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Abstract 
This paper looks into various models that address strategic behavior in the supply of gas 
by the Mexican monopoly Pemex. The paper has three very strong technical results. First, 
the netback pricing rule for the price of domestic natural gas (based on a Houston 
benchmark price) leads to discontinuities in Pemex’s revenue function. Second, having 
Pemex pay for the gas it uses and the gas it flares increases the value of the Lagrange 
multiplier associated with the gas processing constraint. Third, if the gas processing 
constraint is binding, having Pemex pay for the gas it uses and flares does not change the 
short run optimal solution for the optimization problem, so it will have no impact on 
short-run behavior. These results imply three clear policy recommendations. The first is 
that the arbitrage point be fixed by the amount of gas Pemex has the potential to supply in 
the absence of processing and gathering constraints. The second is that Pemex be charged 
for the gas it uses in production and the gas it flares. The third is that investment in gas 
processing and pipeline should be in a separate account from other Pemex investment.  
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1. Introduction 

The natural gas price of Mexico is regulated by a price “netback” formula that links the 

price in Ciudad Pemex, in the Souhteast of Mexico (where most of total natural gas is 

produced by Pemex, the State national oil monopoly, as a byproduct of oil extraction), to 

the price at the Houston Ship Channel hub.1 This formula is an implementation of the 

Little-Mirrlees method, which proposes the use of world prices for pricing traded goods.2  

Thus the price of gas in Houston is a measure of the opportunity cost to Mexico of 

consuming the gas rather than exporting it to the United States.  

The initial economy studies of the efficiency of the netback rule were done under the 

assumption that the gas at Ciudad Pemex was produced as a joint product with oil, and 

that Pemex did not behave strategically in the short run in supplying that gas to market.3 

It was noted that in the long run there existed incentives for Pemex to shift the arbitrage 

point south, but at the time this did not seem like an important issue as a substantial 

amount of gas from Ciudad Pemex was reaching Los Ramones, and there was little 

incentive for short run strategic behavior. Since that time, things have changed. Demand 

for gas in the south of Mexico has increased and the capacity of the pipelines connecting 

Mexico with the United States pipeline system has also increased. The arbitrage point 

may shift south to Cempoala. Thus, at this point there may exist some incentives for 

Pemex to behave strategically in supplying gas to the Mexican market.  

This paper is a study of the implications of such behavior and possible instruments that 

can be used to eliminate possible inefficiencies. The paper will look at different models 

                                                 
1 See Comisión Reguladora de Energía (1996) and Rosellón and Halpern (2001). 
2 See Little and Mirrlees (1968), p. 92. 
3 See Brito and Rosellón (2002), and Brito and Rosellón (2005). 
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of the varying complexity to study this problem. We first address in next Section the rule 

used to regulate the price of domestic natural gas. In Section 3, we present a fixed-supply 

model both for the case of uniform distribution of demand as well as for the case of a 

demand function with mass points and gaps. Section 4 deals with a model of joint 

production of oil and gas where Pemex might be charged the market gas price for the gas 

that it consumes or flares, while Section 5 extends the production model to allow for 

mass points and gaps in demand. Section 6 addresses a model with a gas processing 

constraint for a continuous case (both when gas is free to Pemex and when Pemex must 

pay for the gas it internally consumes) and a second case with mass points. Concluding 

remarks and policy recommendations are provided in Section 7. 

 

2. The Little-Mirrlees Rule 

This pricing regulatory formula used in Mexico to regulate the price of domestic price is 

an implementation of the Little-Mirrlees method, which proposes the use of world prices 

for pricing traded goods. Thus the price of gas in Houston is a measure of the opportunity 

cost to Mexico of consuming the gas rather than exporting it to the United States.  

More formally, the Mexican pipeline system can be modeled as a line on the interval 

[0,b] with a distribution function f(n) that has mass points at the border with Texas, Los 

Ramones, and Cempoala.. The pipelines also have intervals where the demand is zero. 

For convenience we will refer to any open interval (  where ni,n j ) f (n) = 0 as a gap in the 

distribution. 
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The point of arbitrage is defined as the point where gas from Ciudad Pemex in the south 

meets the gas from Burgos and Texas. Assume that the distance between the Texas 

border and Ciudad Pemex is d , and the total demand is given by 

(1)  Q = f (n)dn
0

d 

 .4 

Assume that Pemex supplies Q amount of gas to the market. Then distance from the 

arbitrage point to Ciudad Pemex is given by the solution of 

(2)    Q = f (n)dn
0

d



which we will define as d . The price of gas at a point n at the present time is given by:  (Q)

a) For all gas north of the arbitrage point, n > d(Q), the price of gas is the price at 

Houston plus the transport cost (c is the marginal cost of transportation): 

(3)   p = ph + c(d − n) 

b) For all gas south of the arbitrage point, n < d(Q), the price of gas is the price at 

the arbitrage point less the transport cost: 

(4)   p = ph + c(d − d) − cn  

 

Thus the price of gas at Ciudad Pemex is given by 

(5)   pq = ph + cd − 2cd(Q)  

                                                 
4 We will assume that the demand of individuals for gas is not a function of price. This assumption is made 
for simplicity and does not change any of the results. We are also assuming that the pipeline system is not a 
binding constraint in Pemex supplying gas to market. This is a valid assumption at the moment, but it 
should be noted that the feasibility of the netback rule to serve as a pricing mechanism for gas in Mexico 
depend on gas being able to move freely to equilibrate markets. 
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so the price of gas at Ciudad Pemex is a function of Q,  pq(Q).  Note that we are assuming 

that individual demands are not responsive to prices. The downward sloping demand 

curve faced by Pemex is strictly a function of the net back rule.5 

Equation (5) is precisely the netback formula that the CRE uses to regulate Pemex’ 

natural-gas price.  This formula leads to incentives to increase the price of domestic 

natural gas by diverting production from the regulated market. Pemex might reduce its 

production in order to bring the arbitrage point south and increase the price of domestic 

natural gas twice more than the value of marginal cost of transportation so as to obtain 

extra rents.6 Pemex can also use gas for to its own oil production by injecting it (along 

with nitrogen) in oil fields. Additionally, since oil production is Pemex’ main business 

(and main-profit maximizing motivator), natural gas production (and investment) is only 

a byproduct activity. These facts imply incentives for Pemex  to flare gas, not develop 

production, increase imports, increase its own consumption, and keep reduced investment 

rates in natural-gas production and  

 

In this paper, we study the incentive regulatory measures that, along with the Little 

Mirrlees netback rule, could motivate more gas production, less gas flaring, more gas sent 

into the regulated market (as opposed to Pemex’ own consumption), and more relevance 

for Pemex of its natural-gas business compared to oil business. 

 

                                                 
5 In general, the demand curve faced by Pemex under the pricing rule is downward sloping in regions 
where the demand is positive and there are no mass points. This is because increasing sales move the point 
of arbitrage north. The price is constant in intervals of demand that correspond to mass points. This is 
because Pemex can sell more gas without moving the point of arbitrage. Finally, there are intervals in the 
pipeline where there are gaps. The demand curve faced by Pemex is discontinuous at these points; an 
infinitesimal shift in supply will move the point of arbitrage by a substantial amount and this leads to a 
discontinuity. 
6 See Brito and Rosellón (2002), and Brito and Rosellón (2005). 
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3. Fixed Supply of Gas Model 
 
We initially assume that the amount of pipeline quality gas Pemex produces is X 1. This 

amount will be assumed to be fixed and not under the control of Pemex. Let Q be the 

amount of gas Pemex actually supplies to the market. We will investigate the optimal 

sales policy for Pemex under the assumption that it is maximizing profits for a 

distribution function that is uniform and, afterwards, a distribution function that has mass 

points. These assumptions are made to simplify the exposition and do not change any of 

the substantial results. The more general case is addressed later in the paper. 

3.1 Uniform Distribution 

Assume that the distribution of demand is uniform and f(n) =γ. Then 

(6)   d = Q

γ
 

and   

(7)   pq = ph + cd − 2cQ

γ
 

for all Q < Q  and pq = ph − cd  for all Q ≥ Q . For simplicity we are ignoring the cost of 

transport between Houston and the border. The demand and marginal revenue curve are 

given in Figure 6 below. 
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  Figure 6 

In Figure 6 the quantity Q is the point where the amount of gas is sufficient for Pemex to 

maximize revenue by exporting to the United States. If , then Pemex can 

maximize revenue by supplying  at a price 

e

Q < Qe

ˆ Q ˆ p . If , then Pemex can maximize 

revenue by exporting gas at a price 

Q ≥ Qe

ph − cd . Note that the marginal revenue is 

discontinuous at Q  where it goes from −t < 0 p to h − cd > 0 . 

Assume that Pemex has an amount of gas X 1 it can supply to the market, and define  

as flared gas. Pemex would maximize 

Q f

(8)   π (Q,Qf ) = (ph + cd − 2cQ

γ
)Q  

subject to 

(9)   Q + Qf = X 1  

The Lagrangian is 
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(10)   L = (ph + cd − 2cQ

γ
)Q + λ(X 1 − Q − Qf ) 

and the first order conditions with respect to Q and Q  are:  f

(11)  (ph + cd − 4cQ

γ
) − λ = 0 

(12)    λ > 0 λQ  f = 0

There are three cases. First if  

(13)  (ph + cd − 4cX 1
γ

) ≥ 0 

then λ > 0  and all the gas will be supplied to the market. Second, if 

(14)  (ph + cd − 4cX 1
γ

) < 0, 

and . Then λ = 0 and Pemex will flare gas and supply an amount of gas that 

satisfies the condition 

Q < Qe

(15)  (ph + cd − 4cQ

γ
) = 0. 

It is clear in this case that if Pemex is maximizing profits and behaves strategically, then 

gas will be withheld from the market and flared.  

The third case is if X 1 ≥ Qe . Then (ph − cd )X 1 ≥ ˆ p ˆ Q  and Pemex would export all the gas 

not consumed in Mexico. 
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One instrument that would reduce the incentive to flare gas in the second case is to 

impose a tax on flared gas. Suppose a tax on flared gas was imposed on Pemex, then 

Pemex it would maximize 

(16)  π (Q,Qf ) = (ph + cd − 2cQ

γ
)Q − tQf  

subject to 

(17)  Q + Qf = X 1  

The Lagrangian is 

(18)  L = (ph + cd − 2cQ

γ
)Q − tQt + λ(X 1 − Q − Qf ), 

and the first order conditions with respect to Q and Q  are:  f

(19)  (ph + cd − 4cQ

γ
) − λ = 0 

(20)  −λ − t ≤ 0 −(λ + t)Qf = 0 

There are two possible solutions. First if  

(21)  (ph + cd − 4cX 1
γ

) ≥ 0, 

then all the gas available will be supplied to the market. Second, if 

(22)  (ph + cd − 4cX 1
γ

) − t ≥ 0, 

gas will be flared.  
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However, since t is a policy variable, it can be chosen such that t > t  and Pemex would 

not withhold gas from the market (see Figure 6). The discontinuity at Q  does not create 

any problems because marginal revenue increases from the level . Thus, if the 

domestic distribution of demand is continuous, then it is possible to regulate the supply of 

gas by imposing a linear tax on flaring gas. This result depends on the distribution of 

demand not having mass points and gaps.  

−ˆ t 

3.2 Mass Points and Gaps 

Now let us assume that the distribution has mass points at Cempoala, Los Ramones and 

Houston. The distribution is zero elsewhere. Assume the demand at Cempoala is and 

the demand at Los Ramones is 

Qc

Qr . Further, assume Pemex is a price taker in the Houston 

market and can sell any quantity of gas at a price ph . The demand curve for gas at 

Ciudad Pemex is given by 

(23)  pc = ph + c(dh − 2cdc )  for all Q ≤ Q  c

(24)  pr = ph + c(dh − 2cdr )  for all Q ≤ Qc + Qr 

(25)  pb = ph − cdh               for all Q > Qc + Qr 

The demand curve is illustrated in Figure 7. 

  

pc   

pr   

pb  
 

Qc + QrQc
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  Figure 7 

Note that the derivative of the demand function  is undefined at Q  and Qc c + Qr 

The revenue function π (Q)associated with this demand curve is 

 

   

 

  

   

Figure 8 

As seen in Figure 8, there are discontinuities in the revenue function at Q  and at = Qc

Q = Qc + Qr. Define Qk = Qc + Qs. The value of Qs is defined such that prQk = pcQc  and 

Pemex is indifferent between supplying and amount Q  at a price c pc and an amount  

at a price 

Qk

pr . Thus, Pemex will not flare gas if the amount available is greater than .  Qk

If the amount of gas Pemex has available is in the interval [0 or in the interval ,Qc )

[Qc + Qs,), the maximization problem is simply 

(26)   π (Q,Qf ) = piQ − tQf   i =c, a 

subject to 

(27)  Q + Qf = X 1  

π (Q)

pcQ 

pbQ p Qr

QeQc  Qc + Qs Q + Qc r
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Pemex will clearly sell all the gas it has, as it is a price taker and the objective function is 

locally concave. However, in the interval [Qc ,Qc + Qs) the discontinuity in the objective 

function creates a problem and the problem cannot be solved using the standard 

optimization techniques such as the Kuhn-Tucker Theorem. Pemex has to supply more 

than Qc + Qs before revenues are greater than . Marginal revenue at the points of 

discontinuity is  and a tax on the flaring of gas will not work. If Pemex has 

pcQc

−∞

Q < Qc + Qs available, then it will supply the gas to market only if  

(28)  pcQc − tQf = pr (Qc + Qf )  

or 

(29)  t =
pr(Qc + Qf ) − pcQc

Qf

 

 

 

 

 

 

   

t  

Qc + Qs 
Qc  

 

  Figure 9 
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As illustrated in Figure 9, the tax on flaring gas for would have to be very large if the 

amount of gas available is not much larger than Q . The tax does not have any 

relationship to the opportunity cost of the gas. It would likely be politically very difficult 

to implement. However, a policy that would induce Pemex not to withhold gas from the 

market can be implemented by defining the arbitration point by the amount of gas Pemex 

has the potential to deliver. Thus the price is defined by 

c

X 1 which we have assumed is 

not under the control of Pemex. We will now drop this assumption and assume that 

Pemex has  some control over the amount of gas available. 

4.  Joint Production of Gas and Oil 
 
We will now drop the assumption that the amount of gas Pemex has available to supply 

the market is fixed and assume that pipeline quality gas is a joint product with the 

production of oil, Z . We will also assume that the price of gas at Ciudad Pemex is given 

by a general demand function of the form 

(30)  pq = P(Q) 

The short run production function for oil and gas is given by 

(31)  Z = F(X2)  

(32)  X1 = βF (X2)  

where Z is the oil produced, X1is the total amount of gas produced, and X2is the gas that 

is used to produce oil and gas. β  is a constant that gives the proportion between oil and 

gas. Let po be the price of oil and c be the cost of energy. Then Pemex would want to 

maximize the revenue from the sale of oil and gas less the cost of production. 
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(33)  π = P(Q)Q + poZ  

subject to the production constraints 

(34)  βF(X2) − Q − Qf − X2 = 0 

(35)  F(X2) − Z = 0 

The Lagrangian is 

(36)  L = P(Q)Q + poZ + λ1[βF(X2) − Q − Qf − X2]+ λ2[F(X2) − Z]. 

Where λ1is the Lagrange multiplier associated with the production of gas and λ2 is the 

Lagrange multiplier associated with the production of oil. The first order conditions are:  

(37)  P(Q) + dP(Q)

dQ
Q − λ1 = 0 

(38)   λ1 ≥ 0 λ1Qf = 0  

(39)   po − λ2 ≤ 0 Z[ po − λ2] = 0 

(40)  (λ1β + λ2)
dF(X2)

dX2

− λ1 = 0  

If 
dp(Q)

dQ
= 0, then Pemex will behave as a price taker and there are no problems. 

Problems can occur if 
dP(Q)

dQ
> 0  or if 

dP(Q)

dQ
 is undefined because of a discontinuity.  

Let us first consider the case where 
dP(Q)

dQ
> 0. There are two possible solutions. First if 

gas is not flared and Q , then f = 0 λ1 > 0

0

 and all the gas will be supplied to the market. 

Second, if gas is  flared, then Q , and f > λ1 = 0 .  
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Let us consider the case where λ1 > 0. Then  

(41)  λ1 = P(Q) + dP(Q)

dQ
Q < pq  

and 

(42)  
dF(X2)

dX2

= λ1

(λ1β + po)
<

pq

(pqβ + po)
 

if λ1 < pq . This implies that Pemex will use more than the optimal amount of gas in the 

production of gas and oil. This is because the shadow price of gas to Pemex is the 

marginal revenue rather than the market price. 

Now suppose that gas is flared, then λ1 = 0  then Pemex treats gas as a free good and 

(43)  
dF(X2)

dX2

= 0 <
pq

( pqβ + po)
 

Strategic behavior will result in Pemex using too much gas in the production of oil. What 

is happening is that the shadow price oil is set equal to marginal revenue rather than 

price. Denote the solution by  . ˆ Q

A possible way to reduce the amount of gas Pemex consumes is to have Pemex pay the 

market price for the gas it uses. In that case Pemex would want to maximize the revenue 

from the sale of oil and gas less the cost of production where the cost of production 

includes the cost of gas used in the production of gas and oil as well as flared gas. 

(44)  π = P(Q)(Q − Qf − X2) + poZ  

The Lagrangian is 
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(45)  
L = P(Q)(Q − Qf − X2) + poZ + λ1[βF(X2) − Q − Qf − X2]

+λ2[F(X2) − Z]
 

The first order conditions are:  

(46)  P(Q) + dP(Q)

dQ
(Q − Qf − X2) − λ1 = 0 

(47)   −P(Q) − λ1 ≤ 0 [P(Q) + λ1]Qf = 0   

(48)   po − λ2 ≤ 0 Z[ po − λ2] = 0 

(49)  (λ1β + λ2)
dF(X2)

dX2

− P(Q) − λ1 = 0 

or 

(50)  [λ[(β −1)+ po ]
dF(X2 )

dX2

− P(Q) = 0  

Let us first consider the case where gas is not flared. In that case Q  implies that f = 0

(51)  P(Q) + dP(Q)

dQ
(Q − X2) − λ1 = 0 

Denote the solution by  . The amount of distortion depends on the magnitude of the 

term, 

˜ Q

dP( ˜ Q )

dQ
( ˜ Q − ˜ X 2) . If, as is the current case, 0 > dP( ˜ Q )

dQ
)( ˜ Q − ˜ X 2) > dP( ˆ Q )

dQ
ˆ Q , the 

distortion will be smaller, but the shadow price of gas will be different from the market 

price. If , it is even theoretically possible that that Pemex will supply too 

much gas to the market. If Pemex were consuming more gas than it supplied to the 

market, it would be in its self-interest to lower the price of gas. 

( ˜ Q − ˜ X 1) < 0
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Now suppose that gas is flared. Then from the Kuhn-Tucker condition given by (47) 

λ1 = −P( ˜ Q ). Then equation (51) can be written as 

(52)  2P( ˜ Q )+ dP( ˜ Q )

dQ
( ˜ Q − ˜ X 2 ) = 0 

and the amount of gas supply is increased. Inasmuch as flaring gas produce carbon 

dioxide and is a negative environmental externality, charging Pemex for flared gas is a 

Pigou tax and helps the environment.  

Charging Pemex the market price for the gas it consumes will increase the amount 

supplied if it is facing a smooth demand curve. It does not lead to optimal pricing of gas 

except in the special case where ( . While it is necessary to understand the case 

where the demand curve is smooth and there are no mass points to understand the 

economics of the problem, however, the case that is relevant at the moment is the 

possible shift of the arbitrage point from Los Ramones to Cempoala. This involves a shift 

between two mass points connected by a gap in the distribution. The derivative of the 

demand curve is not defined at .  

˜ Q − ˜ X 1) = 0

Qc

5.  Production with Mass Points 

Let us consider the case where the demand curve is characterized by two mass points 

connected by a gap in the distribution. Further, let us assume that Pemex must pay the 

market price for the gas it uses or flares. Then Pemex must solve two problems and 

compare the solutions. First, it must solve the problem where it does not supply any 

additional gas to the pipeline and pays the penalty for flaring gas. The objective function 

in this case is 
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(53)   π = pc(Qc − Qf − X2 ) + poZ  

which it maximizes subject to the production constraints: 

(54)  βF(X2) − Q − Qf − X2 = 0 

(55)  F(X2) − Z = 0. 

The Lagrangian is 

(56)  
L = pc (Qc − Qf − X2) + poZ + λ1[βF(X2) − Q − Qf − X2]

+λ2[F(X2) − Z]
. 

Note that Q  is fixed. The first order conditions for Q and Z are:  c f

(57)   −pc − λ1 ≤ 0 Qf ( pc + λ1) = 0  

(58)   po − λ2 ≤ 0 Z[ po − λ2] = 0 

and since Q and Z are strictly positive by assumption, the optimal conditions for the 

production of gas and oil are  

f

(59)  
dF(X2)

dX2

= pc

pc − pc (β +1)
 

The alternative is for Pemex not to flare gas and sell an amount of gas greater than Q at a 

price . The maximization problem is then given by 

a

pa

(60)  π = pa(Q − X2 ) + poZ  

which is also maximized subject to the production constraints 

(61)  βF (X2) − Q − X2 = 0 

(62)  F(X2) − Z = 0 

The Lagrangian is 
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(63)  L = pa (Q − X2) + poZ + λ1[βF(X2) − Q − X2]+ λ2[F(X2) − Z]. 

Note that Q  is assumed to be zero and is not included in the optimization. The first order 

conditions for Qand Z are:  

f

(64)   pa − λ1 ≤ 0 Qf (pa − λ1) = 0  

(65)   po − λ2 ≤ 0 Z[ po − λ2] = 0 

Since  and Z are strictly positive by assumption, the first-order condition with respect 

to 

Q

X2 is 

(66)  
dF(X2)

dX2

= pa

po + pa (β +1)
 

Define the net gas produced, X3 as 

(67)   X3 = βF(X2) − X2  

Equations  (62) and (67) can be solved for Z(X3). 

Pemex’s profit can be written as a function of X3. π (X3), for X < Qc  is given by 

(68)   π (X3) = poZ(X3) + pc X3  

and for X ≥ Qc  Pemex’s profit is either 

(69)   π1(X3) = poZ(X3) + pcQc  

or 

(70)   π 2(X3) = poZ(X3) + pa X3  

So for X3 < Qc , the price of gas is based on the price at Cempoala, all gas is sold 

so Q = X3. For X3 ≥ Qc  there are two possibilities. Pemex can either start flaring gas so 
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the income for all X3 ≥ Qc

c

comes from the sale of oil. Alternatively, Pemex can continue 

to sell gas, the price is then based on the price at Los Ramones and the profit function is 

discontinuous at Q . 

The profit function is illustrated in Figure 10 under the simplifying assumption that Z is 

proportional to X3. 

 

 

 

 

   

π 2

π1 

Qc QS

X3  

 

Figure 10 

If Pemex supplies more than  gas to the market the point of arbitrage will move from 

Cempoala to Los Ramones and the price of gas will drop from  to . 

Qc

pc pa π1(Q)  gives 

Pemex’s profit if it does not flare gas and accept the drop in price. π 2(Q) gives Pemex’s 

profit if it flares gas and pays the penalty. For quantities of gas less that Qs it is optimal 

for Pemex to flare gas. 
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6.  Gas Processing Constraint 
 
6.1 Continuous Case-Gas is Free to Pemex 
 
We have studied the problem under the assumption that gas to be sold to the pipeline 

without processing. This is not a realistic assumption since it is necessary to remove 

butane, propane and other natural gas liquids from the natural gas before it can be 

transmitted in a pipeline. This requires processing and gathering capacity. There is a 

question whether Pemex has sufficient capacity. The fact that over 20% of total natural 

gas production were recently flared suggests that this is a problem (see Figure 1). Let us 

assume that Pemex can process X  amount of gas for sale in the pipeline. Then Pemex 

would want to maximize the revenue from the sale of oil and gas less the cost of 

production. 

(71)  π = P(Q)Q + poZ  

subject to the production constraints 

(72)  βF(X2) − Q − Qf − X2 = 0 

(73)  F(X2) − Z = 0 

and the gas processing constraint 

(74)   Q ≤ X  

where X   is the constraint on processing capacity. The Lagrangian is 

(75)  
L = P(Q)Q + poZ + λ1[βF(X2) − Q − Qf − X2]

+λ2[F(X2) − Z] + λ3(X − Q)
. 

where λ3is the Lagrange multiplier associated with the gas processing constraint. The first 

order conditions are:  
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(76)  P(Q) + dP(Q)

dQ
Q − λ1 − λ3 = 0 

(77)   po − λ2 = 0  

(78)  

(79)   λ1 ≥ 0 λ1Qf = 0  

(80)   X − Q ≥ 0  λ3(X − Q) = 0 

(81)  (λ1β + λ2)
dF(X2)

dX2

− λ1 = 0  

Denote the solution of this problem by a ~. If ˜ Q ≤ X , then there is no change from the 

previous analysis, so assume that the constraint binds. Then ˜ Q = X  and 

(82)    ˜ λ 1 + ˜ λ 3 = P(X ) + dP(X )

dQ
X .  

There are two cases. The first case is if gas is flared, then , and ˜ Q f > 0 ˜ λ 1 = 0. 

The second case is if gas is not flared. Then and ˜ Q f = 0 ˜ λ 1 > 0. 

If gas is flared and λ1 = 0 then equation (81) can be written as  

(83)   
∂F(E, X2)

∂X2

= 0 

The value of  is determined by equation (83).  Further, if gas is being flared ˜ X 2 ˜ λ 1 = 0 and 

(84)    ˜ λ 3 = P(X ) + dP(X )

dQ
X . 

The price of gas is imputed to the gas processing constraint. 
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If gas is not flared, then all the gas that is not sold will be injected ,so ˜ X 2 = X − X . The 

values of ˜ X , and ˜ λ are determined by the solution of 1

(85)   βF(E,X − X ) − X = 0 

(86)    (λ1β + po)
dF(X − X )

dX2

− λ1 = 0 

This solution will be used to compare the impact of charging Pemex of the gas it uses. 

6.2 Continuous case- Pemex Pays for Gas 

Now let us consider what would happen if Pemex pays the market price for the gas it 

uses. Pemex would want to maximize the revenue from the sale of oil and gas less the 

cost of production where the cost of production includes the cost of gas used in the 

production of gas and oil as well as flared gas. 

(87)  π = P(Q)(Q − Qf − X2) + poZ  

The Lagrangian is 

(88)  
L = P(Q)(Q − Qf − X2) + poZ + λ1[βF(X2) − Q − Qf − X2]

+λ2[F(X2) − Z] + λ3(X − Q)
 

If the constraint on the processing of gas for sale in the pipeline is binding, the first order 

conditions are:  

(89)  P(X ) + dP(X )

dQ
(X − Qf − X2) − λ1 − λ3 = 0 

(90)   po − λ = 0 

(91)   −P(X ) − λ1 ≤ 0  [P(X ) + λ1]Qf = 0   
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(92)  (λ1β + λ2)
dF(X2)

dX2

− P(X ) − λ1 = 0 

Denote the solutions by a ^. Let us first consider the case where gas is flared and  

then from (91) 

ˆ Q f > 0.

ˆ λ 1 = −P(X )  so 

(93)  ˆ λ 3 = 2P(X ) + dP(X )

dQ
(X − ˆ X 2 − ˆ Q f ) > P(X ) + dP(X )

dQ
X = ˜ λ 3 . 

 

The term 
dP(X )

dQ
X < dP(X )

dQ
(X − ˆ X 2 − ˆ Q f )  so  and the shadow price of gas 

processing facilities is greater in the case where Pemex must pay for the gas it uses. This 

result suggests that requiring Pemex to pay for the gas it uses will increase its incentives 

to invest in gas processing capacity.  

ˆ λ 3 > ˜ λ 3

If gas is flared, then since, λ2 = −P(X ) and equation (92) be written as 

(94)   
dF(X2 )

dX2

= 0  

Note that equations (83) and (94) are identical so  . This gives the somewhat 

surprising result that if Pemex is flaring gas, having Pemex pay for the gas it uses in 

production and that it flares does not change any of the short run economic decisions if 

the gas processing constraint is binding.  

ˆ X 2 = ˜ X 2

Now let us consider the case when Pemex is not flaring gas. The first order condition for 

the sale of gas results in 
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(95)  λ1 + λ3 = P(X ) + dP(X )

dQ
(X − ˜ X 2) > P(X ) + dP(X )

dQ
X  

 

so λ1 + λ3 is greater in the case where Pemex must pay for the gas it uses if Pemex is not 

flaring gas. 

The amount of gas that is used in production is ˆ X 2 = ˆ X − X . Let p be the price of gas to 

Pemex and define q = (λ1β + po ). The values of ˆ X ,  and are determined by the solution 

of 

ˆ λ 1

(96)   βF(X1 − X ) − X = 0 

(97)    q
dF(X1 − X )

dX2

= p + q − po

β
 

 

If we differentiate 95) and 96 with respect to p, we get 

(98)    

β dF
dX1

−1 0

q
d2F

dX1
2

dF

dX1

− 1

β

 

 

 
 
 
 

 

 

 
 
 
 

dX1

dp
dq

dp

 

 

 
 
  

 

 

 
 
  

=
0
1

β

 

 
 
 

 

 
 
  

solving for 
dX1

dp
we get 
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(99)    
dX

dp
=

0 0
1

β
dF

dX1

− 1

β

β dF

dX1

−1 0

q
d2F

dX1
2

dF

dX1

− 1

β

= 0 

and short run production is independent of the price of gas. Solving for  

(100)   
dq

dp
=

β dF

dX1

−1 0

q
d2F

dX1
2

1
β

β dF
dX1

−1 0

q
d2F

dX1
2

dF

dX1

− 1

β

= 1

β dF
dX1

−1
 

 

and 

(101)    
dλ1

dp
= 1

β(β dF
dX1

−1)
 

If Pemex is not flaring gas, it would never be optimal to produce at a point where 

β dF

dX1

≥1, since this implies that more gas is being produced than the amount of gas 

being used in the production of gas. Therefore making Pemex pay for the gas it uses in 

production decreases the value of λ1 . Since the sum λ1 + λ3 is larger, it must be that the 

value of λ3  is larger. The incentive for Pemex to invest in gas processing capacity is 

increased. 
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6.3 Mass Points 

Now let us consider the case where the distribution is characterized by mass points. The 

optimization is the same as with a continuous distribution, except that the price of gas is 

fixed. This is just a special case where P(Q) = pk . However, since this is the case that is 

most similar to the current situation, it merits a complete treatment. If it is optimal for 

Pemex to withhold processed gas from market, then the constraint is not binding and the 

analysis is as in Section 5. Let us assume that the constraint is binding. Then the price 

Pemex would receive for the gas is given by the price at the mass point, pk  and again 

Pemex would want to maximize the revenue from the sale of oil and gas less the cost of 

production. The optimization is given by maximizing 

(102)  π = pkQ + poZ  

subject to the production constraints 

(103)  βF(X2) − Q − Qf − X2 = 0 

(104)  F(X2) − Z = 0 

and the gas processing constraint 

(105)   Q ≤ X  

The Lagrangian is 

(106)   
L = pkQ + poZ + λ1[βF(X2 ) − Q − Qf − X2 ]

+λ2[F(X2 ) − Z]+ λ3(X − Q)
 . 

The first order conditions are:  

(107)  pk − λ1 − λ3 = 0 
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(108)   po − λ2 = 0 

(109)   λ1 ≥ 0 λ1Qf = 0  

(110)    X − Q ≥ 0  λ3(X − Q) = 0 

(111)  (λ1β + λ2)
dF(X2)

dX2

− λ1 = 0   

Again, there are two possible solutions. First if gas is not flared and Q , then f = 0 λ1 > 0 .  

Second, if gas is flared, then Q , and f > 0 λ1 = 0 . In both cases λ1 reflects the value of gas 

and λ3 the value of the gas processing constraint. Clearly, if gas is being flared, the price 

of gas is all imputed to the gas processing constraint.  

The first order condition for the use of gas in the production of gas and oil is 

(112)   
dF(X2)

dX2

= λ1

(λ1β + po)
 

We know that if gas is not flared, then all the gas that is not sold must be injected so the 

value of λ1 is determined by X2 = X − X  and equations (104) and (112). If gas is flared, 

the λ2 = 0  and 

(113)   
dF(X2)

dX2

= 0  

Now let us consider what would happen if Pemex pays the market price for the gas it 

uses. Pemex would want to maximize the revenue from the sale of oil and gas less the 

cost of production. 

(114)  π = pk (Q − Qf − X2) + poZ  

The Lagrangian is 
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(115)  
L = pk (Q − Qf − X2) + poZ + λ1[βF(X2) − Q − Qf − X2]

+λ2[F(X2) − Z] + λ3(X − Q)
 

Assume the constraint on the processing of gas for sale in the pipeline is binding. The 

first order conditions are:  

(116)  pk − λ1 − λ3 = 0 

(117)   po − λ2 = 0 

(118)   −pk − λ1 ≤ 0 [pk + λ1]Qf = 0   

(119)  (λ1β + λ2)
dF(X2)

dX2

− P(X ) − λ1 = 0 

Let us first consider the case where gas is flared. In that case  implies that Qf = 0

λ1 = − pk so 

(120)  λ3 = 2 pk  

 

The value of λ3 will increase so requiring Pemex to pay for the gas it uses will increase 

its incentives to invest in gas processing capacity. 

The first order condition for the use of gas in the production of gas and oil is  

(121)   
dF(X2)

dX2

= pk + λ1

(λ1β + po)
 

If gas is flared, then from the Kuhn-Tucker condition given by (118), λ2 = −pk  and 

(122)   
dF(X2)

dX2

= 0 . 
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Thus having Pemex pay for the gas it uses will be equivalent to a lump sum tax in that it 

does not change any of the economic decisions if the gas processing constraint is binding 

and gas is flared. As we would expect, the results do not change from the results in the 

more general case. 

7.  Conclusions and Policy Recommendations 

The possibility that Pemex will behave strategically in its short run supply of gas creates 

some interesting technical and economic problems. The density function that 

characterizes demand has mass points and gaps. This results in a profit function that is 

not concave and standard economic analysis must be used with care. 

This paper looks at various models that address strategic behavior in the supply of gas. 

The models increase and complexity and understanding them is useful in developing a 

well-informed intuition about the problem. The model that most closely resembles the 

current situation in Mexico is one where: 

1. The distribution is characterized by mass points. 

2. Pemex uses gas in the production of gas and oil. 

3. The constraint in the processing of gas to pipeline quality is binding. 

4. Gas is being flared.  

That model has three very strong technical results. First, the netback pricing rules leads to 

discontinuities in Pemex’s revenue function. Second, having Pemex pay for the gas it 

uses and the gas it flares increases the value of the Lagrange multiplier associated with 

the gas processing constraint. Third, if the gas processing constraint is binding, having 
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Pemex pay for the gas it uses and flares does not change the short run optimal solution 

for the optimization problem so it will have no impact on short behavior 

The first recommendation that follows from this analysis is that the arbitrage point be 

fixed by the amount of gas Pemex has the potential to supply in the absence of processing 

and gathering constraints. This policy is not strictly optimal in that it violates the Little-

Mirrlees Rule, but the distortion is not large. The cost of distortion is less than the cost of 

moving the necessary gas from between the two arbitrage points in question. The 

reasoning behind this recommendation is that the discontinuities in Pemex’s revenue 

function create non-convexities in the optimization problem that cannot be addressed by 

policies that work at the margin.  

This is more of a political than an economic problem. In the absence of institutional 

constraints on investment by Pemex, it would be economically efficient to invest in 

processing capacity so as not to flare gas and supply this gas to market. Given that there 

are institutional constraints that restrict investment, the question is whether economic and 

political benefits of supplying gas to central Mexico at the price that would prevail in the 

absence of these constraints outweighs the cost of transporting gas between the two 

arbitration points. 

The second recommendation that follows from this analysis is that Pemex be charged for 

the gas it uses in production and the gas it flares. In the short run, this policy is neutral in 

that it does not distort behavior. It the long run, it creates incentives for Pemex to invest 

in gas processing capacity. 
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The third recommendation that is suggested by this study is that investment in gas 

processing and pipeline be in a separate account from other Pemex investment. Pemex is 

under a strict capital constraint. The reasons for this constraint are beyond the scope of 

this paper. However, capacity constraints in gas processing appear to be a serious 

problem; Mexico is flaring a substantial amount of gas while it is importing gas from the 

United States. Pipeline capacity is not a binding constraint at the moment. However, 

demand is growing. If there is not sufficient investment in pipelines, capacity constraints 

may become binding.  

Finally, a study should be done of the demand elasticity for gas in the production of gas 

and oil. At the moment Pemex appears to be treating gas as a free good. The question is 

how much gas would be available if Pemex had to pay for the gas it uses and the gas 

processing constraint was not binding. This is a question for petroleum and reservoir 

engineers. 
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