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Abstract 
We characterize pure strategy equilibria of common value multi-unit uniform price auctions under the 
framework of initial public offerings, where bidders have incomplete private information regarding the 
value of shares and submit discrete demand schedules. We show that there exists a continuum of 
equilibria where investors with a higher expectation about the value of shares bid for higher quantities at 
higher prices, and as a result the market price increases with the market value. The collusive equilibria, 
in which investors place bids regardless of their expectation about the value, are obtained under stricter 
conditions than in the continuous price case.  
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1. Introduction 
Uniform price auctions are one of the mechanisms for selling initial public 

offerings (IPOs). In such auctions, bidders submit quantity-price pairs indicating the 

price that they are willing to pay for obtaining the corresponding quantities. The goods 

are allocated from high bids to low bids and bidders pay the market-clearing price for 

all units won.  

There is an extensive literature on uniform price auctions that explores one 

particular type of equilibrium that predicts low revenues for sellers, namely tacit 

collusion equilibrium (see e.g. Wilson 1979; Back and Zender 1993; Biais and 

Faugeron-Grouzet 2002). This equilibrium suggests that an increase in the number of 

bidders cannot improve sellers’ revenues because bids are independent of bidders’ 

expectations about the value of shares.  

Nevertheless, the tacit collusion equilibrium is generally not supported by field 

observations and experimental outcomes (see e.g. Kandel et al. 99; Sade et al. 2006; 

Zhang, forthcoming). Uniform price auctions are widely used for selling multi-unit 

goods to multiple buyers in financial and commodity markets. 2 Although there are 

alternative IPO mechanisms available, uniform price auctions are still used in, e.g. 

Israel, U.S. and France. 

The divergence between the theoretical prediction and empirical findings 

motivates the current study. We found that a common assumption of the theoretical 

research is that bidders submit continuous demand functions. However, in naturally 

occurring markets, not only is submitting full-demand schedules costly (Kastl 2008), 

but the number of bids, the minimum price increment and the quantity multiple are 

also often bounded by regulators.3 Hence instead, bidders submit a limited number of 

price-quantity pairs. This issue is important because the equilibrium that holds with 

                                                 
2 Other examples include Treasury bills, spectrum and electricity. 
3 For example, the online IPO auction company WR Hambrecht+ Co. used to require a minimum bid increment of 

1/32 of a dollar, which has been changed to 1 cent in 2005. On the Singapore stock market, there are five tick size 

categories (i.e. price increments) ranging from 0.5 cents for stocks priced less than $1.00 to 10 cents for stocks 

priced above $10 (Comerton-Forde et al.  2003). In stock markets a minimum order quantity for a new issue is also 

required. For example, in the U.S the number is 100 shares. There are usually restrictions on the number of price-

quantity pairs allowed. In the Spanish electricity market generators may submit up to twenty-five price-quantity 

pairs (Fabra et al. 2002), while a maximum of three bids are allowed in Italian treasury bills markets (see Scalia 

1996, or Kremer and Nyborg 2004, p.858).  
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continuous demand functions does not necessarily work in the case with discrete bids. 

For example, Kremer and Nyborg (2004) show that the collusive equilibrium of the 

Wilson/Back and Zender model does not survive when bidders only make a finite 

number of bids.  

However, Kremer and Nyborg (2004) assume that bidders are certain about the 

value of the good for sale. As they mentioned in their paper, this assumption of 

complete information is not applicable in many markets where bidders only have 

private information. To make the settings closer to markets such as IPOs, where 

investors have expectations about the value of shares when placing orders, we relax 

this assumption in the current study while keeping the discreteness of demand 

schedules. We take the simple binomial informational structure adopted by Benveniste 

and Wilhelm (1990) and Biais and Faugeron-Crouzet (2002) and frequently used in 

IPO modelling, in which each investor receives a signal that can be either high or low, 

revealing partial information about the market value of shares. 

Our paper differs from previous research in the following respects. Unlike Wilson 

(1979) and Back and Zender (1993) who assume continuous demand functions, we 

focus on discrete bids and found that the collusive equilibrium, although remaining 

valid, is obtained under stricter conditions. In addition, we found a continuum of 

equilibria where investors with a higher expected valuation bid more aggressively and 

as a result the market price is positively related with the market value.  Unlike Kremer 

and Nyborg (2004) who assume bidders are certain of the value of goods and find that 

the equilibrium price can be as high as the value, in this paper bidders only have partial 

information about the value and this leads to underpricing in most equilibria. The 

binomial informational structure adopted in this paper also implies that the Bertrand-

like competition by bidding for the whole issue at one price is one of the equilibrium 

strategies in models of Kremer and Nyborg (2004) and Wang and Zender (2002; in 

which bidders receive private information from a set of signals distributed conditional 

on the value), but is generally not an equilibrium in ours.  

The new set of equilibria characterized in this paper has some properties that are 

consistent with field observations and experimental evidences: an increase in the 

number of bidders improves competition and revenues (Kandel, et al. 1999); bidders 

place more bids as the number of bidders increases (Malvey et. al 1997); bidders with 

higher expected market values place higher bids for more shares than those with lower 

expected market values (Zhang, Forthcoming). The existence of the enlarged set of 
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equilibria may explain why uniform price auctions are still widely used despite the low 

revenue prediction that is consistent with the tacit collusion equilibrium. The 

performance of IPO auctions depends significantly on bidders’ equilibrium selection. 

The rest of the paper is organized as follows. We discuss the related literature in 

Section 2 and then introduce the model in section 3. In section 4 we present the main 

result. Starting in section 4.1 with the tacit collusion equilibrium where all bidders 

behave symmetrically, we then examine cases where the behaviour of different types 

of bidders is asymmetric in section 4.2.  We discuss our results in section 5. 

2. Related Literatures 
The equilibrium solution in multi-unit uniform price auctions is quite sensitive to 

alternative modelling settings. For example, it would depend on the choices between 

single-unit or multi-unit demand, private values or common values, discrete or 

continuous demand schedules; it would depend on the information that bidders hold, as 

well as whether supply uncertainty exists.  

Although the truth-telling property of the second-price sealed-bid auction 

(Vickrey 1961) still holds for uniform price auctions in the context of single-unit 

demand (McCabe, et al. 1990; Pesendorfer and Swinkels 1997; Weber 1983), it does 

not extend to situations with multi-unit demand (Krishna 2002). In the studies carried 

out on uniform price auctions with multi-unit supply and demand, much research 

focuses on the two-unit demand model with private values. They show that sincerely 

bidding on the first unit and applying demand reduction, i.e. bidding at a level below 

the marginal unit value on the second unit is an equilibrium strategy. Bidders have an 

incentive to shade their bids after the first-unit demand in order to enjoy a lower 

market price in the case their bids are marginal (Engelbrecht-Wiggans and Kahn; 

1998; Krishna 2002; Noussair 1995).4  

The above mentioned equilibrium has some similarity with the tacit collusion 

equilibrium in uniform price common value auctions. In such auctions, if a bidder has a 

positive probability of influencing the price, in a situation where the bidder obtains 

                                                 
4 Levin (2005) demonstrates that bidding well above value on the first-unit and zero on the second-unit 

(when the reservation price is zero) is also an equilibrium. The theoretical prediction of demand 

reduction behaviour is supported by experiment studies (Engelmann and Grimm 2003; Kagel and Levin 

2001) and field experiment studies (List and Riley 2000). In these studies, overbidding on the first unit 

is also frequently observed.  
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some allocation, then she has an incentive to shade her bid (Ausubel and Cramton 

2002). Many researchers (e.g. Wilson 1979; Back and Zender 1993; Maxwell,1983) 

demonstrate the existence of multiple equilibria which yield a sale price well below the 

competitive price, when bidders submit continuous demand functions. In such 

equilibria, bidders follow inelastic demand functions regardless of their expected 

market value and, therefore, the market price provides little information about the 

market value. With inelastic demand functions, it would take a big price increase to 

increase one’s allocation and, consequently collusive strategies become self-enforcing 

in this non-cooperative game. Thus despite Friedman’s (1960, 1990) argument that 

uniform price auctions have the advantage of increasing competition, theoretical 

results suggest that sellers would not benefit from increased competition because 

bidders can manipulate the market price.  

However, the equilibrium that holds with continuous demand functions does not 

necessarily work in the case with discrete bids. Fabra et al. (2006) model an electricity 

market as an auction with private values, capacity constraint and demand uncertainty. 

They claim that a collusive equilibrium only exists when the demand function is 

continuous while in the discrete case there exists a unique, Bertrand-like, equilibrium. 

Kremer and Nyborg (2004), who assume that the value of good is common knowledge, 

show that the collusive equilibrium does not survive in the Wilson/Back and Zender 

model when bidders only make a finite number of bids. Instead Bertrand-like price 

competition is induced, and the equilibrium price can be as high as the market value.  

The empirical evidence generally does not support the tacit collusion equilibrium 

in uniform price auctions. Although collusive behaviour is observed among large 

dealers in the market for Treasury bills when uniform price auctions are used, 

collusion is less severe than under the discriminatory setting.5 Using individual bidder 

data from Finnish treasury auctions, Keloharju et al. (2005) find little evidence of 

collusion. An empirical study on the Zambian foreign exchange market, where a large 

number of relatively small bidders are involved, provides no evidence of collusive 

behaviour, though demand reduction is evident (Tenorio 1993). In all these markets, 

higher participation rates are reported under the uniform price setting, which indicates 

that the market is widened and competition is encouraged. In Israel’s IPO market, 
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contrary to the steep collusive demand function derived by Biais and Faugeron-

Grouzet (2002), the demand schedule is flat and elastic (Kandel, et al. 1999). However, 

it is vulnerable to collusion in markets where a relatively small number of bidders 

compete on a relatively large number of items (for example spectrum auctions, see 

Engelbrecht-Wiggans and Kahn 2005), or where the same bidders compete in a 

frequently repeated auction market (for example electricity markets, see Klemperer 

2002; Sweeting 2007). 6 

Empirical evidence from experiments does not generally support the collusive 

equilibrium either. Engelbrecht-Wiggans et al. (2006) suggest that it is difficult to find 

statistically significant evidence of demand reduction in multi-unit auctions when there 

are more than two bidders. Porter and Vragov (2006), in an experiment with two 

bidders who each has two units demand and private information, report that though 

demand reduction is observed, bids for low valued units is higher than the equilibrium 

prediction of zero. Sade et al. (2006) find little evidence of collusive behaviour in 

uniform price auctions even when communication is allowed and when financial 

professionals participate.7 Some experimental literature on collusion in laboratory 

multi-unit auctions suggests that collusion is only achievable if there are two bidders 

(Sherstyuk, forthcoming), subjects have a coordination device (Brown et al, 

forthcoming), or anonymity is abandoned (Füllbrunn and Neugebauer 2007). These 

results suggests that in markets for IPO where there are many investors, including a 

large number of usually inexperienced retail investors, a collusive equilibrium would 

                                                                                                                                             
5 For examples see Malvey et al. (1997) for the U.S. and Umlauf (1993) for Mexico. In fact, after an 

experiment with uniform price auctions on two-year and five-year notes that started on September 1992, 

the U.S. Treasury switched entirely to the uniform-price auction in November 1998 (Ausubel 2002). 
6 Klemperer (2001) argues that collusion is one reason for the UK’s decision to adopt a discriminatory 

auction format in electricity markets, because “the repeated interaction among bidders expands the set of 

signalling and punishment strategies available to them and allows them to learn to cooperate”. Sweeting 

(2007) found evidence of collusion by the two largest generators of the England and Wales wholesale 

electricity market in the late 1990s: both could have increased their profits by lowering their bids and 

significantly increasing their outputs. Nevertheless, he also mentions that this may have occurred 

because of the generators’ attempt to raise the prices that they could negotiate in future hedging 

contracts.  
7 Goswami et al. (1996) find collusive behaviour in uniform price auctions when communication is 

allowed. One key difference between the two experiments is that bidders are allowed to place bids at 

four fixed price levels in Sade et. al (2006) versus three price levels in Goswami et al. (1996). Thus 
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be difficult to achieve. Zhang (Forthcoming) compares the performances of uniform 

price auctions and another IPO mechanism fixed price offerings. Given the tacit 

collusion equilibrium, uniform price auctions should generate lower revenues between 

the two mechanisms. However, the results of the experiments are contrary to this 

prediction, because the tacit collusion equilibrium was not achieved. Instead, subjects 

place bids according to their expectation regarding the market values and, as a 

consequence, the market price varied in the same direction with the value. This 

property, as shown later, is consistent with the property of the new set of equilibria 

characterized in this paper.  

3. The Model 
The basic model in this paper follows Biais and Faugeron-Crouzet (2002). The 

volume of shares offered in the auction is normalized to 1. There are N ≥ 2 large 

institutional investors and a fringe of small retail investors as potential buyers. All 

investors are risk-neutral. Each institutional investor has private information, 

represented by the private signal si, about the valuation of shares. Signals are 

identically and independently distributed and can be high with probability π or low 

with the complementary probability. The value of shares increases with the number of 

high signals n.8 Denote by vn the market value of a share when there are n high signals. 

The realized value of shares is the same for all bidders on all units. Each informed 

investor has a large bidding capacity thus can buy the whole issue.9 The retail 

investors, however, are uninformed and all together can purchase up to 1- k units 

shares, with ]1,0[∈k .10  

                                                                                                                                             
there are fewer alternatives to coordinate on in the latter case (Kagel and Levin 2008). 
8 The market value can be regarded as the price of shares on the first trading day in the secondary stock 

market. Though there exists equilibrium in which bidders, strategically, do not reveal their private 

information regarding the value of shares in the primary stock market, according to the Efficient Markets 

Hypothesis, in the secondary stock market prices reveal all available information including bidders’ 

private information.  
9 This assumption is reasonable “given the bidding power of the large financial institutions participating 

regularly to IPOs, compared to the relatively small size of most of these operations. In addition this 

assumption simplifies the analysis.” (Biais and Faugeron-Crouzet 2002, p15). 
10 In practice, either because retail investors have small demand capacity or because their demand is 

difficult to predict, firms who go public always try to attract large institutional investors to guarantee 

full subscription. It is rare to rely on small retail investors to absorb all shares of an IPO, even if the 
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The price rule and the allocation rule are as follows. If the total demand exceeds 

the supply, the market price pm is the highest bid price p where D(p), the total demand 

at p exceeds supply.11 Otherwise if the total demand is less than or equal to the supply, 

the market price is zero.12 Formally:  

 
⎩
⎨
⎧ >>

=
otherwise

DifpDp
pm 0

1)0()1)(|max(
     [ 1] 

Thus if there is excess demand, the aggregate demand above pm is no more than 1, 

and at pm exceeds 1. Denote di(p) as bidder i’s aggregate demand at prices higher than 

or equal to p and )( pd a
i  as her aggregate demand at prices higher than  p. Notice that 

differing from Biais and Faugeron-Crouzet (2002), we do not require di(p) or )( pd a
i to 

be continuous functions.13 Bidder i’s allocation ai is expressed by the following 

formula:  
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This is simply the rule of pro-rata on the margin. Where i∈(0,1,…, N) and i = 0 

represents the group of uninformed investors as a whole.14 If the aggregate demand at 

                                                                                                                                             
resulting market price is low. In some issues there is a maximum subscription amount for a retail 

investor. Hence the assumption that the retail investors can purchase up to 1-k units shares is reasonable. 

Moreover, k is allowed to take a value as low as zero. In that case, the retail investors as a whole can 

buy the whole issue. 
11  Following the convention of auction theory, we use the highest losing price rather than the lowest winning price 

as the market-clearing price. This simplifies our description of bidders’ strategies. For example, suppose the 

quantity multiple is w, an equilibrium in which each bidder bids (1-w)/N at a price of vN and 1- (1-w)/N at zero 

when using the lowest winning price as the market price results the same price and allocation as an equilibrium in 

which each bids 1/N at a price of vN and 1-1/N at zero when applying the highest losing price as the market price. 

The results of this paper remain valid if using the lowest winning price and substitute 1 with 1-w where appropriate. 
12 In other words, the market price is the maximum price between the highest bid price where demand 

exceeds supply and the reservation price, which, without loss of generality, is assumed to be zero. 
13 As mentioned in the Introduction, in practice, including markets for IPOs, either because submitting full-demand 

schedules is costly (Kastl 2008), or because the number of bids, the price tick or the quantity multiple are bounded 

by regulators, bidders submit only a limited number of bids, which is not continuous in price. 
14 Following Biais and Faugeron-Crouzet (2002), the group of uninformed investors is regarded as a 

single player. 
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the reservation price exceeds the supply then, after allocating to each bidder the 

amount she bids for at prices higher than the market price, i.e. )( m
a
i pd , the rest of 

shares (the multiplicand of the second term) are prorated among the bidders. In that 

case each bidder obtains a proportion equal to the ratio of her bids at the market price 

over the total bids placed at the market price (the multiplier of the second term). The 

bids below the market price do not receive any allocation. Otherwise, if the total 

demand at 0 is less than or equal to the supply, each bidder obtains the amount she bids 

for, i.e. di(0). 

A strategy of bidder i in this game is defined as a demand-price schedule di(p, si) 

indicating how many shares bidder i would like to bid for at price p, given the 

observed signal si (si is either H, L or U representing high, low or uninformed). The 

allocation rule implies that if a bidder indicates the willingness to buy any amount at 

some price, then she would also like to buy at least the same amount at a lower price. 

Thus the function di(p,si) is nonincreasing in p.  

When the realization of the market value is vn, bidder i’s payoff iΠ  equals the per 

unit payoff, vn - pm, multiplied by the number of units allocated: 

iΠ = ( vn - pm ) ×  ai          [ 3] 

As both the market price and the allocation are determined by bidders’ demand 

schedules, bidder i’s payoff can be written as a function of bidder i’s and all the other 

bidders’(-i) demand schedules, given the profile of signals s = (s0, s1,…, sN): 

)),,(),,(()( sspdspdv iiiiini −−Π=Π        [ 4] 

An investor obtains a zero profit by demanding zero: 

0)),,(,0( =Π −− sspd iii          [ 5]  

Bidder i‘s problem is to maximize her payoff by choosing a demand schedule 

di(p,si). The solution concept is ex post Nash equilibrium in bidding strategies, which 

is a set of strategies di(p,si) for all investors such that for each bidder i, di(p,si) 

maximizes her expected payoff. In addition, given the other bidders’ demand 

schedules, for each realization of market value, bidders would not change their bids 
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even though they were allowed to do so ex post. 15 Thus for each bidder i∈(0,1,…, N), 

for all di(p,si) and every profile of signals s = (s0, s1,…, sN): 

)),,(),,(()),,(( ** sspdspdsspd iiiiii −−Π≥Π      [ 6] 

We assume that the same types of investors, i.e., informed investors with an H 

signal (H investors) or with an L signal (L investors) and uninformed investors (U 

investors) have symmetric beliefs and behaviour. We call an equilibrium that satisfies 

this assumption a symmetric-in-type equilibrium. We express the demand of an H 

investor at any price p >0 as the sum of the demand of an L investor and an amount 

c(p) at p, where c(p)is also a function of price:  

)(),(),( pcLpdHpd +=        [ 7] 

We will show later that in equilibrium )( pc  is nonnegative at any price above v0.  

In equilibrium one investor has to give up an amount of shares in order to lower 

the market price, or raise the market price to a higher level in order to absorb more 

residual supply. Equilibrium requires that the gain from either kind of deviation is not 

enough to compensate for the corresponding loss. Equation [5] implies that all bidders 

obtain a nonnegative payoff in equilibrium, otherwise one could improve the payoff by 

not participating.  

Next, we will conduct the equilibrium analysis on this model of common value 

multi-unit uniform price auctions where bidders have private information regarding the 

value of shares and submit discrete demand schedules. 

                                                 
15 We are looking at the set of Nash equilibria that are also ex post Nash equilibria. There may be other equilibria 

that are not examined in this paper. Concentrating on the ex post equilibrium simplify the optimization problem 

with discrete functions because the equilibrium analysis is then free from the distribution of bidders’ signals. The 

use of ex post equilibrium appears to originate in the work of Cremer and McLean (1985). Maskin (1992) refers to 

an ex post equilibrium as a “robust” Bayesian Nash equilibrium, because every ex post equilibrium is a Bayesian 

Nash equilibrium, under which bidders’ expected payoffs are also maximized ex ante (see Appendix F in Krishna 

2002 for a discussion). Malakhov and Vohra (2008) derive an ex post optimal mechanism under an environment 

with a single divisible good and two asymmetrically budget constrained bidders. They claim that the mechanism has 

the practical advantage over the Bayesian approach in that it is ex-post individually rational, and is completely 

transparent to the bidders without requiring them to calculate the odds of winning, since incentive compatibility 

holds for each of the realized profiles of types (p.246).  
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4. Characterization of Pure Strategy Equilibria 

4.1 Tacit Collusion Equilibria  

We start with the symmetric tacit collusion equilibria (TCE) which have been 

examined by much previous research. In such equilibria, all investors behave 

symmetrically regardless of their signals by submitting an inelastic demand function, 

so that the residual supply faced by a bidder increases only by a small amount when 

the price is raised by a large amount. Thus, the gain from the increase in the allocation 

cannot offset the loss from the increase in price. The equilibrium market price can be 

as low as the reservation price, and each investor obtains the same quota of the entire 

shares. One feature of such equilibria is that the total demand would remain unchanged 

regardless of the number of high signals, and hence the market price and each 

investor’s allocation would be constant at any possible market value.  

 The above analysis is based on the assumption that the demand function is 

continuous. When bidders submit discrete demand schedules, we find that the 

equilibrium still exists but under stricter conditions. Denote pn as the market price 

when there are n high signals. Before describing the equilibrium we introduce the 

following Lemma:  

Lemma 1: If there exists a symmetric-in-type equilibrium in which pn+1>pn for all 

n∈[0,N) then there must exist an equilibrium resulting the same price and allocation 

where the demand curve between pn and pn+1 is vertical.  

If there exists asymmetric tacit collusion equilibrium where the highest bid of each 

bidder is p and the market price is pm, there must exist an equilibrium resulting the 

same price and allocation where the demand curve between pm and p  is vertical.  

Proof: see Appendix A. 

Thus for simplicity we can concentrate on the equilibrium where the demand 

curve between pm and p  is vertical. 16 The same type of equilibria has been studied by 

Wilson (1979), Back and Zender (1993) and Kremer and Nyborg (2004). 

Proposition 1: There exists a continuum of equilibria where all types of bidders 

                                                 
16 See Zhang (2006) for a discussion on equilibria where the demand curve between pm and p  is not 

vertical. 
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behave symmetrically, the equilibrium price pm ∈  [0, v0], and for each i ],0[ N∈ : 
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+
+
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Proof: see Appendix A. 

       An ex post equilibrium requires the price to be in the range [0, v0]. Part (i) of 

Proposition 1 states that the demand of each bidder at a price p is
1

1
+N

, and the 

demand curve remains vertical between p and the market price pm. This strategy 

makes it unprofitable for a bidder to increase the allocation by bidding higher. In the 

case of a continuous demand function where the demand at pm is
1

1
+N

, the total 

demand above pm is 1 minus a negligible amount. In contrast, in the discrete case the 

probability that no bid is placed between pm and a price (slightly) higher than pm, 

say p′ , is positive. If the total demand at p′  is m units less than 1, rather than sharing 

m with other bidders by rationing, an investor can absorb all m units by bidding m 

units more above pm without raising the market price. As long as pm is lower than the 

realized market value, this deviation increases her payoff. Hence to prevent a 

profitable deviation the aggregate demand above the market price must be 1 and thus 

no share is left for prorating at the market price. In the symmetric case each bidder 

should demand 
1

1
+N

 above pm.17 Assume that the highest bid of each investors is p . If 

one investor tries to absorb all the shares by outbidding the other bidders then the 

market price will be raised to, at least, p . Then if p is sufficiently high (as described in 

Proposition 1), no investor will find it profitable to do so. Part (ii) of the proposition 

states that each bidder bids for at least an additional 
0)1( vNN

pm

+
 at pm. This 

requirement makes it unprofitable for a bidder to lower the market price by bidding for 

less. A simple example of an equilibrium in Proposition 1 is that each bidder bids for 

                                                 
17 In Biais and Faugeron-Crouzet (2002), when discussing TCE they assume that uninformed investors 

as a whole can behave in the same way as an informed investor. For simplicity we follow this 

assumption in Proposition 1. In Appendix A we also give the solution when the capacity of all the 

uninformed investors is less than 1/N. 
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1
1
+N

at vN and obtains 
1

1
+N

allocation at price zero. This equilibrium weakly 

dominates the other TCE that lead to higher market prices.  

4.2. Symmetric-in-type Equilibria  

TCE are pooling equilibria where all types of investors follow the same strategy. If 

H and L investors behave asymmetrically, the market price will change with the 

market value. For simplicity and without loss of generality, based on Lemma 1, in the 

rest of paper we will restrict our equilibrium analysis to the case where the demand 

curve between two possible realization prices pn and pn+1 is vertical. 

In equilibrium it is possible that one type of investor is excluded from the market. 

By “exclude” we mean that this type of investors places no bids above v0.  

Lemma 2: Unless U investors can buy the whole issue, there is no equilibrium where 

H investors are excluded from the market given that at least one H investor exists.  

Proof: see Appendix A. 

Recall that U investors could hardly buy the whole issue (see footnote 9). Because 

of lemma 2, in this section we start with checking if there exists an equilibrium in 

which both L and U investors are excluded and H investors absorb all shares, when 

there is at least one type-H investor. We denote such an equilibrium as EH. 

4.2.1 EH 

In an ex post equilibrium the equilibrium price is bounded by vn. The strategy of an 

H investor is described in the following lemma: 

Lemma 3: When each H investor follows the following strategy, L and U investors are 

excluded from the market, and an H investor does not have incentive to deviate. 

⎪
⎩

⎪
⎨

⎧
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1
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Proof: see Appendix A. 

Examples of this strategy are described in Figure 1, which shows the case when 

there are four informed investors. In the figure the shaded area is the strategy space 

described in Lemma 3. If L and U bidders are excluded the strategy described by the 
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upper-right bound leads to a market price that equals the market value (the 

corresponding demand schedule of an H bidder is shown in Table 1.a). Table 1.b 

provides the demand schedule that results in the price at vn-1, described by the lower-

left bound of the shaded area. Any prices in between are possible market prices, and 

the bold step-bids demand curve represents one of them. Under such strategies, since 

the total demand at vn is at least 1, an H investor cannot increase her allocation without 

raising the market price above vn. Furthermore, because for any H bidder the demand 

of all the other H investors at pn is 1, given that there are more than one high signals 

(n-1 investors each bids for 
1

1
−n

 at pn), an H investor can only lower the market price 

below pn by giving up the whole allocation. Thus an H investor cannot profitably 

deviate by either overbidding or underbidding. 

[Figure 1 about here] [Table 1.a about here] [Table 1.b about here] 

If all type-H investors follow the strategies described in Lemma 3, the demand of 

H investors is at least 1 at vn. If L or U investors place bids above v0, they would either 

get no share (if they bid below vn), or get shares but earn a non-positive profit (getting 

a zero profit if the bid is at vn; if the bid is above vn, the market price would be raised 

to at least vn), in neither case they could do better than by placing bids only at prices no 

higher than v0. The following lemma describes the best response strategies of type-L 

and type-U investors.       

Lemma 4: If H investors follow the strategies described in Lemma 3, then the best 

response strategy of L and U investors is given by: 
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L and U investors can only get an allocation when there are no H signals and thus 

the market value is v0. When the market price is lower than v0, the strategy is like the 

tacit collusion strategy described in Proposition 1. Since the sum of demand at v0 is 1, 

one cannot increase the allocation without raising the market price above v0. If the 

market price is equal to v0, the strategy guarantees that underbidding is not profitable 
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for any bidder. 18 

The following Proposition follows immediately from Lemma 3 and Lemma 4. 

Proposition 2: If H bidders follow the strategy described in Lemma 3, L and U bidders 

follow the strategies described in Lemma 4, there exist a continuum of equilibria in 

which the equilibrium price pm can be any price between vn-1 and vn for n ∈[1, N] and 

between 0 and v0 for n=0, and L and U bidders only obtain an allocation if the market 

value is v0.  

The equilibrium where pm=(vn-1|v>v0) and pm=(0|v=v0) leads to the lowest market 

price among EH for any realization of the market value. By following the strategy of 

this equilibrium, an investor obtains at least the same payoff as playing other strategies 

in EH; and gets the highest payoff if the other H investors follow the same strategy. 
Hence this equilibrium weakly dominants the other EH equilibria. 

It has been argued that in multi-unit uniform price auctions large bidders often 

make room for smaller ones by reducing demand to avoid competition, especially if 

the smaller bidders have the ability to increase prices (Tenorio 1997). In the following 

section, we will check if an equilibrium where H investors share the market with the 

other bidders exists. We denote such equilibrium as EHLU. 

4.2.2 EHLU 

Lemma 5 and Lemma 6 describe some necessary conditions for an EHLU 

equilibrium to exist. 

 In EH, though weakly dominated, there is an ex post equilibrium where the 

market price equals the market value. When L investors participate in the market, 

however, underpricing becomes inevitable. 

Lemma 5: If L investors share the market with H investors, the market price pn must 

be lower than the corresponding market value vn. 

Proof: see Appendix A. 

H and L investors are informed investors with different signals. The following 

Lemma implies that the strategy of informed investors is monotone, i.e. an H investor 

bids no less than L investors, at prices above v0.  

                                                 
18 As in section 4.1, we assume that U investors behave symmetrically as an L investor. If their capacity 

is below 1/N, the solution will correspond to the solution given for Proposition 1 in Appendix A. 
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Lemma 6: If there is at least one H investor, in equilibrium )( pc  is nonnegative at 

any price above v0. 

Proof: see Appendix A. 

The following Lemma requires the lowest price in EH to be vn-1: 

Lemma 7: If either L or U investors are excluded from the market, and H and L 

investors do not behave symmetrically, then pn ≥ vn-1. 

Proof: see Appendix A. 

The lemma is developed from the restriction that the total demand at vn must be at least 

1 to keep some type of investors out of the market (see [A1]). When all investors 

participate, this restriction no longer applies and thus it is possible to have a lower 

market price than vn-1. 

An equilibrium must also satisfy the following conditions. 

Firstly, as we explained in section 4.1 for the case of TCE, when the market price 

is below the market value, to prevent a profitable deviation the sum of demand above 

the market price must be 1 and thus no share is left for prorating at the market price: 

1),()(),( =++ UpdpncLpNd n
a

n
a

n
a  if pn < vn, where ],0[ Nn∈         [ 8] 

Secondly, since demand functions of all types of investors are nonincreasing in 

price, for every n ],1[ N∈ and i ],0[ N∈ :  

),(),( 1 inin spdspd −≤ , where ],1[ Nn∈ , },,{ ULHsi ∈                 [ 9] 

 Thirdly, no bidder should be able to improve the payoff by any kind of deviation. Thus 

in equilibrium all investors receive nonnegative payoff. The most profitable deviation 

given n high signals would be to raise or to lower the price to pd (d ],0[ N∈  and d≠ n) 

and absorb all the residual supply above that price(denote by ),( idn spr ). The following 

condition rules out such deviations. For every bidder i ],0[ N∈ : 

)),()(,0max(),()( idndnin
a

nn sprpvspdpv −≥− ∀  d≠  n; d, n ],0[ N∈      [10] 

Where si represents investor i’s signal, which can be H, or L or U. Condition [10] 

indicates that: 

pn ))(
),(
),(

,min( **

*
*

dn
n

a
dn

nn pv
spd
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vv −−≤     
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where d* and s* is the combination that maximize the deviation profit, and when the 

profit is nonnegative d* and s* support the minimum level of underpricing that 

prevents a profitable deviation: )(
),(
),(

**

*
*

dn
n

a
dn pv

spd
spr

− . Thus the minimum underpricing 

level is positively related with )( *dn pv − . Since this holds for any realization of n, if 

the price discount is large for some market value, it should also be large for other 

possible market values. The upper bound of price pn decreases with the 

ratio
),(
),(

*

*
*

spd
spr

n
a

dn , so the lower (or higher) the improvement in allocation as a result of a 

deviation compared with the equilibrium allocation, the higher the market price that 

can sustain (or the larger the underpricing must be).  

The inequality [10] also guarantees that the equilibrium price is bounded by vn. No 

other restrictions are needed. All strategies that satisfy requirements [8] to [10] form an 

equilibrium, which have the properties implied by Lemma 5, Lemma 6 and Lemma 7.  

Proposition 3: There exists a continuum of equilibria where all investors can 

participate and the equilibrium price lies in the range of [0, vn] for any n ],0[ N∈ . 

Here we provide an example of EHLU:  

For any p > 0, (i) d(p,L)= K, where K ]1,0[
N

∈  is a constant; (ii) d(p,H) = d(p,U) = K+ 

ca(p), where 
1

1)(
+

−
=

n
NKpc n

a ; (iii) 
))(1(1))(2( 11

1

−+

+

−+
−

≤
−

≤
−+

−

nn

nn

nn

nn

ppn
pv

NK
K

ppn
pv .      

In the example (i) and (ii) make it satisfy restrictions [8] and [9], and (iii) follows from 

the restriction [10]: 

)]
2

1)((,0max[)( 1 +
−

+−≥− + n
NKKpvKpv nnnn , n ]1,0[ −∈ N , and 

Kpv
n

NKKpv nnnn )()
1

1)(( 1−−≥
+

−
+− , n ],1[ N∈  

The first inequality implies that an L investor cannot improve her payoff by increasing 

the allocation at a cost of raising the market price. It can be shown that an L investor 

benefits the most from overbidding compared with either an H or U investors. If this 

condition is satisfied, it is also unprofitable to increase the allocation further by raising 

the market price to an even higher level. The second inequality ensures that it is 
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unprofitable for an H investor to deviate by lowering the market price to pn-1 or further, 

at a cost of reducing demand. An H investor benefits more than an L or U investors 

when deviating by underbidding. Rearranging the two inequalities we get (iii). 19        

EHLU nests all other sets of equilibria including both TCE and EH.  

In TCE, H and L investors are symmetric in their bidding behaviour, so )( n
a pc is 

zero, thus the left hand side of the equation [8] does not depend on n. Hence the 

market price is constant regardless of the market value. If assuming the uninformed 

investors as a whole behave in the same way as an informed bidder, then each of them 

would demand 1/(N+1) above the market price. The requirement from [10] completes 

the rest of Proposition 1. 

In EH, both ),( Lpd n
a and ),( Upd n

a are zero, so ),()( Hpdpc n
a

n
a = must be 

equal to 
n
1 . To satisfy the inequality [10], for any d>n, since ),( idn spr is larger than 

),( Hpd n
a , )( dn pv − has to be nonpositive, and thus 1+np must be at least vn (Lemma 

7). For d < n, since we only consider the cases when the demand curve between pn and  

pn-1 is vertical, and thus ),( spr in is zero, the inequality [10] is naturally satisfied and pn 

can be as high as vn. 

There are also sets of equilibria where only L investors are excluded (EHU, 

),( Lpd n
a =0 for pn>v0), or only informed investors participate (EHL, ),( Upd n

a =0 for 

pn>v0). The construction of these equilibria is similar as that of EHLU and thus we put 

them in Appendix B. In both cases the minimum market price is vn-1 (Lemma 7). 

4.2.3 Flat Demand Functions 

In this section we consider a special kind of strategy where each bidder places one 

                                                 
19 According to (iii),
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be. This implies that the more shares that an L investor obtains, the price discount gets larger (higher vn- pn+ 1 and 

vn- pn), and the neighbour prices gets closer (smaller pn+1 - pn and pn-pn-1). In the extreme case, when K equals
N
1 , pn 

is equal to pn-1 and thus the market price must be constant. This is consistent with TCE. In the other extreme case, 

when K equals zero, pn should be no higher than vn but no lower than vn-1 (as vn-pn+1 is non-positive for every n 

when K is zero), which is consistent with the equilibria EH. For values of K in between, we expect that the market 

price can take any value between zero and )(
),(
),(

**

*
*

dn
n

dn
n pv

svd
spr

v −−  ([10]).  
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bid for all shares given that the capacity constrained is satisfied. In equilibrium the 

market price should be either lower than or equal to the market value. Since we 

consider the symmetric-in-type equilibrium, there are at most three prices at which 

investors place their bids, one for each type of investors. This means there are at most 

three possible prices besides zero. Hence an equilibrium where pn equals vn does not 

exist for N>2 (when there are more than three possible realizations of vn). For N=2, 

only when U investors can buy all the shares, which can rarely happen (see footnote 

9), there exists an equilibrium in which the equilibrium price equals the market value: 

d(v2, H)=1, d(v1, U)=1, d(v0, L)=1 

For an equilibrium where the price is lower than the value, there are two 

possibilities: every type of investor obtains an allocation, or one or two types of 

investors do not receive an allocation.  

In the first case, since each informed investor bids for 1, rationing must exist 

among bidders. Thus one bidder could improve the payoff by bidding higher than the 

market price and absorb a higher allocation rather than share with other bidders. 

Because of such Bertrand-like competition, no equilibrium exists in this case.  

In the second case, in order to make it unprofitable for a bidder who does not 

obtain an allocation to bid higher than the market price, it must be the case that all the 

shares have been allocated at a price higher than or equal to the market value. Suppose 

it is informed bidders who place bids at or above the value and obtain all the 

allocation. Since the number of H or L bidders changes with n, there must exist cases 

when either n or N-n is larger than 1, and thus the market price is higher than or equal 

to the value. This is a contradiction. Hence if there exists an equilibrium where price is 

lower than the value, it must be U investors who absorb all the allocation at or above 

the market value. This is only possible if U investors can buy the whole issue: 

d(vN, U)=1, d(p, H)= d(p, L)=0 for p>v0.   

Under this equilibrium, an informed investor can only obtain an allocation by 

raising the price above vN. Since the market price will be between 0 and v0, U investors 

would not like to change the strategy ex post. However, deviating by bidding higher 

than v0 but lower than vN is no cost (no benefit as well) for an informed investor. Thus 

for U investors following the strategy consistent with such an equilibrium is risky.  

Proposition 4: Submitting flat demand functions by all bidders is not an equilibrium 
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strategy in uniform price IPO auctions, unless uninformed bidders as a whole can buy 

the whole issue.  

5. Discussion and Conclusion 
In this paper we have characterized pure strategy equilibria for discrete uniform 

price common value auctions with private information. Though we employ the 

framework of IPOs, the results are applicable to other markets with similar 

environments. Tacit collusion equilibria (TCE) exist, but under stricter conditions than 

for the continuous price case. In addition we identify a continuum of equilibria that can 

be classified according to the types of investors that participate. In all these additional 

equilibria investors with higher expected values bid for higher quantities at higher 

prices. The market price increases with the market value and thus, though underpricing 

happens in most equilibria, the level of underpricing is lower than that under TCE. The 

new sets of equilibria have the following properties.  

As the number of investors N increases, the distances among the “steps” in the 

demand curve get smaller and thus the demand curve becomes smoother. As N 

approaches infinity, one can conjecture that the demand curve of each H investor 

becomes smooth (see the curve in Figure 1). The average demand schedule in IPO 

auctions in Israel provided by Kandel et al. (1999) appears to have this shape. Also, 

when N goes to infinity, the difference between vn and vn-1 vanishes and therefore the 

market price gets closer to the market value. This implies that unlike TCE, competition 

increases revenues.20  

Another prediction is that bidders place more bids as the number of bidders 

increases. The reason is that bidders should include bids for every possible market 

value in their demand schedules. This prediction is consistent with the evidence from 

the US Treasury bill market. Under the uniform price auction format, the number of 

investors participating in the market is higher and large dealers split bids into 

numerous smaller bids (Malvey et al. 1997). 

                                                 
20 Although in this paper we assume that the market value increases with the number of high signals, in 

fact it is the proportion of high signals that matters. Thus even if the number of investors participating 

changes, the underlining market value can still remain the same. The result may relate to the finding by 

Bierbaum and Grimm (2006), that in uniform price auctions where a perfectly divisible good is sold to a 

large number of bidders, bidders act as price takers and a single buyer’s bid has no impact on aggregate 

revealed demand, thus truthful bidding is an equilibrium. 
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Our theoretical results also suggest that, in contrast to TCE, investors with high 

signals place higher bids than those with low signals. This is consistent with the 

experimental evidence in Zhang (Forthcoming). 

Not only are there multiple equlibria resulting in different market prices, but also a 

certain market price can result from different equilibrium strategies. The volatility 

observed in actual uniform price auctions (Jagannathan and Sherman 2006) may be 

explained by the existence of a large set of equilibria. 

TCE requires that bidders bid for a considerable amount of shares from a 

considerably high price. Playing this strategy may leave bidders ending up paying a 

high market price if other bidders deviate from the strategy. In other word, TCE 

strategy can be risky. It may be achieved if a small number of bidders play repeatedly. 

With many institutional and retail investors involved in IPOs, the collusion of a small 

number of parties is not a likely scenario. If TCE is not likely to happen in practice, 

uniform price auctions may generate higher revenues than other IPO mechanisms. In 

the experiment by Zhang (Forthcoming), uniform price auctions outperform fixed 

price offerings because bidders follow other strategies rather than TCE. 

Though risky, TCE are payoff dominant. In addition, TCE are robust to changes in 

model variations. Thus it may be worth introducing some market rules in order to 

prevent such equilibria from being played. McAdams (2006) shows that all equilibria 

of a uniform price auction with adjustable supply generate strictly higher expected 

profit than any other equilibrium given any fixed quantity and reserve price. Other 

research also suggests that the seller could benefit by randomizing the quantity offered 

(e.g. Back and Zender 2001). Such rules include, for example, a Greenshoe Option 

employed in US which allows issuing firms to increase the amount of offered shares 

by up to 15% after the bids. In Italy, the amounts of shares offered to institutional and 

retail investors are separated and can be transferred in between depending on the 

demand in each market (Boreiko and Lombardo 2008).  

Another approach for eliminating undesirable equilibria is using an alternative 

allocation rule. Kremer and Nyborg (2004) suggest two allocation rules. One is the 

uniform rationing rule, in which all winning bids are pro-rated, regardless whether they 

are placed above or placed at the market price. The other is the average of the uniform 

rationing rule and the standard allocation rule used in this paper.  

In auctions where either a small number of bidders participate, or some bidders are 

significant in size relative to the auction volume, the competition is limited and the 
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auctioneer needs to address the potential effect of market power in the auction design 

(Ausubel and Cramton 2004). As we have pointed out, the new set of equilibria 

characterized in this paper has the property that competition increases sellers’ 

revenues. Thus the sellers’ payoff may be improved under a design that encourages 

investors to enter the market. In that case even if a small number of institutional 

investors were capable of cooperating, the competition from a large number of bidders 

outside the cartel would offset the advantages of collusion. Such policies include 

allowing small investors to purchase a smaller block of shares and lowering the 

threshold for opening accounts.  

The assumed relationship between the number of high signals and the market 

value makes it possible to develop the new set of equilibria. This assumption is 

reasonable for the stock market because in such a market the demand on a stock is 

directly related to its market value. An investor who has a high signal can be regarded 

as an investor who is willing to buy the stock. On the other hand, the equilibria imply 

that investors place bids not only according to their expected market value, but also 

according to their expectation of the number of investors who would like to place 

orders on a certain price. A useful topic for future research would be to analyze 

uniform price auctions under alternative information structures. 
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APPENDIX A: PROOFS 

Proof of Lemma 1: Suppose that we have an arbitrary equilibrium demand schedule 

(DS) under which the market price is pn (see Figure A1). By keeping the demand 

curve between pn and pn+1 vertical for any 0≤ n<N (called VDS), the aggregate 

demand above pn and that at pn remain unchanged, so both the market price and the 

allocation remain the same as those under DS. Moreover, because the arbitrary DS is 

downward sloping and lies to the left of VDS, the residual supply as well as the profit 

when deviating are minimized under VDS. Thus if DS is an equilibrium demand 

schedule, so is VDS. The same logic applies for strategies in TCE.    □ 

[Figure A1 about here] 

Proof of Proposition 1: The price range [0, v0] guarantees that the equilibria are ex 

post. Otherwise if the market price is higher than v0, then for some possible realization 

of vn,, investors would suffer negative payoffs and thus would rather not participate 

after knowing vn,. 

(i) As described in the main text, because in the discrete case there is a positive 

probability that no bids are placed between pm and a price higher than pm, there should 

be no shares left for allocating at pm. Otherwise a bidder could bid more at a price 

slightly higher than pm in order to increase the allocation at a negligible cost. Thus the 

demand function should be vertical above pm.21 In the symmetric case this means that 

each bidder bids for 
1

1
+N

at a price higher than pm, which guarantees that each bidder 

obtains
1

1
+N

 in the first place.  

Suppose that the highest price at which bidders place bids is p . Then if an H 

investor tries to absorb the entire supply by bidding at a higher price, the market price 

would be raised from pm to p . The following inequality should be satisfied to make it 

unprofitable to do so: 

                                                 
21 According to Lemma 1, we concentrate on the case where the demand curve is vertical above pm for 

simplicity. However, in fact it is unnecessary that the whole demand function above pm is vertical. In 

other words, a step-like demand curve can exist at prices higher than pm. See Zhang (2006) for details. 
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When vi takes the value of vN, the right hand side of the inequality is maximized and 

all investors do not have incentives to deviate by overbidding for any realization of n. 

ii) A bidder may try to lower the market price to p΄ by reducing her demand. This 

deviation will not occur if it cannot increase the bidder’s profit: 
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The proof follows the same method and procedure as above and thus is ignored. □ 

Proof of Lemma 2: Suppose one type of investors stays out of the market. If the 

market price pn is lower than the market value vn, the total demand at vn is equal to or 

less than 1(the price rule [1]). If it is less than 1, an investor who is out of the market 

can improve the payoff by bidding a positive amount at vn. Thus, if in an equilibrium 

the market price is lower than the market value, and at least one type of investors is 

excluded from the market, then the total demand at the market value is equal to 1: 
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1),(),(),()( =++− UvdHvndLvdnN nnn , if pn < vn for n ∈[0,N], and ),( spd =0 ∀  

p>v0 and for at least one signal ),,( ULHs∈ .                       [A1] 

Thus if H investors are excluded, whether the market price is equal to or less than 

the market value, we should have: 

1),(),()( ≥+− UvdLvdnN nn , with ]1,0[),( kUvd n −∈ and ≥),( Lvd n 0    [A2] 

Hence, 

1),(),())1(( ≥+−− UvdLvdnN nn , n ∈[1,N]            [A3] 

If 0),( >Lvd n , the left hand side of [A3] is larger than 1. This implies that pn-1 is at 

least vn and thus cannot sustain in equilibrium.22 If 0),( =Lvd n , to satisfy both [A2] 

and [A3], ),( Uvd n must take a value of 1.23 Thus H investors could be excluded from 

the market in equilibrium only if U investors can absorb the whole issue, and which 

could rarely happen in practice (see footnote 9). □ 

Proof of Lemma 3: When the market price is lower than the market value, H 

investors’ total demand at vn is 1 ([A1]): 

1),( =Hvnd n  for each n ∈  [1, N]    

Hence each H investor should bid for
n
1 at vn for any possible realization of n ∈  [1, N ] 

to prevent L or U investors from obtaining an allocation. As we are considering the 

case where the demand curve between pn-1 and pn, thus between vn-1 and pn, is vertical, 

the quantity that an investor bids for at pn must be 
1

1
−n

, and no bids are placed 

between vn-1 and pn, for any n ∈  (1, N].  

When the market price equals the market value, each H investor gains a zero 

expected payoff. If an H investor can lower the market price below the market value, 

while still keeping some allocation, she would enjoy a positive payoff. So to prevent 

                                                 
22 Since the two inequalities should hold for every n>0, the expected profit of a participant is negative, 

thus it cannot sustain even the solution concept is relaxed to a Bayesian Nash Equilibrium. 
23 The equilibrium strategy in this case is described in Section 4.3.         
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an H investor from deviating, the H investor could only lower the price by giving up 

the whole allocation. This requires that the total demand of the other H investors is at 

least 1 at vn: 

 (n - 1) d (vn, H ) ≥ 1 for n∈  (1, N]  thus d ( vn, H ) ≥
1

1
−n

.  

    Moreover, in order to have nonnegative payoffs the total demand of H investors 

above vn cannot be more than 1: 

1),( ≤Hvnd n
a  for each n ∈  [1, N]  Hence da ( vn, H )≤

n
1 .  

Because this relation should be satisfied for any realization of n, the demand at vn 

(above vn-1) is no more than 1 when there are n-1 high signals. So 

 d (vn, H )≤
1

1
−n

 ∀  n ∈  (1, N].      

Thus an H investor’s demand at vn must be
1

1
−n

and the demand function between 

vn-1 and vn should be vertical. An H investor need not increase the demand at prices 

below v2. Thus p1 equals the highest bid placed by either an L or U investors (which is 

v0 according to Lemma 4).  

The development of these strategies imply that, given H bidders’ strategy, H and L 

bidders will stay excluded; given that L and U bidders stay excluded, an H bidder has 

a nonnegative expected payoff and cannot benefit from deviating.  □ 

Proof of Lemma 5: Suppose that the market price equals the market value. An H 

investor could raise her profit from zero to a positive level by lowering the price by 

bidding less, unless the demand of all the other investors at vn is at least 1: 

1),(),()(),()1( ≥+−+− UvdLvdnNHvdn nnn   

If this condition holds, we also have 

 1),(),())1((),()1( >+−−+− UvdLvdnNHvdn nnn if d(p,L) is larger than zero. 

The inequality implies that the total demand at price vn is larger than 1 when there are 

n-1 H investors, thus pn-1 equals vn. Hence investors have zero profits when the 

realization of the market value is vn for the given n and have a negative payoff if the 

market value is lower. This leads to a negative expected payoff. Hence in equilibrium 
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the market price should be lower than the market value.  □ 

Proof of Lemma 6: Lemma 2 implies that there is no equilibrium where H investors 

are excluded but L investors are not.  If L investors are excluded from participating 

but H investors are not, )( pc must be nonnegative at any price above v0. If both H and 

L investors participate, Lemma 5 implies that pm is below vn. Then [A1] requires that:  

1),()(),( =++ UvdvncLvNd nnn , n∈  (1, N]      

Thus if 0)( <pc , 1),()()1(),( >+−+ UvdvcnLvNd nnn , which means the market 

price pn-1 is at least vn when the value is vn-1 and leads to a negative payoff for some 

realization of the value. Hence )( pc  should be nonnegative at vn. Since when L 

investors participate the market price is lower than vn, the demand curve between pn 

and vn is vertical and thus )( pc  is nonnegative at any price between pn and vn. As we 

only consider equilibria where the demand curve between pn and pn+1 is vertical 

(Lemma 1), )( pc is nonnegative at any prices above v0.    □ 

Proof of Lemma 7: According to [A1], to prevent type-L and type-U investors from 

participating, we have: 

1)()1( 1 ≥− −nvcn  

So c(p) is positive and 1)( 1 >−nvnc , hence 1−≥ nn vp . 

In the case that only L investors stay out of the market (then c(p) is nonnegative): 

1),()()1( 11 ≥+− −− Uvdvcn nn , 

Thus 1),()( 11 ≥+ −− Uvdvnc nn , 1−≥ nn vp . 

In the case that only U investors stay out of the market: 

1)()1(),( 11 ≥−+ −− nn vcnLvNd   

In this case c(vn-1) is nonnegative (Lemma 6). When H and L investors behave 

asymmetrically c(vn-1) is positive. Thus 1)(),( 11 >+ −− nn vncLvNd , and 1−≥ nn vp . 

Together the above arguments complete the proof. □ 

APPENDIX B: EHU and EHL 

Proposition 5 (EHU): There exists a continuum of equilibria in which L investors are 
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excluded,  the equilibrium price satisfies pm∈ [vn-1, vn]  for ],1[ Nn∈ , and pm∈ [0, v0]  for 

n=0, and L investors only obtain an allocation when the market value is v0. 

Proof: The proof is by construction.  

The demand functions of both an L and an H investor are non-increasing in price:  

),(),( 1 UpdUpd nn −≤  and )()( 1−≤ nn pcpc              [B1] 

As in equilibrium L investors are excluded when there is at least one H investor, 

the market price could be as high as the market value (Lemma 5 is irrelevant). If pn is 

equal to vn, to prevent an investor from deviating, the total demand of the other 

players must be at least 1 at price vn:  

(n-1)c(vn) + d(vn,U) ≥ 1 and nc(vn)≥1 ∀  n ],1[ N∈ if pn = vn               

In addition, the total demand at vn when there are n-1 H investors should be no 

more than 1(otherwise the payoff is negative when the market value is vn-1): 

(n-1)c(vn) + d(vn,U) ≤1 ∀  n ],1[ N∈ if pn = vn                

Put the above two inequalities together we have: 

(n-1)c(vn) + d(vn,U) = 1 and nc(vn)≥1 ∀  n ],1[ N∈ if pn = vn               [B2a] 

It is unprofitable to overbid as well (otherwise the price would be raised higher than 

the value). The strategy that satisfies [B2a] and [B1] can be an equilibrium strategy. 

[B2a] also implies that c(vn)≥ d(vn,U). Thus an H bidder bids no less than the U 

bidders.24 

If pn< vn, [ A1] requires that the demand at vn  must be 1:  

nc(vn) + d(vn,U) =1 ∀  n ],1[ N∈   if pn<vn           [B2b] 

Thus if U investors bid for d(vn,U) ]1,0[ k−∈ , each H investor bids for 
n

Uvd n ),(1−
 in 

(pn,pn+1] for any n ],1[ N∈  (Lemma 1, Figure A1). Under this strategy, the total demand 

above vn is 1, so no investor would like to increase the allocation by raising the 

                                                 
24 A simple example of such an equilibrium is: c(vn) = d(vn,U) = 1/n ∀ n ∈ [1,N] (assume U investors 

can bid for up to 1), and L investors do not place any bids. This is an equilibrium similar to the EH with 

an extra H investor, and with U investors as a whole behaving the same as an H investor. 
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market price. To make it unprofitable for an H investor to lower the market price by 

demanding less, the payoff under the above strategy should be no less than that when 

lowering price to pn-1 and taking all the residual supply above pn-1 (at vn-1): 

))]()1(),(1)((,0max[
),(1

)( 111 −−− −−−−≥
−

− nnnn
n

nn vcnUvdpv
n

Uvd
pv ∀ n ],1[ N∈  

Because 1)()1(),( 11 =−+ −− nn vcnUvd , the right hand side is zero, thus the equation is 

always satisfied. An H investor can only reduce the market price by giving up the 

whole allocation. 

To make U investors unprofitable to deviate, when she gives up part of the 

allocation and lowers the market price to pn-1, the profit from the deviation should be 

no more than that under the equilibrium strategy: 

))](1)((,0max[),()( 11 −− −−≥− nnnnnn vncpvUvdpv ∀ n ],1[ N∈          [ B3] 

The condition is satisfied if d(vn-1,U) is no more than c(vn-1) (thus no residual share is 

left at pn-1), otherwise it requires 
nn

nn

nn

n

pv
pv

vcUvd
Uvd

−
−

≥
−

−

−−

1

11 )(),(
),(

. It can be shown that 

if [B3] is satisfied and )( pc is non-increasing in n, an even lower market price is also 

unprofitable (Appendix C).  

As in EH, L investors place no bids above v0 and only obtain an allocation when 

there is no H investors in the market. Specifically: 

d(p,L) =

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈=
−

−
+

−−
−≥

<=
−

>

],0[]
)1(

)),(1(),(1
,

),()(1max[

),(1

0

0
0

00

0

00

00
0

0

vppif
vNN
Uvdp

N
Uvd

Nv
Uvdpv

N

vpandvpif
N

Uvd

vpif

m
mm

m

 

The proof follows the same method as in Lemma 4 so is ignored. Together with 

strategies that satisfy [B1], [B2b] and [B3], we obtain a continuum of equilibria stated 

in Proposition 5.  □ 25 

Example: (i) d(p,U) = K ∀ p>0, where K ]/1,0( N∈ is a constant;  

                                                 
25 For n =0 in Proposition 4 and 5, L and U investors’ strategies are the same as those described in 

Lemma 4.  
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(ii) 
⎪
⎩

⎪
⎨

⎧

∈∈
−
−

=

∈=<
−

=

− ];,[],1(,
1

1),(

],1[;11),(

1 nnnn

nnn

vvpandNn
n

KHpd

Nnnorvpif
n

KHvd
  

(iii)      d(p,L)=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈=
−
−

<=
−

>

],0[
1

1

1

0

0

00

0

vppif
N

K

vpandvpif
N

K

vpif

m

m
 

H investors’ strategy is similar as that in EH, except that now the supply they face is 

1- d(p,U) instead of 1. For the same reason as before, they are unable to profitably 

deviate. It’s unprofitable for U bidders to overbid. To prevent U investors to underbid: 

)),(1)((),()( 11 HvndpvUpdpv nnnnn −− −−≥−  

 The right hand side equals (vn-pn-1) 1
1),(

−
−

n
Upnd . Rearranging it we get:  

1

1)1(1

1),(

−

−

−
−

−+
≤

nn

nn

pv
pp

n
Upd   

The right hand side decreases with pn, so the condition holds if it is satisfied when 

pn=vn, in which case
n

Upd 1),( ≤ . Since U investors’ demand curve is constant, the 

condition always holds if
N

Upd 1),( ≤ . It is easy to see that the example also satisfies 

restrictions [8] and [9]. 

Proposition 6 (EHL): There exists a continuum of equilibria in which U investors 

are excluded; the equilibrium price satisfies pm ∈ [vn-1, )(
),(
),(

**

*
*

dn
n

dn
n pv

svd
spr

v −− ] for 

],1[ Nn∈ , and pm∈ [0, v0]  for n=0; the bid of an H investor is higher than that of an L 

investor by c(vn)> 0∀ ],1[ Nn∈ ; and U investors only obtain an allocation when the 

market value is v0. 

Notice that consistent with Lemma 5, in EHL pn can only be equal to vn if d(p ,L) is 

zero (in this case we obtain an EH type of equilibrium). 

The construction of EHL is similar as that of EHU and EHLU and thus is ignored. 
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Below are two examples. 

Example 1: (i) d(v0,L) = 1 and d(p,L) = K ∀  p>v0, where K ]1,0(
N

∈ ; (ii)            

d(p,H) = K
n
NK−

+
1  for p ∈ ],( 1+nn pp  and n ],1[ N∈ ; and (iii) U investors place no bids. 

 In this example pn lies in the interval )](
)(1

,[ 11 −− −
−−

− nnnn pv
KnN

nKvv ∀ ],1[ Nn∈ .  

Example 2: (i) d(v0,L) = 1and d(p,L) = 
)( KnN

K
+

 ∀  p>v0 and ],1[ Nn∈ ; 26 (ii) d(p,H) = 

)( KnN
K
+

+ 
Kn+

1  ∀  p>v0 , ],( 1+∈ nn ppp  and ],1[ Nn∈ ; and (iii)U investors place no bids.  

In this example pn lies in the interval of )](
))(1(

)(,[ 11 −− −
++−

+
− nnnn pv

KNKn
KnKvv .  

The upper bound of the price range in both examples decreases with the allocation of 

an L investor, which means that the larger the allocation that H investors lose to L 

investors, the lower that market price should be. Also, the market price can be equal 

to the market value only if an L investor does not get any allocation (K=0). 

APPENDIX C 

Part 1: Deriving a condition such that it is unprofitable to lower the price to pn-2 by 

reducing the bids if it is unprofitable to lower the price to pn-1. 

If it is unprofitable for an investor who has observed a signal s ∈{H, L, U}, to lower 

the price from pn to pn-1 by underbidding then the following relationship must hold: 

),(
),(

),()(),()(

1

1

11

spd
spr

pv
pv

sprpvspdpv

n
a

n
a

n

nn

nn

n
a

nnnn
a

nn

−

−

−−

≥
−
−

⇒

−≥−
, n∈[1,N]            [C1] 

where ),( 1 spr n
a

n − is the residual supply above price pn-1 when there are n high signals 

(n∈[1,N]), given that a bidder who has received signal s has deviated. If [C1] holds, 

we also have  

                                                 
26 K is a positive constant which is no higher than 

n n-1 n-1 n-1[(N-1)(v -v )/(v -p )] 1− ,where ],1( Nn∈ ,  such 

that the upper bound of the price range is no lower than vn-1.  
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),()(),()( 2121111 sprpvspdpv n
a

nnnn
a

nn −−−−−−− −≥− , n∈[2,N] 

Adding ),()( 11 spdvv n
a

nn −−− to both sides of the above inequality: 

),()(),()(),()( 11212111 spdvvsprpvspdpv n
a

nnn
a

nnnn
a

nn −−−−−−−− −+−≥−         

Because ),(),( 211 sprspd n
a

nn
a

−−− ≥ , if the second inequality is satisfied, then 

),()(),()( 21211 sprpvspdpv n
a

nnnn
a

nn −−−−− −≥−  

Thus 

),(
),(

1

21

2

1

spd
spr

pv
pv

n
a

n
a

n

nn

nn

−

−−

−

− ≥
−
−

       [ C2] 

The product of [C1] and [C2] implies that 
),(),(
),(),(

1

211

2 spdspd
sprspr

pv
pv

n
a

n
a

n
a

nn
a

n

nn

nn

−

−−−

−

≥
−
−

. If  

),(),(),(),( 21211 sprspdsprspr n
a

nn
a

n
a

nn
a

n −−−−− ≥ ,          [C3] 

Then  

),()(),()( 22 sprpvspdpv n
a

nnnn
a

nn −−−≥−  

which implies that it is unprofitable to lower the price further to pn-2. 

Hence if all investors’ demand functions satisfy [C3], we only need to check if it 

is profitable for them to lower the price from  pn to pn-1 by reducing the bids. 

We can derive the residual supplies from the market clearing condition [8]: 

1),()(),( =++ UpdpncLpNd n
a

n
a

n
a  

Then [C3] is reduced to 

),()()](),()[( 12221 LpdpcpcLpdpc n
a

n
a

n
a

n
a

n
a

−−−−− ≤−    

for an H or an L investor; and                       

),()()](),()[( 12221 UpdpcpcUpdpc n
a

n
a

n
a

n
a

n
a

−−−−− ≤−       

for U investors. 

Together the two inequalities we have: 
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)
),(

)(),(
,

),(
)(),(

max(
)(
)(

1

22

1

22

1

2

Upd
pcUpd

Lpd
pcLpd

pc
pc

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

−

−−

−

−−

−

− −−
≥       [C3]΄  

If ),( 2 Lpd n
a

− and ),( 2 Upd n
a

− is small than or equal to )( 2−n
a pC , then [C3]΄are 

naturally satisfied. 

Part 2: Deriving a condition such that it is unprofitable to raise the price to pn+2 by 

increasing the bids if it is unprofitable to raise the price to pn+1. 

Since in EH, EHL, EHU 1−≥ nn vp  , which means nnn vvp >≥ ++ 12 , this 

condition is only relevant for EHLU. 

If we have ),()(),()( 11 sprpvspdpv nnnnn
a

nn ++−≥− ∀  n∈  [0,N-1]  

and ),()(),()( 2121111 sprpvspdpv nnnnn
a

nn +++++++ −≥−  ∀  n∈  [0,N-2], 

by subtracting ),()( 11 spdvv n
a

nn ++ − from both sides of the second equation we have: 

),()( 11 spdpv n
a

nn ++−  ),()( 212 sprpv n
a

nnn +++−≥ . 

Thus 

     
),(),(
),(),(

1

211

2 spdspd
sprspr

pv
pv

n
a

n
a

n
a

nn
a

n

nn

nn

+

+−+

+

≥
−
−

, and so if 

 ),(),(),(),( 21211 sprspdsprspr n
a

nn
a

n
a

nn
a

n +++++ ≥             [C4] 

If it is satisfied, it is unprofitable to raise the price further to pn+2 even if pn+2  is lower 

than vn.. The condition is reduced to   

),()()](),()[( 12221 LpdpcpcLpdpc n
a

n
a

n
a

n
a

n
a

+++++ ≥+ for an H or an L investor 

and 

),()()](),()[( 12221 UpdpcpcUpdpc n
a

n
a

n
a

n
a

n
a

+++++ ≥+ for U investors. 

Together the two inequalities we have: 
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       [C4]΄ 

Because the right hand sides of both [C3]΄and [C4]΄ are smaller than 1, they are 

both satisfied if )( pc is non-increasing in n (then 1
)(
)(

2

1 ≥
+

+

n
a

n
a

pc
pc ). For simplicity we 

require that )( pc is non-increasing in n, and thus we only need to check if condition 

[B3] is satisfied.□ 
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Figure A1: Vertical Demand Curve between pn and pn+1 
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