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Abstract 
 
This paper extends the classical exhaustible-resource/stock-pollution model with the 
irreversibility of pollution decay. Within this framework, we answer the question how the 
potential irreversibility of pollution affects the extraction path. We investigate the conditions 
under which the economy will optimally adopt a reversible policy, and when it is optimal to 
enter the irreversible region. In the case of irreversibility it may be optimal to leave a positive 
amount of resource in the ground forever. As far the optimal extraction/emission policy is 
concerned, several types of solutions may arise, including solutions where the economy stays 
at the threshold for a while. Given that different programs may satisfy the first order 
conditions for optimality, we further investigate when each of these is optimal. The analysis is 
illustrated by means of a numerical example. To sum up, for any pollution level, we can 
identify a critical resource stock such that there exist multiple optima i.e. a reversible and an 
irreversible policy that yield exactly the same present value. For any resource stock below this 
critical value, the optimal policy is reversible whereas with large enough resource, irreversible 
policies outperform reversible programs. Finally, the comparison between irreversible 
policies reveals that it is never optimal for the economy to stay at the threshold for a while 
before entering the irreversible region. 
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1 Introduction

In the design of optimal climate policy it should be taken into account that most emissions
of CO2 result from burning fossil fuel, which originate from non-renewable resources. It
is forcefully argued by e.g., D’Arge and Kogiku (1973) that “the ’pure’ mining problem
must be coupled with the ’pure’ pollution problem”. Although not really applicable to
the climate change problem they also state that questions like these become relevant:
which should we run out first, air to breathe or fossil fuels to pollute the air we breathe?
These questions have attracted environmental and resources economists’ attention for a
long time. An early prototype model can be found in Withagen (1994) where utility
is derived from consumption of fossil fuel from a non-renewable resource and where the
use of the fossil fuel also contributes to the accumulation of CO2. The accumulated
stock of CO2 causes damage, represented by a convex damage function. One of the
findings is that the extraction path of the fossil fuel becomes flatter than in the absence
of environmental damage. In a similar model Sinclair (1994) and Ulph and Ulph (1994)
derive the optimal carbon tax needed to implement the first-best optimum. Still focusing
on the exhaustible-resource/stock-pollution model, Tahvonen (1997) fully characterizes
the properties of the optimal extraction/emission policy in the case of exponential decay
of pollution. He notably shows that, since extraction and pollution necessarily converge
toward zero, in the long run, the pollution problem does not have an influence on the total
amount of resource extracted over the planning period. In that sense, the pollution and
the resource management problems are independent of each other.

A widely used alternative to capturing environmental damage is to impose a ceiling
on the total accumulated stock of CO2. Examples of this approach are Chakravorty et al.
(2006, 2008). This is usually motivated in the following ways. First one could argue that
a ceiling is a political reality. International negotiations are indeed aiming at keeping the
temperature rise below 2 degrees 0C and it is widely accepted that in order to accomplish
this the CO2 concentration should be no more than 450 ppmv. Second, and related to
the first argument, taking a damage function rather than a ceiling, may lead to highly
undesired outcomes because there is substantial uncertainty surrounding the effects of
climate change and catastrophes may occur (see e.g., Tsur and Zemel, 2008). So, with a
ceiling one models the relatively safe region and irreversibility.

It is well known that the climate system is extremely complex and that economists’
modelling of it is rather rudimentary. The focus of the present contribution is on irre-
versibility beyond a certain pollution level, but in a different sense. Usually the decay of
pollution is modeled as linear, meaning that a constant percentage of the existing stock
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is diluted per unit of time. This approach has been criticized by many authors including
Dasgupta (1982), Fiedler (1992), and Pethig (1993). Representing decay as a constant
fraction of the existing stock is far too simplistic and with a large stock of CO2 the ab-
sorption capacity of oceans and forests may be reduced considerably. This is what we
want to capture by introducing the ceiling or irreversibility threshold. Indeed, experts of
the second working group of the IPCC (2007) have identified positive climate feedbacks
due to emissions of greenhouse gases (GHG). There is more and more evidence that in-
creasing emission levels and concentrations of GHG disturb the regeneration capacity of
natural ecosystems. Oceans, that form the most important carbon sink, display a buffer-
ing capacity that begins to get saturated. At the same time, the assimilation capacity of
terrestrial ecosystems (lands and forests form the other important carbon sink) will likely
peak by mid-century and then decline to become a net source of carbon by the end of
the present century. Therefore, the irreversible degradation of the assimilation capacity
of Nature does not seem so distant from today.

In economics alternative specifications have been proposed by e.g., Forster (1975).
They usually allow for inverted-U shaped decay with the important feature that there
exists a critical threshold of pollution above which the assimilation capacity of Nature
becomes permanently exhausted, thereby implying an irreversible concentration of pol-
lution. In this way a ceiling is introduced, not on the allowed stock of pollutants but
on the stock of pollutants that allows for decay. The decision maker is then faced with
the problem whether it is optimal to stay below the ceiling and benefit from decay or
going beyond it, because of higher consumption, and then stay in the irreversible region.
Irreversibility of decay has been studied in detail by Tahvonen and Withagen (1996). An
important result obtained by Tahvonen and Withagen is the potential multiplicity of equi-
libria. Their inverted-U shaped decay function introduces a non-convexity that may give
rise to multiple paths satisfying the necessary conditions, starting from the same initial
stock values.

The present paper adds to the contribution by Tahvonen and Withagen (1996) by
introducing the irreversibility of decay in the classical exhaustible-resource/stock-pollution
model, without extraction costs and backstop technology. In contrast with Tahvonen and
Withagen we take exhaustibility explicitly into account. We also build on Tahvonen
(1997) who deals with exhaustibility, but has linear decay. Our approach to modelling
irreversibility is to assume that the decay rate is linear for levels of pollution up to some
critical level, after which decay is zero and remains zero. This way of modeling decay
differs from the quadratic approach adopted by Tahvonen and Withagen (1996). We do so
in order to capture the fact that the regenerative capacity may vanish abruptly, and not
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in a smooth way. Within this framework, the first question is to know how the potential
irreversibility of pollution affects the extraction path. Our aim is also to emphasize the
conditions under which the economy will optimally adopt an irreversible or a reversible
policy.

Once the situation has turned irreversible, we show that the pollution problem does
affect the total amount of resource extracted. In particular, it may be optimal to leave a
positive amount of resource in the ground forever. As far the optimal extraction/emission
policy is concerned, several types of solutions may arise. We derive a simple condition
that guarantees that it is optimal to stay in what is called the reversible region. When
this condition does not hold, it is difficult to conclude whether the optimal policy is
reversible or irreversible. But we are able to characterize all programs that satisfy the
necessary conditions. Moreover we provide some intuition for the optimal choice to be
made. We illustrate our findings using a numerical example. We also have a rudimentary
non-convexity and it is one of the aims of the present paper to investigate the occurrence
of multiplicity in our model.

With our numerical example we are able to divide the plane of initial conditions, for
pollution and the resource stock, into several regions, each being associated with one or
more optimality candidates. When the initial resource stock is low enough, the upper
bound set on the resource stock becoming lower as initial pollution increases, the optimal
solution is reversible and may feature a period of time staying at the threshold. For larger
resource stock, irreversible and reversible policies co-exist. So, we illustrate the existence
of multiple candidates for optimality. Computation of present values reveals that for any
pollution level, the reversible policy yields the highest value for low to medium resource
stocks, whereas it is optimal to follow an irreversible policy when the initial endowment of
the resource is high enough. In addition, among irreversible policies, the ones immediately
entering the irreversible region always dominate the others that stay at the threshold for
a period of time. More importantly, for any initial pollution level, one can find the
corresponding resource stock such that reversible and irreversible policies yield exactly
the same present value. Therefore, we show the existence of multiple optima. This result
echoes Tahvonen and Withagen (1996)’s findings, in their model with a quadratic decay
and abundant resource. It also raises the question of how a policy maker should decide
between these two policy alternatives with so distinct features.

We will also pay attention to the type of decay function employed by Tahvonen and
Withagen (1996) in order to see what the effect of of exhaustibility in the context of their
model. However, since we cannot have sustained extraction at a positive level, it should be
clear that, in particular for not too low resource stock, the results differ to a large extent.
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The paper is organized as follows. In section 2 we present the formal model and
characterize the equilibrium candidates, reversible as well as irreversible. In section 3
we derive the optimum and provide some economic intuition about when irreversibility
should play a role. In section 4 compare our results with those obtained by Tahvonen and
Withagen (1996). Section 5 concludes.

2 The model

We consider a partial equilibrium representation of the global warming problem. Our
carbon economy is described by the following set of assumptions. The economy produces
one good y with a technology that uses a nonrenewable natural resource of fossil fuels,
whose stock is denoted by x ≥ 0. Extraction is costless. Emissions are a one-to-one
production by-product. So they equal y. The stock of resource follows the usual law:

ẋ(t) = −y(t) with x(0) = x0 given. Hence x(t) = x0 −
∫ t

0

y(u)du (1)

Let U(y) be the utility derived from consumption of the good. In the same vein as
Tahvonen and Withagen (1996) we assume:

Assumption 1. The utility function is such that: U(0) = 0, U ′′(y) < 0, 0 < U ′(0) <

∞ and there exists ȳ such that U ′(ȳ) = 0.

Remark. The utility function can also be understood as a profit function: U(y) =

py−c(y) with p a constant and exogenous price and c(y) a convex production cost function.

Emissions contribute to the accumulation of a pollution stock, z. Pollution accumu-
lation is not innocuous to ecosystems and, in particular, it affects their capacity to re-
generate. We assume that pollution turns irreversible if the stock were to reach a critical
threshold z̄ > z0. This irreversibility threshold is known to the policy-maker. There-
fore, we do not consider any uncertainty surrounding z̄. To account for irreversibility, the
dynamics of the pollutant are defined piecewise:

ż(t) =

{
y(t)− αz(t) if z(t) ≤ z̄

y(t) else
(2)

The natural regeneration or assimilation rate α is constant and positive as long as
accumulated emissions are not too high, that is, as long as the stock remains below or is
at the irreversibility threshold z̄. Once the threshold is surpassed, a new stage is entered
where the regeneration capacity is completely and permanently vanished. Thus, pollution
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becomes irreversible. In section 4 we will consider an alternative specification where decay
is not exponential up to the ceiling, but is inverted U-shaped, the case studied by Tahvonen
and Withagen (1996), in order to assess the differences. Hereafter, the domain where z ≤ z̄

is called the reversible region whereas whenever pollution is higher than z̄, the economy
is said to be in the irreversible region. For the solution, it matters whether the reversible
region is an open or a closed set. We assume the latter.

Pollution is damaging to the economy. For any level z, denote the pollution damage
as D(z).

Assumption 2. The damage function is such that: D(0) = 0, D′(z) > 0, D′′(z) > 0,
D′(0) = 0 and limz→∞D

′(z) =∞.

The social welfare function reads

max
{y}

W =

∞∫
0

e−δt [U(y(t))−D(z(t))] dt (3)

with δ the discount rate.

In the sequel we provide a solution to the problem posed. We make a distinction
between reversible and irreversible solutions, according to the behavior of the pollution
stock. We first deal with reversible solutions.

2.1 Reversible solutions

The first question we address is when an optimal solution is reversible forever? To answer
this question we consider the benchmark problem BP of maximizing the social welfare
function subject to (1) and (2) with the additional constraint that z(t) ≤ z̄ for all t ≥ 0:

max
y

∫ ∞
0

e−δt(U(y)−D(z))dt

subject to
ż = y − αz, z(0) = z0 given
ẋ = −y, x(0) = x0 given
y(t) ≥ 0, x(t) ≥ 0 z(t) ≤ z̄ ∀t
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Suppose that an optimal solution satisfies z(t) < z̄ for all t ≥ 0. Then the first order
conditions read

U ′(y) ≤ λ+ µ, y ≥ 0, y[U ′(y)− λ− µ] = 0

µ̇ = δµ

λ̇ = (δ + α)λ−D′(z)

ż = y − αz
ẋ = −y, x ≥ 0

limt→∞ e
−δt(λ(t)z(t) + µ(t)x(t)) = 0

For the case where the constraint z(t) ≤ z̄ is ignored a priori, it has been shown by
Tahvonen (1997) that, given x0, if z0 is small enough, z(t) is inverted U-shaped. Otherwise
z is monotonically decreasing. In both cases, the resource is exhausted in finite time, since
it has been assumed that U ′(0) <∞. Let us then fix z0 < z̄. There exists x̂0 such that there
is a unique Tz(x̂0) where z(Tz) = z̄. Hence for this x̂0 it is optimal to have the Tahvonen
program, hitting the threshold for just one instant of time. For all initial resource stocks
smaller than x̂0 the threshold will never be hit and we stay in the strictly reversible region
forever. The question then arises whether a reversible solution is possible for larger initial
resource stocks. The answer is in the affirmative: for any x0 > x̂0 there exists a program
satisfying the necessary conditions. It looks as follows. Initially the rate of extraction
is high, pollution approaches the threshold. Then, for a period of time, (z, y) = (z̄,αz̄).

There is a final phase where pollution is decreasing. The condition z ≤ z̄ is a pure state
constraint, to which we associate a Lagrangian parameter denoted by κ. If in an optimum
the constraint is binding for an interval of time, say [Tz, Tz̄], then along that interval

λ̇ = (δ + α)λ−D′(z)− κ, κ ≥ 0, κ(z̄ − z) = 0

with continuity of z, x, λ and µ in Tz and Tz̄. These conditions imply also the continuity
of y.

In all the cases considered here, the resource stock is depleted within finite time, extrac-
tion from the stock goes to zero as time goes to infinity and the pollution stock vanishes
asymptotically. See the path touching the threshold but remaining in the reversible region
in figure 1 for an illustration of the kind of solution.

This leads to the following proposition

Proposition 1 Suppose z0 ≤ z̄. For any x0 > 0 there exists a program satisfying the
necessary conditions. There exists x̂0 such that the unique optimal program is to have
the pollution stock increasing initially, hitting the threshold for an instant of time, and
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decreasing eventually. For x0 < x̂ the unique optimum is to stay in the reversible region
forever. For x0 > x̂0 the program satisfying the necessary conditions has an interval of
time along which the pollution stock is at its threshold level. In all cases the resource stock
is depleted eventually.

In the next section, we investigate whether with high enough x0(> x̂0) and z0(≤ z̄),
other optimality candidates, featuring irreversible pollution, may exist.

2.2 Irreversible solutions

It is useful to make a distinction between several types of optimal irreversible programs.
One distinction is between staying at the threshold for just one instant of time or for a non
degenerate interval of time. The other distinction is between full or partial exhaustion of
the resource.

To start with let us consider the possibility of z = z̄ only in t = 0 and then entering
the irreversible region. So the problem is to maximize social welfare (3) subject to

ż = y, z(0) = z̄

ẋ = −y, x(0) = x0

Let us assume that
U ′(0) > D′(z̄)/δ (4)

This says that the marginal utility of the first unit of the raw material from the nonrenew-
able resource is larger than the total discounted marginal damage from the corresponding
emission. We can easily show that this is a necessary and sufficient condition for having
a solution with the economy entering the irreversible region immediately.

Suppose now that there exists an optimum with x(∞) ≥ ε for some ε > 0. Hence,
exhaustion is only partial. Note that this case cannot occur in Tahvonen’s (1997) analysis
since the pollution problem has no influence on the extraction policy and exhaustion oc-
curs in finite time in his case. Within our framework with irreversibility, it may however
be possible to leave some resource in the ground forever because of the ever increasing en-
vironmental damage. Since the shadow value of the resource stock must vanish, necessary
conditions for an optimum read

U ′(y)− λ 5 0, (U ′(y)− λ)y = 0, y = 0

λ̇ = δλ−D′(z)
(5)
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In the limit, for t → ∞, the extraction rate vanishes. This implies that U ′(0) =

D′(z(∞))/δ, which uniquely defines z(∞). Since z(0) = z̄ the time path of z is uniquely
given, and therefore also the time path of y, including y(0).

Let us now assume that from a given z0 < z̄, it is optimal to go to z̄ and that upon
arrival there, at Tz, it is optimal to go beyond z̄ immediately. Fix Tz > 0. Consider the
following two problems. The first problem reads

max

Tz∫
0

e−δt(U(y)−D(z))dt

subject to
ż = y − αz, z(0) = z0, z(Tz) = z̄

The second problem reads

max

∞∫
Tz

e−δt(U(y)−D(z))dt

subject to
ż = y, z(Tz) = z̄

The two problems are regular optimal control problems. They should be considered as
separate problems however, because the differential equation for z is discontinuous in z̄.
The current value Hamiltonian for problem 1 reads H = U(y) − D(z) − λ(y − αz). The
set of necessary optimality conditions includes:

U ′(y)− λ 5 0, (U ′(y)− λ)y = 0, y = 0

λ̇ = (α + δ)λ−D′(z)

For the second problem we get the same necessary conditions, with α put equal to
zero. Denote the optimum of problem 2 by hats and define the value functions:

V (Tz) =

Tz∫
0

e−δt(U(y)−D(z))dt

V̂ (Tz) =

∞∫
Tz

e−δt(U(ŷ)−D(ẑ))dt
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all evaluated in the optimum, still for the given Tz. According to Seierstad and Sydsaeter
(1987, p. 213) we have

∂V

∂Tz
= e−δTz [U(y(Tz))− λ(Tz)(y(Tz)− αz̄)−D(z̄)]

= e−δTz [U(y(Tz))− U ′(y(Tz))y(Tz) + U ′(y(Tz))αz̄ −D(z̄)]

− ∂V̂
∂Tz

= e−δTz [U(ŷ(Tz))− λ̂(Tz)ŷ(Tz)−D(z̄)]

= e−δTz [U(ŷ(Tz))− U ′(ŷ(Tz))ŷ(Tz)−D(z̄)]

Maximization with respect to Tz requires:

U(y(Tz))− U ′(y(Tz))y(Tz) + U ′(y(Tz))αz̄ = U(ŷ(Tz))− U ′(ŷ(Tz))ŷ(Tz) (6)

We have seen that ŷ(Tz) is uniquely determined by the boundary conditions ŷ(∞) = 0

and ẑ(Tz) = z̄ and therefore we can calculate y(Tz). We have an upward discontinuity in
y at Tz. The economy compensates for the loss of benefits (from pollution decay) by an
increase in consumption.

So, for a given z0 we can now uniquely determine the initial extraction rate y(0) that
leads the economy to y(Tz). We can then also find the initial resource stock that makes
the proposed path feasible. If the actual initial resource stock is larger than or equal to
this critical value, then we can always find a path satisfying the necessary conditions. The
higher initial stock will not change social welfare, because the shadow value of the resource
stock is zero. Hence, the path satisfying the necessary conditions will not alter. Note that
ŷ(Tz) does not depend on α and that it should be larger than αz̄ because otherwise an
upward jump will not prevail. Therefore, and this is intuitively appealing, we should have
α small enough for this case to occur. The general conclusion is that with α large it is
optimal to choose the reversible program.

As mentioned above, in order to satisfy the transversality condition the shadow price
of the resource must be zero (for all t). The dynamical system governing irreversible paths
without exhaustion is therefore qualitatively the same as the one we would obtain in the
pollution problem alone. In particular the ẏ = 0 and ż = 0 loci are the same and it is thus
possible to illustrate the features of this kind of irreversible policy in the (z, y) plane (see
figure 1). An example of reversible policy is also depicted for illustrative purposes only.
Actually, it should be clear that for policies featuring exhaustion the shadow price is not
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Figure 1: Irreversible path with a discontinuity in extraction.

nil which complicates the dynamics. This notably implies that the ẏ = 0 locus cannot be
represented so simply because its location changes with the evolution of the shadow price.

The next question one can ask is whether it could be optimal to stay in z̄ for a while
before entering the irreversible region and leaving some of the resource unexploited. The
answer is negative, as can easily be seen. Suppose that for 0 ≤ t ≤ T1 we have z(t) = z̄ and
y(t) = αz̄ whereas for t ≥ T1 we have the optimal path constructed above, leaving some of
the resource unexploited. Since the resource is not completely depleted its shadow price
equals zero, meaning that adding to the initial stock doesn’t increase social welfare. This
implies that the planner is indifferent between the resource stocks at all instants of time
between 0 and T1. Hence, the program followed from time 0 on is welfare equivalent to the
program followed from T1 on. But the welfare values differ. This yields a contradiction.
Hence we don’t have to worry about programs that do not exhaust the stock and stay in
z̄ for a while.

Finally, we consider the possibility of entering the irreversible region with full exhaus-
tion of the resource. There are two irreversible candidates leading to exhaustion: one
where the system stays for a while in z̄ and one where the system passes through z̄ at just
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one instant of time. To characterize the paths we study the second problem formulated
above once more but we include the resource constraint.

max

∞∫
Tz

e−δt(U(y)−D(z))dt

subject to

ż = y, z(Tz) = z̄

ẋ = −y, y(t) ≥ 0, x(t) ≥ 0, x(Tz) = x̄

where x̄ is a given positive number. The necessary conditions for an interior solution for
y > 0 read

U ′(y) = λ+ µ

µ̇ = δµ

λ̇ = δλ−D′(z)

From this we have a second order differential equation for z : U ′′(ż)z̈ = δU ′(ż)−D′(z).

Let us denote the moment of exhaustion of the resource stock by Tx. Then the boundary
conditions relevant for the solution of the second order differential equation are z(Tz) = z̄,
z(Tx) = z̄ + x̄, and, because at the moment of exhaustion there will be no extraction,
ż(Tx) = 0.

In addition, considering the possibility of staying in z̄ for a period of time before
entering the irreversible region, we have z(t) = z̄ and y(t) = αz̄ for Tz ≤ t ≤ Tz, with
Tz the instant when the economy reaches the threshold. Also now we should optimize
over Tz which gives a boundary condition as in (6). This then implies that, given we are
in z̄, there exists a unique resource stock x̄ for which we enter in the irreversible region.
There are several ways to get to z̄ and one may wonder what is the role of the initial
stock of the resource. Clearly, the initial condition has no influence on the value of its
shadow price in this case since µ0 is determined by the solution of the problem starting
at Tz. It will only affect the length of the period spent at the threshold, before entering
the irreversible region. Indeed, the higher x0, the higher the extraction rates in the first
phase with reversible pollution and the sooner the threshold z̄ is hit. It also means that
the larger the initial resource endowment, the longer the period spent at the threshold
(before reaching x̄ and entering in the irreversible region).

Another possibility is to never stay in z̄ that is, when touching z̄, to switch immediately
from the reversible to the irreversible region. For this kind of solution we can no longer use
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the boundary condition y(Tz) = αz̄ but we still need a boundary condition equivalent to
(6). This means that in this case the scarcity rent is dependent on the initial resource stock.
With a low resource stock (still compatible with the existence of irreversible policies) this
latter candidate will exist whereas the former will not.

We can summarize the analysis above with the following proposition

Proposition 2 Suppose z0 ≤ z̄ and x0 > x̂0. Then there exist three irreversible optimality
candidates:

i/ Two irreversible candidates with exhaustion of the resource in finite time. One
directly reaching the irreversible region whereas along the other, the economy stays at
threshold for a non-degenerate period of time.

ii/ One irreversible candidate with some amount of resource left in the ground in the
long run.

The existence of the latter candidate requires the initial resource stock to be high enough.

3 Optimality

In the previous section we have given a full account of programs that satisfy the necessary
conditions. However, in some cases we have multiple optimality candidates. For example
we always have a feasible program in the reversible region, but at the same time we could
have an irreversible solution. Nevertheless some preliminary conclusions can be drawn.
We take the initial pollution stock as given and vary the initial resource stock. Clearly,
with a very small initial resource stock, it is optimal to stay in the reversible region,
possibly hitting the threshold for a single instant of time. For high initial resource stocks,
three optimality candidates arise. One reversible, one irreversible with exhaustion within
finite time, after staying at the threshold level for a nondegenerate period of time, and
one with inexhaustibility and never staying at the threshold. The comparison is based
on the following considerations. Along the reversible path the pollution stock is low,
but so is the level of consumption from the nonrenewable resource. In the irreversible
solutions extraction, and therefore instantaneous utility can be considerably higher. And,
when deciding between the two, the program staying at the threshold for a while also has
lower consumption, but has lower pollution as well. Clearly, the ultimate comparison is
complicated, as it depends most likely on all model parameters involved. Therefore, we
resort to a numerical analysis for that purpose. Most of the following will be illustrated

13



using a simple quadratic example.{
U(y) = θy(ȳ − y), θ > 0

D(z) = γz2

2
, γ > 0

(7)

In the sequel we consider the following set of baseline parameters: δ = 0.2, α = 0.03,
γ = 0.02, θ = 2, ȳ = 50, z̄ = 200.

We first provide an illustration of the multiplicity of trajectories satisfying all the
necessary optimality conditions and originating from the same initial condition z0 = 100

and x0 = 264.36.

Figure 2: A reversible path staying in z̄ for a period of time

In figure 2, the evolution of all variables is depicted when the pollution stock remains
at the threshold for a while. After this period of time the economy goes back to the
reversible region, with full exhaustion of the resource. In figure 3, left, we have another
path, differing from the previous one in that at some instant of time we enter the strictly
irreversible region, without staying at the threshold for a nondegenerate period of time.
When the economy follows this solution, the resource is also exhausted in finite time.
Finally, a third candidate for optimality is characterized again by a period of time where
the system remains in z̄ for a while, before entering the irreversible region (see figure 3,
right). Again, we observe exhaustion of the resource.

The comparison between the three candidates gives some insight into their similarities
and differences. Regarding extraction rates, the reversible candidate is characterized by
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Figure 3: Optimality candidates featuring irreversibility and exhaustion

a first phase of relatively rapid extraction until the threshold is hit. Then, the extraction
sets to a low level (the one needed to maintain pollution to the threshold) and finally starts
to decline just before the resource is exhausted. Moreover, exhaustion occurs within finite
time. Along irreversible policies, extraction paths have different features. The extraction
rates are larger which implies that exhaustion arises sooner. Remaining for a while in z̄
translates into later exhaustion and lower pollution in the long run. But, we observe that
the extraction path is smoother (and the jump less important) when going directly to the
irreversible region.

By varying the initial pollution stock and the resource stock we are able to divide the
(z0, x0) plane into five regions, delimited by four frontiers (see figure 4). The meaning of
these frontiers is as follows.

The “reversible” frontier is the set of initial stocks (z0, x0) such that starting from a
point in this set, there exists a path satisfying the necessary conditions, that stays in
the reversible region and hits the threshold only once. From any initial condition strictly
below this frontier, the unique solution is purely reversible (z(t) < z̄,∀t) whereas starting
on the frontier, the optimal path is still unique and reversible but hits the threshold at
just one date.

Let Tx be the instant when the resource is exhausted. The “irreversible Tx < ∞” and
“Tx = ∞” frontiers are the lower and upper bound of existence of irreversible solutions
crossing z = z̄ with exhaustion of the resource. Originating from any point between the
reversible and the “irreversible Tx < ∞” frontiers, the optimal solution is still reversible
but has a period of time when the system remains in z̄ for a while (the pollution stock has
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Figure 4: Frontiers

the same features as the ones depicted in figure 2). It is worth noting that this kind of
trajectory exists as long as the economy starts above or on the reversible frontier. A third
frontier is called “irreversible z̄”. For any initial point lying between “irreversible Tx <∞”
and “irreversible z̄”, there are two optimality candidates: the reversible path staying a
period in z̄ and an irreversible path that passes through the threshold for just an instant
of time, both featuring exhaustion in finite time.

Above this frontier there exists another candidate along which the economy stays in z̄
for a while before entering the irreversible region and exhausting the resource. In other
words, within the region between “irreversible z̄” and “Tx =∞” we have three optimality
candidates.1 Finally, starting with a very high stock of resource, that is above “Tx =∞”,
there still exist three optimality candidates: reversible and irreversible paths with a period
of time in z̄ and a third irreversible path along which the resource is not exhausted.

Next we have to make the welfare comparison for the cases where there are multiple
equilibrium candidates. For that purpose, we depict for three different values of the
initial pollution stock z0 = 20, 100, 180, the present values associated with three optimality
candidates, namely the reversible, and the two irreversible with exhaustion differing by
the fact that one of them stays in z̄ for a while and the other doesn’t. Figure 5 illustrates
how the values evolve when varying x0.2

1Figures 2 and 3 have been drawn for an initial point within this area.
2This also means that we restrict our attention to the most interesting case where x0 is below the
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Figure 5: Optimality candidates with exhaustion: comparison of present values

Two important lessons can be learned from this exercise. First, in all three cases, we
can find a critical initial condition for which we have multiple optima (and not simply
multiple candidates for optimality): the reversible policy staying for a while in z̄ and
the policy entering directly the irreversible region. This is a striking feature that echoes
Tahvonen and Withagen (1996)’s finding in their model with quadratic decay but without
exhaustibility. The reversible policy is the optimum for low enough stock of resources. But,
once the resource endowment is above a critical x0 the optimum becomes the irreversible
one. The second noticeable feature pertains to the fact that the irreversible path with the
economy not staying in z̄ always dominates the other candidate with a stage in z̄. Actually,
it is clear that these two irreversible candidates with exhaustion share some similarities
(but they are not identical) but the latter proves to be very constraining with its unique

upper frontier.
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x̄ determining the instant at which the system enters the irreversible region and the little
role given to the initial resource stock. We can easily prove that this feature holds in the
simple quadratic example (7) with quadratic functions. Within our general framework, a
formal proof of the dominance is subject of present research.

4 Quadratic decay

Tahvonen and Withagen (1996), T&W hereafter, study a decay function that is zero at
zero pollution, increases, reaches a maximum and then declines towards zero, reaching
zero at some point z̄. This introduces a nonconvexity in the problem that leads to the
possibility of multiple equilibrium candidates. T&W don’t include exhaustibility. It is
the purpose of this section to see what the effect is in their model of being constrained
by a nonrenewable resource. Like in T&W it cannot be expected that we reach many
general conclusions from a purely theoretical perspective. Some of their results, however,
do go through if we include exhaustibility. First, if the discounted marginal damage at z̄
is larger than the marginal utility of the first drop of oil, then we will only have reversible
solutions. Second, there exists a critical value of pollution z̃0 such that for z0 < z̃0 the
only solution is a solution with reversibility. Third, another obvious result is that due to
exhaustibility we will never have a positive steady state extraction rate, whereas in T&W
convergence to a steady state is a possibility. Fourth, in the case of quadratic decay it is
not optimal to stay at the threshold for longer than just an instant of time. This implies
that the set of equilibrium candidates is much more easy to depict. To illustrate this we
provide a numerical exercise using the same specification and parameter values as T&W.
In particular we assume α(z) = αz for z ∈ [0, z̄

4
],= α

3
(z̄ − z) for z ∈ [ z̄

4
, z̄] and we take

{δ, α, γ, θ, ȳ, z̄} = {0.2; 0.3; 0.012; 0.5; 44; 200}. The critical value z̃0 we obtain is similar to
the one of T&W (z̃0 ≈ 170). A full comparison with T&W would include a larger range
of parameters, but it is our aim here to see how the introduction of exhaustibility affects
the optimum without exhaustion.

For z0 ≥ z̃0, the subsets of the (z0, x0) plane that delineate the optimality candidates
look much simpler that in the previous sections. As explained above, the reason is that it
is never optimal now to stay at the threshold for longer than an instant of time. Actually,
the threshold here essentially differs from the threshold in the previous section. Here
there is almost no decay close to the threshold, whereas earlier decay is maximal at the
threshold. So, now there is no benefit to be found in staying at the threshold.

Generally, there are three regions that can be distinguished, for a given initial pollution
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stock z0. For a small initial resource stock it is optimal to stay in the reversible region
and to deplete the resource stock. For higher resource stocks it is optimal to enter the
irreversible region, with exhaustion in finite time. With still higher resource stock we are
back in the T&W model with only partial exhaustion. See figure 6.

Figure 6: Zones of existence of the different optimality candidates

If for a given initial pollution stock, we increase the initial resource stock is small, the
optimum is unambiguously reversible, with exhaustion within finite time. If we increase the
initial resource stock, we arrive in a region where there are two trajectories that satisfy the
necessary conditions. One reversible and one irreversible, with exhaustion within finite
time. A choice has to be made between these possibilities. It is to be expected that
reversibility is optimal if the initial pollution stock is close to the critical value z̃0, and
irreversibility is preferred if the initial pollution stock is far from this value. For very high
initial resource stock, three trajectories may satisfy the necessary conditions: a reversible
one, and two irreversible paths, one exhausting the resource and the other not exhausting
the resource.

Starting from z̃0, figure 7 illustrates the time paths of the extraction rates and pollution
for each candidate. Extraction paths, for irreversible policies, have the same qualitative
features as in T&W, with a peak reached at the instant when pollution hits the threshold.
However, with only partial exhaustion, this threshold is reached sooner due to initially
higher extraction rates. Once in the irreversible region, extraction monotonically decreases
for both policies but now extraction rates are higher when the resource is exhausted in
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finite time (see figure 7, right). The pollution level is always higher when the resource is
conserved and the difference becomes tiny in the long run (see figure 7, left). By contrast,
with the reversible candidate, extraction starts at a lower level, which is a means to avoid
the crossing of the threshold. After the initial phase of increase, extraction finally sharply
decreases with the resource stock approaching zero. For this initial condition, we find that
the reversible path is optimal. However, if we start with a high stock of pollutants and a
high initial resource stock, irreversibility turns out to be optimal.

Figure 7: Time paths of pollution (right) and extraction (left)

5 Conclusion

This paper introduced the irreversibility of pollution decay in the classical exhaustible-
resource/stock-pollution model. Within this framework, we studied how the potential ir-
reversibility of pollution affected the extraction path. Several results have been obtained.
For a small marginal utility of the first unit of the raw material from the non-renewable re-
source compared to total discounted marginal damage at the threshold level, the economy
will never enter the irreversible region. It is then optimal to deplete the entire resource
stock. For a resource stock not too small it is optimal to stay at the threshold level for
a while. With increasing resource stock it may become optimal to enter the irreversible
region, possible after staying at the threshold for a while. These results indicate that stay-
ing at the threshold, in order to benefit from the high decay rate, is profitable. However,
there is a danger in doing so. With the introduction of uncertainty on e.g., the threshold
level, or the actual emissions, one might easily enter the irreversible region, whereas this
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is suboptimal, or premature (see Ayong et al., 2011, who introduce uncertainty about the
threshold). Hence, the equilibrium during the phase at the threshold is really a knife-edge.
There is also evidence that available and existing stock of fossil fuels are not well known.
This suggests a first extension of our work, which is motivated by the observation that a lot
of uncertainty surrounds both the extent of fossil fuels reserves present in the ground and
the concentration of GHG that will initiate irreversible phenomena. Another extension of
the present paper naturally comes into mind. The introduction of a backstop technology
would be a means to examine how the optimal timing of the backstop adoption and how
the optimal combination of technologies are affected by irreversibility.

We have also investigated the introduction of exhaustibility in a model with quadratic
decay. It turns out that qualitatively the results are not very sensitive, except for the
obvious fact that no steady state extraction will occur. An important outcome is, however,
that with quadratic decay the set of optimality candidates looks much simpler, which also
makes it easier to determine the optimum. Hence, this strengthens our conclusion that
knowledge on actual decay is crucial for determining the best extraction-pollution program.
An ongoing development of this work investigates more deeply the quadratic decay case.

For future research it would be important to investigate in more detail and for larger
parameters sets the differences in welfare arising from different specifications of decay, and
the seriousness of making mistakes in estimating the decay schedule.
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