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Abstract

Prior research on “strategic voting” has reached the conclusion that unanimity rule is

uniquely bad: it results in destruction of information, and hence makes voters worse off.

We show that this conclusion depends critically on the assumption that the issue being

voted on is exogenous, i.e., independent of the voting rule used. We depart from the

existing literature by endogenizing the proposal that is put to a vote, and establish that

under many circumstances unanimity rule makes voters better off. Moreover, in some

cases unanimity rule also makes the proposer better off, even when he has diametrically

opposing preferences. In this case, unanimity is the Pareto dominant voting rule. Voters

prefer unanimity rule because it induces the proposing individual to make a more attrac-

tive proposal. The proposing individual prefers unanimity rule because the acceptance

probabilities for moderate proposals are higher. We apply our results to jury trials and

debt restructuring.

JEL classification: C7; D7; D8.

Keywords: Strategic voting; agenda setting; multilateral bargaining.
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1 Introduction

Many collective decisions are made by holding a vote over an endogenous agenda. Exam-

ples include debt restructuring negotiations between creditors and a borrower; jury trials;

congressional votes over presidential appointments in the U.S. and elsewhere; shareholder

votes on executive compensation; and collective bargaining between a firm and union

members. The voting rules used for different decisions differ, and the choice of voting

rule has two consequences. First, the voting rule affects whether a given proposal is

adopted. Second, the voting rule affects the proposal that is being voted over.

A large and influential recent literature analyzes voting when individuals have dif-

ferent information.1 This “strategic voting” literature deals exclusively with the first

consequence of the voting rule — whether a given proposal is adopted — and concludes

that unanimity rule is inferior to majority rule.2,3 Specifically, while majority rule aggre-

gates information efficiently when the number of voters is large enough, unanimity rule

results in mistaken decisions. As such, when the issue being voted over is exogenous,

unanimity rule is a suboptimal voting rule, and reduces the expected payoff of voters.

Nevertheless, unanimity rule is used in many settings. For example, under the

U.S. Trust Indenture Act of 1939 debt can be restructured only if all creditors agree.

Likewise, unanimity is commonly required in jury trials. The results of the strategic

voting literature suggest that a majority vote would be more efficient in such settings.

In this paper we show that the conclusion that majority rule is superior depends

critically on the assumption that the proposal being voted over is exogenous. We do

1See, for example, Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997, 1998),
McLennan (1998), Duggan and Martinelli (2001), Doraszelski et al (2003), Persico (2004), Yariv (2004),
Martinelli (2005), Meirowitz (2005), Gerardi and Yariv (2007).

2By majority rule, we mean any threshold voting rule: that is, a proposal is accepted if the fraction
voting to accept exceeds a pre-specified threshold.

3The main exception is Coughlan (2000), who shows that if pre-vote communication is possible and
voter preferences are common knowledge and closely aligned, then both unanimity and majority rules
may allow efficient aggregation of information. However, Austen-Smith and Feddersen (2006) show that
if voter preferences are not common knowledge then unanimity is again the inferior voting rule from the
perspective of information aggregation. Additionally, even Coughlan does not argue that unanimity rule
is strictly superior to majority rule in the standard two-alternative voting game.
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so by studying the second consequence of the voting rule mentioned above, namely that

it affects the proposal being voted upon. We show that under many circumstances

unanimity rule increases the expected utility of voters, because it induces the proposer

to make a more attractive offer. Further, in a subset of such circumstances unanimity

rule is Pareto superior, because it also increases the proposer’s expected utility — even

when his interests are diametrically opposed to those of the voters. At the end of the

paper we analyze two specific applications: jury trials and debt restructuring.

We consider the following setting. One individual, the proposer, makes a take-it-

or-leave-it offer to a group. The group members, the voters, must collectively decide

whether to accept or reject the offer, and we assume they do so by holding a vote. The

fraction of votes required to accept the proposer’s offer is fixed prior to the offer (by, for

example, law, contract, or the common consent of voters). As such, when the proposer

makes his offer he takes the voting rule as given. We follow the strategic voting literature

and focus on information aggregation when the number of voters is large.

As one would expect, and regardless of the voting rule, the acceptance probability is

increasing in the attractiveness of the offer to voters. We assume there is sufficient conflict

between the proposer and voters that the proposer faces a trade-off between a high offer

that is accepted more often and a low offer that is accepted less often. Equilibrium offers

are determined by this trade-off.

As in the prior literature, the group (asymptotically) makes the correct decision under

majority rule but makes mistakes under unanimity rule. In particular, voters reject low

offers more often than they should, and accept high offers more often than they should.

Provided the proposer’s payoff under disagreement is not too low, the mistakes that arise

under unanimity rule benefit voters. In this case, when facing voters using majority rule,

the proposer is not willing to make a high offer, but rather prefers a smaller offer accepted

less often. Since voters make mistakes under unanimity rule by rejecting low offers more

often than they should, the proposer responds by offering more than he would under
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majority rule. Put slightly differently, voters would like to commit to reject low offers

in order to increase the equilibrium offer. One way to accomplish this is to commit to

have poor information via adopting a unanimity requirement.

Although under unanimity rule voters receive a better offer from the proposer (pro-

vided the proposer’s payoff under disagreement is not too low), it is still not obvious

whether they prefer unanimity rule or majority rule. The reason is that the better offer

is made in response to voters’ mistakes. However, a form of the envelope theorem holds

in our voting environment. As such one can evaluate the effect of the higher offer simply

by considering the direct effect, which is positive. It follows that both the equilibrium

offer and voters’ expected utility are higher under unanimity rule.

Moreover, and perhaps surprisingly, when the proposer’s payoff under disagreement

is neither too low nor too high, the proposer also prefers unanimity rule, making it

the Pareto dominant voting rule. The key to this result is that against a group using

unanimity the proposer is able to get a moderate offer accepted with very high probability,

due to the mistakes of the voters. In contrast, as described above the proposer’s best offer

against majority rule is a lower offer that is accepted with a lower probability. In this

case voters prefer unanimity rule because they get a higher offer than they would under

majority rule. The proposer prefers unanimity rule because he can secure acceptance

more often than he could under majority rule at a cost he is willing to bear.4

Overall, our results highlight the importance of the endogeneity of the proposal being

voted over in the determination of optimal voting rules. While unanimity rule is inferior

when the agenda is exogenous, it may Pareto dominate all other voting rules once the

agenda is endogenous.

4An additional consequence of the voting rule relates to the proposer’s scope for signaling his own
information via his offer. Consider, for example, the case in which the proposer observes a relatively
accurate signal, while each voter receives independent but relatively low quality signals. Majority voting
rules efficiently aggregate voter information when the number of voters is large, and hence prevent the
proposer from manipulating voter beliefs with his choice of offer. In contrast, unanimity rule fails to
aggregate information efficiently, and enables a proposer who receives a very negative signal to pool with
proposers who see positive signals (see Lemma 6).
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Related Literature

As discussed above, our paper develops the strategic voting literature by endogenizing

the issue being voted over. This literature has studied how differentially informed indi-

viduals vote over an exogenously specified agenda by explicitly taking into account that

a vote only matters if it is pivotal, and so each voter should condition on the information

implied by being pivotal. In particular, it is not an equilibrium for each voter to vote

sincerely, i.e., purely according to his own information (Austen-Smith and Banks 1996).

When the number of voters is large, in equilibrium information is nonetheless aggregated

efficiently under majority rule. In contrast, unanimity rule does not lead to efficient in-

formation aggregation, and therefore results in mistakes (see Feddersen and Pesendorfer

1997, 1998, and also Duggan and Martinelli 2001). Given these results, one might be

tempted to conclude that unanimity rule is inefficient, and in particular, hurts voters.

Our results show that neither is true when the agenda being voted on is endogenous.

Our paper deals with a form of negotiation between a single proposer and a coalition.

As such, it is related to studies of multilateral bargaining. In contrast to our paper, this

literature focuses on proposals that can discriminate among individuals.5 However, in

many negotiations a proposal must treat all members of some group equally, either for

feasibility reasons (e.g., jury trials), or for institutional/legal reasons (e.g., wage determi-

nation, debt restructuring). The literature analyzing this important class of bargaining

problems is much smaller and focuses on complete information models.6 Since agreement

is always reached, there is no risk of breakdown of agreement from a “tougher” bargain-

ing stance. In contrast, the possibility of failing to agree to a Pareto improving proposal

is central to our analysis and results.

In our model, bargaining takes place under two-sided asymmetric information. The

5The classic paper is Baron and Ferejohn (1989).
6See Banks and Duggan (2001), Cho and Duggan (2003), Cardona and Ponsati (2007), and Manzini

and Mariotti (2005). Separately, Chae and Moulin (2004) provide a family of solutions to group
bargaining from an axiomatic viewpoint; and Elbittar et al (2004) provide experimental evidence that
the choice of voting rule used by a group in bargaining affects outcomes.
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literature on bargaining under asymmetric information is extensive.7 We add to this

literature by considering the effects of the internal organization of one of the parties.

Finally, in closely related independent work Henry (2006) studies equilibrium propos-

als in a legislative bargaining environment with asymmetric information. Specifically, he

fixes the voting rule, and characterizes the proposer’s best discriminatory offer.

Paper outline

The paper proceeds as follows. Section 2 describes the model. Section 3 establishes

equilibrium existence and characterizes basic equilibrium properties. Section 4 bounds

the equilibrium outcomes of the bargaining game when the group uses unanimity rule.

Section 5 conducts the same exercise when the group adopts majority rule. Section 6

compares equilibrium outcomes across different voting rules, and explores two potential

applications of our model. Section 7 concludes. All proofs are in the Appendix.

2 Model

There is a single proposer (agent 0), and a group of n ≥ 2 voters, labelled i = 1, . . . , n.

The timing is as follows: (1) Each agent i privately observes a random variable σi ∈ [σ, σ̄].

(2) The proposer selects a proposal x ∈ [0, 1]. (3) Voters simultaneously cast ballots to

accept or reject the proposal. (4) If at least a fraction α of the voters accept,8 the

proposal is implemented, while otherwise the status quo prevails. Common examples

include simple majority, α = 1/2; supermajority, e.g., α = 2/3; and unanimity, α = 1.

The voting rule α is exogenously given:9 in particular, it cannot be changed after the

7See Kennan and Wilson (1993) for a review. Of most relevance for our paper are Samuelson (1984),
Evans (1989), Vincent (1989), Schweizer (1989), Deneckere and Liang (2006), and Dal Bo and Powell
(2007), all of which study common values environments.

8Throughout, we ignore the issue of whether or not nα is an integer. This issue could easily be
handled formally by replacing nα with [nα] everywhere, where [nα] denotes the smallest integer weakly
greater than nα. Since this formality has no impact on our results, we prefer to avoid the extra notation
and instead proceed as if nα were an integer.

9Since our main results characterize the proposer’s and voters’ preferences over different voting rules,
it would be straightforward to endogenize the choice of voting rule by having either the voters or proposer
select it at an ex ante stage before {σi} are realized.
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proposer makes his offer.

Preferences

Agent i’s preferences over the proposal x and the status quo are determined by σi and

an unobserved state variable ω ∈ {L,H}. The realization of σi both provides agent i with

information about ω, and affects his preferences over the offer and the status quo. Voter

i’s utility from the offer x is Uω (x, σi, λ), where λ ∈ [0, 1] is a parameter that describes

the relative importance of ω and σi. We assume that Uω (x, σi, λ) is independent of σi

at λ = 0, and UL (·, ·, λ) ≡ UH (·, ·, λ) at λ = 1. Likewise, we write Ūω (σi, λ) for voter

i’s utility under the status quo, and make parallel assumptions for λ = 0, 1. As such,

our framework includes pure common values (λ = 0) and pure private values (λ = 1)

as special cases. (See footnote 12 below for a specific example.) For the most part, we

focus on preferences close to common values: many existing strategic voting papers deal

exclusively with pure common values,10 and it is the natural benchmark in a variety of

settings, e.g., debt restructuring, where the securities received trade ex post.

A key object in our analysis is the utility of a voter from the proposal above and

beyond the status quo. Accordingly, we define ∆ω (x, σi, λ) ≡ Uω (x, σi, λ) − Ūω (σi, λ).

Similarly, we write the proposer’s utility from having his offer accepted as V ω (x, σ0),

and his utility under the status quo as V̄ ω (σ0). Note that we do not require the relative

weights of ω and σ0 in determining the proposer’s preferences to match the relative

weights (given by λ) of ω and σi in determining voter i’s preferences.

For all preferences λ < 1, the realization of σi provides voter i with useful (albeit

noisy) information about the unobserved state variable ω. We assume the random

variables {σi : i = 0, 1, . . . , n} are independent conditional on ω, and that except for σ0

(observed by the proposer) are identically distributed. Let F (·|ω) and F0 (·|ω) denote

the distribution functions for the voters and proposer respectively. We assume both

distributions have associated continuous density functions, which we write f (·|ω) and

10See, for example, Feddersen and Pesendorfer (1998), and Duggan and Martinelli (2001).
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f0 (·|ω). We let ℓ(σ) and ℓ0(σ) denote the likelihood ratios f(σ|H)
f(σ|L)

and f0(σ|H)
f0(σ|L)

. The

realization of σi is informative about ω, in the sense that the monotone likelihood ratio

property (MLRP) holds strictly;11 but no realization is perfectly informative, i.e., ℓ(σ) >

0 and ℓ(σ̄) <∞, with similar inequalities for ℓ0. We denote the unconditional probability

of state ω by pω, and its probability conditional on σi by pω(σi) = pωf(σi|ω)
pHf(σi|H)+pLf(σi|L)

.

Interpretations

In Section 6 we return to the first two of the following possible interpretations:

Debt restructuring: A debtor seeks to restructure debt claims held by n identical

creditors. The offer terms are indexed by x, where x = 0 is a worthless offer and x = 1

is the highest feasible offer. If the offer is rejected the existing debt remains in place.12

Jury voting with endogenous charges: A prosecutor chooses a crime to charge, in turn

determining a potential prison sentence. The status quo outcome is no punishment. The

defendant is guilty in ω = H and innocent in ω = L.13

Collective bargaining: An employer is in wage negotiations with its union workers,

and offers a wage x.

Voting over endogenous policy in a presidential system: A president proposes a policy

x.14 The proposal is adopted only if passed by the legislature. This requires the support

of a sufficient fraction of legislators from the opposing party to the president.

11That is, ℓ(σ) and ℓ0(σ) are strictly increasing in σ.
12The following parameterization of corporate debt restructuring may help to fix ideas. A debtor

offers creditors a fraction x of its equity. If creditors accept, they receive a payoff Uω (x, σi, λ) =
(1 − λ)xRω + λσi, where Rω is the expected firm value and σi is a creditor-specific component of
valuation (e.g., tax benefits). If creditors reject, they receive a liquidation payoff Ūω (σi, λ) = Ū . Thus
when ω = H , it is both more likely that creditors believe the state is H , and their average private
valuation of the offer is higher. Finally, the debtor receives V ω (x, σ0) = (1 − x) Rω + B (σ0) if the offer
is accepted, where B (σ0) is his private benefits from running the firm, and V̄ ω (σ0) = 0 if it is rejected
and the firm is liquidated.

13In an alternative interpretation, the defendant is guilty of some crime in both ω = L, H , but is
guilty of a more severe crime in ω = H .

14A judicial nominee, for example.
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Equilibrium

We examine the sequential equilibria of the game just described. The proposer’s

strategy is a mapping from the set of possible signals, [σ, σ̄], to probability distributions

over the offer set [0, 1]. Conditional on the proposer’s offer, and as is standard in the

strategic voting literature on which we build, we restrict attention to equilibria in which

the ex ante identical voters behave symmetrically.15

Voters are potentially able to infer information about the proposer’s observation of σ0

from his offer, and thus information about the state variable ω. Let βn (x;λ, α) denote

a voter’s belief that ω = H after observing offer x, but ignoring his own signal σi, in the

game with n voters using voting rule α, and preference parameter λ. (Equation (2) in

the next section demonstrates how voter i combines the information revealed by the offer

x with his own signal σi.) By belief consistency, βn is the same for all voters.

A sequential equilibrium thus consists of an offer strategy for the proposer, voter be-

lief βn (·;λ, α), and a voting strategy [σ, σ̄] → {accept,reject} for each voter such that the

proposer’s strategy is a best response to voters’ (identical) strategies; and each voter’s

strategy maximizes his expected payoff given belief βn (·;λ, α) and all other voters use

the same strategy; and the belief itself is consistent. At a minimum, belief consistency

requires that voters are never more (respectively, less) confident that ω = H than the

proposer himself is after he sees the most (respectively, least) pro-H signal σ0 = σ̄ (respec-

tively, σ0 = σ). That is, for all offers x, βn(x;λ,α)
1−βn(x;λ,α)

∈
[

ℓ0(σ)pH

pL , ℓ0(σ̄)pH

pL

]

. Consequently

consistency implies that βn (x;λ, α) ∈
[

b, b̄
]

, for some 0 < b < b̄ < 1.

15For unanimity, Duggan and Martinelli (2001) prove that the symmetric voting equilibrium is the
unique equilibrium if ℓ (·) / ((1 − F (·|H)) / (1 − F (·|L))) is monotone. For majority, the key equilibrium
property that we use in our analysis is that information is efficiently aggregated as the number of voters
grows large. Existing strategic voting papers (see above) show that the symmetric voting equilibrium
has this property. One way in which information aggregation could fail in an asymmetric equilibrium
is if n (1 − α) voters always reject the offer, effectively transforming the voting rule into a unanimity
vote involving the remaining nα voters. However, one can show that no such equilibrium exists if
ℓ (·) / (F (·|H) /F (·|L)) is increasing and Duggan and Martinelli’s condition holds. (A proof is available
from the authors’ webpages; both conditions are satisfied for the logistic distribution, among others.)
We leave the remaining and more subtle question of whether information aggregation fails in some other
asymmetric equilibrium for future research.
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Preference assumptions

Assumption 1 ∆ω, V and V̄ are twice continuously differentiable in their arguments.

Assumption 2 ∆H ≥ ∆L and ∆ω is increasing in σi; both are strict for x ∈ (0, 1).

Assumption 3 minx∈[0,1] ∆
H (x, σ̄, λ) < 0 < maxx∈[0,1] ∆

H (x, σ̄, λ) for all λ.

Assumptions 1 - 3 are straightforward. For future reference, observe that Assump-

tion 1 implies that |∆ω| is bounded since ∆ω is continuous and has compact domain.

Assumption 2 says voter i is more pro-acceptance when ω = H than ω = L, and when

the realization of σi is higher. Since higher values of σi are more likely when ω = H (by

MLRP), the content of Assumption 2 (beyond being a normalization) is that the “pri-

vate” and “common” components of voter utility act in the same direction. Combined

with Assumption 2, Assumption 3 says that there exist offers that voters always reject,

but other offers that they would like to accept under at least some conditions.

Our remaining two assumptions deal with how the offer x affects voter and proposer

preferences, respectively:

Assumption 4 For any σ, λ and q ∈ [0, 1], there exists a unique x such that q∆H (·, σ, λ)+

(1 − q) ∆L (·, σ, λ) is strictly negative over [0, x) and strictly positive over (x, 1).

Assumption 4 says that for any given belief about ω, a voter would accept an offer x if

and only if the offer is sufficiently high.16 It is satisfied if ∆ω is strictly concave in the offer

x, with ∆ω (x = 1) ≥ 0; or if ∆ω is strictly increasing in x. Of particular relevance for our

analysis are the minimum offers that a fully informed voter (with σi = σ) would accept,

which we write as xL (λ) and xH (λ).17 Formally, define xω (λ) by ∆ω (xω (λ) , σ, λ) = 0.

We write xω (λ) = ∞ if no solution exists. The minimum acceptable offer xH(0) is used

in our final assumption, which concerns proposer preferences:

16If q∆H (·, σ, λ) + (1 − q) ∆L (·, σ, λ) < 0 for all x ∈ [0, 1), the cutoff value implied by Assumption 4
is x = 1. By Assumptions 2 and 3, q∆H (·, σ, λ) + (1 − q)∆L (·, σ, λ) cannot be everywhere positive.

17The uniqueness of xL (λ) and xH (λ) follows from Assumption 4 with q = 0 and q = 1.
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Assumption 5 (I) For all σ0, V
ω (x, σ0) > V̄ ω (σ0) for x ∈ (0, 1), and V ω (1, σ0) =

V̄ ω (σ0). (II) There exists x < xH (0) such that V ω is decreasing in x for x ≥ x.

The first part of Assumption 5 says that the proposer dislikes the status quo relative

to the range of possible alternatives: regardless of the state, he would prefer to have

any proposal x ∈ (0, 1) implemented.18 The second part of Assumption 5 ensures that

there is at least some conflict between the proposer’s and voters’ preferences, even if they

are aligned over some regions of the offer space [0, 1]. Specifically, in the pure common

values case λ = 0, voters accept offers only if they are sufficiently far above xH (0), and

Assumption 5 says that the proposer dislikes increasing the offer beyond xH (0).

Before turning to the analysis of our model, we note that in our framework voting is

the only means by which voters can share their information. When voters are numerous

and dispersed, as is often the case, this is a reasonably realistic assumption. We return

to this issue in more detail in the conclusion. Somewhat related, we also take as given

the information possessed by voters. Other authors have modelled strategic voting games

with costly information acquisition,19 but have done so under the assumption that the

proposal being voted over is independent of the voting rule, i.e., is exogenous. We leave

the simultaneous integration of costly information acquisition and endogenous proposals

into strategic voting for future work.

3 Equilibrium existence and basic properties

In order to establish equilibrium existence we first look at the voting stage:

18In general, one can think of a larger set of proposals [0,∞), but with the proposer preferring the
status quo to offers x ∈ (1,∞). The content of Assumption 5 is that the set of offers the proposer prefers
to the status quo is independent of (ω, σ0). For instance, consider the debt renegotiation example of
footnote 12, where x is the fraction of the firm the debtor offers to creditors. Then Assumption 5 says
that the debtor prefers being left with any fraction 1 − x of the firm to liquidation (the status quo).

19See Persico (2004), Yariv (2004), and Martinelli (2005).
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The voting stage

Fix a preference parameter λ and a number of voters n. A central insight of the

existing strategic voting literature is that voter i’s decision of how to vote depends on

the expectation of his utility across states in which he is pivotal, since in other states his

vote makes no difference. Let PIVi denote the event in which voter i is pivotal. Thus

voter i votes to accept offer x after observing σi if and only if

∑

ω=L,H

Pr (ω, PIVi|σi, x)U
ω (x, σi, λ) ≥

∑

ω=L,H

Pr (ω, PIVi|σi, x) Ū
ω (x, σi, λ) . (1)

Since σi are independent conditional on ω,

Pr (ω, PIVi|σi, x) =
Pr (ω, PIVi, σi|x)

Pr (σi|x)
=

Pr (PIVi|ω) Pr (σi|ω) Pr (ω|x)

Pr (σi|x)
. (2)

Write b for a voter’s belief that ω = H based only on the offer x (and ignoring his own

signal σi). Substituting b, ∆ω and (2) into inequality (1) implies that voter i votes to

accept proposal x after observing σi if and only if

∆H (x, σi, λ) Pr (PIVi|H) f (σi|H) b+ ∆L (x, σi, λ) Pr (PIVi|L) f (σi|L) (1 − b) ≥ 0. (3)

By MLRP, it is immediate from (3) that in any equilibrium each voter i follows a cutoff

strategy, i.e., votes to accept if and only if σi exceeds some critical level. As noted,

throughout we focus on symmetric equilibria in which the ex ante identical voters follow

the same voting strategy. Let σ∗
n(x, b, λ, α) ∈ [σ, σ̄] denote the common cutoff20 when

there are n voters, the offer is x, voters attach a probability b to ω = H , and the

preference parameter and voting rule are λ and α respectively. For clarity of exposition,

we suppress the arguments n, x, b, λ and α unless needed. Evaluating, the probability

that a voter is pivotal is given by Pr (PIVi|ω) =
(

n−1
nα−1

)

(1 − F (σ∗|ω))nα−1F (σ∗|ω)n−nα.

The acceptance condition (3) then rewrites to:

∆H (x, σi, λ) (1 − F (σ∗|H))nα−1F (σ∗|H)n−nα f (σi|H) b

+∆L (x, σi, λ) (1 − F (σ∗|L))nα−1F (σ∗|L)n−nα f (σi|L) (1 − b) ≥ 0. (4)

20As we show below, there exists a unique cutoff signal.
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If there exists a σ∗ ∈ [σ, σ̄] such that voter i is indifferent between accepting and rejecting

the offer x exactly when he observes the signal σi = σ∗, then the equilibrium is said to

be a responsive equilibrium. Notationally, we represent a responsive equilibrium by its

corresponding cutoff value σ∗ ∈ [σ, σ̄].

The following lemma establishes existence and uniqueness of cutoff strategies in the

voting stage of the game. Part (1) extends Theorem 1 of Duggan and Martinelli (2001) to

our more general preference framework. Parts (2) and (3) establish elementary properties

of how the responsive equilibrium is related to the proposer’s offer x.

Lemma 1 (Existence and uniqueness in the voting stage) Fix belief b, a voting

rule α and preferences λ. There exist xn (b, λ, α), x̄n (b, λ, α) such that:

(1) For any n, a responsive equilibrium σ∗ (x) ∈ [σ, σ̄] exists if and only if x ∈ [xn, x̄n].

When a responsive equilibrium exists it is the unique symmetric responsive equilibrium.

(2) The equilibrium cutoff σ∗ (x) is decreasing and continuously differentiable over (xn, x̄n),

with σ∗ (xn) = σ̄ and σ∗ (x̄n) = σ. The equilibrium acceptance probability is increasing

and continuously differentiable over (xn, x̄n), and equals 0 and 1 at xn and x̄n respectively.

(3) If α < 1 and x is such that ∆H (x, σ̄) > 0 > ∆L (x, σ), there exists N such that

x ∈ (xn, x̄n) for n ≥ N .

In addition to responsive equilibria, non-responsive equilibria exist. Specifically, for

any α > 1
n

there is an equilibrium in which each voter rejects regardless of his signal,

σ∗ = σ̄. Likewise, for any α < n−1
n

there is an equilibrium in which each voter accepts

regardless of his signal, σ∗ = σ. We follow the literature and assume that if a responsive

equilibrium exists, then it is played. From Lemma 1, as x increases over (xn, x̄n) the

acceptance probability increases continuously from 0 to 1. We thus assume that when

x ≤ xn the rejection equilibrium is played, while for x ≥ x̄n the acceptance equilibrium

is played. In addition to being intuitive and ensuring continuity, this rule selects the

unique trembling-hand perfect equilibrium when x ≤ xn.21 Under this selection rule:

21Formally, for any b, λ, and any voting rule α > 1
2 + 1

2n
, if x ≤ xn then the only trembling-hand perfect
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Lemma 2 (Acceptance probability comparative statics) The acceptance probabil-

ity is increasing in the offer x, belief b, and from ω = L to ω = H.

The offer stage

In our environment, the proposer chooses an offer x from an infinite choice set [0, 1].

Additionally, the proposer “type” σ0 is itself drawn from an infinite set [σ, σ̄]. It is

well-known that sequential equilibria may fail to exist in infinite games, even when (as

is the case here) payoff functions are continuous.

To establish equilibrium existence, we exploit Manelli’s (1996) sufficient conditions

for a canonical signaling game, in which a single “sender” of unknown type chooses an

action, and a single uninformed “receiver” responds. To apply his results, we must first

show that the aggregate behavior of the n partially informed voters in our model matches

that of a single uninformed receiver endowed with suitable preferences.

At the extreme of pure common values (λ = 0) the voting stage is a game of common

interest, and McLennan (1998) shows (see his Theorem 2) that if a symmetric voting

strategy maximizes total voter welfare it is an equilibrium. Since there is at most one

symmetric responsive equilibrium in our model, the converse is also true. That is, for an

arbitrary symmetric profile of voter cutoff voting strategies σ̂, define ui (x, σ̂; b, λ, α) as

the expected utility of voter i given offer x. Then if the maximizer of ui (x, ·;λ = 0) lies in

(σ, σ̄), it coincides with the (unique symmetric) responsive equilibrium. Consequently,

under pure common values the equilibrium behavior of voters matches that of a single

uninformed player who chooses a strategy σ̂ to maximize ui (x, ·;λ = 0).

Away from the common values extreme our game is not one of common interest, and

mapping equilibrium behavior of n voters to that of a single player is more complicated:22

equilibrium is the non-responsive equilibrium in which each voter always rejects. A proof is available
from the authors’ webpages. Moreover, although when x ≥ x̄n both the acceptance and rejection
equilibria are trembling-hand perfect, the trembles required to support the rejection equilibrium do not
satisfy the cutoff rule property we discussed earlier. Indeed, if tremble strategies were required to satisfy
the mild monotonicity restriction that voting to accept is weakly more likely after a higher signal, then
the acceptance equilibrium would be the only trembling-hand perfect equilibrium when x ≥ x̄n.

22The application of McLennan’s Theorem 2 described above relies on total voter welfare being max-
imized at an interior voting strategy, σ ∈ (σ, σ̄). Moreover, in McLennan’s model signals are drawn
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Lemma 3 (Equivalent signaling game) Fix n, λ, α. Suppose the proposer offers

x and voters’ beliefs about the proposer’s observation σ0 are given by the probability

distribution ϕ on [σ, σ̄]. Then the equilibrium σ∗
n of the voting stage coincides with the

best-response of a single fictitious receiver with the same belief and whose payoff depends

on the offer x, sender action σ0, and his own action σ′ according to

Un (x, σ′, σ0;λ, α) ≡

∫ σ′

σ

−Z
(

x, s, b = pH(σ0), λ, α, n
)

ds, (5)

where23

Z (x, σ, b, λ, α, n) ≡ b∆H (x, σ) ℓ(σ)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

+(1 − b) ∆L (x, σ) .

From Lemma 3, Manelli’s results imply:

Proposition 1 (Equilibrium existence) An equilibrium exists.

An additional implication of McLennan’s results is that at the pure common values

extreme the effect of an exogenous increase in the offer x on voter welfare can be evaluated

by considering only the direct effect, i.e., is given by ∂
∂x
ui (x, σ

∗ (x)), where σ∗ (x) denotes

the voting equilibrium given offer x. That is, even though voting behavior is determined

as the outcome of an n-player non-cooperative game, the conclusion of the envelope

theorem still holds and there is no need to consider how a change in the offer x affects

the likelihood of acceptance (determined by the voting strategy σ∗ (x)).

Under unanimity rule this argument can be generalized, and the direct effect ∂
∂x
ui (x, σ

∗ (x))

provides a lower bound for how the offer x affects voter welfare:

Lemma 4 (Effect of higher offers on voter payoffs) If α = 1 or λ = 0,

d

dx
ui (x, σ

∗) ≥
∂

∂x
ui (x, σ

∗) . (6)

from a finite distribution. Lemma 3 covers both formal difficulties.
23Note that Z (x, σ, b, λ, α, n) f(σ|L)(1−F (σ|L))nα−1F (σ|L)n−nα is equal to the left-hand side of (4)

for σ = σi = σ∗.
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4 Unanimity rule

An important property of the unanimity voting game is the existence of relatively mod-

erate offers that voters always accept. Consider the offer xU (b, λ), defined implicitly by

the unique24 solution in (0, 1) to

∆H (x, σ) ℓ(σ)b+ ∆L (x, σ) (1 − b) = 0 (7)

(we write xU (b, λ) = ∞ if (7) has no solution). If voters hold belief b they always accept

the offer xU (b, λ): under unanimity each voter is always pivotal, and so the vote-to-

accept condition (3) is satisfied for all realizations of σi. Moreover, ∆L (xU (b, λ) , σ) < 0

by Assumption 2, and so voters make themselves worse off by accepting this offer when

ω = L. For use below, note that xU (b, λ) is decreasing in b.25

Our next result deals with the acceptance probability for offers below xU (b, λ). We

write P ω
n (x, b, λ, α) for the acceptance probability in state ω given offer x, along with

P ω(x, b, λ, α) for the limit value as n→ ∞. Recall, moreover, that xω (λ) is the minimum

offer acceptable to a fully informed voter (with σi = σ) in state ω.

Lemma 5 (Limit acceptance probability under unanimity) Suppose unanimity

rule is in effect (α = 1). If the offer x ≥ xU (b, λ) then P ω
n (x, b, λ, 1) = 1 for all n,

for ω = L,H. Moreover, there exists λ̌ > 0 such that for any ε > 0, P ω
n (·) converges

uniformly over [0, 1 − ε] ×
[

b, b̄
]

×
[

0, λ̌
]

to

P ω (x, b, λ, 1) =























0 if x ≤ xH (λ)
(

−∆H(x,σ,λ)
∆L(x,σ,λ)

b
1−b

ℓ(σ)
)

ℓ(σ)
1−ℓ(σ)

+1(ω=L)

if x ∈ (xH (λ) ,min {1, xU (b, λ)})

1 if x ≥ min {1, xU (b, λ)}

.

The limit acceptance probability P ω (x, b, λ, 1) is continuous and increasing in x and b.

Lemma 5 is related to Duggan and Martinelli’s (2001) Theorem 4, which characterizes

limit acceptance probabilities for intermediate offers when preferences have no private

24Equation (7) has at most one solution by Assumption 4.
25This is easily shown to follow from Assumption 2.
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value component (λ = 0). The main contribution of Lemma 5 relative to their result is

to establish uniform convergence. We need this property because we use the limit ac-

ceptance probability to characterize the proposer’s offer against a large number of voters,

and this approach would be invalid without uniform convergence. Uniform convergence

of the acceptance probability P ω
n as a function of the offer x follows from the fact that

P ω
n is monotone in x (see Lemma 1) and has a continuous limit. This is established in

Lemma A-3, stated and proved in the Appendix. Lemma A-4 then establishes uniform

convergence of P ω
n as a function of x, b, λ, where P ω

n need not be monotone in λ.

The limit acceptance probabilities in Lemma 5 reflect the failure of information ag-

gregation under unanimity rule. This leads to, on the one hand, offers above xH being

rejected when ω = H ; and on the other hand, offers below xL being accepted when

ω = L. Because of the failure of information aggregation, the proposer’s signal σ0 may

affect the acceptance probability, even when the number of voters is large. Consequently

the proposer can try to signal his own information σ0 with the offer he makes. However,

σ0 is only a noisy signal of ω. It follows that it is impossible for the offer to convey

enough information to voters to persuade them to accept the offer xH .26 So regardless

of the equilibrium played, the proposer must raise his offer a discrete amount above xH

in order to obtain a reasonable acceptance probability.

Proposition 2 (Equilibrium offer under unanimity) Under unanimity rule (α =

1) there exists λ̌ > 0, κ > 0, and N such that for all σ0, λ ∈
[

0, λ̌
]

, in any equilibrium

the proposer’s offer always lies in (xH (λ) + κ, 1 − κ) when n ≥ N , and is always less

than xU (b, λ) (regardless of n).

Proposition 2 says that the mistakes voters make under unanimity rule force the

proposer to offer strictly more than xH . Combined with Lemma 5, this result implies

26Even if the proposer’s signal σ0 perfectly revealed ω, it is readily shown that there is no pure strategy
separating equilibrium. Consequently, there is still no equilibrium in which the offer xH is accepted with
high probability under unanimity. A proof is available from the authors’ webpages.
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that the equilibrium acceptance probability under unanimity rule is bounded away from

zero when the preferences are close to common values.

Possibly more surprising, when voters’ information is sufficiently poor their mistakes

under unanimity can lead to an equilibrium in which the proposer’s offer is always ac-

cepted. To see this, note first that the acceptance probability is convex in the offer x up

to xU .27 Provided each voter’s information is not too informative (i.e., ℓ(σ) is not too

low), the proposer’s payoff is likewise convex. If the proposer is completely uninformed,

it follows immediately that he finds it worthwhile to increase his offer all the way to xU .

More generally, our next result establishes that there is a pooling equilibrium in which

the proposer always offers xU and voters always accept.

Lemma 6 (Certain acceptance of equilibrium offer) Suppose unanimity rule is

in effect (α = 1). If xU(b = pH , λ) < 1 then there exists ℓ and N such that whenever

voter information is sufficiently poor such that ℓ(σ) ≥ ℓ, and n ≥ N , there is a pooling

equilibrium in which the offer is independent of σ0 and lies within 1/n of xU (b = pH , λ).

5 Majority rule

We refer to any non-unanimity voting rule α < 1 as a majority rule. To state our results,

we need to generalize the xω (λ) notation introduced above. For ω = L,H , define σω (α)

and xω (λ;α) < 1 implicitly by 1 − F (σω (α) |ω) = α and ∆ω (xω (λ;α) , σω (α) , λ) = 0.

That is, conditional on ω there is a probability α that the realization of σi exceeds σω (α);

and xω (λ;α) is the proposal that gives a voter i the same payoff as the status quo,28

given ω and σi = σω (α). As such, if the state ω were public information, then an offer

just above xω (λ;α) would be accepted with probability converging to 1 as the number

of voters n grows large. Note that xω (·;α = 1) ≡ xω (·) since σω (1) = σ, so that this

notation contains the notation of prior sections as a special case. Moreover, under pure

common values (λ = 0) the value xω (λ;α) is independent of the voting rule α.

27See Lemma A-5 in the Appendix.
28If no such offer exists, we write xω (λ; α) = ∞.
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The existing strategic voting literature establishes that majority rule perfectly aggre-

gates information as the number of voters grows large. In terms of the above notation,

this means that the limit acceptance probability given state ω is zero if the offer x is less

than xω (λ;α), and is one if the offer x exceeds xω (λ;α). As such, the limit acceptance

probability is discontinuous. In contrast, the acceptance probability for any finite number

of voters n is continuous (see Lemma 1). An important consequence of these observations

is that when majority rule is used the acceptance probabilities do not converge uniformly

to their limit — in sharp contrast to the case of unanimity rule (Lemma 5).

Because of this failure of uniform convergence, it is not possible to first analyze the

equilibrium of the limit game, and then to show that it is also the limit of equilibria

of finite games. We deal with this complication by first extending the existing strategic

voting literature to the case where the proposal varies with the number of voters. Since

there is no reason to require the proposer’s offers to have a well-defined limit, we state

our result in terms of the limits infimum and supremum. We show that, as in Feddersen

and Pesendorfer (1997) and Duggan and Martinelli (2001), the aggregate response of the

voting group to an offer x matches that which would be obtained under full information.

Lemma 7 (Acceptance probabilities under majority) Suppose a majority voting

rule α < 1 is in effect. Take any λ ∈ [0, 1], and consider a sequence of offers xn. If

lim inf xn > xω (λ;α) then P ω
n (xn) → 1. If lim sup xn < xω (λ;α) then P ω

n (xn) → 0.

From Lemma 7, the acceptance probabilities are asymptotically constant over each

of the ranges [0, xH), (xH , xL), and (xL, 1]. Consequently, when facing a large number of

voters using majority rule, the proposer never makes an offer that lies far from the lower

ends of these ranges, i.e., 0, xH , xL. Since the offer 0 is always rejected when the number

of voters is large, the proposer’s choice boils down to xH versus xL. To determine the

proposer’s choice between the two, for any σ0 define

W (σ0;λ, α) ≡ pH(σ0)V
H (xH , σ0) + pL(σ0)V̄

L (σ0) −E [V ω (xL, σ0) |σ0] . (8)
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Economically, W (σ0) is the proposer’s gain to offering xH instead of xL after observing

σ0. Since the proposer vacuously prefers the offer xH when xL = ∞, set W (σ0) = ∞ in

this case. Our formal result is:29

Proposition 3 (Equilibrium payoffs under majority) Suppose a majority voting

rule α < 1 is in effect and xH (λ;α) 6= ∞. If W (σ0) > 0 then the proposer’s offer

converges to xH (λ;α) and the acceptance probabilities in ω = L,H converge to 0 and

1 respectively. If W (σ0) < 0 then the proposer’s offer converges to xL (λ;α) and the

acceptance probabilities converge to 1 in both ω = L,H. As n → ∞, the payoffs of the

voters and proposer respectively converge to:

Eσi,ω

[

Ūω (σi)
]

+

∫

σ0 s.t. W (σ0)<0

Eσi,ω [∆ω (xL, σi, λ) |σ0] dF0 (σ0)

+

∫

σ0 s.t. W (σ0)>0

pH(σ0)Eσi

[

∆H (xH , σi, λ) |H
]

dF0 (σ0) ,

and

∫

σ0 s.t. W (σ0)<0

Eω [V ω (xL, σ0) |σ0] dF0 (σ0)

+

∫

σ0 s.t. W (σ0)>0

(

pH(σ0)V
H (xH , σ0) + pL(σ0)V̄

L (σ0)
)

dF0 (σ0) .

Note that because the true realization of ω is asymptotically revealed under majority

voting, there is no scope for the proposer’s offer to convey useful information. Conse-

quently the signaling aspect of the bargaining game disappears. The equilibrium outcome

is then asymptotically unique.30

Next, consider what economic circumstances lead W to be positive, and so to the

proposer offering xH against majority rule. First, W is increasing in xL and decreasing

in xH . As such, the proposer is more likely to offer xH if a voter’s payoff relative to the

status quo in state L is low (i.e., ∆L low); or a voter’s payoff relative to the status quo in

29The proof of Proposition 3 uses the very mild assumption that W (σ0; λ, α) = 0 for at most finitely
many values of σ0 when xL (λ; α) 6= ∞ 6= xH (λ; α). Whenever the effect of σ0 on the proposer’s
preferences is weak enough, W (σ0) = 0 for at most one value of σ0, and so this assumption is satisfied.

30More accurately, the equilibrium is unique within the class of symmetric voter equilibria, and given
our standard equilibrium selection rule that chooses a responsive equilibrium whenever one exists.
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state H is high (i.e., ∆H high). Second, turning to the proposer’s own preferences, the

proposer is more likely to offer xH if his status quo payoff in state L (i.e., V̄ L) is high;

or the cost of increasing the offer in state H (i.e.,
∣

∣

∣

∂V H

∂x

∣

∣

∣
) is high; or the value of having

an offer accepted in state L (i.e., V L) is low.

The main difficulty in proving Proposition 3 lies in showing that when W is positive

(respectively, negative) the proposer’s offer converges uniformly to xH (respectively, xL)

with respect to σ0. Uniform convergence is necessary in order to evaluate the expected

payoffs of the proposer and voters.

From the preceding results, although majority rule aggregates information efficiently

independently of whether or not the proposer observes an informative signal, the pro-

poser’s signal does affect the offer he makes. A priori, one might conjecture that since

voters and the proposer have opposing preferences, voters would prefer to deal with an

uninformed proposer. However, there are circumstances under which this is not true.

Specifically, consider the case in which proposer preferences are independent of σ0, and

the cutoff σ̂0 at which W = 0 is low. Here, the proposer makes the high offer xL when-

ever σ0 < σ̂0, and the low offer xH otherwise. In contrast, consider the offer made by

a completely uninformed proposer with the same preferences. The W function for this

proposer is simply the integral of W (σ0) over all possible realizations of the informed

proposer’s signal σ0. Because σ̂0 was assumed to be low, this integral is positive, and so

the uninformed proposer makes the low offer xH . It follows that voters prefer to deal with

the informed proposer whenever they have close to common values preferences, since the

informed proposer makes the high offer xL at least sometimes.

6 Comparing majority and unanimity voting rules

We are now ready to compare equilibrium payoffs under majority and unanimity rule.

We focus on voter preferences that are not too far from pure common values (i.e., λ close

enough to 0).



21

From Section 5, under majority rule α the proposer either makes a low offer xH (α)

that is accepted only in the good state H , or else makes a higher offer xL (α) that is

accepted in both states. His choice depends on the additional cost of making the higher

offer (i.e., the distance xL (α) − xH (α)) and the extent to which he dislikes the status

quo, and is summarized by the function W .

In contrast, under unanimity the proposer makes an offer that is (A) strictly greater

than xH (α), but (B) lower than xU (b). Close to common values xU (b) < xL (α) when-

ever xL (α) 6= ∞. Comparison (A) means that when the proposer would offer xH (α)

against majority, voters’ mistaken reluctance to accept offers close to xH (α) under una-

nimity helps them by inducing the proposer to offer more. Conversely, comparison (B)

means that if the proposer would offer xL (α) against majority, voters’ mistakes under

unanimity instead help the proposer, since voters accept xU too readily.

The above comparisons relate to the proposer’s offer, but the effects on voter wel-

fare may be different because of the offer’s effect on acceptance probabilities. However,

Lemma 4 is enough to ensure that the direct effect of changing the offer dominates, and

voter welfare is higher if the offer is higher:

Proposition 4 (Voter welfare and voting rules) Fix a majority rule α < 1. Then:

(I) If W (·;λ = 0, α) is strictly positive for all σ0, then for all λ sufficiently small

voters strictly prefer unanimity to the majority rule α when n is sufficiently large.

(II) If W (·;λ = 0, α) is strictly negative for all σ0, and additionally ∆ω is strictly

increasing in the offer x,31 then for all λ sufficiently small, voters strictly prefer the

majority rule α to unanimity rule when n is sufficiently large.

31As discussed prior to Proposition 4, when W is positive the proposer offers more against unanimity,
while when W is negative the proposer offers less. In the former case Assumption 4 alone guarantees
that voters are better off from the higher offer, because the lower offer against majority drives their
utility all the way down to the status quo level. In contrast, in the latter case we need an additional
assumption on preferences to ensure that unanimity hurts voters in addition to helping the proposer.
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Jury voting with endogenous charges

Feddersen and Pesendorfer (1998) have argued that the unanimity requirement that

is common in jury trials leads to too many convictions of innocent defendants and too

few convictions of guilty defendants, relative to the alternative of a majority requirement.

Proposition 4 identifies a potentially important countervailing advantage of unanimity: it

reins in overly aggressive prosecutors, leading them to propose more modest punishments.

Specifically, consider again the jury interpretation of our model (see page 7). The

proposer is a prosecutor who chooses a crime to charge, in turn determining a potential

prison sentence 1 − x to be imposed on a defendant. Exactly as in Feddersen and

Pesendorfer (1998), a jury then votes to convict or acquit. We make the following

mild assumptions on social preferences, which we assume are shared by jury members:

acquitting an innocent defendant is better than imposing any penalty; imposing a small

penalty on a guilty defendant is better than acquittal; and the worst penalty (x = 0) is

so harsh that acquital is preferable, even if the defendant is guilty. That is, ∆L (x) < 0

for all x < 1; and ∆H (x) > 0 for x close enough to 1; and ∆H (0) < 0.

Unanimity has the potential to improve overall welfare when there are prosecutors

whose interests diverge from society’s. Using contemporary data, Boylan (2005) presents

evidence that prosecutors seek to maximize the total sentence imposed on defendants: in

our notation, V ω (x) is decreasing in x. Additionally, many historical accounts emphasize

prosecutor aggressiveness (e.g., Beccaria 1775), and modern legal systems may well reflect

such antecedents.

Under the above assumptions, the most severe punishment that a fully informed jury

would impose on a guilty defendant is given by xH ∈ (0, 1), while xL = ∞ since a fully in-

formed jury would always acquit an innocent defendant. From Section 5, an aggressive32

prosecutor would propose xH when dealing with a majority jury. Unanimity makes it

harder to successfully impose a tough penalty on a defendant, and leads the prosecutor to

32That is, a prosecutor for whom V ω is decreasing in x, for ω = L, H .
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moderate the proposed penalty away from xH (see Proposition 2). Hence although una-

nimity has the cost of wrongful convictions, it also has the benefit of shielding defendants

from overzealous prosecutors. By Proposition 4 the latter effect dominates.

Debt restructuring: creditor rights and issuance yields

A second application of Proposition 4 is restructuring negotiations between a debtor

and creditors. To analyze our results’ implications, we assume both the debtor and

creditors are risk-neutral; creditors like higher offers, i.e., ∆ω is increasing in x; and that

the total surplus gained or lost from restructuring, Sω ≡ Uω (x) − Ūω + V ω (x) − V̄ ω,

is independent of the terms of the offer x. That is, x simply determines how the

gain/loss from restructuring is shared. Assumptions 3 and 5 imply that the restructuring

surplus SH is positive. For use below, note that if xL 6= ∞ then UL (xL) = ŪL,

SL = V L (xL) − V̄ L, and W (σ0) = pH(σ0)
(

V H (xH) − V H (xL)
)

− pL(σ0)S
L. Moreover,

xL 6= ∞ if and only if SL ≥ 0.33

In the U.S., the Trust Indenture Act (TIA) mandates that all bondholders must agree

to a given restructuring, i.e., unanimity is required. Our analysis provides a rationale

for this requirement, as follows. Consider a firm that cannot meet its debt obligations.

Suppose that in ω = H the firm is nonetheless viable, in the sense that its future profits

exceed the proceeds from immediate liquidation; but in ω = L the firm is not viable in

this sense, and so the surplus from restructuring is negative, SL < 0. Since xL = ∞,

the indebted firm would offer xH when negotiating with creditors bound by majority. In

contrast, if the unanimous consent of creditors is required, the debtor improves his offer,

and the welfare of creditors is increased (Propostion 4).

Until recently, sovereign debt issued in the U.S. followed the TIA and required bond-

holders to agree unanimously to any restructuring. In contrast, sovereign debt issues

in other jurisdictions, including the U.K., commonly include collective action clauses

whereby debt can be restructured if more than a pre-specified fraction (e.g., 75%) of

33If xL 6= ∞ then SL = V L (xL)− V̄ L ≥ 0 by Assumption 5. Conversely, if xL = ∞ then UL (1) < ŪL

by Assumption 4, and so SL = UL (1) − ŪL + V L (1) − V̄ L < 0 by Assumption 5.
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bondholders agree. This cross-sectional variation in voting rules used by otherwise com-

parable securities provides a natural venue to check the predictions of our analysis. To

recap, Proposition 4 implies that bondholders fare better (worse) in restructuring under

U.S. law, and hence yields at issuance are lower (higher), if W is positive (negative).

Eichengreen and Mody (2004) have empirically examined the relationship between

bond yields, issue location (i.e., voting rule), and issuer credit quality.34 They find

that issuance yields in the U.S. are lower (respectively, higher) than in the U.K. for less

(respectively, more) credit-worthy borrowers. Provided that surplus from restructuring

in state L is increasing in the credit-worthiness of the borrower, this finding is exactly as

our analysis predicts, since W is decreasing in the restructuring surplus SL.

Debt restructuring: choice of governing law

Eichengreen and Mody also empirically examine where sovereigns issue in the first

place. If the issuing country is not credit-constrained (so that side-payments are possi-

ble), one would expect debt to be issued subject to the voting rule that maximizes overall

surplus.35 At first glance, it might seem that this criterion favours majority voting rules,

because of their efficient aggregation of information. However, this neglects the debtor’s

choice of offer in restructuring negotiations, as we now show.

Consider values of restructuring surplus SL in
(

0, pH(σ̄)
pL(σ̄)

(

V H (xH) − V H (xL)
)

)

. Sup-

pose, moreover, that creditor information quality is sufficiently poor that there is an

equilibrum under unanimity in which the debtor’s offer is always accepted (Lemma 6).36

Because restructuring is efficient in both states, total surplus is maximized. In contrast,

the surplus SL is low enough that when the debtor is sufficiently confident the state is

34See also Eichengreen, Kletzer and Mody (2003) and the citations therein.
35If instead the debtor is credit constrained the voting rule that maximizes creditor payoffs in restruc-

turing may be used in order to raise borrowing capacity, even at the cost of total surplus.
36For the comparison that follows, the key property of the equilibrium outcome under unanimity is

that agreement is reached with high probability. Focusing on the equilibrium in which proposers pool
at the offer xU guarantees this. Moreover, under pure common values, at the extreme cases of an
uninformed proposer and a fully informed proposer, there is no pure strategy separating equilibrium.
This is vacuously true in the former case; for the latter case a proof is available on the authors’ webpages.
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H (i.e., σ0 high enough) he reduces his offer to xH against majority rule,37 leading to

rejection if the state is in fact L. Hence total surplus is strictly lower under majority.

Conversely, if restructuring surplus SL falls outside the above range, total surplus

is instead maximized under majority rule. This is easily seen by considering equi-

librium outcomes under majority. If SL is negative, there is no offer that would be

accepted in state L (i.e., xL = ∞), and so the debtor offers xH . Agreement is reached

precisely in state H , which maximizes surplus. At the other extreme, if SL exceeds

pH(σ̄)
pL(σ̄)

(

V H (xH) − V H (xL)
)

he prefers to raise his offer to xL to guarantee successful re-

structuring in both states L and H — and again, surplus is maximized.38

To conclude, our analysis implies that unanimity maximizes total surplus when SL

is neither too high nor too low. Empirically, Eichengreen and Mody find that countries

with intermediate levels of credit-worthiness are more likely to issue in the U.S. (i.e.,

choose unanimity), while countries with either higher or lower levels of credit-worthiness

are more likely to issue in the U.K. Provided that SL is monotone in the creditworthiness

of the issuing debtor, this finding is again consistent with our model.

Pareto dominance of unanimity rule

Identifying the surplus-maximizing voting rule is relevant when utility is fully trans-

ferable — as it is when agents are risk-neutral and side-payments are possible. But even

when these assumptions are not satisfied, there still exist circumstances under which

unanimity passes the more demanding criterion of Pareto dominance:

Proposition 5 (Pareto dominance of unanimity) There exist economies such that

for any majority rule α < 1, both the proposer and voters strictly prefer unanimity rule

when n is sufficiently large (regardless of the equilibrium played).

Unanimity rule can Pareto dominate majority, in spite of the latter’s superior infor-

mation aggregation properties, because unanimity can lead to better offers and corre-

37Formally, W (σ0) > 0.
38When SL > pH (σ̄)

pL(σ̄)

(

V H (xH) − V H (xL)
)

, total surplus under majority rule and in the pooling

equilibrium at xU under unanimity rule is the same.
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sponding higher acceptance probabilities. As discussed above, this effect can increase

total surplus. To establish Pareto dominance, one then simply needs to check that the

cost to the proposer of the higher offer is not too great.

In the special case of pure common values and a completely uninformed proposer,

it is straightforward to construct an economy in which unanimity Pareto dominates,

as follows. First, construct an economy in which W = 0,39 and so the proposer is

indifferent between the offer xH being accepted in stateH , and the offer xL being accepted

always. From Section 5, as n grows large the proposer’s utility converges to Eω [V ω (xL)].

However, under unanimity the offer xU < xL is accepted always, and so the proposer’s

utility is at least Eω [V ω (xU)] > Eω [V ω (xL)], and the proposer strictly prefers unanimity

for n large enough. By continuity the same is true if the economy is perturbed slightly

by increasing V̄ L. Under this perturbation, W is strictly positive, and Proposition 4

implies that voters also prefer unanimity.

We close with three remarks:

Remark 1 An immediate corollary of Proposition 4 is that unanimity Pareto dominates

majority only if W (σ0) ≥ 0 for some σ0, or equivalently, the proposer offers xH against

majority rule with positive probability.

Remark 2 For an uninformed proposer and pure common values, the converse of Propo-

sition 5 is easily proved: there is no economy in which majority Pareto dominates una-

nimity for large n. To see this, simply note that by Proposition 4 voters prefer majority

rule only if W ≤ 0; but then the argument immediately prior to Remark 1 implies that

the proposer strictly prefers unanimity.

Remark 3 Although we have proved Proposition 5 using an economy with pure common

values and an uninformed proposer, neither feature is essential. A proof is contained in

an earlier working paper.

39Given pure common values and an uninformed proposer, W is independent of σ0.



27

7 Concluding remarks

In this paper we analyze a strategic voting game in which the agenda is set endogenously.

We show that unanimity rule may be the preferred voting rule not only of the voting

group, but also of the opposing party. These results contrast sharply with the results of

the existing strategic voting literature that has analyzed voting over exogenous agendas.

Inevitably our analysis has neglected some important issues. We focus almost ex-

clusively on equilibrium payoffs as the group size grows large. The chief reason for this

focus is that it allows us to establish our results with fewer assumptions on preferences

and the distributional properties of agents’ information. Numerical simulations40 suggest

that the group size needed for our asymptotic results to apply is not large — in many

cases the equilibrium with twelve agents is very close to the limiting equilibrium.

Our analysis has focused primarily on common values environments in which voters’

preferences are aligned. Of course, when preferences are close to pure private values

agreement is very hard to obtain under unanimity rule. Related, to ensure that our

results do not depend on complete preference alignment, we have established all our

main results for the case in which voter preferences are not perfectly aligned, but instead

are “sufficiently close” to common values. An alternative robustness check would be to

consider the case in which a fraction 1 − ε voters have pure common values preferences,

while the remaining fraction ε have extreme private valuations. In such circumstances,

unanimous agreement would be impossible to obtain asymptotically. However, a version

of our results should still hold when the number of voters is not too large. As we discussed

above, acceptance probabilities converge relatively quickly to their limiting expressions.

We conclude with a discussion of implications our analysis has for pre-vote communi-

cation, i.e., deliberation. In our analysis, the role of voting is to aggregate information,

and no communication is permitted. As is well-known, when voters have biases, full

information sharing during communication is not always possible (see Coughlan 2000,

40Available from the the authors’ webpages.
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Meirowitz 2005, Austen-Smith and Feddersen, 2006).41 In contrast, when there are no

biases, as in the pure common values case, voters would share their information truth-

fully when voting is over an exogenous agenda. The same is true when voting is over an

endogenous agenda and voters are worse off under unanimity rule due to mistakes. Note

however that the mistakes often benefit voters by inducing the proposer to make a better

offer. In this case, voters would want to ex ante commit not to communicate ex post

(i.e., after the offer is made).42 Of course, ex post they still wish to change their minds

and communicate, but when the number of voters is large such communication will be

hard to achieve without pre-existing arrangements. As such, our analysis complements

Austen-Smith and Feddersen’s (2006) result that when the agenda is exogenous voters

may not communicate truthfully under unanimity rule when their interests are imper-

fectly aligned. Our analysis implies that even when interests are perfectly aligned,

voters may still not communicate truthfully, because by refraining from communication

they generate a better (endogenous) offer.
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Appendix

We repeatedly use the following straightforward result. The proof is available on request.

Lemma A-1 F (σ|H) /F (σ|L) is increasing in σ, and is bounded above by 1. Conse-

quently, F (σ|H) ≤ F (σ|L), and is strict if σ ∈ (σ, σ̄). Moreover, (1 − F (σ|H)) / (1 − F (σ|L))

is increasing in σ, and is bounded above by ℓ(σ̄) > 1.

Proof of Lemma 1

The proof of Lemma 1 uses the Theorem of the Maximum (see Berge 1963). For

completeness we state the relevant half of the Theorem here:

Theorem of the Maximum: Let C ⊂ IRk and D ⊂ IRl, g : C ×D → IR a continuous

function, and h : C → D a compact-valued and continuous correspondence. Then

maxd∈h(c) g (c, d) is continuous in c.

We start by defining the values xn (b, λ, α), x̄n (b, λ, α) named in the Lemma’s state-

ment. Take Z as defined in the statement of Lemma 3. Observe that if Z (x, σ) is

positive (negative), and all but one of the voters use a cutoff strategy σ, then the remain-

ing voter i is better off voting to accept (reject) the proposal x if he observes σi = σ.

Similarly, if Z (x, σ) = 0 then there is a responsive equilibrium in which all voters use

the cutoff strategy σ.

By the Theorem of the Maximum, maxσ∈[σ,σ̄] Z (x, σ) and minσ∈[σ,σ̄] Z (x, σ) are both

continuous in x. So we can define xn (b, λ, α) and x̄n (b, λ, α) that describe the range of

offers for which a responsive equilibrium exists:

xn (b, λ, α) =







min {x|maxσ Z (x, σ) ≥ 0} if {x|maxσ Z (x, σ) ≥ 0} 6= ∅

1 otherwise
(A-1)

x̄n (b, λ, α) =







max {x|minσ Z (x, σ) ≤ 0} if {x|minσ Z (x, σ) ≤ 0} 6= ∅

0 otherwise
.(A-2)

That is, xn (b, λ, α) is the lowest offer that is ever accepted in a responsive equilibrium:

if x < xn (b, λ, α), then Z (x, σ) < 0 for all σ. Similarly, x̄n (b, λ, α) is the highest offer
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that is ever rejected in a responsive equilibrium.

Next, and for use below, note that if Z(x, σ) ≥ 0, then it must be the case that

∆H(x, σ) > 0 by Assumption 2. This implies that Z(x, σ) is strictly increasing in σ

whenever Z(x, σ) ≥ 0. In turn, Z(x, σ′) < 0 for all σ′ < σ if Z(x, σ) = 0.

Part 1: By definition, if x < xn then Z (x, ·) < 0, while if x > x̄n then Z (x, ·) > 0.

For x ∈ [xn, x̄n] we claim that Z (x, σ) = 0 for some unique σ, which we write as

σ∗ (x). Existence is immediate, since maxσ Z (x, σ) ≥ 0 ≥ minσ Z (x, σ), and Z (x, σ) is

continuous in σ. Uniqueness follows from the result we have just shown that Z(x, σ) is

strictly increasing in σ whenever Z(x, σ) ≥ 0.

Part 2: To see that σ∗ (x) is decreasing, consider x and x′ ∈ (x, 1) in (xn, x̄n). Since

Z (x, σ∗ (x)) = 0, it follows from Assumption 4 that Z (x′, σ∗ (x)) > 0. Since Z (x′, σ)

is increasing in σ it must be the case that σ∗ (x′) < σ∗ (x). By the Implicit Function

Theorem, σ (x) is continuously differentiable over (xn, x̄n). To see σ∗ (xn) = σ̄, suppose

to the contrary that σ∗ (xn) < σ̄. By definition Z (xn, σ
∗ (xn)) = 0, and so Z (xn, σ̄) > 0.

By continuity there exists an x < xn such that Z (x, σ̄) > 0 as well. This contradicts the

definition of xn. Likewise, to see σ∗ (x̄n) = σ suppose to the contrary that σ∗ (x̄n) > σ.

By definition Z (x̄n, σ
∗ (x̄n)) = 0 which implies that Z (x̄n, σ) < 0. By continuity there

exists an x such that x > x̄n and Z (x, σ) < 0, contradicting the definition of x̄n.

Part 3: Immediate from the observation that as n→ ∞,

ℓ(σ)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

converges to 0 and ∞ respectively for σ = σ, σ̄.

Proof of Lemma 2

Given the equilibrium selection rule, the comparative static in x is immediate from

Lemma 1. For the comparative static in b, observe that (by Assumption 2) if Z (x, σ, b) ≥

0 then Z (x, σ, b′) > Z (x, σ, b) for b′ > b. Hence if x ∈ (xn (b) , x̄n (b)) the equilibrium

σ∗ is decreasing in b, so the acceptance probability is increasing in b. If x ≤ xn (b)
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the statement is vacuously true. Finally, if x ≥ x̄n (b) it suffices to show that x ≥

x̄n (b′) for any b′ > b. To prove this, we must show that {x|minσ Z (x, σ, b′) ≤ 0} ⊂

{x|minσ Z (x, σ, b) ≤ 0}, for which it is sufficient to show that Z (x, σ, b) ≤ 0 whenever

Z (x, σ, b′) ≤ 0. To see this, suppose to the contrary that Z (x, σ, b) > 0 ≥ Z (x, σ, b′) —

in contradiction to above.

Proof of Lemma 3

Define bϕ =
∫

pH(σ0)ϕ (dσ0). The equilibrium σ∗
n of the voting stage of the game is

the unique solution to Z (x, σ, bϕ) = 0, provided a solution exists; is σ if Z (x, σ, bϕ) > 0

for all σ ∈ [σ, σ̄]; and is σ̄ if Z (x, σ, bϕ) < 0 for all σ ∈ [σ, σ̄].

The fictitious player chooses σ′ to maximize

∫ σ̄

σ

Un (x, σ′, σ0)ϕ (dσ0) =

∫ σ̄

σ

(

∫ σ′

σ

−Z
(

x, s, b = pH(σ0)
)

ds

)

dϕ (dσ0)

=

∫ σ′

σ

(
∫ σ̄

σ

−Z
(

x, s, b = pH(σ0)
)

dϕ (dσ0)

)

ds

=

∫ σ′

σ

−Z (x, s, bϕ) ds.

(The change of integration order in the second equality follows from standard arguments,

while the third equality follows from the linearity of Z in b.)

By prior arguments (see the proof of Lemma 1) we know that if Z (x, σ̂, bϕ) = 0 for

some σ̂, then Z (x, σ, bϕ) < 0 for σ < σ̂ and Z (x, σ, bϕ) > 0 for σ > σ̂. It follows that if

Z (x, σ∗
n, bϕ) = 0 then σ∗

n is the unique maximizer of
∫ σ′

σ
−Z (x, s, bϕ) ds; if Z (x, σ, bϕ) > 0

for all σ ∈ [σ, σ̄] then the unique maximizer of
∫ σ′

σ
−Z (x, s, bϕ) ds is σ; and finally, if

Z (x, σ, bϕ) < 0 for all σ ∈ [σ, σ̄] then the unique maximizer of
∫ σ′

σ
−Z (x, s, bϕ) ds is σ̄.

This completes the proof.

The proof of Proposition 1 uses Manelli’s (1996) Corollary 3, stated below:

Corollary 3 (Manelli): Consider a signaling game in which the sender’s type σ0 is

drawn from [σ, σ̄]; the sender’s action x is drawn from a compact subset X ⊂ [0, 1];

the receiver chooses an action σ′ ∈ [σ, σ̄]; and both the sender and receiver payoffs are
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continuous in (σ0, x, σ
′). Suppose moreover that given his belief, the receiver has a unique

best response to any offer x; and the game is strongly monotonic, in the sense that if the

receiver weakly prefers response σ′ to σ′′ when his type is σ0, with the opposite true when

his type is σ0 6= σ′
0, then σ′ = σ′′. Then the game has a sequential equilibrium.

Proof of Proposition 1: As established in Lemma 3, it is possible to replace the n

voters with a single uninformed fictitious agent with preferences defined in (5). The

proposer strictly prefers more acceptance (lower values of σ∗
n), regardless of his “type”

σ0 and offer x. Moreover, for any belief the best-response of the fictitious agent is a

pure-strategy. As such, the game is strongly monotonic, and so possesses a sequential

equilibrium (Corollary 3, Manelli).

Proof of Lemma 4

Differentiability follows directly from Lemma 1. If x < xn or x > x̄n, it is immediate

that (6) holds at equality, since over these regions σ∗
n (x) is constant (and equal to σ̄ and

σ respectively). For the intermediate case x ∈ (xn, x̄n) we also need to account for the

effect changing x has on the equilibrium voting strategies. We use a generalized version

of the notation in the main text: for an arbitrary profile of voter cutoff voting strategies

σ̂ = (σ̂1, . . . , σ̂n), define ui (x, σ̂; b, λ, α) as the expected utility of voter i given offer x.

Since x ∈ (xn, x̄n) the voting equilibrium is responsive. Let σ∗ = (σ∗
n (x) , . . . , σ∗

n (x)).

By definition, in equilibrium no voter can increase his utility by adopting a different

voting strategy: ∂
∂σ̂i
ui (x, σ

∗) = 0. The total derivative of voter utility with respect to

the offer x is

d

dx
ui (x, σ

∗) =
∂

∂x
ui (x, σ

∗) +
n
∑

j=1

∂σ∗
n (x)

∂x

∂

∂σ̂j

ui (x, σ
∗) , (A-3)

where the first term captures the direct effect, and the second term reflects how a change

in the offer affects the acceptance probability. By the envelope theorem, the fact that

voter j chooses σ∗
n (x) to maximize his utility implies that ∂

∂σ̂j
uj (x, σ∗) = 0 for all j, x.

Pure common values case (λ = 0): Here uj ≡ ui for all voters i, j, and so

∂
∂σ̂j
ui (x, σ

∗) = 0 for all i, j, x. Hence d
dx
ui (x, σ

∗) = ∂
∂x
ui (x, σ

∗), from (A-3).
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Unanimity case (α = 1): For any common cutoff strategy σ̂

∂

∂σ̂i

ui (x, σ̂, b, λ, α) = Eω

[

−f (σ̂|ω) (1 − F (σ̂|ω))n−1 ∆ω (x, σ̂)
]

∂

∂σ̂j

ui (x, σ̂, b, λ, α) = Eω

[

−f (σ̂|ω) (1 − F (σ̂|ω))n−1E [∆ω (x, σi) |σi ≥ σ̂]
]

.

Observe that ∂
∂σ̂i
ui (x, σ̂, b, λ, α) ≥ ∂

∂σ̂j
ui (x, σ̂, b, λ, α) since E [∆ω (x, σi) |σi ≥ σ̂] ≥ ∆ω (x, σ̂)

by Assumption 2. In equilibrium ∂
∂σ̂i
ui (x, σ̂, b, λ, α) = 0. Since ∂σ∗

n/∂x < 0 (see Lemma

1), the result then follows from (A-3).

Proof of Lemma 5 (preliminaries)

To prove the uniform convergence half of Lemma 5, we make use of the following

three results, which we state separately for clarity.

Lemma A-2 −∆H(x,σ,λ)
∆L(x,σ,λ)

is strictly increasing over [xH (λ) ,min {1, xL (λ)}]. Moreover,

there exists ε > 0 such that −∆H(x,σ,λ=0)
∆L(x,σ,λ=0)

is strictly increasing over [xH (0) − ε,min {1, xL (0)}].

Proof of Lemma A-2: First, note that −∆H(x,σ,λ)
∆L(x,σ,λ)

is strictly increasing over (xH (λ) ,min {1, xL (λ)}

To see this, note that over this interval ∆H (x, σ, λ) is strictly positive and ∆L (x, σ, λ)

is strictly negative, and suppose to the contrary that there exist x1, x2 > x1, and K > 0

such that −∆H(x1,σ,λ)
∆L(x1,σ,λ)

≥ K ≥ −∆H(x2,σ,λ)
∆L(x2,σ,λ)

. Then

∆H (x1, σ, λ) +K∆L (x1, σ, λ) ≥ 0 ≥ ∆H (x2, σ, λ) +K∆L (x2, σ, λ) ,

contradicting Assumption 4.

Second, note that by Assumptions 2 and 4, ∆ω (x, σ, λ = 0) is strictly negative for

x < xH (0), ω = L,H , and so −∆H(x,σ,λ=0)
∆L(x,σ,λ=0)

is likewise strictly negative. So there exists

ε > 0 such that −∆H(x,σ,λ=0)
∆L(x,σ,λ=0)

is strictly increasing over (xH (0) − ε, xH (0)).

Lemma A-3 If {gn : [0, 1] → [0, 1]} is a sequence of increasing functions that converge

pointwise to a continuous function g, then convergence is uniform.

Proof of Lemma A-3: Observe that the limit function g is increasing. Take ε > 0.

By the continuity of g, choose a finite set of points 0 = x1 ≤ . . . ≤ xm = 1 such that
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for any x′, x′′ ∈ [xi, xi+1], |g (x′) − g (x′′)| ≤ ε
2
. Consequently, g (x) − ε

2
≤ g (xi) and

g (x) + ε
2
≥ g (xi+1) for any x ∈ [xi, xi+1].

By pointwise convergence, there exists someN such that when n ≥ N , |gn (x) − g (x)| <

ε
2

for all x ∈ {x1, . . . , xm}. Hence gn (xi) ≥ g (xi) −
ε
2

and gn (xi+1) ≤ g (xi+1) + ε
2
.

Take n ≥ N , and x ∈ [0, 1]. Let i be such that x ∈ [xi, xi+1]. By monotonicity,

gn (x) ∈ [gn (xi) , gn (xi+1)] ⊂
[

g (xi) −
ε
2
, g (xi+1) + ε

2

]

⊂ [g (x) − ε, g (x) + ε] , complet-

ing the proof.

Lemma A-3 concerns the uniform convergence of monotone functions on a compact

subset of the real-line. Next, Lemma A-4 shows that under certain conditions mono-

tonicity in one variable is enough to imply uniform convergence for functions of higher-

dimensional Euclidean spaces:

Lemma A-4 Let C = [c, c̄]×D, where D is a compact subset of a Euclidian space, and

let gn : C → IR be a sequence of continuous functions that are monotone in their first

argument and converge pointwise to a continuous function g : C → IR. Suppose that there

exists a compact Euclidean set S, a sequence of functions sn : C → S, and a continuous

function h : C × S → IR that is strictly monotone and continuously differentiable in its

first argument such that, for all n, gn (z) = gn (z′) whenever h (z, sn (z)) = h (z′, sn (z)).

Then for any κ > 0, gn converges uniformly to g over [c+ κ, c̄− κ] ×D.

Proof of Lemma A-4: Given κ > 0, write Ĉ = [c + κ, c̄− κ] × D. Fix ε > 0 and

choose µ < κ such that |g (z) − g (z′)| < ε
4

whenever |z − z′| < µ and z, z′ ∈ C. Define

ψ = min(z,s)∈C×S

∣

∣

∣

∂h(z,s)
∂z1

∣

∣

∣
, and choose δ ∈ (0, µ) such that δ < ψµ. Choose γ ∈ (0, µ) such

that |h (z, s) − h (z′, s′)| < δ whenever |(z, s) − (z′, s′)| < γ and (z, s) , (z′, s′) ∈ C × S.

Select a finite set D∗ ⊂ D such that for all z−1 ∈ D, there exists z′−1 ∈ D∗ such that
∣

∣z−1 − z′−1

∣

∣ < γ.

By Lemma A-3, for any z−1 ∈ D the function sequence gn (·, z−1) converges uniformly

to g (·; z−1). So there exists some N such that
∣

∣gn

(

z1, z
′
−1

)

− g
(

z1, z
′
−1

)
∣

∣ < ε
2

for any
(

z1, z
′
−1

)

∈ [c, c̄] ×D∗ whenever n ≥ N .
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Fix z ∈ Ĉ and n ≥ N . Let z′−1 ∈ D∗ be such that
∣

∣z−1 − z′−1

∣

∣ < γ. Note that

h (z, sn (z)) ∈
(

h
(

z1, z
′
−1, sn (z)

)

− δ, h
(

z1, z
′
−1, sn (z)

)

+ δ
)

.

Moreover, as z̃1 ranges over (z1 − µ, z1 + µ) the value of h
(

z̃1, z
′
−1, sn (z)

)

ranges contin-

uously over a superset of

(

h
(

z1, z
′
−1, sn (y, z)

)

− ψµ, h
(

z1, z
′
−1, sn (y, z)

)

+ ψµ
)

.

Since δ < ψµ, there exists some z′1 ∈ (z1 − µ, z1 + µ) such that h (z′, sn (z)) = h (z, sn (z)),

where z′ =
(

z′1, z
′
−1

)

∈ [c, c̄] ×D∗. By assumption it follows that gn (z) = gn (z′), and so

|gn (z) − g (z)| ≤ |gn (z′) − g (z′)| +
∣

∣g (z′) − g
(

z1, z
′
−1

)
∣

∣+
∣

∣g
(

z1, z
′
−1

)

− g (z)
∣

∣

≤
ε

2
+
ε

4
+
ε

4
= ε.

Proof of Lemma 5 (pointwise limits)

Take Z as defined in the statement of Lemma 3. First, consider offers x ≥ xU (b, λ).

We claim that if xU (b, λ) 6= ∞ then x̄n (b, λ, α = 1) = xU (b, λ) for all n. To see this,

note that when α = 1, Z (x, σ) coincides with the lefthand side of (7), regardless of n.

As such, Z (xU , σ) = 0, and so Z (xU , σ) > 0 for σ > σ. So x̄n ≥ xU . Moreover, it

follows that Z (x, σ) > 0 for all σ if x > xU , so that x̄n = xU . Given this, the equilibrium

for x ≥ xU is the non-responsive acceptance equilibrium.

Second, consider any offer x ∈ (xH (λ) , xU (b, λ)). There is a responsive equilib-

rium when n is large enough, as follows. By definition, ∆H (xH (λ) , σ) = 0, and so

∆H
(

xH(λ)+x

2
, σ
)

> 0. The term ℓ(σ)
(

1−F (σ|H)
1−F (σ|L)

)n−1

grows without bound for any σ > σ.

So by the definition of xn (see (A-1)), x > xn for all n sufficiently large. Moreover, by

definition Z (xU , σ) = 0. So Z (x, σ) < 0, and so x < x̄n (see (A-2)). Hence a responsive

equilibrium exists, and the equilibrium condition is

−
∆H (x, σ∗

n, λ)

∆L (x, σ∗
n, λ)

b

1 − b
ℓ(σ∗

n)

(

1 − F (σ∗
n|H)

1 − F (σ∗
n|L)

)n−1

= 1. (A-4)

Since 1−F (σ|H)
1−F (σ|L)

> 1 for σ > σ, it follows that

σ∗
n → σ as n→ ∞. (A-5)
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In the proof of their Theorem 4, Duggan and Martinelli (2001) show that (A-4) and (A-5)

together imply that

limPH
n = lim (1 − F (σ∗

n|H))n =

(

−
∆H (x, σ, λ)

∆L (x, σ, λ)

b

1 − b
ℓ(σ)

)

f(σ|H)
f(σ|L)−f(σ|H)

. (A-6)

The limit acceptance probability for ω = L is then immediate from (A-4) and (A-5).

Third, consider the offer x = xH (λ), and suppose that contrary to the claimed

result lim (1 − F (σ∗
n|H))n 6= 0. As such, there exists a subsequence of (σ∗

n),
(

σ∗
nm

)

say, such that limm→∞

(

1 − F
(

σ∗
nm

|H
))nm

> 0. Since xH (λ) < xU (b, λ), for m

large σ∗
nm

is a responsive equilibrium, and so by (A-5) σ∗
nm

→ σ. It follows that

limm→∞

(

1 − F
(

σ∗
nm

|H
))nm

equals the righthand side of equation (A-6) evaluated at

x = xH (λ). However, −∆H(xH(λ),σ,λ)
∆L(xH(λ),σ,λ)

= 0, and so this contradicts the hypothesis that

limm→∞

(

1 − F
(

σ∗
nm

|H
))nm

> 0.

Fourth, and finally, if x < xH (λ) then from Lemma 2, P ω
n (x) ≤ P ω

n (xH (λ)) for all

n. As such, limP ω
n (x) = 0.

For continuity and monotonicity in x, note that the limiting acceptance probability is

zero at xH (λ). Moreover, by Lemma A-2 the term inside parentheses in (A-6) increases

between xH (λ) and min {1, xU (b, λ)}; and if xU (b, λ) < 1, it equals 1 at x = xU (b, λ).

For continuity and monotonicity in b, there are four cases to consider. If x ≤ xH (λ),

the limit acceptance probability is 0 for all b. If x ∈
(

xH (λ) ,min
b∈[b,b̄] xU (b, λ)

)

the

result is immediate. If x ∈
[

min
b∈[b,b̄] xU (b, λ) ,max

b∈[b,b̄] xU (b, λ)
)

, then since xU (b, λ)

is continuous and decreasing in b, there exists b̂ ∈
[

b, b̄
]

such that x = xU

(

b̂, λ
)

,

x < xU (b, λ) if b < b̂, and x > xU (b, λ) if b > b̂. Monotonicity is then immedi-

ate, while continuity follows from −∆H(x,σ,λ)
∆L(x,σ,λ)

b
1−b

ℓ(σ) = 1 at x = xU (b, λ). Finally, if

x ≥ max
b∈[b,b̄] xU (b, λ) then the limit acceptance probability is 1 for all b.

Proof of Lemma 5 (uniform convergence)

From Lemma A-2, −∆H(·,σ,λ=0)
∆L(·,σ,λ=0)

is strictly increasing from a point below xH (λ = 0)

to min {1, xL (λ = 0)}, for all σ. Consequently, the same is true for all λ sufficiently
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small. Given this, if xU (b, λ = 0) < 1, choose λ̌ > 0 and δ ∈ (0, 2ε) such that

max
λ∈[0,λ̌]

xU (b, λ) + δ < min
{

1,min
λ∈[0,λ̌] xL (λ)

}

and −∆H(x,σ,λ)
∆L(x,σ,λ)

is strictly increas-

ing over [c, c̄] ≡
[

min
λ∈[0,λ̌]

xH (λ) − δ,max
λ∈[0,λ̌]

xU (b, λ) + δ
]

for λ < λ̌. Similarly, if

xU (b, λ = 0) ≥ 1, choose λ̌ > 0 and δ > 0 such that −∆H(x,σ,λ)
∆L(x,σ,λ)

is strictly increasing over

[c, c̄] ≡
[

min
λ∈[0,λ̌]

xH (λ) − δ, 1
]

.

By Assumption 4, the term ∆H (x, σ, λ) is strictly negative for x ∈
[

0,min
λ∈[0,λ̌]

xH (λ) − δ
2

]

and λ ∈
[

0, λ̌
]

. Hence there exists σ̌ > σ such that ∆H (x, σ, λ) is strictly negative for

σ ∈ [σ, σ̌] and the same values of x and λ. So when λ ∈
[

0, λ̌
]

, any voter i observing

σi ≤ σ̌ would reject any offer x ∈
[

0,min
λ∈[0,λ̌]

xH (λ) − δ
2

]

. It follows that the acceptance

probability converges uniformly to zero over
[

0, c+ δ
2

]

×
[

b, b̄
]

×
[

0, λ̌
]

.

Next, we establish uniform convergence over
[

c+ δ
2
, c̄− δ

2

]

×
[

b, b̄
]

×
[

0, λ̌
]

. To do so,

we apply Lemma A-4. Define

D =
[

b, b̄
]

×
[

0, λ̌
]

, C = [c, c̄] ×D, S = [σ, σ̄] ×
[

0, λ̌
]

,

h
(

x, b, λ, s1, s2
)

= −b
∆H (x, s1, λ)

∆L (x, s1, λ)
ℓ(s1)s2 + (1 − b)

sn (x, b, λ) =

(

σ∗
n (x, b, λ) ,

(

1 − F (σ∗
n (x, b, λ) |H)

1 − F (σ∗
n (x, b, λ) |L)

)n−1
)

,

gn (x, b, λ) = P ω
n (x, b, λ) .

By construction, h is strictly monotone and continuously differentiable in x. It remains

to show that if h (z, sn (z)) = h (z′, sn (z)), then gn (z) = gn (z′).

There are three cases to consider. First, suppose σ∗
n (x, b, λ) ∈ (σ, σ̄) . By construction,

h (z, sn (z)) = 0. Suppose that h (z′, sn (z)) = 0, Then, by the uniqueness of responsive

equilibrium, σ∗
n (x′, b′, λ′) = σ∗

n (x, b, λ).

For the next two cases, we claim that if hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥ 0 at σ =

σ, the same is true for all σ ∈ [σ, σ̄]; and likewise, if hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≤

0 at σ = σ̄, the same is true for all σ ∈ [σ, σ̄]. Both these statements follow since

hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

equals Z(x,σ,b,λ,α,n)
−∆L(x,σ,λ)

, and if Z (x, σ, b, λ, α, n) ≥ 0 for some

σ, the same is true for all higher σ (see proof of Lemma 1).
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Now consider the case σ∗
n (x, b, λ) = σ. By definition, hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥

0 for all σ, and so in particular hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥ 0. So if

hn

(

x′, b′, λ′, σ,

(

1 − F (σ|H)

1 − F (σ|L)

)n−1
)

= hn

(

x, b, λ, σ,

(

1 − F (σ|H)

1 − F (σ|L)

)n−1
)

,

it follows (by above claim) that hn

(

x′, b′, λ′, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≥ 0 for all σ, and hence

σ∗
n (x′, b′, λ′) = σ.

Finally, consider the case σ∗
n (x, b, λ) = σ̄. By definition, hn

(

x, b, λ, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≤

0 for all σ, and so in particular hn

(

x, b, λ, σ̄,
(

1−F (σ̄|H)
1−F (σ̄|L)

)n−1
)

≤ 0. So if

hn

(

x′, b′, λ′, σ̄,

(

1 − F (σ̄|H)

1 − F (σ̄|L)

)n−1
)

= hn

(

x, b, λ, σ̄,

(

1 − F (σ̄|H)

1 − F (σ̄|L)

)n−1
)

,

it follows (by above claim) that hn

(

x′, b′, λ′, σ,
(

1−F (σ|H)
1−F (σ|L)

)n−1
)

≤ 0 for all σ, and hence

σ∗
n (x′, b′, λ′) = σ̄.

The proof is complete if c̄ = 1. For the case c̄ < 1, we establish uniform convergence

over
[

c̄− δ
2
, 1
]

×
[

b, b̄
]

×
[

0, λ̌
]

. This is immediate: if (x, b, λ) is in this range, x > xU (b, λ),

and so the acceptance probability equals 1 for all n.

Proof of Proposition 2

For clarity, we suppress α = 1 throughout. Let vn (x, σ0, b, λ) denote the proposer’s

expected payoff from an offer x when he has observed σ0, the voters attach belief b to

offer x, and have preferences λ, i.e.,

vn (x, σ0, b, λ) ≡ Eω

[

V̄ ω (σ0) + P ω
n (x, b, λ)

(

V ω (x, σ0) − V̄ ω (σ0)
)

|σ0

]

. (A-7)

Define v as the pointwise limit of vn.

We first show that the proposer offers less than xU (b, λ). If xU (b, λ) = ∞ this is

vacuously true. If instead xU (b, λ) ≤ 1, then xU (b, λ) < xU (b, λ) for all b > b. From

Lemma 5, the offer xU (b, λ) is always accepted, no matter what belief voters assign to

it. So there is no equilibrium in which the offer is strictly more than xU (b, λ).
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Next, we establish the lower bound on the proposer’s equilibrium offer. Choose

λ̌ > 0, εx > 0 and x̌ such that Lemma 5 holds and

max
λ∈[0,λ̌]

xH (λ) < x̌ < min
λ∈[0,λ̌]

min {xU (b, λ) , 1 − εx} .

From Lemma 5, for any (b, λ) ∈
[

b, b̄
]

×
[

0, λ̌
]

the limit acceptance probabilities P ω (x̌, b, λ)

are strictly positive for ω = L,H . By continuity and compactness it follows that there

exists ε > 0 such that for any (σ0, b, λ) ∈ [σ, σ̄] ×
[

b, b̄
]

×
[

0, λ̌
]

,

v (x̌, σ0, b, λ) > Eω

[

V̄ ω (σ0) |σ0

]

+ 4ε.

From Lemma 5, vn converges uniformly to v over [0, 1 − εx]× [σ, σ̄]×
[

b, b̄
]

×
[

0, λ̌
]

. This

implies that there exists N1 such that whenever n ≥ N1,

vn (x̌, σ0, b, λ) > Eω

[

V̄ ω (σ0) |σ0

]

+ 3ε.

Let ̟ = maxω,σ0,x V
ω (x, σ0) − V̄ ω (σ0). From Lemma 5, there exists κ > 0 such that

P ω (x, b, λ) ≤ ε
̟

if x ∈ [0, xH (λ) + κ]. Uniform convergence of P ω
n (·) to P ω (·) (Lemma

5) implies that there exists N2 such that P ω
n (xH (λ) + κ, b, λ) ≤ 2ε

̟
whenever n ≥ N2.

Combined with monotonicity of the acceptance probability in the offer x, it follows that

if x ≤ xH (λ) + κ and n ≥ N2,

vn (x, σ0, b, λ) ≤ Eω

[

V̄ ω (σ0) |σ0

]

+ 2ε.

Hence for n ≥ max {N1, N2}, for any (σ0, λ) ∈ [σ, σ̄]×
[

0, λ̌
]

it cannot be an equilibrium

for the proposer to offer x ∈ [0, xH (λ) + κ]: doing so generates at most 2ε over the status

quo payoff, while offering x̌ generates at least 3ε over the status quo payoff, regardless of

beliefs. This completes the proof.

Proof of Lemma 6

To show this result, we first show that whenever the information quality of voters is

low, the proposer’s limit expected payoff is convex in the offer x. As in the proof of
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Proposition 2, let vn be the proposer’s payoff from an offer x when he has observed σ0,

and v the pointwise limit of vn.

Lemma A-5 Fix preferences λ and suppose unanimity rule is in effect (α = 1). Then

there exists ℓ such that whenever ℓ(σ) > ℓ, the proposer’s limit payoff v is convex in x over

[0,min {1, xU (b, λ)}] for all σ0, b. As a consequence, v is maximized at min {1, xU (b, λ)};

and if xU (b, λ) < 1 the maximizer is unique.

Proof of Lemma A-5: For use throughout the proof, write x̌ = min {1, xU (b, λ)}. The

limit acceptance probability is identically equal to zero over [0, xH (λ)], and is increasing

thereafter. So to prove the result, it suffices to show that for ω = H,L there exists ℓ

such that whenever ℓ(σ) > ℓ, the second derivative of P ω (x, b, λ)
(

V ω (x, σ0) − V̄ ω (σ0)
)

is positive for x ∈ (xH (λ) , x̌], for all σ0, b.

Let ℓ(σ) denote the likelihood ratio at σ. Write R(x, σ, b, λ) = −∆H(x,σ,λ)
∆L(x,σ,λ)

b
1−b

, γH =

ℓ(σ) and γL = 1, so that P ω (x, b, λ) = [R(x, σ, b, λ)ℓ(σ)]
γω

1−ℓ(σ) for x ∈ (xH (λ) , x̌). The

second derivative of P ω (x, b, λ)
(

V ω (x, σ0) − V̄ ω (σ0)
)

with respect to x is given by

P ω (x, b, λ)
∂2

∂x2
V ω (x, σ0)

+2
∂

∂x
V ω (x, σ0)

γω

1 − ℓ(σ)
[R(x, σ, b, λ)ℓ(σ)]

γω
1−ℓ(σ)

−1 ∂

∂x
R(x, σ, b, λ)

+
(

V ω (x, σ0) − V̄ ω (σ0)
) γω

1 − ℓ(σ)
[R(x, σ, b, λ)ℓ(σ)]

γω
1−ℓ(σ)

−1 ∂
2

∂x2
R(x, σ, b, λ)

+
(

V ω (x, σ0) − V̄ ω (σ0)
) γω

1 − ℓ(σ)
(

γω

1 − ℓ(σ)
− 1)[R(x, σ, b, λ)ℓ(σ)]

γω
1−ℓ(σ)

−2

(

∂

∂x
R(x, σ, b, λ)

)2

,

which can be written as P ω (x, b, λ) γω

1−ℓ(σ)
K, where

K =
1 − ℓ(σ)

γω

∂2

∂x2
V ω (x, σ0) + 2

∂

∂x
V ω (x, σ0) ℓ(σ)−1 ∂

∂x
lnR(x, σ, b, λ)

+
(

V ω (x, σ0) − V̄ ω (σ0)
)

R(x, σ, b, λ)−1ℓ(σ)−1 ∂
2

∂x2
R(x, σ, b, λ)

+
(

V ω (x, σ0) − V̄ ω (σ0)
) γω − 1 + ℓ(σ)

1 − ℓ(σ)
R(x, σ, b, λ)−1ℓ(σ)−1 ∂

∂x
lnR(x, σ, b, λ).

Observe that γL −1+ ℓ(σ) = ℓ(σ) and γH −1+ ℓ(σ) = 2ℓ(σ)−1. The term V ω (x, σ0)−

V̄ ω (σ0) is bounded away from zero over [0, x̌]. The term R(x, σ, b, λ)−1 is bounded away
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from zero over (xH (λ) , x̌]. From Lemma A-2, the term R(x, σ, b, λ) is strictly increasing

over [xH (λ) , x̌], and so ∂
∂x

lnR(x, σ, b, λ) is positive and bounded away from zero over

[xH (λ) , x̌]. From these observations, it is immediate that there exists ℓ such that K > 0

whenever ℓ(σ) > ℓ and x ∈ (xH (λ) , x̌], and for all σ0, b, completing the proof.

Given Lemma A-5, we are now ready to establish the existence of a pooling equi-

librium. Fix voter preferences λ, and suppose that xU(b = pH , λ) < 1 and that voter

information is sufficiently poor such that ℓ(σ) ≥ ℓ. If the proposer’s signal is completely

uninformative (i.e., ℓ0 (·) ≡ 1), the result is immediate from the uniform convergence

of acceptance probabilities (Lemma 5) and the proposer payoff convexity (Lemma A-5).

The remainder of the proof deals with the case in which the proposer’s signal is infor-

mative, and so b < pH < b̄. We claim that for all n large enough, there is a pooling

equilibrium in which the proposer offers xU(b = pH , λ) independent of his signal σ0;

the voters accept with probability one; and the voters assign belief b to any downwards

deviation by the proposer.

If the proposer offers xU

(

b = pH , λ
)

and the voters believe b = pH , the acceptance

probability is one for all n. So the proposer’s payoff for any finite n in the claimed equi-

librium equals the limit payoff v
(

xU

(

b = pH , λ
)

, σ0, b = pH , λ
)

, which for the remainder

of the proof we write as v∗.

Fix δ > 0. From the payoff convexity result Lemma A-5, there exists ε > 0 such that

v
(

x, σ0, b = pH , λ
)

< v∗−ε whenever x < xU

(

b = pH , λ
)

−δ. A fortiori, v (x, σ0, b, λ) <

v∗− ε also. By uniform convergence (Lemma 5) it follows that there exists N1 such that

vn (x, σ0, b, λ) < v∗ − ε whenever n ≥ N1.

It remains only to rule out downwards deviations between xU

(

b = pH , λ
)

− δ and

xU

(

b = pH , λ
)

. From Lemma 5, there exists some ϕ > 0 such that the limit acceptance

probabilities satisfy P ω (x, b, λ) < P ω
(

x, b = pH , λ
)

− ϕ for offers x in this interval. So

there exists ϕ̂ > 0 such that the limit proposer payoffs similarly satisfy v (x, σ0, b, λ) <

v
(

x, σ0, b = pH , λ
)

− ϕ̂ for offers x in this same interval. By payoff convexity (Lemma
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A-5), v
(

x, σ0, b = pH , λ
)

< v∗. So by uniform convergence, it follows that there exists

N2 such that vn (x, σ0, b, λ) < v∗ whenever n ≥ N2. So for all n ≥ max {N1, N2} the

proposer has no profitable deviation, completing the proof.

Proof of Lemma 7

We prove the lemma in four steps. For clarity, we suppress λ and α and write xω in

place of xω (λ;α) throughout. Take Z as defined in the statement of Lemma 3.

Claim 1 If lim sup xn < xH then PH
n (xn) → 0.

Proof: It suffices to show that lim inf σ∗
n > σH , since in this case the acceptance proba-

bility of each voter is bounded away from 1− F (σH |H) = α from below, and so the law

of large numbers implies that PH
n (xn) → 0.

Suppose to the contrary that lim inf σ∗
n ≤ σH . So for any δ > 0, there exists a

subsequence of σ∗
n such that σ∗

n ≤ σH + δ. By hypothesis, there exists ε such that xn ≤

xH − ε for all n large enough. By definition ∆H (xH , σH , λ) = 0; so for δ small enough,

there exists ε̂ such that ∆H (xn, σ
∗
n, λ) < −ε̂. Moreover, ∆L (xn, σ

∗
n, λ) ≤ ∆H (xn, σ

∗
n, λ).

Consequently Z (xn, σ
∗
n) < 0. As such, σ∗

n is not a responsive equilibrium; and since

xn ≤ x̄n then σ∗
n is not an acceptance equilibrium either. The only remaining possibility

is that σ∗
n is a rejection equilibrium — but then σ∗

n = σ̄, which gives a contradiction

when δ is chosen small enough.

Claim 2 If lim sup xn < xL then PL
n (xn) → 0.

Proof: Parallel to Claim 1, it suffices to show that lim inf σ∗
n > σL. Suppose to the

contrary that lim inf σ∗
n ≤ σL. So for any δ > 0, there exists a subsequence of σ∗

n such

that σ∗
n ≤ σL + δ. By hypothesis, there exists ε such that xn ≤ xL − ε for all n large

enough. By definition ∆L (xL, σL, λ) = 0; so for δ small enough, there exists ε̂ such that

∆L (xn, σ
∗
n, λ) < −ε̂. Next, define

φ = max
σ∈[σ,σL+δ]

(1 − F (σ|H))αF (σ|H)1−α

(1 − F (σ|L))αF (σ|L)1−α
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Note that the function (1 − q)αq1−α is increasing for q ∈ (0, 1 − α) and decreasing for

q ∈ (1 − α, 1). Recall that by definition F (σL|L) = 1−α, and by Lemma A-1 F (σ|H) <

F (σ|L) for all σ ∈ (σ, σ̄). It follows that φ < 1 for δ chosen small enough, and so
(

(1 − F (σ∗|H))αF (σ∗|H)1−α

(1 − F (σ∗|L))αF (σ∗|L)1−α

)n

≤ φn → 0.

Since σ∗
n is bounded away from σ̄, then 1 − F (σ∗

n|H) is bounded away from 0. By

belief consistency, βn (xn) is bounded away from 1. Consequently Z (xn, σ
∗
n) < 0 for n

sufficiently large. A contradiction then follows as in Claim 1.

Claim 3 If lim inf xn > xL then PL
n (xn) → 1.

Claim 4 If lim inf xn > xH then PH
n (xn) → 1.

Proofs of Claims 3 and 4: Exactly parallel to those of Claims 1 and 2.43

Proof of Proposition 3

Proposition 3 follows immediately from the following result, which establishes that

the limiting behavior of the proposer’s offers stated in the result is uniform with respect

to the proposer’s signal σ0.

Lemma A-6 (Equilibrium offer under majority) Suppose a majority voting rule

α < 1 is in effect. Then:

(1) If xL (λ;α) 6= ∞ 6= xH (λ;α), then for any ε, δ > 0 there exists N (ε, δ) such that

(a) If W (σ0) > ε and n ≥ N (ε, δ) then for any equilibrium offer x, |x− xH (λ;α)| <

δ; PH
n (x|σ0) > 1 − δ; and PL

n (x|σ0) < δ.

(b) If W (σ0) < −ε and n ≥ N (ε, δ) then for any equilibrium offer x, |x− xL (λ, α)| <

δ; PH
n (x|σ0) > 1 − δ; and PL

n (x|σ0) > 1 − δ.

(2) If xH (λ;α) 6= ∞ and xL (λ;α) = ∞ then for any δ > 0 there exists N (δ) such that

for any equilibrium offer x, |x− xH (λ;α)| < δ and PH
n (·|σ0) > 1 − δ for all σ0 when

n ≥ N (δ).

43Full details are available in an online supplement on the authors’ webpages.
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(3) If xL (λ;α) = xH (λ;α) = ∞, for any δ > 0 there exists N (δ) such that for any

equilibrium offer x, P ω
n (x|σ0) < δ for all σ0, ω = L,H when n ≥ N (δ).

Proof of Lemma A-6: We focus on Part 1a. Part 1b is proved by similar arguments.44

Part 2 is essentially a special case of Part 1a, as we explain below. Part 3 is an immediate

consequence of Lemma 7.

The main idea is straightforward: for any σ0 such that W (σ0) > 0, the proposer

prefers offering xH (λ;α) and gaining acceptance if and only if ω = H to offering xL (λ, α)

and gaining acceptance all the time. Given the limiting behavior of voters established

in Lemma 7, intuitively it follows that the proposer’s offer converges to xH (λ;α) as the

number of voters grows large. The main difficulty encountered in the formal proof is

establishing uniform convergence: for any ε, δ > 0, there is some N (ε, δ) such that when

n ≥ N (ε, δ), the proposer’s offer lies within δ of xH (λ;α) for all σ0 such that W (σ0) > ε.

Take any ε, δ > 0. Throughout the proof, we omit all λ and α arguments for

readability. We define ∆ω
0 (x, σ0) ≡ V ω (x, σ0) − V̄ ω (σ0), the proposer’s gain to offer x

being accepted conditional on ω.

Preliminaries: The first part of the proof consists of defining bounds which we will

use to establish uniform convergence below. Choose µ, δ1, δ2, δ3 ∈ (0, δ] such that

xH + µ < xL − µ, and for all σ0 for which W (σ0) > ε,

pH(σ0)V
H
(

xH +
µ

2
, σ0

)

+ pL(σ0)V̄
L (σ0) ≥ E [V ω (xL − µ, σ0) |σ0] +

ε

2
, (A-8)

δ1∆
H
0

(

xH +
µ

2
, σ0

)

≤
ε

4
, (A-9)

δ2

(

pH(σ0)∆
H
0 (0, σ0) + pL(σ0)∆

L
0 (0, σ0)

)

< (1 − δ1) p
H(σ0)∆

H
0

(

xH +
µ

2
, σ0

)

, (A-10)

pH(σ0)
(

(1 − δ1) ∆H
0

(

xH +
µ

2
, σ0

)

− ∆H
0 (xH + µ, σ0)

)

> pL(σ0)δ3∆
L
0 (xH + µ, σ0) ,

(A-11)

44Full details are available in an online supplement on the authors’ webpages.
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pH(σ0)
(

(1 − δ1)V
H
(

xH +
µ

2
, σ0

)

+ δ1V̄
H (σ0)

)

+ pL(σ0)V̄
L (σ0)

> pH(σ0)
(

(1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0)
)

+ pL(σ0)
(

δ3V
L (xH − µ, σ0) + (1 − δ3) V̄

L (σ0)
)

. (A-12)

A choice of µ, δ1, δ2, δ3 exists such that (A-8), (A-9), (A-10), (A-11), and (A-12) hold

as follows. First, choose µ such that (A-8) holds, along with

V H
(

xH +
µ

2
, σ0

)

> (1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0) . (A-13)

It is possible to choose µ > 0 that satisfies these two inequalities for all σ0 since |V ω
x |

is bounded. The same argument applies in choosing δ1, δ2, δ3 below. Second, choose δ1

such that (A-9) holds, along with

(1 − δ1)∆H
0

(

xH +
µ

2
, σ0

)

− ∆H
0 (xH + µ, σ0) > 0, (A-14)

(

(1 − δ1)V
H
(

xH +
µ

2
, σ0

)

+ δ1V̄
H (σ0)

)

−
(

(1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0)
)

> 0,

(A-15)

where (A-15) is possible by (A-13). Third, choose δ2 such that (A-10) holds. Finally,

by (A-14) and (A-15) respectively, choose δ3 such that (A-11) and (A-12) hold.

Fix a realization of σ0 such that W (σ0) ≥ ε. Define the following offer sequences,

which we use throughout the proof:

xH+
n ≡ xH +

µ

2
, xH−

n ≡ xH − µ, xL−
n ≡ xL − µ.

By Lemma 7, PH
n

(

xH+
n , b

)

→ 1 and PL
n

(

xH+
n , b̄

)

→ 0; P ω
n

(

xH−
n , b̄

)

→ 0 for ω = L,H ; and

PL
n

(

xL−
n , b̄

)

→ 0. Thus there exists N (ε, δ) such that for n ≥ N (ε, δ), PH
n

(

xH+
n , b

)

≥

1 − δ1, P
L
n

(

xH+
n , b̄

)

≤ δ1, P
ω
n

(

xH−
n , b̄

)

≤ δ2 for ω = L,H , and PL
n

(

xL−
n , b̄

)

≤ δ3.

Fix σ0 such that W (σ0) ≥ ε, along with the associated equilibrium offers xn.

Part A: PL
n (xn) ≤ δ3 ≤ δ for n ≥ N (ε, δ).

Proof: If xn ≤ xL−
n then PL

n (xn) ≤ PL
n

(

xL−, b̄
)

≤ δ3 for n ≥ N (ε, δ). Consequently it

suffices to show that xn ≤ xL−
n for all n ≥ N (ε, δ). Suppose to the contrary that xn >
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xL−
n for some n ≥ N (ε, δ). By Assumption 5 the proposer is better off when his offer is

accepted, and so the proposer’s payoff from xn is bounded above by E
[

V ω
(

xL−
n , σ0

)

|σ0

]

.

In contrast, the proposer’s payoff from the offer xH+
n is bounded below by

pH(σ0)
(

(1 − δ1)V
H
(

xH+
n , σ0

)

+ δ1V̄
H (σ0)

)

+ pL(σ0)V̄
L (σ0)

= pH(σ0)
(

V H
(

xH+
n , σ0

)

− δ1∆
H
0

(

xH+
n , σ0

))

+ pL(σ0)V̄
L (σ0)

≥ pH(σ0)V
H
(

xH+
n , σ0

)

+ pL(σ0)V̄
L (σ0) −

ε

4

where the inequality follows by (A-9) (and the fact that pH(σ0) ≤ 1). By (A-8) this lower

bound exceeds E
[

V ω
(

xL−
n , σ0

)

|σ0

]

, contradicting the optimality of xn.

Part B: |xn − xH | ≤ µ ≤ δ for n ≥ N (ε, δ).

Proof: First, suppose that xn < xH−
n for some n ≥ N (ε, δ). The acceptance

probability of xn given ω is consequently less than that of xH−
n under the most pro-

acceptance belief b̄, which is in turn less than δ2. The acceptance probability of xH+
n

given H is at least 1 − δ1. It follows from (A-10) that the proposer’s payoff is higher

under xH+
n than under xn. But this contradicts the optimality of the proposer’s offer xn.

Second, suppose that xn > xH + µ for some n ≥ N (ε, δ). By Part A, the proposer’s

payoff under xn is bounded above by

pH(σ0)
(

∆H
0 (xH + µ, σ0) + V̄ H (σ0)

)

+ pL(σ0)
(

δ3∆
L
0 (xH + µ, σ0) + V̄ L (σ0)

)

.

In contrast, the proposer’s payoff from the offer xH+
n is bounded below by

pH(σ0)
(

(1 − δ1)∆
H
0

(

xH+
n , σ0

)

+ V̄ H (σ0)
)

+ pL(σ0)V̄
L (σ0) ,

which exceeds the payoff from the offer xn by (A-11), contradicting optimality of xn.

Part C: PH
n (xn) ≥ 1 − δ for n ≥ N (ε, δ).

Proof: Suppose not. By Part A, PL
n

(

xL−
n , b̄

)

≤ δ3, and by Part B, xn ≥ xH−
n , and hence

the proposer’s payoff is bounded above by

pH(σ0)
(

(1 − δ)V H
(

xH−
n , σ0

)

+ δV̄ H (σ0)
)

+pL(σ0)
(

δ3V
L
(

xH−
n , σ0

)

+ (1 − δ3) V̄
L (σ0)

)

.
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In contrast, the proposer’s payoff from the offer xH+
n is bounded below by

pH(σ0)
(

(1 − δ1)V
H
(

xH+
n , σ0

)

+ δ1V̄
H (σ0)

)

+ pL(σ0)V̄
L (σ0) .

By (A-12) the latter is strictly greater, contradicting the optimality of the offer xn.

Part 2: The proof of Part 2 is a simpler version of that of Part 1a. In the Preliminaries,

omit (A-8), (A-9), and the sequence xL−
n . Instead, choose N (ε, δ) such that for n ≥

N (ε, δ), PH
n

(

xH+
n , b

)

≥ 1 − δ1, P
L
n

(

xH+
n , b̄

)

≤ δ1, P
ω
n

(

xH−
n , b̄

)

≤ δ2 for ω = L,H , along

with PL
n (1, b) ≤ δ3. (The last inequality is a consequence of Lemma 7.) The conclusion

of Part A remains the same, but needs no proof. Parts B and C are unchanged.

Proof of Proposition 4

We prove the result in reverse order, starting with the easier half:

Part (II): Since W is negative, it must be the case that xL (λ;α) 6= ∞ for λ sufficiently

small, and xU (b, λ) < xL (λ;α). From Proposition 3, as n→ ∞ voters’ expected payoff

under majority converges to

Eσi,ω

[

Ūω (σi, λ)
]

+ Eσi,ω [∆ω (xL (λ;α) , σi, λ)] . (A-16)

By Proposition 2, the proposer’s offer against unanimity is weakly below xU (b, λ). From

Lemma 5, voters accept this offer with probability 1. Since ∆ω is increasing in the offer,

Lemma 4 implies that (for all n) voters’ equilibrium payoff is weakly less than

Eσi,ω

[

Ūω (σi, λ)
]

+ Eσi,ω [∆ω (xU (b, λ) , σi, λ)] . (A-17)

Since ∆ω is increasing, this is strictly less than (A-16), the voter payoff under majority

as n→ ∞. The result follows.

Part (I): From Proposition 3, if W is everywhere positive the voters’ payoff under

majority converges to

Eσi,ω

[

Ūω (σi)
]

+ pHEσi

[

∆H (xH (λ) , σi, λ) |H
]

, (A-18)
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which at λ = 0 is simply Eσi,ω

[

Ūω (σi)
]

. We claim that there exist δ > 0, λ̃ > 0 and Ñ

such that the voters’ equilibrium payoff under unanimity rule exceeds Eσi,ω

[

Ūω (σi)
]

+δ/2

for all λ ≤ λ̃ and n ≥ Ñ . Since we can choose λ̂ ≤ λ̃ such pHEσi

[

∆H (xH (λ) , σi, λ) |H
]

≤

δ/4 for all λ ≤ λ̂, it follows from (A-18) and the claim that the voters’ payoff is greater

under unanimity when n is large enough.

To prove the claim, let λ̌, κ and N be as given in Proposition 2. For a given offer

x and belief b, since σ∗
n → σ as n → ∞ (see the proof of Lemma 5) the limit of voters’

expected payoffs under unanimity is

u (x, b, λ) ≡ Eσi,ω

[

Ūω (σi)
]

+bPH (x, b, λ)Eσi

[

∆H (x, σi, λ) |H
]

+ (1 − b)PL (x, b, λ)Eσi

[

∆L (x, σi, λ) |L
]

.

From Lemma 5, u is continuous, and differentiable except at xH (λ) and xU (λ, b). We

next show that, similar to Lemma 4,45

∂

∂x
u (x, b, λ) ≥ bPH (x, b, λ)

∂

∂x
Eσi

[

∆H (x, σi, λ) |H
]

+(1 − b)PL (x, b, λ)
∂

∂x
Eσi

[

∆L (x, σi, λ) |L
]

.

(A-19)

Inequality (A-19) is equivalent to

b
∂

∂x
PH (x, b, λ)Eσi

[

∆H (x, σi, λ) |H
]

+ (1 − b)
∂

∂x
PL (x, b, λ)Eσi

[

∆L (x, σi, λ) |L
]

≥ 0,

(A-20)

which holds trivially for x < xH (λ) and x > xU (λ, b), since in these ranges the limiting

acceptance probabilities are 0 and 1 respectively. For x between xH (λ) and xU (λ, b),

Lemma 5 implies

∂
∂x
PL (x, b, λ)

∂
∂x
PH (x, b, λ)

=

(

−
∆H (x, σ, λ)

∆L (x, σ, λ)

b

1 − b
ℓ(σ)

) ℓ(σ)
1−ℓ(σ)

+ 1

ℓ(σ)
1−ℓ(σ)

= −
∆H (x, σ, λ)

∆L (x, σ, λ)

b

1 − b
.

So (A-19) is equivalent to

bEσi

[

∆H (x, σi, λ) |H
]

+ (1 − b)Eσi

[

∆L (x, σi, λ) |L
]

(

−
∆H (x, σ, λ)

∆L (x, σ, λ)

b

1 − b

)

≥ 0.

45Lemma 4 cannot be applied directly because it deals with an arbitrary finite number of voters, not
the limit as n → ∞.
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Recalling that ∆L (x, σ, λ) < 0 for the offers under consideration, (A-19) is in turn

equivalent to

−∆L (x, σ, λ)Eσi

[

∆H (x, σi, λ) |H
]

≥ −Eσi

[

∆L (x, σi, λ) |L
]

∆H (x, σ, λ) .

This holds since by Assumption 2, Eσi
[∆ω (x, σi)] ≥ ∆ω (x, σ̂), and so (A-19) holds.

As x approaches xH from above, PL (x, b, λ) /PH (x, b, λ) → 0. By Assumption 4

∆H (x, σ, 0) is strictly positive over (xH (0) , 1). So ∂
∂x
u (x, b, 0) > 0 for all x close enough

to xH (0), and hence u (x, b, 0) > Eσi,ω

[

Ūω (σi)
]

for x close enough to xH (0). Next, note

that there is no x ∈ (xH (0) , 1) such that u (x, b, 0) = Eσi,ω

[

Ūω (σi)
]

: for if such an offer

x existed, by continuity there exists some x̃ ∈ (0, 1) such that u (x̃, b, 0) = Eσi,ω

[

Ūω (σi)
]

and u′ (x̃, b, 0) ≤ 0. But then (by (A-19))

bPH (x̃, b, 0)∆H (x̃, σi, 0) + (1 − b)PL (x̃, b, 0)∆L (x̃, σi, 0) = 0

bPH (x̃, b, 0)
∂

∂x
∆H (x̃, σi, 0) + (1 − b)PL (x̃, b, 0)

∂

∂x
∆L (x̃, σi, 0) ≤ 0,

contradicting Assumption 4. So u (x, b, 0) is strictly greater than Eσi,ω

[

Ūω (σi)
]

over

(xH (0) , 1). By continuity there exists δ > 0 and λ̃ ≤ λ̌ such that minx∈[xH(λ)+κ,1−κ] u (x, b, λ) >

Eσi,ω

[

Ūω (σi)
]

+ δ for all λ ≤ λ̃. By the uniform convergence of acceptance probabilities

with respect to the parameter λ, the claim follows.


