the right-hand side of (13) converges to zero a.s.. To proceed, note first that
by independence of Wiy, ..., Wy conditional on Z, E[w?, | X1, ..., Xi—1, Z] = E[w? |Z] as. Next, note
that E [winin| X1, .. Xio1, Z] = Elwinwi| 2] Y, Pijej/VK + Elwingil 213 2; Pijuj/VE Let 6; =
0i (£) = Elwinui| Z] and consider the first term, &; >, _; Pijej/v/K. Let P be the upper triangular matrix
with Pjj = Pyj for j > i and Pyj = 0, j < i, and let § = (81,...,6,). Then, Y15 37, ;6 Pyje; /VEK =
§'P'e/VK. By CS, 86 = S0 (Ewinui|2))? < Y1, Ew?,|Z]Eu?|Z2] < C as. By Lemma
B3, ||[P'P|| < CVK as., which in turn implies that Amax (P'P) < CVK as.. It then follows given

[ug\z} < C as. that E[(0'Pe/VE)?|2] < CoP'PSJK < C|62 /VE < C/VE — 0 as.,

so that by M we have for any ¢ > 0, P (‘5(2)/15/8/\/?

> 6]2) — 0 a.s.. Similarly, we have
Yoo Ewinegi| Z] Zj<i Pijuj/\/f — 0 a.s.. Therefore, it follows by T that, for any € > 0,

n
P[>, B lwinginl®, . X1, 2]| 2 €|Z) = 0 as

To finish showing that eq. (12) is satisfied, it only remains to show that, for any € > 0,
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Now, write

ZE ym’Xh"’ i—1, ] E[gfn|z])

- ZWQPQ e —07) /K+2 > wiPyPyejer/K

Jj<i j<k<i
+> 7P (uf —wi) /K +2 > 0} Py Pyuju/K
7<t J<k<i
+2> WP (ue; — ) /K +2 > %Py Pa(ujer + ugey) /K. (15)
j<i j<k<i

By applying parts (a)-(c) of Lemma B4 with ¢; = ;, w? and 02 respectively, we obtain, a.s.,
2 2
E |:<Zj<i 7iP2 [use;—;] /K) | z] 0, E [(Zm W2P? [ ; gﬂ /K> | z} — 0,and

2
E [(ZjQ 2P£ [u — } /K) | Z] — 0. Moreover, applying part (d) of Lemma B4 with ¢; = ;, we

obtain F [<2j<k<i viPij Pit; [wjep+urei] /K>2 | Z} — 0 a.s. Pz. Similarly, conditional on Z, all of
the remaining terms in eq. (15) converge in mean square to zero a.s. by parts (e) and (f) of Lemma B4.
The above argument shows that as n — oo, P(Y,<y | Z)— ®(y) a.s. Pz, for every real num-
ber y, where ® (y) denotes the cdf of a standard normal distribution. Moreover, it is clear that, for
some € > 0, supF [|P (Yo<vy| Z)|1+E} < oo (take, for example, € = 1). Hence, by a version of
the dominated cvaergence theorem, as given by Theorem 25.12 of Billingsley (1986), we deduce that
P(Y,<y)=FE[PY,<y| Z)]— E[®(y)]= P (y), which gives the desired conclusion. B

Proof of Lemma A4: Let w; = E[W;|Z], W Wi —w;, y; = E[Yi| Z], Y Y: — 4i, 1 = Eni| Z],

N =i — i,
il = maxw? < C/n, ,uy—maxgjfgC/n,ﬂ%:maxﬁggC,
i<n i<n i<n
53, = maxVar(W;|2) < C/rp,5% = maxVar(Y;|2) < C’/rn,ﬁg = max Var(n;|Z2) < C.
1< n 1< n 1 <n

Also, let y; = Zj Py, w; = Zj P;jwj,be predicted values from projecting ¥ and w on P, and note that
o2 —2 w2 —2
DUSY T SCY i<y w0 <
By adding and subtracting term similar to the beginning of the proof of Theorem 4,

A =" wiPuiPrgs = > T (Wil — Putiljs — Pathihi + 2PJ0igi) /n — szyz i
77 k¢{i,j} i i,j

40



By T, CS, and 7, < C,

je| < C |l Zg <C,

o o e

Dik wi?jipﬁeﬁk‘ <Cn”! ‘sz P
;Wi P27i| < Cn/n = C. Thus, |A,| < C holds by T.

and it follows similarly that ), w; P;;7;9; is bounded. By Lemma B1,

For the remainder of this proof we let F[®] denote the conditional expectation given Z. Note that

Wi Py P Yy = WiPing PejY; + @i P Pr;Y;
= WiPuiPr;Y; + Wi P Pr;Y; + 0; P Pr; Y + 0; P Prj Y
= Wipikﬁkpkj?j + mpikﬁkpkjgj + Wipikﬁkpkji/j + Wz‘Pz‘kﬁkijﬂj
+; Py P Yy + 03 Ptk Py + i Pt Prj Yy + i Pigee Pr -

Summing and subtracting the last term gives

> WiPinkPeyY; — An—Zwr,

i#£jF#k =
where
U = Z W, Pk Prj Y, 2 = Z Wi Pigiig Prj s, s = Z W; Pigiti Pr; Y,
ik ik iZjk
i = Y WiPuikPejllj, s = Y WiPiiPeYy 6 = Y i PPyl
ik iZjk ik

and 1&7 = Zi;ﬁj;ﬁk @iﬂkﬁkij?j. By T, the second conclusion will follow from 1&,, L, 0forr = 1,..,7.
Also, note that 1&7 is the same as 1&4 and 1@5, which is the same as @@2 with the random variables W and
Y interchanged. Since the conditions on W and Y are symmetric, it suffices to show that 77[17« 250 forr €
{1,2,3,4,6}.

Consider now 1[)1. Note that for ¢ # j # k and r # s # t, we have E[V[/Z‘Pikﬁkij%WrPrsﬁSPStﬁ] =
0, except for when each of the three indices ¢, j, k is equal to one of the three indices 7, s,t. There are six

ways this can happen leading to six terms in

= > > EWiPui P YW, Prsis P Vi) = > _ 74
1#jF#k r#s#t q=1
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Note that by hypothesis, UIQ/VU O‘%K < Or;2K — 0. By Lemma B1, we have
%1l = > El(WiPwiPyY;)?) = > EWZ|PLE[RIPLEN]] < o007 K — 0.
i#j#k i£j#k
Similarly, by CS,

7l = | Y El(WiPuiPiYy) (W Puiin PuYo)l| = | > EIWiYVEW,Y;|E[7) P3P
ik ik
< O'WO' 262 K — 0.

Next, by Lemma B1 and CS
7l = | Y ElWiPaiwPi¥;)(WiPyii PuYo)l| = | Y EIWIE[Ya)E[;Y;1 P P P

i#jF#k i#jF#k
< O'WO' 252 K — 0.

Similarly,
i#j#k i#j#k
< U%VJ G2 K — 0,
7| = | > E[(WiPuinPeY;) WP Py Y)l| = | > E[Wiii] B E[Wyiik) PjPe; Pri

i#j#k i#j#k
< oholet K
owo,0y K — 0,

%l = | Y El(WiPuiiPi V) (Wi Pyl P Ya)l| = | > E[WYi|E[il; V3] E[Wiiie] P, Py P
i#j#k i#j#k
< 52,0262 K 0
~ O'Wo'nO'Y — U.
The triangle inequality then gives [1&%] — 0, so zﬁ% 2, 0 holds by M.
Consider now 1&2. Note that for ¢ # j # k and r # s # t, we have E[WiPikﬁkijgjWTPTSﬁsPstgjt] =0,
except when i = 7 and j = s or i = s and j = 7. Then by (A + B + C)? < 3(42% + B2 + C?) and for

fixed k, S .. P2 < Pup, 3., P4 < Py, it follows that
i#k * ik i#k * ik
2

SNoPi| Y. Py | < 3 PL (0 + PR+ PRid)
i#£k jed{i,k} i#£k
< 3 (Zpkk (ﬂi+2§i)) <3 (Zﬂi“Z?i) <oy < C.
k k k
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It follows by |AB| < (A2 + B2) /2, CS, and Py, = Py, that

2
EW3] = Y EWAPLE] | Y Py
i#k J¢{i.k}
+> EWii PLEWiin) | Y Pals > Py
i#k J¢dik} Jé{i.k}
2
< 2won Y Pi| Y. Pyw | <C/ra—0.
iz \Gelh)

Then 15 —2 0 holds by M.
Consider t)3. Note that for i # j # k and 7 # s # t, we have E[Wipikﬁkpkj?jwrprsﬁspst?t] =0,
except when ¢ =7 and j =t or ¢ =t and j = r. Thus,
2
B3 = 3 (BWZENA + EWTIEWY]) [ Y PPy
i#J k¢ {i.j}
2
< 20705 > | Y PuiiPi
i#j \k¢{ij}

Note that for ¢ # j, Zkgé{z‘,j} Py Py = Zk Py, Py, — Pij Pyin; — P;jPj;1;. Note also that

S (Srin) = X R S - Y <

ikl i,k,L

2
> (Z Pz‘knkpkj) > P PixPuniePie = fikile (Z RkPw) > PPy
J

i \ & . It i
N > _
> P < iy Y P = K.
ol ol

It therefore follows that
2 2 2
5 (z Pimkpkj> ¥ (z akﬁkpkj> ¥ (z PnP> < 22K,
i#j \ k ij \ k i k

Also, by Lemma B, ZZ# P2P”77] < ,u,n Zz# P2 < ﬂ%K, so that

2
i% \ke{ig} iz (\&

43



From the previous expression for F W%] we then have E W3] < CJWUY,uzK < Or;2K — 0. Then
s 7 0 by M.
Next, consider 4. Note that for i % j # k and r # s # t, we have E[VTQPikﬁkijyjWTPTSﬁSPstgt] =

0, except when ¢ = r. Thus,

2
=S EWA DY Y PamePuti | <o Y (D, Y. PPl
7

J7 k¢{i.j} o \J# kg{ig}

2

Note that for ¢ # j,
> PaiPiejyy =Y Pkl Prj¥s — Puni Py — Py P
k¢{i.g} k
Therefore, for fixed 1,
> PulkPyy; = Y (Z PiriePrjyj — PutliPijy; — Pijﬁjpjjgj>
J7 k¢{ig} JFi

= Z sznkyk - Z knkyz - umyz Z Pzﬂ?] GiY5 + 2Pm771yz
J

Note that because P is idempotent, we have Z Zk RS Z 77] 2 < ,un Z yJQ < un Z yj2 <
nun,uy < C. Then it follows that

SO Pueman}® = DD PyniiPaicie = Y Y Mi¥ikie Y Pij P
% k i J  k ik 7
= > Pt < C.
ik
Also, using similar reasoning,

> (Pamis)?

i

IN

Zm 72 <np2pd < C,

2

DD Py | < D WP < Zm 7; <
i J i
2
Z (yz > F knk) < [y Y PLPyme < iy y PPy < K < C,

i,k ikl
SRR < npipk <C

7

Then using the fact that (Zi:l A)? < 52?:1 A2 it follows that E[Q;Z] <63 C < CJrp, — 0, s0

¥y 25 0 by M.
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Next, consider 756- Note that for ¢ #£ k, ngé{i,k} W; Py Py = i Py —wiﬂigi—wiPikPkkgk.Then

for fixed k,
_ _ _ o _ 2 _ _ _ o 2
SN wiPyPyy; = Y (@iPaii — 0iPjg: — @ P Pol) — Wk Prriik + 20k Py
ik jE{i,k} ¢

= WYk — Zwipz?kgi — 0 PrrGk — Wk Prrik + 205 PRk

%
Then using the fact that (Z;rf:l A2 <5 22:1 A2 we have

E[§] = ZE[ﬁi](Z Z W; Py, Py )?
K

i#k j¢{i,k}

IN

562y | Wi + Y P PRy + Wp PRk + ORPe i + 40} Pl
k i,J

< 5a;, Z +ﬂ12/Vﬂ%’ZPk]sz+NYZwk+NWZyk+n4NW:UY
k 0.5,k k

< 5o, (Z wEYE + 7nﬁ%vﬁ%f) <C Z Wiy + Cn/n? < C Z Wiy +o(1).
k
Now let 7, be such that A, = max; |a;—Z/m,| — 0, let oy, = 7, /y/n and note that max;<y, |0; — Zlay,| =
A, /\/n. Let w = (w1, ..., Wy,)". Then
\w; — ;| = |w;— Z{(Z'2) 20| = |w; — Ziom — ZY(Z'Z2) T 2 (0 — Zaw,)|

An/Vi+ ZP2 VG [ = Zjew] )2

A, +P fmax}wz Z;an\:An+13ili/2An§CAn.

IN

IN

Then by the triangle inequality, max;<, || < max;<n |w;| + A, — 0, so that

Z@b%gjiﬁ <max]wz|> Zykzo )Zgl%%
k

k

Then we have F [1[}%] — 0, so by M, 1&6 —2., 0. The conclusion then follows by T. R
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