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Abstract

How do people learn? We assess, in a distribution-free manner, subjects’ learning

and choice rules in dynamic two-armed bandit (probabilistic reversal learning) experi-

ments. To aid in identification and estimation, we use auxiliary measures of subjects’

beliefs, in the form of their eye-movements during the experiment. Our estimated choice

probabilities and learning rules have some distinctive features; notably that subjects

tend to update in a non-smooth manner following choices made in accordance with

current beliefs. Moreover, the beliefs implied by our nonparametric learning rules are

closer to those from a (non-Bayesian) reinforcement learning model, than a Bayesian

learning model.
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How do individuals learn from past experience in dynamic choice environments? We ad-

dress this question by presenting nonparametric estimates of subjects’ learning rules in a

dynamic two-armed bandit (probabilistic reversal learning) experiment where subjects must

repeatedly guess which of the two arms yields a (stochastically) higher reward. Auxiliary

measures of subjects’ eye movements as they make their choices are employed to “pin down”

subjects’ beliefs in each round of the learning experiment. The nonparametric estimation

of learning models is a new endeavor in both the behavioral learning literature, as well as

the empirical literature in economics and marketing in which dynamic learning models are

estimated structurally. Estimating the learning rules nonparametrically allows us to com-

pare competing learning models in a manner quite distinct from that taken in the existing

literature.

A sizeable literature has developed around structural estimation of learning-based models of

dynamic choice. Some representative papers include R. Miller (1984), T. Erdem & M. Keane

(1996), D. Ackerberg (2003), G. Crawford & M. Shum (2005), Tat Y. Chan & Barton H.

Hamilton (2006), A. Ching (forthcoming), and P. Marcoul & Q. Weninger (2008). This

literature typically assumes that agents process information according to a forward-looking

Bayesian learning model. This restrictive assumption is driven in part by data considera-

tions: oftentimes, all that is observed are the sequences of agents’ choices, so that a lot of

(parametric) structure must be placed on the learning model for identification.

In controlled experimental settings, richer data are observed: not only subjects’ choices, but

also the outcomes (rewards) from their choices. In addition, there is also the opportunity

to observe “auxiliary” measures of subjects’ beliefs (or valuations), such as brain activity

(cf. W. Yoshida & S. Ishii (2006), E.D. Boorman, T.E.J. Behrens, M.W. Woolrich & M.F.S.

Rushworth (2009) in the recent fMRI neuroscience literature) or eye movements (as in K.C.

Armel & A. Rangel (2008), or the present paper).

Because of this additional data richness, researchers in the behavioral/experimental literature

have been able to consider more flexible learning rules, and to test the fully-rational Bayesian

learning benchmark versus boundedly-rational, non-Bayesian “reinforcement learning” (RL)

rules (cf. R. Sutton & A. Barto (1998)). An incomplete list of papers which consider these

questions includes D. Grether (1992), M. El-Gamal & D. Grether (1995), G. Charness & D.
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Levin (2005), C. Kuhnen & B. Knutson (2008), and É. Payzan & P. Bossaerts (2009). Par-

ticularly, RL has attracted considerable attention in the recent neuroeconomics and decision

neuroscience literature (cf. P.W. Glimcher, C. Camerer, R.A. Poldrack & E. Fehr (2008),

M.F.S. Rushworth & T.E.J. Behrens (2008)), ever since studies showing that the “prediction

errors” of these models are apparently encoded in certain areas of the brain (cf. W. Schultz,

P. Dayan & P.R. Montague (1997)) for evidence from primates). Recently, RL models have

also been used to explain some observed anomalies in savings and investment behavior (eg.

J.J. Choi, D. Laibson, B.C. Madrian & A. Metrick (2009), T. Odean, M. Strahilevitz & B.

Barber (2004)).1

In this paper, we take a new approach to assessing learning in experimental settings. Tak-

ing advantage of recent developments in the econometrics of estimating dynamic models

with serially-correlated unobservables, we use the observed experimental and auxiliary data

to estimate, nonparametrically, subjects’ choice probabilities and learning rules, without

imposing a priori functional forms on these functions. Thus, our learning rules can be rea-

sonably interpreted as “what the subjects actually think”, as reflected in their observed

choices. Subsequently, we compare our estimated learning rules to specific parameterized

learning rules which have been considered in the previous literature, including the Bayesian

and reinforcement-learning models.

Moreover, we estimate not only the learning rules nonparametrically, but also the choice

probabilities. Choice probabilities are key parameters in machine learning and decision

neuroscience models (cf. Sutton & Barto (1998), N.D. Daw, J.P. O’Doherty, P. Dayan, B.

Seymour & R.J. Dolan (2006), K. Doya (2002)). Although several studies have examined

parameterized models of choice behavior (cf. Daw et al. (2006)), to our knowledge, this

research is the first to examine choice behavior in learning models without imposing a priori

functional forms on the choice probabilities.

Our approach differs from a common modus operandi in the behavioral/experimental lit-

erature, which has been to use the observed choice data from the experiment to calibrate

1In the computational IO literature, such learning algorithms have also been used to ease the computa-

tional burden associated with dynamic equilibrium models, cf. A. Pakes & P. McGuire (2001), S. Imai, N.

Jain & A. Ching (2009).
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parameters for competing learning models. Subsequently, the competing learning models

are simulated, and verification is based upon comparing the simulated learning rules with

the observed auxiliary belief measurements. For instance, A. Hampton, P. Bossaerts & J.

O’Doherty (2006) test between a Bayesian and reinforcement-learning model on the ba-

sis of two-armed bandit experiments supplemented with brain activity information from

fMRI brainscans. Other papers utilizing a similar methodological framework include T.E.J.

Behrens, M.W. Woolrich, M.E. Walton & M.F.S. Rushworth (2007), Boorman et al. (2009),

Daw et al. (2006), Yoshida & Ishii (2006).

Methodologically, this paper represents a novel application of econometric tools recently

developed for the estimation of nonclassical measurement error models and dynamic discrete-

choice models (Y. Hu (2008), Y. Hu & M. Shum (2008)). Because subjects’ underlying beliefs

are unobserved and also serially correlated over time, the learning model is a particular

case of a nonlinear “hidden state Markov” model, which can be challenging to estimate.2

Our approach is to fit the learning model into a dynamic misclassification framework, in

which the eye-movement measures play the role of “noisy measurements” of the underlying

belief process.3 The resulting estimator is simple, involving only elementary computations

involving matrices which can be formed from the observed data.

In the next section, we describe the dynamic two-armed bandit learning (probabilistic rever-

sal learning) experiment, and the eye movement data gathered by the eye-tracker machine.

In Section 2, we present an econometric model of subjects’ choices in the bandit model, and

discuss nonparametric identification and estimation. In Section 3, we describe the experi-

mental data, and present our nonparametric estimates of subjects decision rules and learning

rules. Section 4 contains a comparison of our estimated learning rules to “standard” learning

rules, including those from the Bayesian and non-Bayesian reinforcement-learning models.

Section 5 concludes.

2See, for instance, Z. Ghahramani (2001) and P. Arcidiacono & R. Miller (2006).
3Relatedly, K. Samejima, K. Doya, Y. Ueda & M. Kimura (2004) consider Bayesian estimation of a

reinforcement learning model using sequential Monte Carlo (“particle filtering”) methods.
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1 Two-armed bandit “reversal learning” experiment

The learning experiments considered in this paper are adapted from Hampton, Bossaerts &

O’Doherty (2006). In the experiments, subjects make repeated choices between two actions

(which we call interchangeably “arms” or “slot machines” in what follows): in trial t, the

subject chooses Yt ∈ {1(= “green”), 2(= “blue”)}. The rewards generated by these two

arms are changing across trials, as described by the state variable St ∈ {1, 2}, which is never

observed by subjects. When St = 1, then green (blue) is the “good” (“bad”) state, whereas

if St = 2, then blue (green) is the “good” (“bad”) state.

The rewards Rt that the subject receives in trial t depends on the action taken, as well as

(stochastically) on the current state: the good (bad) arm yields rewards

Rt =







“2′′(= $0.50) with prob 0.7 (0.4)

“1′′(= −$0.50) with prob 0.3 (0.6)
(1)

The state evolves according to an exogenous binary Markov process. At the beginning of

each block, the initial state S1 ∈ {1, 2} is chosen with probability 0.5, randomly across all

subjects and all blocks. Subsequently, the state evolves with transition probabilities4

P (St+1|St) St = 1 St = 2

St+1 = 1 0.85 0.15

St+1 = 2 0.15 0.85

.

Because St is not observed by subjects, and is serially-correlated over time, there is the

opportunity for subjects to learn and update their beliefs about the current state on the

basis of past rewards. The goal of the exercise in this paper is to infer subjects’ learning

(that is, belief updating) rule, on the basis of their observed choices.

Remark 1 (reversal learning): This bandit problem with reversal learning differs in im-

portant ways from the “standard” multi-armed bandit problem (cf. J. Gittins & G. Jones

(1974), J. Banks & R. Sundarum (1992)), in which the states of the bandits are fixed over all

4This aspect of our model differs from Hampton, Bossaerts & O’Doherty (2006), who make the non-

Markovian assumption that the state St changes with probability 25% after a subject has chosen the good

arm four successive times.
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Figure 1: Timeline of a trial

After a fixation on the cross (top screen), two slot machines are presented (the left-right

position is randomized; second screen). Subjects’ eye-movements are recorded by the eye-

tracking machine here. Subjects choose by pressing the left (right) arrow key to indicate

a choice of the left (right) slot machine. After choosing (third screen), a positive reward

(depicted by two quarters) or negative reward (two quarters covered by a red X) is deliv-

ered, along with feedback about the subject’s choice highlighted against a background color

corresponding to the choice. In the bottom screen, a subject is transitioned to the next trial,

and reminded that the a slot machine may switch from “good” to “bad” (and vice versa)

with probability 15%.
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periods and the bandits are “independent” in that a reward from one bandit is uninformative

about the state of another bandit. The optimal Bayesian decision rule in the standard model

features exploration (or “experimentation”), which recommends sacrificing current rewards

to achieve longer-term payoffs.5 In the setting considered in this paper, however, the bandits

are negatively correlated, so that positive information about one slot machine implies nega-

tive information about the other. This should remove most of the incentives for subjects to

experiment.

1.1 Data

The experiments were run over several weeks time in November-December 2009. We used 21

subjects, recruited from the Caltech Social Science Experimental Laboratory (SSEL) subject

pool consisting of undergraduate/graduate students, post-doctoral students, and community

members,6 each playing for 200 rounds (broken up into 8 blocks of 25 trials). Most of the

subjects completed the experiment within 40 minutes, including instruction and practice

sessions. Subjects were paid a fixed show-up fee ($20), in addition to the amount won

during the experiment, which was $14.20 on average.7

Subjects were informed of the reward structure for good and bad slot machines, and the

Markov transition probabilities for state transitions (reversals), but were not informed which

state was occuring in each trial. In Figure 1, we present the time line and some screenshots

from the experiment. In addition, while performing the experiment, the subjects were at-

tached to an eye-tracker machine, which recorded their eye movements. From this, we

constructed the auxiliary variable Zt, which measures the fraction of the reaction time (the

time between the onset of a new round after fixation, and the subject’s choice in that round)

spent gazing at the picture of the “blue” slot machine on the computer screen.8

5See Crawford & Shum (2005) for an empirical analysis of this phenomenon in pharmaceutical drug

demand.
6Community members consisted of spouses of students at either Caltech or Pasadena City College (a

two-year junior college).
7For comparison, purely random choices would have earned $10 on average.
8Across trials, the location of the “blue” and “green” slot machines were randomized, so that the same

color is not always located on the same side of the computer screen. This controls for any “right side bias”

which may be present (see discussion further below).



8

For each subject, and each round t, we observe the data (Yt, St, Rt, Zt). Table 1 presents some

summary statistics of the data. The top panel shows that, across all subjects and all trials,

“green” (2108 choices) and “blue” (2092 choices) are chosen in almost-equal proportions.

Moreover, from the second panel, we see that subjects obtain the high reward with frequency

of roughly 57% (≈ 2398/(2398 + 1802)). This is slightly higher than, but significantly

different from, 55%, which is the frequency which would obtain if the subjects were choosing

completely randomly.9 Hence, subjects appear to be “trying”, which motivates our analysis

of their learning rules.

1.1.1 Remarks on eye-tracking measure

Because eye-tracking is still a relatively novel tool in economics, we present some discussion

here. Recently, eye-tracking has been employed to assess subjects’ thinking processes in

various decision environments: to determine how subjects detect truth-telling or deception in

sender-receiver games (J.T. Wang, M. Spezio & C. Camerer (forthcoming)); how consumers

evaluate comparatively a huge number of commodities, as in a supermarket setting (E.

Reutskaja, R. Nagel, C. Camerer & A. Rangel (forthcoming)); and the relationship between

visual attention (as measured by eye-fixations) and valuation of commodities in choice tasks

(cf. I. Krajbich, C. Armel & A. Rangel (2007), Armel & Rangel (2008), K.C. Armel, A.

Beaumel & A. Rangel (2008), A. Rangel (2008)). Specifically, Armel & Rangel (2008)

construct a plausible behavioral-neuroscientific model of value computation through visual

attentions which sucessfully explains the observed relationship between fixation times and

subjects’ valuations in their experiments.10

In this paper, we use subjects’ fixation durations as noisy measures of their beliefs (or

valuations) for each slot machine. The raw eye-movement measure, Zp,t, is defined as,

Zp,t = (Zb,t − Zg,t)/RTt; (2)

that is, for trial t, Zb(g),t is the fixation duration at the blue (green) slot machine, and RTt is

the reaction time, ie. the time between the onset of the trial after fixation, and the subject’s

9This is the marginal probability of a good reward, which equals 0.5(0.7+0.4) from Eq. (1). The t-statistic

for the null that subjects are choosing randomly equals 169.67, so that hypothesis is strongly rejected.
10Eye-tracking has also been used in marketing studies to evaluate the relationship between visual attention

to advertisements and subsequent sales of advertised items (eg. J. Zhang, M. Wedel & R. Pieters (2009)).
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Table 1: Summary statistics for experimental data

Y : subjects’ choices
R: subjects’ rewards

Zp: fixation measure (as defined in Eq. (2))
RT : reaction time (in 10−2 seconds)

Z: discretized version of Zp

1(green) 2(blue)
Y 2108 2092

1 ($0.50) 2 (-$0.50)
R 2398 1802

mean median upper 5% lower 5%
Zp -0.0309 0 1.3987 -1.4091

RT 88.22 59.3 212.2 36.8

Sample size 21 subjects 168 blocks 4200 trials
Corr.(Y ,Zp) 0.7647

Z (after two-value discretization)A

1(green, Zp < 0) 2(blue, Zp ≥ 0)
2032 2168

Z (after three-value discretization)A

1(green) 2(not sure) 3(blue)
1887 540 1773

A: for more details on discretizing Z, see the appendix, section B



10

Figure 2: Scatter plot of Zb (fixation on blue) and Zg(fixation on green)

Both Zb and Zg are reported in 2× 10−2 seconds.

choice.11 Thus, Zp,t measures how much longer a subject looks at the blue slot machine

than the green one during the t-th trial, with a larger (smaller) value of Zp,t implying longer

fixation time at the blue (green) slot machine. Summary statistics on this measure are given

in the bottom panels of Table 1. Particularly, panel 4 shows that the correlation between Yt

(which =2(1) if blue(green) is chosen) and Zp,t is 0.7647, which suggests that in this choice

setting, a longer fixation duration at an alternative implies a larger probability of choosing

it. This also provides some justification for our use of eye movements as noisy measurements

of subjects’ beliefs, which affect their choices.

Figure 2 contains the scatter plot of Zb,t versus Zg,t. The symmetric distribution around

the 45-degree line in Figure 2 indicates that subjects are not intrisically biased toward a

certain color: the existing literature has reported that human subjects exhibit a “right side

bias”, tending to gaze towards the right side more frequently. However, our experimental

data contains no significant evidence of such a bias. In our empirical work, we will discretize

the eye-movement measure Zp; to avoid confusion, in the following we use Zp to denote

11Furthermore, in order to control for subject-specific heterogeneity, we normalize Zp,t across subjects by

dividing by the subject-specific standard deviation of Zp,t, across all rounds for each subject.
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the undiscretized eye-movement measure, and Z the discretized measure, which we describe

below.

2 Econometric model

In this section, we describe our econometric model of dynamic decision-making in the two-

armed bandit (probabilistic reversal learning) experiment described above, and also discuss

the identification and estimation of this model. We introduce the variable X∗
t , which denotes

the agent’s round t beliefs about the current state St; obviously, agents know their beliefs X∗
t ,

but these are unobserved by the researcher. In what follows, we assume that both X∗ and

Z are discrete, and take support on K distinct values which, without loss of generality, we

denote {1, 2, . . . , K}. We make the following assumptions regarding the subjects’ learning

and decision rules:

Assumption 1 Subjects’ choice probabilities P (Yt|X
∗
t ) only depend on current beliefs. More-

over, the choice probabilities P (Yt = y|X∗
t ) varies across different values of X∗

t (ie. beliefs

affect actions).

Assumption 2 The law of motion for X∗
t , which describes how subjects’ beliefs change over

time given the past actions and rewards, is called the learning rule. This is a controlled

first-order Markov process, with transition probabilities P (X∗
t |X

∗
t−1, Rt−1, Yt−1).

These two assumptions pose very little loss in generality, and hold for many varieties of

Bayesian as well as reinforcement learning models.

Assumption 3 The auxiliary measure Zt is a noisy measure of beliefs X∗
t , with the mea-

surement probabilities P (Zt|X
∗
t ). We assume that:

(i) For all t, the K ×K matrix GZt|Zt−1
, with (i, j)− th entry equal to Pr(Zt = i|Zt−1 = j),

is invertible.

(ii) E[Zt|X
∗
t ] is increasing in X∗

t .

The invertibility assumption 3(i) is made on the observed matrix GZt|Zt−1
with elements equal

to the conditional distribution of Zt|Zt−1; hence it is testable. Assumption 3(ii) “normalizes”



12

the beliefs X∗
t in the sense that, because large values of Zt imply that the subject gazed

longer at blue, the monotonicity assumption implies that larger values of X∗
t denote more

“positive” beliefs that the current state is blue.12 The large correlation of 0.76 between Zt and

Yt (as reported in Table 1 above) provides some indirect evidence favoring this monotonicity

assumption.

The final assumption justifies pooling the data across all subjects and trials for estimating

the model:

Assumption 4 The choice probabilities P (Yt|X
∗
t ), learning rules P (X∗

t |X
∗
t−1, Rt−1, Yt−1),

and measurement probabilities P (Zt|X
∗
t ) are the same for all subjects, trials, and trials t.

Remark 2 (stationary in learning models): An important benefit of considering a

“probabilistic reversal” model (in which the identity of the “good” slot machine changes

stochastically across trials) rather than the simpler standard multi-armed bandit model (in

which the identity of the “good” arm is fixed across all trials) is that in the latter case, the

subject’s uncertainty regarding the identity of the “good” arm is decreasing across trials, so

that learning rule must also condition on some measure of the subject’s uncertainty (such

as the number of times a particular arm has been pulled before a given trial) in order to

satisfy the stationarity Assumption 4.13 In a probabilistic reversal setting, however, a sub-

ject’s uncertainty does not decrease across trials. This is an attractive feature because, in

our nonparametric estimation approach, conditioning on additional variables decreases the

precision of the estimates.

Given these assumptions, we next describe the nonparametric identification argument.

12The model can be easily extended to allow for conditional serial correlation in the auxiliary measure Zt

(ie. a law of motion P (Zt|X
∗

t , Zt−1)), and also to the case P (Zt|X
∗

t , Yt−1), where eye-movements can also

track previous choices. For Zt as a measure of eye-movements, as in this paper, the conditional independence

assumption across trials appears reasonable, especially given the imposed fixation at the beginning and end

of each trial (cf. Figure 1). However, for auxiliary measures in other settings (such as brain activity for

fMRI studies), conditional dependence may be more realistic.
13For empirical applications of such learning rules in the Bayesian setting, see Ackerberg (2003) or Crawford

& Shum (2005).
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2.1 Nonparametric identification

In this section, we will use the shorthand notation f(· · · ) to denote generically a probability

distribution. For identification, we exploit the following relationship: conditional on (Rt−1),

we have

f(Yt, Zt, X
∗
t |Y<t, Z<t, R<t, X

∗
<t) = f(Yt, Zt, X

∗
t |Yt−1, Rt−1, X

∗
t−1). (3)

Abusing terminology somewhat, we call this a “first-order Markov” property, because the

model exhibits only a one-period history dependence:

f(Yt, Zt, X
∗
t |Y<t, Z<t, R<t, X

∗
<t)

=f(Yt|Zt, X
∗
t , Y<t, Z<t, R<t, X

∗
<t) · f(Zt|X

∗
t , Y<t, Z<t, R<t, X

∗
<t) · f(X∗

t |Y<t, Z<t, R<t, X
∗
<t)

=f(Yt|X
∗
t ) · f(Zt|X

∗
t ) · f(X∗

t |X
∗
t−1, Rt−1, Yt−1)

=f(Yt, Zt, X
∗
t |Yt−1, Rt−1, X

∗
t−1).

In the above, the second equality applies Assumptions 1, 2, and 3.

The unknown functions we want to identify and estimate are:

(i) f(Yt|X
∗
t ), the choice probabilities;

(ii) the learning rule f(X∗
t |X

∗
t−1, Yt−1, Rt−1); and

(iii) the measurement probabilities f(Zt|X
∗
t ), the mapping between the auxiliary measure Zt

and the unobserved beliefs X∗
t .

The nonparametric identification of these elements follows from an application of results

from Hu (2008), and follows two main steps. Before presenting it, we note that, despite

its simplicity, this model is not straightforward to estimate: given data on subjects’ choices

and rewards, we need to estimate choice probabilities conditional on subjects’ beliefs, even

though these beliefs are not only unobserved, but also changing over time.

Step one: identification of choice probabilities P(Yt|X
∗
t
) and measurement prob-

abilities P(Zt|X
∗
t
). Consider the joint density f(Zt, Yt|Zt−1), which is solely a function of
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variables observed in the data. We can factor this density as follows:

f(Zt, Yt|Zt−1) =
∑

X∗

t

f(Zt, Yt, X
∗
t |Zt−1)

=
∑

X∗

t

f(Zt|Yt, X
∗
t , Zt−1)f(Yt, X

∗
t |Zt−1)

=
∑

X∗

t

f(Zt|Yt, X
∗
t , Zt−1)f(Yt|X

∗
t , Zt−1)f(X∗

t |Zt−1)

=
∑

X∗

t

f(Zt|X
∗
t )f(Yt|X

∗
t )f(X∗

t |Zt−1)

where the last equality applies assumptions 1 and 3.

For any fixed Yt = y, then, we can write the above in matrix notation as:

Ay,Zt|Zt−1
= BZt|X∗

t
Dy|X∗

t
CX∗

t |Zt−1

where A, B, C are all K × K matrices, and D is a K × K diagonal matrix. These are

defined as:

Ay,Zt|Zt−1
=

[

fYt,Zt|Zt−1
(y, i|j)

]

i,j

BZt|X∗

t
=

[

fZt|X∗

t
(i|k)

]

i,k

CX∗

t |Zt−1
=

[

fX∗

t |Zt−1
(k|j)

]

k,j

Dy|X∗

t
=

















fYt|X∗

t
(y|1) 0 0

0 fYt|X∗

t
(y|2) 0

0
. . . 0

0 0 fYt|X∗

t
(y|K)

















(4)

Similarly to the above, we can derive that

GZt|Zt−1
= BZt|X∗

t
CX∗

t |Zt−1

where G is likewise a K ×K matrix, defined as

GZt|Zt−1
=

[

fZt|Zt−1
(i|j)

]

i,j
. (5)

From Assumption 3(i), we combine the two previous matrix equalities to obtain

Ay,Zt|Zt−1
G−1

Zt|Zt−1
= BZt|X∗

t
Dy|X∗

t
B−1

Zt|X∗

t
. (6)
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This is an eigenvalue decomposition of the matrix Ay,Zt|Zt−1
G−1

Zt|Zt−1
, which can be computed

from the observed data sequence {Yt, Zt}.
14 This shows that from the observed data, we

can identify the matrices BZt|X∗

t
and Dy|X∗

t
, which are the matrices with entries equal to

(respectively) the measurement probabilities P (Zt|X
∗
t ) and choice probabilities P (Yt|X

∗
t ).

In order for this identification argument to be valid, the eigendecomposition in Eq. (6) must

be unique. This requires the eigenvalues in this decomposition (corresponding to choice

probabilities P (y|X∗
t )) to be distinctive; that is, P (y|X∗

t ) should vary in X∗
t . This is ensured

by Assumption 1. Furthermore, even if the eigendecomposition is unique, the representation

in Eq. (6) is invariant to the ordering (or permutation) and scalar normalization of eigen-

vectors. Assumption 3(ii) imposes the correct ordering on the eigenvectors: specifically, it

implies that columns with higher average value correspond to larger value of X∗
t . Finally,

because the eigenvectors in the decomposition correspond to the conditional probabilities

P (Zt|X
∗
t ), it is appropriate to normalize each column so that it sums to one. Hence, the

uniqueness of the eigendecomposition, coupled with the ordering and normalization assump-

tions, ensure that the choice probabilities, measurement probabilities, and learning rules can

be uniquely identified from the observed matrices A and G.

Step two: identification of learning rule probabilities P(X∗
t+1
|X∗

t
,Rt,Yt). Again,

start with a factorization

f(Zt+1, Yt, Rt, Zt)

=
∑

X∗

t

∑

X∗

t+1

f(Zt+1, X
∗
t+1, Yt, X

∗
t , Rt, Zt)

=
∑

X∗

t

∑

X∗

t+1

f(Zt+1|X
∗
t+1)f(X∗

t+1|Yt, X
∗
t , Rt)f(Zt|X

∗
t )f (Yt, X

∗
t , Rt)

=
∑

X∗

t

∑

X∗

t+1

f(Zt+1|X
∗
t+1)f(X∗

t+1, Yt, X
∗
t , Rt)f(Zt|X

∗
t )

where the second equality applies assumptions 1, 2, and 3. Then, for any fixed Yt = y and

Rt = r, we have the matrix equality

HZt+1,y,r,Zt
= BZt+1|X∗

t+1
LX∗

t+1
,X∗

t ,y,rB
T
Zt|X∗

t
.

14Note that, from Eq. (5), the invertibility of G (which is Assumption 3(i)) implies the invertibility of B.
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The matrices H and L are K ×K matrices defined as

HZt+1,y,r,Zt
=

[

fZt+1,Yt,Rt,Zt
(i, y, r, j)

]

i,j

LX∗

t+1
,X∗

t ,y,r =
[

fX∗

t+1
,X∗

t ,Yt,Rt
(i, j, y, r)

]

i,j
.

(7)

Assumption 4 ensures that BZt+1|X∗

t+1
= BZt|X∗

t
. Hence, we can obtain LX∗

t+1
,X∗

t ,y,r (corre-

sponding to the learning rule probabilities) directly from

LX∗

t+1
,X∗

t ,y,r = B−1
Zt+1|X∗

t+1

HZt+1,y,r,Zt
BT,−1

Zt|X∗

t
. (8)

This result implies that two periods of data (Zt, Yt, Rt), (Zt−1, Yt−1, Rt−1) are sufficient to

identify and estimate this learning model.

3 Estimation

For the estimation, we assume that the variables Zt and X∗
t are discrete, and take either two

or three values. Since the eye-movement measure Zt is continuous, we must discretize it for

estimation. We leave the details of our discretization procedure in Appendix B.

Our estimation procedure mimicks the two-step identification argument from the previous

section. That is, for fixed values of (y, r), we first form the matrices A, G, and H (as defined

previously) from the observed data, using sample frequencies to estimate the corresponding

probabilities. Then we obtain the matrices B, D, and L using the matrix manipulations in

Eqs. (6) and (8).

One technical feature is that, because all the elements in the matrices of interest B, D, and

L correspond to probabilities, they must take values within the unit interval. However, in

the actual estimation, we found that occasionally the estimates do go outside this range.

In these cases, we obtained the estimates by a least-squares fitting procedure, where we

minimized the elementwise sum-of-squares corresponding to Eqs. (6) and (8), and explicitly

restricted each element of the matrices to lie ∈ [0, 1]. This was not a frequent recourse; only

a handful of the estimates reported below needed to be restricted in this manner.

In addition, while the identification argument above was “cross-sectional” in nature, being

based upon two observations of {Yt, Zt, Rt} per subject, in the estimation we exploited

the long time series data we have for each subject, and pooled every two time-contiguous
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observations {Yi,r,τ , Zi,r,τ , Ri,r,τ}
τ=t

τ=t−1 across all subjects i, all blocks r, and all trials τ =

2, . . . , 25. Formally, this is justified under the assumption that the process {Yt, Zt, Rt} is

stationary and ergodic for each subject and each block; under these assumptions, the ergodic

theorem ensures that the (across time and subjects) sample frequencies used to construct

the matrices A, G, and H converge towards population counterparts.15

Before presenting the results, we present some Monte Carlo simulation results in Table 2,

for simulated datasets around the same size as the datasets drawn from our experiments.

These show that the estimation procedure produces accurate estimates of the model com-

ponents, with the differences between the estimated and actual values usually on the order

of magnitude of 10−1 times the parameter value.

3.1 Estimation results

3.1.1 Two-value estimates

In Table 3, we present estimates in the specification where X∗
t and Zt are assumed to be

binary variables taking values ∈ {1, 2}. The standard errors, shown in parentheses, were

computed using block bootstrap resampling (using 1000 iterations, resampled from all 168

blocks).

Starting from the top of the table, we see that the choice probabilities are reasonable, and

very much aligned with beliefs. When X∗
t = 1 (associated with beliefs that “green is currently

the good state”), then the green slot machine is pulled 98% of the time. Similarly, when

X∗
t = 2, then the blue slot machine is chosen 94% of the time. In many learning settings

(including reinforcement learning, cf. Sutton & Barto (1998, pg. 28), as well as Bayesian

learning), an optimal decision rule require choices to not be completely in line with current

beleifs; to avoid getting “stuck” at suboptimal choices, subjects should explore with some

small probability. However, as we noted before (cf. remark 1), this incentive for exploration is

reduced in our reversal learning experiment, and so the small estimate of ǫ here is reasonable.

15While the results reported below were obtained by pooling the data across all subjects, we also estimated

the model separately for the subsamples of Caltech students, vs. community members. There were few

noticeable differences in the results across these classes of subjects.
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Table 2: Monte Carlo Results. (2500 iterations, median, “”= true value)

Each cell contains the median parameter value across all iterations, and the actual parameter

value in double quotes. Standard deviations across all iterations are in parentheses. Note that

columns sum to one.

P (Yt|X
∗
t )

X∗
t 1(green) 2(blue)

Yt = 1 0.9502 0.0500
(green) “0.9500” “0.0500”

(0.0250) (0.0245)
2 0.0498 0.9500

(blue) ”0.0500” ”0.9500”

P (Zt|X
∗
t )

X∗
t 1(green) 2(blue)

Zt = 1 0.9002 0.1002
(green) “0.9000” “0.1000”

(0.0221) (0.0228)
2 0.0998 0.8998

(blue) “0.1000” “0.9000”

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.3997 0.1782
(green) “0.4000” “0.1500”

(0.0314) (0.1959)
2 0.6003 0.8218

(blue) “0.6000” “0.8500”

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.8002 0.7073
(green) “0.8000” “0.7000”

(0.0283) (0.2031)
2 0.1998 0.2927

(blue) “0.2000” “0.3000”

Note: Learning rule for y = 2(blue) is practically the same as for y = 1(green), so we omit
them for the sake of brevity.
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Remark 3 (What do the beliefs {X∗
t } mean?) As we discussed earlier in Remark 1,

in the standard multi-armed bandit model, subjects’ choices of which arm to pull depends on

the dynamic allocation, or “Gittins” index, which depends not only on current beliefs about

which arm yields a higher return, but also on the informational value in pulling an arm which

may not be currently optimal, but which may yield information useful in future decisions.

However, in our reversal learning setting, because the returns in the two arms are negatively

correlated, this informational value term is nonexistent. Therefore, in the context of such

a model, we can quite confidently interpret the unobserved variables X∗
t , which completely

determine subjects’ choices in our learning model, as a measurement of subjects’ current

beliefs regarding which arm is currently the “good” one. Thus another benefit of a reversal

learning model is the unambiguity in interpreting the unobserved “beliefs” X∗
t in this setting.

The second panel in Table 3 contains the measurement probabilities. The estimates imply

that beliefs closely track the eye-movement measures, with (for instance) beliefs favoring

green leading to longer gazes at the green slot machine on the computer screen around 92%

of the time.

Finally, the remaining panels present the learning rule probabilities for all four configura-

tions of (Rt, Yt) ∈ {(1, 1), (2, 1), (1, 2), (2, 2)}. Note that the columns and rows are ordered

differently across the panels, for ease of interpreting the results. Generally, the left column

of each panel makes sense. Comparing the third and fourth panels in Table 3, we see that

given the choice of “green” (Yt = 1) and given beliefs in favor of green (X∗
t = 1), a higher

reward leads to more intense updating of beliefs towards green in the next trial; that is:

0.87 = P (X∗
t+1 = 1|X∗

t = 1, Rt = 2, Yt = 1)

>>P (X∗
t+1 = 1|X∗

t = 1, Rt = 1, Yt = 1) = 0.54.

Similarly, comparing the bottom two panels, we see that if the subject is predisposed towards

blue (X∗
t = 2) then choosing blue Yt = 2 and obtaining the higher reward Rt = 2 leads

subjects to place a belief of 90% on “blue” the following trial, vs. only 54% if this led to the

lower reward Rt = 1.

On the other hand, the right columns in these panels are a bit puzzling. They indicate a

great deal of state dependence in beliefs, when one chooses actions which are contrary to
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Table 3: Two-value estimates: Specification where X∗
t and Zt are binary

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses. Note

that each column sums to one.

P (Yt|X
∗
t )

X∗
t 1(green) 2(blue)

Yt = 1 0.9756 0.0573
(green) (0.0115) (0.0165)

2 0.0244 0.9427
(blue)

P (Zt|X
∗
t )

X∗
t 1(green) 2(blue)

Zt = 1 0.9093 0.0888
(green) (0.0156) (0.0116)

2 0.0907 0.9112
(blue)

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.5401 0.2950
(green) (0.0279) (0.1588)

2 0.4599 0.7050
(blue)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.8695 0.2471
(green) (0.0256) (0.2160)

2 0.1305 0.7529
(blue)

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 2(blue)

X∗
t 2(blue) 1(green)

X∗
t+1 = 2 0.5407 0.6836
(blue) (0.0263) (0.2249)

1 0.4593 0.3164
(green)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 2(blue)

X∗
t 2(blue) 1(green)

X∗
t+1 = 2 0.9003 0.6146
(blue) (0.0242) (0.2287)

1 0.0997 0.3854
(green)
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beliefs. For example, the third and fourth panels indicate that when X∗
t = 2 (so current

beliefs favor “blue”), but the subject chooses Yt = 1 (“green”), then the updated beliefs are

not affected much by the reward: with a high reward, beliefs switch to “green” (X∗
t+1 = 1)

with only 25% probability, but with a low reward, beliefs switched to “green” with the

slightly higher probability of 30%, which is puzzling. Similarly, in the bottom two panels,

when current beliefs favor “green” (X∗
t = 1), but the blue slot machine was chosen (Yt = 2),

then the probability that beliefs switched to “blue” (X∗
t+1 = 2) is slightly higher following a

low rather than high reward.

At face value, this suggests that subjects do not update their beliefs properly following

“exploratory” (ie. contrary to belief) actions. However, as we will see now, these puzzling

results are less apparent when we allow beliefs to take three distinct values.

3.1.2 Three-value estimates

Tables 4 and 5 present results from a specification where X∗
t is assumed to take three values

{1, 2, 3}, and likewise Zt is discretized to take these three values. We interpret X∗ = 1, 3 as

indicative of “strong beliefs” favoring (respectively) green and blue, while the intermediate

value X∗ = 2 indicates that the subject is “not sure”.

Table 4 contains the estimates of the choice and measurement probabilities.16 The first

and last columns of the panels in this table indicate that choices and eyes movements are

closely aligned with beliefs, when beliefs are sufficiently strong (ie. are equal to either

X∗ = 1 or X∗ = 3). Specifically, in these results, the “exploration probability” is smaller

than in the two-value results, being equal to 1.3% when X∗
t = 1, and only 0.64% when

X∗
t = 3. As we discussed in Remark 1 above, such small probabilities can be consistent with

optimal behavior, in our reversal learning environment, where subjects have little incentive

to experiment.

16We also considered a robustness check against the possibility that subjects’ fixations immediately before

making their choices coincide exactly with their choice. While this is not likely in our experimental setting,

because subjects were required to indicate their choice by pressing a key on the keyboard, rather than clicking

on the screen using a mouse, we nevertheless re-estimated the models but eliminating the last segment of the

reaction time in computing the Zt. The results are very similar to the reported results, both qualitatively

and quantitatively.
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Table 4: Three-value estimates: Specification where X∗
t and Zt take three values

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses. Note

that each column sums to one.

Choice probabilities:
P (Yt|X

∗
t )

X∗
t 1(green) 2(not sure) 3(blue)

Yt = 1 0.9866 0.4421 0.0064
(green) (0.0561) (0.1274) (0.0146)

2 0.0134 0.5579 0.9936
(blue)

P (Zt|X
∗
t )

X∗
t 1(green) 2(not sure) 3(blue)

Zt = 1 0.8639 0.2189 0.0599
(green) (0.0468) (0.1039) (0.0218)

2 0.0815 0.6311 0.0980
(middle) (0.0972) (0.1410) (0.0369)

3 0.0546 0.1499 0.8421
(blue) (0.0581) (0.1206) (0.0529)

When X∗
t = 2, however, suggesting that the subject is unsure of the state, there is a slight

bias in choices towards “blue”, with Yt = 2 roughly 56% of the time. The bottom panel

indicates that when subjects are not sure, they tend to gaze in the middle of the screen,

around 63% of the time.

The learning rule estimates are presented in Table 5. The results are similar to the two-value

results, but most of the problems from those results disappear when we allow beliefs to take

three values. The left columns show how beliefs are updated when “exploitative” choices (ie.

choices made in accordance with beliefs) are taken. When current beliefs indicate “green”

(X∗
1 = 1) and green is chosen (Yt = 1), beliefs are quite responsive to the reward: if Rt = 1

(the low reward), then beliefs stay at green with probability 57%, but if Rt = 2 (high reward),

then this probability is much higher, at 89%. On the other hand, even after positive (ie.

high reward) exploitative choices, beliefs may still update towards “blue” (X∗
t+1 = 3) with

an 11% chance, rather than staying at the intermediate level X∗
t+1 = 2. This non-smooth

“extremal” updating is a distinctive feature of our learning rule estimates, and is consistent

with optimal belief-updating in a probabilistic reversal context: even if the subject were
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Table 5: Three-value estimates: Specification where X∗
t and Zt take three values

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses. Note

that each column sums to one.

Learning Rule updating probabilities:
P (X∗

t+1|X
∗
t , y, r), r = 1(lose), y = 1(green)

X∗
t 1(green) 2 (not sure) 3(blue)

X∗
t+1 = 1 0.5724 0.3075 0.1779
(green) (0.0694) (0.0881) (0.2257)

2 0.0000 0.3138 0.4002
(not sure) (0.0662) (0.1042) (0.2284)

3 0.4276 0.3787 0.4219
(blue) (0.0624) (0.0945) (0.2195)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 1(green)

X∗
t 1(green) 2 (not sure) 3(blue)

X∗
t+1 = 1 0.8889 0.6621 0.8242
(green) (0.0894) (0.1309) (0.2734)

2 0.0000 0.2702 0.1758
(not sure) (0.0911) (0.1297) (0.1981)

3 0.1111 0.0678 0.0000
(blue) (0.0340) (0.0485) (0.1876)

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 2(blue)

X∗
t 3(blue) 2 (not sure) 1(green)

X∗
t+1 = 3 0.5376 0.2297 0.2123
(blue) (0.0890) (0.0731) (0.1436)

2 0.0458 0.2096 0.1086
(not sure) (0.0732) (0.0958) (0.1524)

1 0.4166 0.5607 0.6792
(green) (0.0874) (0.0968) (0.1881)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 2(blue)

X∗
t 3(blue) 2 (not sure) 1(green)

X∗
t+1 = 3 0.8845 0.6163 0.6319
(blue) (0.1000) (0.1136) (0.1647)

2 0.0000 0.3558 0.3566
(not sure) (0.0968) (0.1160) (0.1637)

1 0.1155 0.0279 0.0116
(green) (0.0499) (0.0373) (0.0679)
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completely sure that “green” after a high reward, she still must consider the possibility that

the good state could change to “blue” by the next trial, due to the stochastic evolution of

the state process.

The results in the right-most columns, describing belief updating following “explorative”

choices (contrarian to current beliefs), are on the whole more sensible than in the two-value

estimates. For instance, considering the top two panels, when current beliefs are favorable

to “blue” (X∗
t = 3), but “green” is chosen, beliefs update more towards “green” (X∗

t+1 = 1)

after a low rather than high reward (82% vs. 18%).

The second columns in these panels show how beliefs evolve following (almost-) random

choices. Again considering the top two panels, we see that when current beliefs are unsure

(X∗
t = 2), there is stronger updating towards “green” when green choice yielded the higher

reward (66% vs. 31%). The results in the bottom two panels are very similar to those in the

top two panels, but describe how subjects update beliefs following choices of “blue” (Yt = 2).

4 Comparing nonparametric vs. standard learning models

In this section, we compare the beliefs implied by our estimated learning model (which we

will refer to as the “nonparametric” model, for convenience), to those implied by alterna-

tive learning models. We consider two alternative parametric learning rules: Bayesian and

reinforcement learning. Given that our learning rule was estimated nonparametrically, and

in that sense encompasses the other two models, we examine which of these two popular

alternative models is closer to our nonparametric learning model. Appendix A contains

additional details on how the beliefs were derived for each of these three learning models.

Figures 3-5 contains the raw histograms for the (noisy) measurements of beliefs from the

three learning models: Figure 3 contains the histogram of the eye tracking measure, which

is used to pin down beliefs in our nonparametric learning model. Figure 4 contains the

histogram of the Bayesian posterior probabilities, computed given our experimental design

and the observed data. Finally, Figure 5 contains the histogram for the difference in the

calibrated valuation measures for the “blue” vs. “green” slot machine, from a temporal

difference (TD)-learning reinforcement learning model (see Appendix A for a description of



25

this model).

A noteworthy feature is that the histograms for the eye-tracking measure Zp and the TD-

learning valuations look similar: both are trimodal. The Bayesian posterior mean measure,

on the other hand, is unimodel. As we will see later, this implies that beliefs from the

nonparametric model will be closer to the RL model, than the Bayesian model. Moreover, we

will also see that the Bayesian learning model tends to predict “smoother” choice behavior

than what we observe in the data, while the beliefs from the nonparametric model are

“jumpy” in comparison.

Overall summary statistics In Table 6, we present some summary statistics for the

implied beliefs from our nonparametric learning model (denoted X∗
t ), vs. the Bayesian

beliefs B∗ and the valuations V ∗ in the RL learning model. For simplicity, we will abuse

terminology somewhat and refer in what follows to X∗, V ∗, and B∗ as the “beliefs” implied

by, respectively, our nonparametric model, the RL model, and the Bayesian model. This

table contains eight panels.

Panel 1 gives the total tally, across all subjects, blocks, and trials, of the number of times

the nonparametric beliefs X∗ took each of the three values. Subjects’ beliefs tended to

favor green and blue toughly equally, with “not sure” lagging far behind. The close split

between “green” and “blue” beliefs is consistent with the notion that subjects have rational

expectations, with flat priors on the unobserved state S1 at the beginning of each block. The

second panel shows analogous statistics for the beliefs from the RL and Bayesian models.

The RL valuation measure V ∗ appears largely symmetric and centered around zero, while

the average Bayesian B∗ lies also around 0.5. Thus, on the whole, all three measures of

beliefs appear equally distributed between “green” and “blue”.

Panel 3 contains the pairwise correlation among (X∗, V ∗, B∗), the beliefs from the three

models. The correlation between X∗ and V ∗ (0.59) exceeds that between X∗ and B∗ (0.53).

This shows that the nonparametric beliefs X∗ are, stochastically, more similar to the RL

beliefs V ∗ than to the Bayesian beliefs B∗. This finding confirms the evidence from the

histograms, as described above. The Bayesian model is the most restrictive one, and imposes

the highest degree of rationality on subjects, which may explain its inferior fit, relative to
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Figure 3: Histogram of Zp

Figure 4: Histogram of Bayesian Belief B∗

Figure 5: Histogram of V ∗ = Vb − Vg in RL
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Table 6: Summary statistics for the three models

Panel 1:
X∗ 1(green) 2(not sure) 3(blue)

1878 366 1956

Panel 2:
mean median std. 1/3 quantile 2/3 quantile

B∗ (Bayesian Belief) 0.4960 0.5000 0.1433 0.4201 0.5644
V ∗(= Vb − Vg) -0.0035 0 1.1152 -0.6588 0.6068

Panel 3: Correlations in the three models
Corr.(X∗, V ∗) 0.5874 (0.0014)∗

Corr.(X∗, B∗) 0.5274 (0.0013)
Corr.(B∗, V ∗) 0.8271 (0.0006)

∗: bootstrapped standard error in parentheses

Panel 4: Correlations with observed choices Y (all samples)
Corr.(Y, X∗) 0.7552
Corr.(Y, V ∗) 0.5560
Corr.(Y, B∗) 0.5175

Panel 5: Correlations with choices Y (excluding intermediate beliefs)
Corr.(Y, X∗) 0.7906 (keep only X∗ =1,3)
Corr.(Y, V ∗) 0.6786 (keep only V ∗ 6∈ [1/3 quant., 2/3 quant.])
Corr.(Y, B∗) 0.6252 (keep only B∗ 6∈ [1/3 quant., 2/3 quant.])

Panel 6: Correlations with choices Y (last 10 trials, first 5 trials)
last 10 first 5

Corr.(Y, X∗) 0.7474 0.6908
Corr.(Y, V ∗) 0.5582 0.5201
Corr.(Y, B∗) 0.5267 0.4678

Panel 7: Number of “explorative” (belief non-congruent) choices Y
Nonparametric 402

Reinforcement Learning 455
Bayesian 543

Panel 8: Correlations with noisy measure Z (NB: Corr.(Z, Y ) = 0.7738)
Corr.(Z, X∗) 0.8575
Corr.(Z, V ∗) 0.4717
Corr.(Z, B∗) 0.4296
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the RL model, to our nonparametric learning rule.

However, the correlations between our nonparametric beliefs X∗ and B∗ and V ∗ are markedly

lower than that between B∗ and V ∗ (which is 0.82). This indicates that, informationally,

the beliefs from the Bayesian and RL models are very similar.

The next panel shows that the correlation of X∗ with the observed choices Y is higher

(0.7552) than the correlation of choices with the beliefs from the other models. This su-

perior performance of the nonparametric beliefs in predicting subjects’ choices is not too

surprising, since the beliefs are estimated from the data, whereas the other two models are

only calibrated to the data. The next two panels break down the correlation between the

observed choices and the difference measures of beliefs, for subsamples of the data. Panel 5

only considers subjects’ choices when the implied beliefs are strong (in the sense of taking

extreme values). For the nonparametric model, we omitted observations when X∗ was esti-

mated to be “not sure”, while for the other two models, we omitted observations when beliefs

lay between the 1/3 and 2/3 quantile. The results show that when beliefs are strong, the

nonparametric model continues to predict choices better than the Bayesian and RL models.

Panel 6 shows that predicted choice behavior is more accurate (using all three models) dur-

ing the last ten rounds of each subject’s data, and less accurate during the first five rounds.

This supports the notaion that subjects behaved more haphazardly at the beginning of the

experiments.17

The better predictive fit of the nonparametric beliefs X∗ implies that our nonparametric

model should classify fewer choices as “exploratory” ones (where exploratory behavior is

generally defined as making contrarian choices in the face of strong beliefs). This intuition is

confirmed in Panel 7, which shows that the nonparametric model classifies only 405 (10.5%)

of the subjects’ choices as exploratory. The RL model which, as pointed above, is closer

to our nonparmetric model, classifies 455 of the choices as exploratory, while the Bayesian

model classifies 543 choices as such.

17While the predictions using the nonparametric model reported here were “in sample” (that is, the

estimation and prediction were done using the same sample), we also considered out of sample prediction

(where the estimation and prediction were performed on different subsamples of subjects) and the results

were very similar.
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Finally, the bottom panel shows the sample correlation between the eye-movement measure,

and the implied beliefs. Not surprisingly, the correlation is much higher for the nonpara-

metric beliefs X∗ (since identification of the nonparametric model relies on the monotonicity

condition in Assumption 3). The Bayesian and RL beliefs, which do not require Z to com-

pute, exhibit a smaller correlation with Z.

A closer look at individual blocks To look more closely at the differences between

the three learning models, we plot, in Figures 6-9, the actual choices, as well as subjects’

beliefs regarding which slot is better, from the three learning models, for four representative

subject-blocks of choices. The actual choices are plotted in crosses (+’s), with higher crosses

(at 0.25) signifying “blue” and lower crosses (at -0.25) signifying “green”. The subject’s

beliefs from the three models, all recentered and rescaled around zero, are plotted; X∗
t as a

solid line, B∗
t dotted, and V ∗

t dashed.18

Figure 6, for trial #4 of subject #6, is typical. Comparing the predicted choices, we see

that, generally, all three models perform reasonably well. The choice of “blue” in trial #18

was unanticipated by all three models, and would be classified as “exploratory” in each case.

In this block, the Bayesian and RL beliefs move in tandem. Hence, the choice of “green” in

trial #8 was a surprise to the nonparametric model, but predicted by the other two models.

On the other hand, the choice of “green” in trial #9 was predicted by the nonparametric

beliefs, but not by the Bayesian and RL models.

Figure 7, which shows subject (#4) and block (#6), presents an example where the Bayesian

and RL beliefs diverge, at the end of the block. It is noteworthy here that the Bayesian model

“misses” the final run of “green” choices. On the other hand, the nonparametric and RL

beliefs are able to predict these choices. Also note here that when the Bayesian and RL beliefs

diverge, then the nonparametric beliefs are closer to the RL beliefs, which was apparent from

the summary statistics discussed earlier, which indicated a stronger correlation between the

nonparametric and RL beliefs, than between the nonparametric and Bayesian beliefs.

The two remaining figures (8 and 9) contain additional instances of choices which all three

18That is, the Bayesian beliefs were plotted as B∗

t − 0.5, while the RL beliefs were plotted as V ∗

t =

0.25 ∗ (V t
b − V t

g ). The nonparametric beliefs were plotted as 0.25 ∗ (X∗

t − 2).
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Figure 6: Subject 6, block 4 Figure 7: Subject 4, block 6

Figure 8: Subject 5, block 8 Figure 9: Subject 1, block 3



31

learning models would classify as “exploratory”. These are trials #12, #15 in Figure 8, and

trials #11 and #13 in Figure 9. Note that across all four figures here, the nonparametric

beliefs X∗ jump between favoring “blue” and “green”, and rarely take the intermediate

value “not sure”. This is consistent with the estimates of the learning rule, especially the

left-hand side columns of the panels in Table 5, which place zero probability on X∗ = 2

following choices congruent with current beliefs. Both the Bayesian and RL model posit

a smoother belief updating process. This “jumpiness” in the nonparametric learning rule

represent another important qualitative difference relative to the standard learning models.

5 Conclusions

In this paper, we estimate learning rules nonparametrically from data drawn from exper-

iments of multi-armed bandit problems. The experimental data are augmented by mea-

surements of subjects’ eye movements from an eye tracker machine, which play the role of

auxiliary measures of subjects’ beliefs. Our estimated learning rules have some distinctive

features – notably, non-smooth updating following positive “exploitative” choices. A com-

parison of the nonparametric learning rules with “standard” learning models shows that our

estimates are closer to the reinforcement learning model, than to a Bayesian model. Al-

together, our analysis points out some deficiencies in the Bayesian model as a descriptive

model, thus echoing previous findings in both the experimental and finance literatures.

Our nonparametric estimator for subjects’ choice probabilities and learning rules is easy to

implement. Potentially, it can also be applied to other experimental settings where auxiliary

measures of subjects’ beliefs and valuations are available, such as the typical neuroscience

fMRI setting.
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A Appendix: Details on computation of beliefs in the nonpara-

metric, Bayesian, and RL models

In section 4, we compared belief dynamics in the nonparametric model (X∗) with counter-

parts in other two benchmark learning models, the Bayesian belief (B∗) and the valuation

in the reinforcement learning model (Vb − Vg). Here we provide additional details for how

the beliefs for each of the three models were computed.

A.1 Belief dynamics X∗ in the nonparametric model

The values of X∗, the belief process in our nonparametric learning model, were obtained by

maximum likelihood. For each block, using the estimated choice and measurement proba-

bilities, as well as the learning rules, we chose the path of beliefs {X∗
t }

25
t=1 which maximized

P ({X∗
t } | {Zt, Rt}), the conditional (“posterior”) probability of the beliefs, given the observed

sequences of eye-movements and rewards. Because

P ({X∗
t , Zt} | {Yt, Rt}) = P ({X∗

t } | {Zt, Rt}) · P ({Zt} | {Yt, Rt}),

where the second term on the RHS of the equation above does not depend on X∗
t , it is

equivalent to maximize P ({X∗
t , Zt} | {Yt, Rt}) with respect to {X∗

t }. Because of the Markov

structure, the joint log-likelihood factors as:

log L({X∗
t , Zt}|{Yt, Rt}) =

24
∑

t=1

log
[

P (Zt|X
∗
t )P (X∗

t+1|X
∗
t , Rt, Yt)

]

+ log(P (Z25|X
∗
25)). (9)

We plug in our nonparametric estimates of P (Z|X∗) and P (X∗
t+1|X

∗
t , Rt, Yt) into the above

likelihood, and optimize it over all paths of {X∗
t }

25
t=1 with the initial condition restriction

X∗
1 = 2 (beliefs indicate ”not sure” at the beginning of each block). To facilitate this opti-

mization problem, we derive the optimal sequence of beliefs using a dynamic-programming

(Viterbi) algorithm; cf. Ghahramani (2001).
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Note that, in the above, we treated the choice sequence {Yt} as exogenous, and left the choice

probabilities P (Yt|X
∗
t ) out of the log-likelihood function (9) above. This was because, given

our estimates that P (Yt = 1|X∗
t = 1) ≈ P (Yt = 2|X∗

t = 3) ≈ 1 in Table 4, maximizing with

respect to these choice probabilities would leads to estimates of beliefs {X∗} which closely

coincide with observed choices; we wished to avoid such an artifically good “fit” between the

beliefs and observed choices.

For robustness, however, we also estimated the beliefs {X∗} under two alternative scenarios:

(i) treating the choice sequence {Yt} as endogenous, and hence including the choice probabil-

ities P (Yt|X
∗
t ) in the likelihood function; (ii) treating both {Yt, Zt} as exogenous, and hence

omitting both the choice probabilities P (Yt|X
∗
t ) and the measurement probabilities P (Zt|X

∗
t )

from the likelihood function. Not surprisingly, the correlation between choices and beliefs

Corr(Yt, X
∗
t ) = 0.99 under (i), while under (ii) the correlation falls to 0.56. However, in

both of these alternative specifications, we still find that Corr(X∗
t , V

∗
t ) > Corr(X∗

t , B∗
t ) –

that is, the nonparametric beliefs are “closer” to the RL model than the Bayesian model.

Thus this finding appears robust across a number of different approaches to recovering the

nonparametric beliefs {X∗
t }.

A.2 Bayesian Learning Model

A Bayesian learner uses Bayes rule to update her beliefs. Let B∗
t denote the prior probability

that the blue slot machine is the good one at the start of the trial t. After her choice Yt,

she observes reward Rt, and updates her belief that the blue slot machine is good to B′∗
t ; by

Bayes’ rule, this updated probability is:

B′∗
t =

P (Rt|Yt, St = 1) · B∗
t

P (Rt|Yt, St = 1) · B∗
t + P (Rt|Yt, St = 2) · (1−B∗

t )
(10)

Additionally, at the end of each trial, the state St may change with 15% probability. The

Bayesian learner takes this into account, so that the prior probability on “blue” at the start

of trial t + 1 is equal to the probability at the end of trial t, B′∗
t , weighted by the state

transition probabilities:

B∗
t+1 = P (St+1 = 1|St = 1) · B′∗

t + P (St+1 = 1|St = 2) · (1− B′∗
t ). (11)
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In this way, given the initial beliefs B1 = 0.5, we can use Eqs. (10) and (11) to compute

the sequence of Bayesian beliefs, {B∗
t }, corresponding to the observed sequences of choices

and rewards {Yt, Rt}. The corresponding choice rule from the Bayesian model would be to

choose “blue” at trial t iff B∗
t ≥ 0.5.

A.3 Reinforcement Learning Model

We employ a variant of the TD (Temporal-Difference)-Learning models (Sutton & Barto

(1998), section 6). The value of an action is learned by the reward that is expected after

taking that action. Let V t
b(g) denote the “current” (ie. beginning of trial t) action value

function for the blue (green) slot machine. The value updating rule for a one-step TD-

Learning model is defined as:

V t+1
Yt
←− V t

Yt
+ αδt. (12)

where Yt denotes the choice taken in trial t, α denotes the learning rate, and δt denotes the

“prediction error” for trial t (defined below). The prediction error δt is equal to

δt = (Rt + γE[V t
Yt+1
|t])− V t

Yt
(13)

the difference between (Rt + γE[V t
Yt+1
|t]) (the observed reward in trial t plus the discounted

expected value from the next trial), and V t
Yt

(the current expected valuation). For instance,

for Yt = 2 (for “blue”), then the TD learning rule implies that Vb is updated by an amount

equal to the prediction error δt, weighted by the learning parameter α (with larger values

of α indicating an increased sensitivity to the outcome of trial t). In trial t, there is no

updating of the valuation for the choice that was not taken.

The variant of TD-Learning (SARSA, short for “state-action-reward-state-action”) used here

(Sutton & Barto (1998), p. 149) computes the expected value function E[VYt+1
|t] using the

current choice probabilities of choosing the future action Yt+1 (which is unknown at trial

t). P t
c , the current probability of choosing action c, is assumed to take the conventional

“softmax” (ie. logit) form with the inverse temperature parameter β:

P t
c = eβV t

c /

[

∑

c′

eβV t
c′

]

(14)
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With this functional form for the choice probabilities, the expected value function from trial

t + 1 is computed as,

E[VYt+1
|t] =

∑

c′∈(b,g)

P t
c′V

t
c′. (15)

We estimated the parameters β and α using maximum likelihood. For greater model flex-

ibility, we allowed the parameter α to differ following positive vs. negative rewards. (We

fixed the discount rate γ = 0.9.) The estimates we obtained from the data were:

β = 0.7584

α for positive reward (Rt = 2) = 1.6531

α for negative reward (Rt = 1) = 1.0552.

(16)

We plug in these values into Eqs. (12), (13), (14) and (15) to derive a sequence of valuations
{

V ∗
t ≡ V t

b − V t
g

}

. The choice function (Eq. (14)) can be rewritten as a function of the

difference V ∗
t ; i.e. the choice probability for the blue slot machine is,

P t
b =

eβ(V t
b
−V t

g )

1 + eβ(V t
b
−V t

g )
=

eβV ∗

t

1 + eβV ∗

t

(17)

and P t
g = 1− P t

b . Hence, V ∗
t plays a role in the TD-Learning model analogous to the belief

measures X∗
t and B∗

t from, respectively, the nonparametric and Bayesian learning models.

B Appendix: Details on discretization

In this section, we present additional discussion on the discretization of the eye-movement

measure, and some evidence that a three-valued discretization (which we used in our preferred

empirical specifications) is sufficient to capture most of the variation in this measure. Let

Zp,t denote the continuous-valued eye-tracking measure, and Zt the discretized version, both

for trial t. For the two-value discretization, we discretize as follows:

Zt =







1 if Zp,t < 0

2 if Zp,t ≥ 0

For the three-value discretization, we discretize Zp,t as follows:

Zt =



















1 if Zp,t < −σz

2 if −σz ≤ Zp,t ≤ σz

3 if σz < Zp,t

(18)
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Table 7: Correlations between (Y , Zp) in different subsamples

Size Corr(Y, Zp)
Full sample 4200 0.7647

σz = 0.20 (baseline):
Z = 1 (green) 1887 0.2845

2 (not sure) 540 0.2156
3 (blue) 1773 0.1706

σz=0.05:
Z = 1 (green) 2015 0.3223

2 (not sure) 255 -0.0599
3 (blue) 1930 0.2346

σz=0.40:
Z = 1 (green) 1725 0.1462

2 (not sure) 869 0.2777
3 (blue) 1606 0.0991

Note: Zp refers to the undiscretized eye-movement measure, as defined in Eq. (2), and Z refers to

the discretized version, as defined in Eq. (18).

where σz denotes a constant used to discretize Zp,t. As the baseline, we set σz = 0.20.

However, we do not find any difference in the estimation results either qualitatively nor

significantly if we vary σz from 0.05 to around 0.40, suggesting that the model is robust

for different classifications. Table 1 contains the summary statistics for both the two- and

three-value discretizations. Table 7 shows the sample frequencies of the discretized measure

Zt for three different values of σz.

Figure 3 is the histogram of Zp,t, which is apparently trimodel, with peaks at -1, 0 and 1,

which suggest that a three-value discretization of Zp indeed captures most of its variation.

Moreover, Table 7 shows the correlations between Y and Zp, broken up into the three ranges

of Zp corresponding to the three discretized values Z ∈ {1, 2, 3}, and also for three different

values of the σz parameter. Although the correlation in the whole sample is 0.7647, the

correlations within each of the three ranges of Zp drop significantly, ranging from even

negative values to values around 0.30. Because most of the variation in choices is across the

different discretized values of Z, rather than within these values, it appears the three-valued

discretization is sufficient.


